
Unica Interact V12.1.3
Administrator's Guide

Contents

Chapter 1. Administer Unica Interact.. 1

Unica Interact key concepts..1

Audience levels.. 1

Design Time environment... 2

Event and event patterns.. 3

Interactive channels...8

Interactive flowcharts.. 9

Interaction points... 9

Offers.. 9

Target cell...10

Profiles.. 10

Runtime environment.. 11

Runtime sessions.. 11

Touchpoints..12

Strategy and treatment rules.. 12

FlexOffers... 13

Gateways.. 14

Unica Interact architecture... 23

Unica Interact network considerations..24

Unica Interact server ports and network security...25

Logging in Interact.. 28

Chapter 2. Security management.. 30

Authenticate the Unica Interact JSP pages.. 30

Contents | iii

Chapter 3. Configuring users.. 31

Configuring the runtime environment user..31

Configuring design environment users..32

Example design environment permissions... 35

Chapter 4. Managing Unica Interact data sources... 38

Unica Interact data sources... 38

Databases and the applications.. 39

Unica Campaign system tables... 41

Runtime tables...41

Test run tables...44

Overriding the default data types used for dynamically created tables...................45

Overriding the default data types... 45

Default data types for dynamically created tables..46

Profile database...47

Learning tables.. 49

Contact history for cross-session response tracking...50

Running database scripts to enable Unica Interact features... 50

About Cross Session Contact Tracking...52

About contact and response history tracking...55

Contact and response types...55

Additional Contact types...56

Additional response types.. 57

Runtime environment staging tables to Unica Campaign history tables

mapping.. 60

Configuring JMX monitoring for the contact and response history module............71

Contents | iv

About cross-session response tracking.. 72

Enable duplicate detection and suppression...73

Cross-session response process... 74

Cross-session response tracking data source configuration................................... 75

Configuring contact and response history tables for cross-session response

tracking... 76

Enabling cross-session response tracking.. 81

Cross-session response offer matching..81

Using a database load utility with the runtime environment..86

Enabling a database load utility with runtime environment......................................87

Event pattern ETL process... 88

Running the stand-alone ETL process... 88

Stopping the stand-alone ETL process..90

Chapter 5. Offer serving..92

Offer eligibility..92

Generating a list of candidate offers... 92

Calculate the marketing score..94

Influencing learning... 95

Suppress offers... 96

Enabling offer suppression... 96

Offer suppression table...97

Ignore Offer Suppression..97

Global offers and individual assignments...98

Defining the default cell codes...99

Defining offers not used in a treatment rule... 99

Contents | v

About the global offers table..100

Assigning global offers... 100

Global offer table...100

About the score override table... 105

Configuring score overrides..105

Score override table.. 106

Unica Interact built-in learning overview... 110

Unica Interact learning module.. 111

Enabling the learning module...113

Learning attributes...114

Defining a learning attribute... 116

Define dynamic learning attributes.. 117

Unica Interact AutoBinning... 118

Configuring the runtime environment to recognize external learning modules.....119

Chapter 6. Understanding the Unica Interact API...121

Unica Interact API dataflow..121

Simple interaction planning example.. 126

Designing the Unica Interact API integration.. 133

Points to consider... 134

API Authentication...135

Chapter 7. Managing the Unica Interact API..137

Locale and the Unica Interact API... 137

About JMX monitoring..137

Configuring Unica Interact to use JMX monitoring with the RMI protocol............ 138

Configuring Unica Interact to use JMX monitoring with the JMXMP protocol......139

Contents | vi

Configuring Unica Interact to use the jconsole scripts for JMX monitoring..........139

JMX attributes... 140

JMX operations..160

Thread monitoring...161

Chapter 8. Classes and methods for the Unica Interact Java, SOAP, and REST API.........163

Unica Interact API Classes...163

Methods to pass the authentication parameters if API Authentication enabled

before API calls... 164

Java™ serialization over HTTP prerequisites.. 164

SOAP prerequisites..165

REST prerequisites.. 166

API JavaDoc...167

API examples... 167

Working with session data... 167

About the InteractAPI class... 169

endSession... 169

executeBatch..170

getInstance...174

getOffers...175

getOffersForMultipleInteractionPoints...178

getProfile.. 181

getVersion.. 184

postEvent..185

setAudience..189

setDebug...191

Contents | vii

startSession... 193

Reserved parameters.. 200

About the AdvisoryMessage class.. 214

getDetailMessage.. 214

getMessage..215

getMessageCode... 216

getStatusLevel..216

About the AdvisoryMessageCode class..217

Advisory message codes..217

About the BatchResponse class..226

getBatchStatusCode..226

getResponses...228

About the Command interface...229

setAudienceID.. 230

setAudienceLevel...231

setDebug...232

setEvent.. 234

setEventParameters...234

setGetOfferRequests... 236

setInteractiveChannel.. 238

setInteractionPoint...239

setMethodIdentifier..240

setNumberRequested..241

setRelyOnExistingSession... 241

About the NameValuePair interface.. 242

Contents | viii

getName... 242

getValueAsDate..243

getValueAsNumeric... 243

getValueAsString... 244

getValueDataType..245

setName... 246

setValueAsDate..247

setValueAsNumeric... 247

setValueAsString..248

setValueDataType.. 248

setScope(scope).. 249

getScope().. 250

About the Offer class..250

getAdditionalAttributes..251

getDescription.. 252

getOfferCode..253

getOfferName...253

getScore..254

getTreatmentCode... 255

About the OfferList class... 255

getDefaultString... 256

getRecommendedOffers... 257

About the Response class..257

getAdvisoryMessages... 258

getApiVersion...259

Contents | ix

getOfferList...259

getAllOfferLists.. 260

getProfileRecord...261

getSessionID.. 262

getStatusCode..262

Chapter 9. Classes and methods for the Unica Interact JavaScript API..........................265

JavaScript prerequisites... 265

Working with session data... 265

Working with the callback parameter..266

About the InteractAPI class... 267

startSession... 268

getOffers...275

getOffersForMultipleInteractionPoints...276

setAudience..279

getProfile.. 281

endSession... 282

setDebug...282

getVersion.. 284

executeBatch..284

JavaScript API example..285

Example response JavaScript object onSuccesss...301

Chapter 10. About the ExternalCallout API.. 304

IAffiniumExternalCallout interface... 304

Adding a web service for use with the EXTERNALCALLOUT macro......................305

getNumberOfArguments... 306

Contents | x

getValue..306

UACITimeout parameter..307

initialize...308

shutdown.. 308

ExternalCallout API example.. 309

IInteractProfileDataService interface... 311

Adding a data source for use with Profile Data Services....................................... 312

IParameterizableCallout interface..313

initialize...314

shutdown.. 314

ITriggeredMessageAction interface...315

getName... 315

setName... 315

IChannelSelector interface... 316

selectChannels...316

IDispatcher interface...317

dispatch.. 317

IGateway interface.. 318

deliver..319

validate... 320

Chapter 11. Unica Interact utilities.. 321

Run Deployment Utility (runDeployment.sh/.bat)... 321

Cleanup Expired Token Utility...327

Chapter 12. About the Learning API..329

Configuring the runtime environment to recognize external learning modules............ 330

Contents | xi

ILearning interface.. 331

initialize...331

logEvent.. 332

optimizeRecommendList.. 333

reinitialize..335

shutdown.. 335

IAudienceID interface..336

getAudienceLevel...336

getComponentNames... 337

getComponentValue.. 337

IClientArgs..337

getValue..337

IInteractSession... 338

getAudienceId.. 338

getSessionData.. 338

IInteractSessionData interface...339

getDataType... 339

getParameterNames..339

getValue..339

setValue.. 340

ILearningAttribute..340

getName... 341

ILearningConfig..341

ILearningContext... 342

getLearningContext..342

Contents | xii

getResponseCode..342

IOffer...342

getCreateDate.. 343

getEffectiveDateFlag..343

getExpirationDateFlag... 343

getOfferAttributes.. 344

getOfferCode..344

getOfferDescription..344

getOfferID... 344

getOfferName...345

getUpdateDate... 345

IOfferAttributes.. 345

getParameterNames..346

getValue..346

IOfferCode interface..346

getPartCount.. 346

getParts.. 346

LearningException... 347

IScoreOverride... 347

getOfferCode..347

getParameterNames..347

getValue..348

ISelectionMethod...349

ITreatment interface..349

getCellCode.. 349

Contents | xiii

getCellId..349

getCellName...350

getLearningScore...350

getMarketerScore.. 351

getOffer...351

getOverrideValues..351

getPredicate... 352

getPredicateScore..352

getScore..352

getTreatmentCode... 353

setActualValueUsed...353

Learning API example...354

Chapter 13. Unica Interact WSDL.. 363

Chapter 14. Unica Interact runtime environment configuration properties..................... 386

Interact | general... 386

Interact | general | API...387

Interact | general | centralizedLogger...388

Interact | general | learningTablesDataSource...389

Interact | general | prodUserDataSource..391

Interact | general | API | requestThreadPool..394

Interact | general | systemTablesDataSource..395

Interact | general | testRunDataSource.. 402

Interact | general | contactAndResponseHistoryDataSource................................. 404

Interact | general | idsByType... 406

Interact | flowchart..407

Contents | xiv

Interact | flowchart | ExternalCallouts | [ExternalCalloutName]..............................409

Interact | flowchart | ExternalCallouts | [ExternalCalloutName] | Parameter Data |

[parameterName]... 411

Interact | monitoring..412

Interact | monitoring | activitySubscribers... 413

Interact | profile... 415

Interact | profile | Audience Levels | [AudienceLevelName]....................................417

Interact | profile | Audience Levels | [AudienceLevelName] | Offers by Raw

SQL..423

Interact | profile | Audience Levels | [AudienceLevelName | Profile Data Services |

[DataSource]... 427

Interact | profile | Audience Levels | [AudienceLevelName] | Attributes

Logging... 429

Interact | offerserving..431

Interact | offerserving | Built-in Learning Config..435

Interact | offerserving | Built-in Learning Config | Parameter Data |

[parameterName]... 437

Interact | offerserving | External Learning Config..439

Interact | offerserving | External Learning Config | Parameter Data |

[parameterName]... 440

Interact | offerserving | Constraints... 441

Interact | offerserving | Tie Breakers..442

Interact | services..444

Affinium|interact|services|contactHist|treatmentStoreReference.......................... 445

daysBackForXSessContact... 445

Interact | services | contactHist... 445

Interact | services | contactHist | cache.. 446

Contents | xv

Interact | services | contactHist | contactStatusCodes...447

Interact | services | contactHist | fileCache...448

Interact | services | defaultedStats.. 448

Interact | services | defaultedStats | cache... 449

Interact | services | eligOpsStats..449

Interact | services | eligOpsStats | cache.. 450

Interact | services | eventActivity..451

Interact | services | eventActivity | cache.. 451

Interact | services | eventPattern..452

Interact | services | eventPattern | userEventCache..453

Interact | services | eventPattern | advancedPatterns.. 454

Interact | services | customLogger...457

Interact | services | customLogger | cache... 458

Interact | services | responseHist...459

Interact | services | responseHist | cache..461

Interact | services | response Hist | responseTypeCodes.......................................462

Interact | services | responseHist | fileCache.. 463

Interact | services | crossSessionResponse.. 464

Interact | services | crossSessionResponse | cache...466

Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel]

| TrackingCodes | byTreatmentCode.. 467

Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel]

| TrackingCodes | byOfferCode...468

Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel]

| TrackingCodes | byAlternateCode.. 470

Interact | services | threadManagement | contactAndResponseHist.....................471

Contents | xvi

Interact | services | threadManagement | allOtherServices.................................... 472

Interact | services | threadManagement | flushCacheToDB................................... 474

Interact | services | threadManagement | eventHandling....................................... 475

Interact | services | configurationMonitor..477

Interact | services | CampaignSegments... 478

Interact | cacheManagement... 480

Interact | cacheManagement | Cache Managers.. 480

Interact | caches.. 484

Interact | triggeredMessage... 495

Interact | triggeredMessage | offerSelection... 497

Interact | triggeredMessage | dispatchers...498

Interact | triggeredMessage | gateways | <gatewayName>....................................511

Interact | triggeredMessage | channels... 514

Interact | activityOrchestrator...517

Interact | activityOrchestrator | receivers...517

Interact | activityOrchestrator | gateways.. 527

Interact | ETL | patternStateETL...528

Interact | ETL | patternStateETL | <patternStateETLName> | RuntimeDS.............. 530

Interact | ETL | patternStateETL | <patternStateETLName> | TargetDS................. 532

Interact | ETL | patternStateETL | <patternStateETLName> | Report..................... 534

Chapter 15. Unica Interact Simulator...537

Interact | simulator..537

Interact | simulator|scenarioDataSource... 538

Chapter 16. Unica Interact design environment configuration properties....................... 543

Campaign | partitions | partition[n] | reports...543

Contents | xvii

Campaign | partitions | partition[n] | UnicaInsightsReports... 546

Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking....... 547

Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking |

runtimeDataSources | [runtimeDataSource].. 553

Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking |

contactTypeMappings... 554

Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking |

responseTypeMappings.. 555

Campaign | partitions | partition[n] | Interact | report... 556

Campaign | partitions | partition[n] | Interact | learning..557

Campaign | partitions | partition[n] | Interact | learning | learningAttributes |

[learningAttribute].. 562

Campaign | partitions | partition[n] | Interact | deployment..562

Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup]................ 563

Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup] |

prodUserDataSource..563

Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup] |

instanceURLs | [instanceURL]...564

Campaign | partitions | partition[n] | Interact | flowchart... 565

Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] |

DefaultOffers..566

Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] |

offersBySQL... 567

Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] |

ScoreOverride.. 568

Campaign | partitions | partition[n] | server | internal... 568

Campaign | monitoring... 575

Contents | xviii

Campaign | partitions | partition[n] | Interact | outboundChannels................................ 578

Campaign | partitions | partition[n] | Interact | outboundChannels | Parameter

Data...578

Campaign | partitions | partition[n] | Interact | Simulator... 579

offerArbitrition..579

Chapter 17. Real-time offer personalization on the client side.......................................582

About the Unica Interact Message Connector..582

Installing the Message Connector... 584

Creating the Message Connector links..597

About the Unica Interact Web Connector..602

Installing the Web Connector on the runtime server.. 602

Installing the Web Connector as a separate web application................................ 603

Configuring the Web Connector... 605

Using the Web Connector Admin Page... 627

Sample Web Connector Page...628

Chapter 18. JVM parameters.. 634

Interact design time.. 634

Interact run time..636

Chapter 19. Unica Interact and Digital Recommendations integration............................652

Overview of Unica Interact integration with Digital Recommendations........................ 652

Integration Prerequisites... 653

Configuring an offer for Digital Recommendations integration.....................................654

Using the Integration Sample Project..656

Chapter 20. Unica Interact and Digital Data Exchange integration..................................672

Prerequisites.. 672

Contents | xix

Integrating Unica Interact with your website through IBM Digital Data Exchange........673

Unica Interact tags in Digital Data Exchange..674

End Session..674

Get Offers... 675

Load Library... 676

Post Event.. 676

Set Audience.. 677

Start Session..678

Example tag settings...679

Verify your integration configuration... 686

Chapter 21. Unica Interact and Unica Journey integration... 687

Overview...687

Interact-Journey fields mapping.. 688

Interact runtime configurations..691

Deployment.. 691

Chapter 22. Unica Interact and Unica Deliver integration...692

Overview...692

Interact-Deliver mapping...693

Interact runtime configurations..694

Deployment.. 694

Chapter 23. Configure gateways... 695

Using the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange.......696

Using the Unica Interact Outbound Gateway for IBM Universal Behavior Exchange.... 706

Using Unica Interact Outbound Gateway for IBM Mobile Push Notification................. 708

Contents | xx

Using the Unica Interact Email (Transact) Outbound Gateway for IBM Marketing

Cloud.. 712

Adding a dispatcher for the gateway integration..712

Configuring the OMO-conf_outbound_common_httpConnectionConfig

parameter... 712

Configuring the OMO-conf_outbound_silverpop_silverpopConfig parameter....... 713

Configuring the OMO-conf_outbound_silverpop_silverpop ContentMapping

parameter... 713

Configuring the deliveryTimeoutMillis parameter... 714

Add a channel handler for the Unica Interact Email (Transact) Outbound Gateway

for IBM Marketing Cloud...714

Adding an outbound channel for the Unica Interact Email (Transact) Outbound

Gateway for IBM Marketing Cloud... 715

Configuring the transactional mailing with the Unica Interact Email (Transact)

Outbound Gateway for IBM Marketing Cloud..715

Contact Central integration configurations..716

Index..

d2492e84876
d2492e84876
d2492e84876
d2492e84876

Chapter 1. Administer Unica Interact
When you administer Unica Interact you configure and maintain users and roles, data

sources, and optional product features. You also monitor and maintain the design and

runtime environments. Product-specific application programming interfaces (APIs) are

available for you to use.

Administering Unica Interact consists of several tasks. These tasks can include, but are not

limited to:

• Maintaining users and roles

• Maintaining data sources

• Configuring Unica Interact optional offer serving features

• Monitoring and maintaining runtime environment performance

Before you start administering Unica Interact, there are some key concepts about how Unica

Interact works that you can familiarize yourself with to make your tasks easier. The sections

that follow describe the administrative tasks that are associated with Unica Interact.

The second part of the administration guide describes the APIs available with Unica

Interact:

• Unica Interact API

• ExternalCallout API

• Learning API

Unica Interact key concepts
Unica Interact is an interactive engine that targets personalized marketing offers to various

audiences.

This section describes some of the key concepts you should understand before you work

with Unica Interact.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 2

Audience levels
An audience level is a collection of identifiers that can be targeted by a campaign. You can

define audience levels to target the correct set of audiences for your campaign.

For example, a set of campaigns can use the audience levels "Household," "Prospect,"

"Customer," and "Account." Each of these levels represents a certain view of the marketing

data available for a campaign.

Audience levels are typically organized hierarchically. Using the examples above:

• Household is at the top of the hierarchy, and each household can contain multiple

customers and one or more prospects.

• Customer is next in the hierarchy, and each customer can have multiple accounts.

• Account is at the bottom of the hierarchy.

Other, more complex examples of audience hierarchies exist in business-to-business

environments, where audience levels can exist for businesses, companies, divisions, groups,

individuals, accounts, and so on.

These audience levels can have different relationships with each other, for example one-to-

one, many-to-one, or many-to-many. By defining audience levels, you allow these concepts

to be represented within Unica Campaign so that users can manage the relationships

among these different audiences for targeting purposes. For example, although there might

be multiple prospects per household, you might want to limit mailings to one prospect per

household.

Design Time environment
Use the design time environment to configure various Unica Interact components and

deploy them to the runtime environment.

The design time environment is where you complete most of your Unica Interact

configuration. In the design time environment, you define Interactive channels, interactive

flowcharts, strategies and treatment rules, events and event patterns, interaction points,

smart segments, and FlexOffers. After you configure these components, you deploy them to

the runtime environment.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 3

The design time environment is installed with the Unica Campaign web application.

Event and event patterns

Event

An Event represents an occurred user activity that can trigger an action in runtime

environment. Examples of an event can be visiting website, opening a checking account,

calling customer service, etc.

Events are first created in Interactive Channels through Interact Design Time UI and then

posted to Interact runtime environment by calling runtime API postEvent.

Event Patterns

An Event Pattern consists of series of events that occur in a particular way. Marketers can

use event patterns to track and record pattern of customers' activities in real-time and

act accordingly. A pattern starts with pattern state “condition-not-met”. By posting events

to Interact at selected stages of customers' activities, the pattern state is checked and

updated. When all defined events for the pattern occur in the defined way, the pattern state

is changed to "condition-met", and configured actions are triggered. Event patterns can be

used in customer segmentations and offer arbitration logics.

Interact supports the following 11 types of event patterns.

• Match all

• Counter

• Weighted Counter

• Match all (time bound)

• Counter (time bound)

• Weighted counter (time bound)

• Sequence (time bound)

• Match all (rolling time)

• Counter (rolling time)

• Weighted counter (rolling time)

• Sequence (rolling time)

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 4

Match all: It is a pattern that fires (being set to “condition-met” state) when all composing

events occur. For example, "Event A" and "Event B" and "Event C" must all occur, then

pattern's condition is met. The sequence of event occurrence does not matter.

Counter: It is a pattern that fires if each composing event occur more than a predefined

number of times. For example, "Event A" occurs >= 5 times and "Event B" occurs >= 5 times,

then pattern's condition is met. The sequence of event occurrence does not matter.

Weighted counter: It is a pattern in that each composing event is weighted and the pattern

fires when a cumulative sum is reached to a predefined number of times. For example, if a

pattern consists of “Event A” with score 2 and “Event B” with score 5, and a total score is 10,

then pattern’s conditions is met when any of following situations occur.

• "Event A" occurs 5 times because 5x2=10

• "Event B" occurs 2 times because 2x5=10

• "Event A" occurs 3 times and “Event B” occurs 1 time because 3x2 + 1x5 = 11.

For patterns types of Match all, Counter and Weighted Counter, there are no time constraints

for them. As long as events posted fall into defined Start and End date, they are evaluated

for the pattern. If Start date is not defined, the pattern starts be effective immediately once

deployed. If End date is not defined. pattern is effective forever. Marketers can use Pattern

Reset feature to reset pattern state for these three types of patterns. In contrast, Time

Bound patterns and Rolling Time patterns are time bounded patterns.

Sequence: It is a pattern similar to "Match all" pattern, but the sequence of event

occurrences matters. The pattern fires when all composing events occur restrictively in a

defined sequence. For example, "Event A" must occur before "Event B" and "Event B" must

occur before "Event C", then the pattern's condition is met. The dependency cannot have

a cyclic nature. In other words, eventA->eventB->eventA is not allowed. The "Event A" is

a dependent event of "Event B", while the "Event B" is the depending event of "Event A".

A time frame between a minimum and maximum duration can be optionally defined for

a depending event, namely, only a depending event occurred in this time frame after its

dependent event occurred is counted in the pattern evaluation. This provides the marketers'

a flexibility to limit that only events occurred in a specific time window are valid to the

pattern's state evaluation. Both minimum and maximum duration are relevant duration

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 5

from time when its dependent event occurrs. The both are optional. If none or either one is

not specified, there is no time limit respectively. Only sequencing for qualifying events are

supported, not for suspending (negative) events.

Rolling Time pattern: A rolling time pattern can be a "Match all", "Counter" or "Weighted

counter" pattern, but all composing events must occur within a time window. At any time

when a composing event is posted to Interact Runtime, Interact checks the occurrences

of pattern’s all composing events in the time window starting from the current time point.

If event occurrences do not meet pattern definition, the pattern state stays as “condition-

not-met”. Otherwise, if all events are occurred within the time window, the pattern state is

set to “condition-met” (may trigger actions if configured). After that, the pattern’s state is

continuously re-evaluated in same way as above and is repeated on rolling base

Time Bound Pattern: A time bound pattern can be a "Match all", "Counter" or "Weighted

counter" pattern, but all composing events must occur within a time window. At any time

when a composing event posted to Interact Runtime, Interact checks the occurrences of

pattern’s all composing events in the time window starting from current time point. If event

occurrences do not meet pattern definition, the pattern state stays as “condition-not-met”.

Otherwise, if all events occur within the time window, the pattern state is set to “condition-

met” (may trigger actions if configured). Now Interact checks another setting called “Extend

true state for additional period of time" and keeps the pattern as “condition-met” state

for the additional period of time (no pattern evaluation in this period of time). When the

additional time passes, pattern state is reset to “condition-not-met” and the evaluation

starts another cycle. In other words, Time Bound Pattern allows pattern to pause for a

certain time after condition-met. The setting “Extend true state for additional period of time"

is only applicable to Time Bound pattern.

For example, P1 is a Time Bound pattern and P2 is a Rolling Time pattern. Both patterns

consist of “Event A” and “Event B”, and they must occur within 7 days. In run time, “Event

A” occurred on Monday and “Event B” occurred on Saturday. When “Event B” occurred,

the pattern state is changed to “condition-met” for both P1 and P2 because two events

occurred within 7 days. Now for P1, if the setting "Extend true state for additional period

of time" is 4 days, then P1 stays in “condition-met” state till Wednesday, and then all

the occurrences of two events are cleared and the pattern starts from the scratch on

Wednesday. On the contrary, the state of P2 is evaluated continuously after Saturday. If

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 6

“Event B” happens on Tuesday, P1’s state will become “condition-not-met” because “Event

A” did not occur from the last Wednesday to this Tuesday.

Qualifying Event and Suspending Event: An event pattern is composed of series of events.

The events that make the pattern’s state change to "condition-met" is called Qualifying

Events. While the events that make the pattern pausing for evaluation is called Suspending

Events. For example, a pattern has two events, “open_bank_account”, “ATM_activity” and

“offer_credit_card”, all must occurs in 2 months. If a customer has already applied and

got bank’s credit card at the time of 1 month from time opening account, marketers would

not want bother the customer again by offering card. Therefore, marketers can define a

suspending event “got_card” in the pattern which will pause the pattern for evaluation. The

marketers can also use setting “Effective duration” to set if the pattern being suspended

forever or just for a period of time.

Event Macro: Besides events that customers define, Interact also supports six event macros

that can participate in pattern definition, as either Qualifying Events and Suspending Events.

The following are the six macros.

• offerAccepted

• offerContacted

• offerRejected

• offerAcceptedInCategory

• offerContactedInCategory

• offerRejectedInCategory

offerAccepted, offerContacted or offerRejected for an offer can be served as an event in a

pattern. offerAcceptedInCategory, offerContactedInCategory, or offerRejectedInCategory

can have all offers that have similar attribute value as an event in a pattern.

Pattern in-activity: A pattern not only can be evaluated for “condition-met”, but also

“condition-not-met”. Marketers can use this feature to track customers’ in-activities.

For example, a pattern has two events, “add_item_to_cart” and “checkout”, all must

occur in seven days. Marketers can add check point on 3rd day, if customer has not

checked out the item yet, that is, pattern’s state is “condition-not-met”, then an action of

“send_reminder_email” would be executed for the customer.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 7

Event Category

Events or Event Patterns can be organized into categories for your convenience in

the design environment. Event categories have no functional purpose in the runtime

environment.

Actions

An Action can be triggered when an event occurs or when event pattern's conditions are met

or not met. They are configured in Interact Design Time when you define events or event

patterns.

Interact supports eight types of actions.

• Trigger re-segmentation: The runtime environment runs all or a selective subset of

the interactive flowcharts for the current audience level that is associated with the

interactive channel again, by using the current data in the visitor's session. This is

useful to place the visitor into new segments after significant new data is changed to

the runtime session object, such as new data from requests of the Unica Interact API

(such as changing the audience) or customer actions (such as adding new items to a

wish list or shopping cart). It is worth noting that excessive re-segmentation within a

single visit can affect the performance of the touchpoint in a customer-visible way.

• Log offer contact: The runtime environment flags the recommended offers for the

database service to log the offers to contact history. For web integrations, log the

offer contact in the same call where you request offers to minimize the number of

requests between the touchpoint and the runtime server. If the touchpoint does not

specify the treatment code for the offer that Unica Interact presented to the visitor, the

runtime environment logs the last list of recommended offers

• Log offer acceptance: The runtime environment flags the selected offer for the

database service to log to response history.

• Log offer rejection: The runtime environment flags the selected offer for the database

service to log to response history

• Trigger user expression: An expression action is an action where you can define the

value of a session variable by using profile attributes, real-time attributes, together

with Unica Interact macros, including functions, variables, and operators, including

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 8

EXTERNALCALLOUT. You can assign the return value of the expression to any profile

attribute

• Trigger events: You can use the Trigger Events action to trigger another one or

multiple events upon source event occurs. This allow marketers have chained events.

• Suppress offers. Offer suppression can be triggered from events and event patterns.

The suppression rules can be defined based on specific offers or a group of offers

having the same attribute values. The difference of offer suppressing action and

existing suppression rules are that the former can be triggered without relating to

treatment rules.

• Qualify segments. User can specify which segment is enabled as result of an event or

event pattern.

Besides invoking actions immediately when event occur or pattern condition is met, actions

can also be invoked with a delay, either delayed after period of time or at scheduled date

and time. This give marketers’ control on executing actions at preferred times. Action delay

is not applicable to ‘Offer Suppression’ and ‘Qualifying Segments”

Interactive channels
Use interactive channels in Unica Interact to coordinate all the objects, data, and server

resources that are involved in interactive marketing.

An interactive channel is a representation in Unica Interact of a touchpoint where the

method of the interface is an interactive dialog. This software representation is used to

coordinate all of the objects, data, and server resources that are involved in interactive

marketing.

An interactive channel is a tool that you use to define interaction points and events. You

can also access reports for an interactive channel from the Analysis tab of that interactive

channel.

Interactive channels also contain production runtime and staging server assignments. You

can create several interactive channels to organize your events and interaction points if you

have only one set of production runtime and staging servers, or to divide your events and

interaction points by customer-facing system.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 9

Interactive flowcharts
Use interactive flowcharts to divide your customers into segments and assign a profile to a

segment.

An interactive flowchart is related to but slightly different from a Unica Campaign batch

flowchart. Interactive flowcharts perform the same major function as batch flowcharts:

dividing your customers in to groups known as segments. For interactive flowcharts,

however, the groups are smart segments. Unica Interact uses these interactive flowcharts

to assign a profile to a segment when a behavioral event or system event indicates that a

visitor re-segmentation is needed.

Interactive flowcharts contain a subset of the batch flowchart processes, and a few

interactive flowchart-specific processes. The "Update" option is not available in Interactive

flowcharts.

Note: Interactive flowcharts can be created in a Unica Campaign session only.

Note: For test run of interactive flowchart, it is recommended to use the server

group rather than the Production Server group.

Note: DT_DELIM_XXX formats cannot be used with Interactive Session flowcharts.

Interaction points
An interaction point is a place in your touchpoint where you want to present an offer.

Interaction points contain default filler content in cases where the runtime environment

does not have other eligible content to present. Interaction points can be organized into

zones.

Offers
An offer represents a single marketing message, which can be delivered in various ways.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 10

In Unica Campaign, you create offers that can be used in one or more campaigns.

Offers are reusable:

• In different campaigns

• At different points in time

• For different groups of people (cells)

• As different "versions" by varying the offer's parameterized fields

You assign offers to interaction points in the touchpoints that are presented to visitors.

Interact supports "DRAFT", "PUBLISHED" and "RETIRED" Centralized Offer Management

states. Only "PUBLISHED" offers can be used and deployed in Interact. If any "PUBLISHED"

offer in Interact, is redrafted or retired, the corresponding status "(redraft)/(retired)" is

displayed with the offer.

Note: Each offer used in Interact must have an unique offer code. It is case

insensitive. In addition, each offer attribute must have a unique name. It is case

insensitive.

Target cell

A target cell is a group of homogeneous individuals, as defined by the audience level,

such as individual customers or household accounts. For example, cells can be created

for high-value customers, customers who prefer to shop on the web, accounts with on-

time payments, customers who opted to receive email communications, or loyal repeat

buyers. Each cell that you create can be treated differently and receive different offers or

communications through different channels. Note, each cell must have unique cell code. It

is case insensitive and is among all the cells used in Interact.

Profiles
A profile is the set of customer data that is used by the runtime environment. This data can

be a subset of the customer data available in your customer database, data that is collected

in real time, or a combination of the two.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 11

The customer data is used for the following purposes:

• To assign a customer to one or more smart segments in real-time interaction

scenarios.

You need a set of profile data for each audience level by which you want to segment.

For example, if you are segmenting by location, you might include only the customer's

postal code from all the address information you have.

• To personalize offers

• As attributes to track for learning

For example, you can configure Unica Interact to monitor the marital status of a

visitor and how many visitors of each status accept a specific offer. The runtime

environment can then use that information to refine offer selection.

This data is read-only for the runtime environment.

Runtime environment
The runtime environment connects to your touchpoint and performs interactions. The

runtime environment can consist of one or many runtime servers that are connected to a

touchpoint.

The runtime environment uses the information that is deployed from the design

environment in combination with the Unica Interact API to present offers to your touchpoint.

Runtime sessions
A runtime session exists on the runtime server for each visitor to your touchpoint. This

session holds all the data for the visitor that the runtime environment uses to assign visitors

to segments and recommend offers.

You create a runtime session when you use the startSession call.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 12

Touchpoints
A touchpoint is an application or place where you can interact with a customer. A touchpoint

can be a channel where the customer initiates the contact (an "inbound" interaction) or

where you contact the customer (an "outbound" interaction).

Common examples are websites and call center applications. Using the Unica Interact API,

you can integrate Unica Interact with your touchpoints to present offers to customers based

on their action in the touchpoint. Touchpoints are also called client-facing systems (CFS).

Strategy and treatment rules
An Interactive channel can have multiple marketing strategies. A Strategy, key focal point

of Interact application, consists of a set of treatment rules. Treatment rules are also called

Smart rules in Interact after version 12.0. Treatment rules assign an offer to a smart

segment. These assignments are further constrained by the custom-defined zone that you

associate with the offer in the treatment rule.

For example, you have one set of offers that you assign to a smart segment in the "login"

zone, but a different set of offers for the same segment in the "after purchase" zone.

Each treatment rule also has a marketing score. If a customer is assigned to more than

one segment, and therefore more than one offer is applicable, the marketing scores help

define the offer Interact suggests. Offer score can either have static number score called

Marketer score or dynamic score, which is defined as an expression (also called Predicate

in Interact) of profile or offer attributes. Interact Runtime uses this expression to calculate

the offer score based on attributes values at runtime. Offer Eligibility is the way to further

determine if an offer is eligible or not even it is enabled. An offer is only eligible if it is

falling into effective period (between Effective and Expiration date) and/or an expression is

evaluated true at run-time. When Interact presents an offer to end users, instead of taking

offer attributes’ values from the offer, Interact has the capability to override offer attribute

values, even with an expression calculated from profile data at Interact Run-time. Users can

define Parametrized Offer Attributes for the offer in a treatment rule. The offers the runtime

environment suggests can be influenced by a learning module, an offer suppression list, and

global and individual offer assignments.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 13

FlexOffers
An interactive channel can be configured to have multiple FlexOffer mappings in it.

FlexOffers provide a simpler way to assign offers directly to the matched targeted

customers. FlexOffers mapping can be created from an already created table or by

importing a CSV file containing the required mapping data or by creating new Rules table.

Each mapping can have multiple rules and filters. Each rule can be used to assign offers

based on various custom attributes. These assignments can be further constrained by the

zones and cells associated with the offer in the rule. Further, a rule can be set to have any

number of custom attribute associated with it.

Each rule also has a marketing score. If a customer is applicable for more than one offer,

the marketing score helps to determine the offer that the Interact application suggests.

The marketing score can have a static value or a dynamic value defined as an expression

of offer attributes. This expression is then used to calculate the marketing score by the

Interact runtime.

Offer eligibility is used to determine whether the offer is eligible or not even if the rule is

enabled. An offer is eligible if it falls in the effective period (between effective and expiration

date) and/or an expression is evaluated true at runtime. When Interact presents an offer

to end users, instead of taking offer attributes’ values from the offer, Interact has the

capability to override offer attribute values, even with an expression calculated from profile

data at Interact Run-time. Users can define Parametrized Offer Attributes for the offer in

the FlexOffers rule. The offers the runtime environment suggests can be influenced by a

learning module, an offer suppression list, and global and individual offer assignments.

Filters can be applied to the rules to get the required offers for the targeted customers. Each

filter has conditions on the rule attributes. These conditions at runtime determine the set of

offers shown to the customer. Any number of filters can be applied together on the rules to

get the required offers.

For example, you can have multiple rules having different offers linked to attributes like

location and total expense of a customer. You can create filters having conditions on these

attributes. Depending on these conditions the offers are displayed for the customer at

runtime.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 14

The rules and filters are defined under the FlexOffers tab of an interactive channel.

Under the‘FlexOffers’ tab, you can create the mapping, copy to the required server group,

create rules directly or import from a file, add new rules and criteria, edit or delete single or

multiple rules and criteria, duplicate rules and create filters. For details, see the Interact User

Guide.

FlexOffer mapping along with its rules and filters provide a solution to customize offers

based on any number of custom attributes and retrieve these offers by applying different

conditions on these attributes.

While retrieving offers from Interact runtime, the filters are applied as per below logic :

UACIEnableOfferMappingFilter: This parameter is defined along with the filter name at

runtime during startSession or getOffers.The particular filter will be applied to get offers

from FlexOffer mapping table.

UACIDisableOfferMappingFilter: This parameter is defined along with the filter name at

runtime during startSession or getOffers.The particular filter will not be applied while getting

offers from the table.

Apart from this, all the filters marked as default, if not disabled, will be applied to the table to

get offers

Gateways

Interact supports for inbound and outbound gateways. However, all the configurations were

done through property files, which are hard to manage and prone to errors.

An interactive channel can be configured to define multiple Gateway mappings in it.

You can create gateway mappings for the following.

• Journey Outbound

• Deliver Outbound

• Generic Outbound

• Generic Inbound

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 15

For more details on the Journey Outbound, see the Unica Interact and Unica Journey

integration (on page 687) section.

For more details on the Deliver Outbound, see the Unica Interact and Unica Deliver

integration (on page 692) section.

Generic outbound: It can be used to define the mappings for the gateways, which are

configured to use for outbound communication.

• Number of messages: It defines the number of messages that will be sent through

gateway

• Priority: It defines the priority of the gateway, which is a numeric value. The

combination of Name and Priority uniquely identifies the Gateway within the enclosing

interactive channel. Gateway having minimum Priority value will be deployed to

Interact runtime.

• Channel properties – This is used to define the properties in key-value format which is

needed for the gateway.

• Mapping – This is used to define the mapping between the endpoint field and the

Interact field.

Generic inbound: This can be used to define the mappings for the gateways which are

configured to use for inbound communication.

• Priority: It defines the priority of the gateway, which is a numeric value. The

combination of Name and Priority uniquely identifies the Gateway within the enclosing

interactive channel. Gateway having minimum Priority value will be deployed to

Interact runtime.

• Channel properties - This is used to define the properties in key-value format which is

needed for the gateway. These properties are passed as parameters to startSession

API.

• Mapping - This is used to define the parameter mapping between the Interact event

and endpoint event. These properties are passed as parameters to postEvent API.

See the Configure gateways (on page 695) section for more details on how to configure

mappings for the Email, MobilePush and UBX gateway.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 16

Implementation of Generic Inbound or Generic Outbound Gateway

Interact provides an out-of-the-box implementation for generic inbound and outbound

gateways. Users can configure the channel properties and mapping using the generic

outbound or inbound gateway and use these Interact implementations by creating

gateways using InteractGateway template in Interact runtime triggeredMessage/

activityOrchestration configuration.

Both implementations support Kafka as the communication channel between Interact and

third party systems.

Generic Inbound Gateway implementation

To process the incoming message, Interact requires information in the form of configuration

to map the incoming message fields with appropriate Interact properties. The UI

configuration must define all mandatory properties that Interact requires in order to call

Interact APIs: startSession, postEvent, and endSession. You can perform the configuration

by navigating to “Interactive Channel” -> “Gateways” -> “Generic Inbound Gateway”.

The following is a sample inbound message through Kafka channel. Kafka activity receiver

mandates the “gateway” and “message” properties to identify the channel for processing.

“message” contains the information sent to the inbound gateway for processing.

{

 "gateway": "GenericIn",

 "message":

{

 "ICName": "SB_InteractiveChannel",

 "audienceID": [

 {

 "n": "CustomerID",

 "v": "1",

 "t": "numeric"

 }

],

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 17

 "events": [

 {

 "event": "EP_contact",

 "parameters": [

 {

 "n": "UACIOfferTrackingCode",

 "v": "5.2.ffffffffe4699811.4fad551",

 "t": "string"

 }

]

 }

],

 "parameters": [

 {

 "n": "country",

 "v": "INDIA",

 "t": "string"

 },

 {

 "n": "UACILogSeparationFileName",

 "v": "log123",

 "t": "string"

 }

],

 "CH_debug": "true",

 "CH_sessionID": "session1"

 }

}

Inbound Gateway configuration

The configuration must provide a mapping of incoming message properties with

startSession, postEvent, and endSession API parameters.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 18

startSession properties

Interact requires the following information for startSession API.

• SessionId

• Interactive Channel Name

• Audience Level

• Audience ID

• Parameters

• Rely on existing Session

• Debug

Consider the following points.

• Interactive channel name must be provided by reserved property name “ICName”. This

is mandatory for all incoming messages. For example:

ICName: SB_InteractiveChannel

• Audience Level, Audience ID, and “Rely on existing session” are mapped from the

“General” tab of Generic Inbound Gateway configuration.

• For Audience ID, users can configure any endpoint property to be mapped and

processed from the incoming message. The value of the audience ID must follow the

below predefined format.

"EndPointField_audienceID": [

 {¬

 "n": "CustomerID",

 "v": "1",

 "t": "numeric"

 }

]

• Mapping for Session ID and debug flags can be configured from the “Channel

Properties” tab of the generic inbound.

All properties defined in the Channel properties tab are additionally passed as

startSession parameters, so users can access this tab to define start session

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 19

parameters. Additionally, users can pass the startSession parameters under the

reserved property name “parameters” as shown below.

"parameters": [

 {

 "n": "country",

 "v": "INDIA",

 "t": "string"

 },

 {

 "n": "UACILogSeparationFileName",

 "v": "log123",

 "t": "string"

 }

]

postEvent properties

Event name and event parameters can be mapped from the “Mapping” tab in Generic

inbound configuration.

All event parameter mappings are passed as event parameter for the postEvent API call.

Additionally, users can optionally use the reserved property name “parameters” under

“events” to define the event parameters as shown below.

"events": [

 {

 "event": "EP_contact",

 "parameters": [

 {

 "n": "UACIOfferTrackingCode",

 "v": "5.2.ffffffffe4699811.4fad551",

 "t": "string"

 }

]

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 20

 }

]

endSession properties

End Session property is mapped from the “General” tab. Users can also override this

configuration by providing a value to the reserved property “endSession” in the incoming

message.

Inbound gateway reserved field names

The following are the reserved field names that system tries to look in the incoming

message either when it is not able to find that through gateway configuration or when users

want to override it.

The following are the reserved fields that the system look for in case it does not find the

mapping in the gateway configuration.

• ICName

• parameters

• debug

• sessionId

The following are the fields for which users can override the configuration value by providing

them in the incoming message.

• endSession

• relyOnExistingSession

Runtime configuration

Create a gateway using the Affinium|interact|activityOrchestrator|gateways|

(InteractGateway) template. The name of the gateway must match the gateway name

given for the Generic Inbound Gateway created from Interact design time. For receiving

the incoming message, you must create a “Kafka” type of receiver from “Affinium|interact|

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 21

activityOrchestrator|receivers” and add the required parameters for connecting to Kafka as

a consumer.

Generic outbound gateway implementation

Outbound gateway configuration is used to identify the information required to be sent as

a part of the outbound message. This out-of-the-box implementation for generic outbound

gateway is specific to the Kafka gateways.

The following is a sample outbound message that is produced by the outbound gateway

implementation:

{

 "Gateway": "GenericOut",

 "Channel": "testChannel",

 "ic": "SB_InteractiveChannel",

 "ProcessTime": 1609841939584,

 "audienceLevel": "Customer",

 "audienceID": [

 {

 "t": "numeric",

 "v": 1,

 "n": "CUSTOMERID"

 }

],

 "OfferName": "Offer1",

 "TreatmentCode": "0.2.6e0cce60.fffffffff49103c0",

 "OfferCode": ["000000001"],

 "EP_expiration": "00/02/2012",

 "EP_Fulfillment Cost": "10",

 "EP_NAME": "Raphael Villareal",

 "EP_defaultField2": "12345",

 "EP_Field1": "InteractField1"

 }

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 22

Default fields

The following are the fields that are a part of each outbound message by default..

• Gateway

• Channel

• Interactive Channel

• Processing timestamp

• Audience Level

• Audience ID

• OfferName

• OfferCode

• TreatmentCode

Offer and profile attributes

The offer and profile properties required to be sent as part of the outbound message can

be configured through “Mapping” tab. The values are validated for the size and date format,

if configured. Similarly, the fields that are configured as mandatory are validated before the

messages can be sent.

Endpoint fields with default values can be configured from the “Channel Properties” tab. All

fields configured in this tab are sent as part of each outbound message.

Runtime configuration

Users must configure a gateway by navigating to Affinium|interact|triggeredMessage|

gateways|InteractGateway”. The name of this gateway must match the generic outbound

gateway created from the user interface. The template requires the users to provide Kafka

connection details for sending out the message.

Contact Central integration with Gateway

Interact gateway is integrated with Unica Contact Central in order to control offers being

sent to customers in their preferred contact channel and targetted time zone. During

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 23

the creation of gateway users can select Contact Central integration behavior, such as

"Discard when unavailable", "Always send", and "No integration" along with contact channel

and preference (or time zone). For more details on how to configure Contact Central for

gateway, see the Contact Central integration configurations (on page 716) section.

Unica Interact architecture
The Unica Interact environment consists of at least two major components, design

environment and the runtime environment. You may have optional testing runtime servers

as well.

The following figure shows the high-level architecture overview.

The design environment is where you perform the majority of your Unica Interact

configuration. The design environment is installed with the Unica Campaign web application

and references the Unica Campaign system tables and your customer databases. You use

the design environment to define the interaction points and events you use with the API.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 24

After you design and configure how you want the runtime environment to handle customer

interactions, you deploy that data to either a staging server group for testing or a production

runtime server group for real-time customer interaction.

The Unica Interact API provides the connection between your touchpoint and the runtime

server. You reference objects (interaction points and events) created in the design

environment with the Unica Interact API and use them to request information from the

runtime server.

Unica Interact network considerations
A production installation of Unica Interact spans at least two machines. In a high-volume

production environment, with several Unica Interact runtime servers and distributed

databases, your installation might span dozens of machines.

For best performance, there are several network topology requirements to consider.

• If your implementation of the Unica Interact API starts and ends sessions in the same

call, for example:

executeBatch(startSession, getOffers, postEvent, endSession)

you do not need to enable session persistence (sticky sessions) between the load

balancer and the Unica Interact runtime servers. You can configure the Unica Interact

runtime servers session management for local cache type.

• If your implementation of the Unica Interact API uses multiple calls to start and end

sessions, for example:

startSession

. . .

executeBatch(getOffers, postEvent)

. . .

endSession

and you are using a load balancer for your Unica Interact runtime servers, you

should enable some type of persistence for the load balancer (also known as sticky

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 25

sessions). If that is not possible, or if you are not using a load balancer, configure

the Unica Interact servers session management for a distributed cacheType. If

you are using a distributed cache, all the Unica Interact runtime servers must be

able to communicate via multicast. You may need to tune your network so that the

communication between Unica Interact servers using the same multicast IP address

and port does not impede system performance. A load balancer with sticky sessions

has better performance than using a distributed cache.

• Distributed caching among multiple server groups is not supported.

• Keep your runtime environment Unica Interact servers, Unica Platform, load balancers,

and touchpoint) in the same geographic location for best performance. Design time

and runtime can be in different geographic locations, but expect a slow deployment.

• Have a fast network connection (at least 1Gb) between the Unica Interact production

server group and its associated touchpoint.

• Design time requires http or https access to runtime to complete deployment tasks.

Any firewalls or other network applications must be configured to allow deployment.

You may need to extend the HTTP timeout lengths between the design environment

and the runtime environments if you have large deployments.

• The contact and response history module requires access to the design time

database (Unica Campaign system tables) and access to the runtime database

Unica Interact runtime tables). You must configure your databases and network

appropriately for this data transfer to occur.

In a testing or staging installation, you can install Unica Interact design time and runtime on

the same machine. This scenario is not recommended for a production environment.

Unica Interact server ports and network security
Configure Unica Interact t to secure your server ports.

Unica Interact runtime ports

Some of these ports can be closed, or are not required by all Unica Interact installations,

depending on your configuration.

Unica Interact application server port for HTTP

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 26

The default port where Unica Interact requests are handled.

Unica Interact application server port for HTTPS

The default SSL port where Unica Interact requests are handled.

Unica Interact systemTablesDataSource port

See the datasource's JDBC configuration in Unica Platform.

Unica Interact learningTablesDataSource port

See the datasource's JDBC configuration in Unica Platform.

Unica Interact contactAndResponseHistoryDataSource port

See the datasource's JDBC configuration in Unica Platform.

Unica Interact prodUserDataSource port

See the datasource's JDBC configuration in Unica Platform.

Unica Interact testRunDataSource port

See the datasource's JDBC configuration in Unica Platform.

ETL communication port

Configure this port in Unica Interact | ETL | patternStateETL |

communicationPort in the configuration properties.

EHCache multicast port

Configure this port in Unica Interact | cacheManagement | Cache | Managers

| EHCache | Parameter Data | multicastPort in configuration properties when

cache mode is distributed.

Unica Interact JMX Monitoring port

Configure this port in Unica Interact | monitoring | port under configuration

properties or run -Dinteract.jmx.monitoring.port=portNumber.

Unica Interact WebConnector port

This port is usually the same as the Unica Interact server port, but it is

modifiable in jsconnector.xml.

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 27

For the ports for any Unica Interact integrated products, see the documentation for those

products.

JMX monitoring is not required for typical Unica Interact functionality. However, it is used

for diagnostics and monitoring.

JMX port access can be disabled in the Unica Interact configuration or limited to specific IP

address through firewall configurations. This is recommended due to the JMX vulnerability

recently found in the third party Apache Commons Library.

The JMX remoting functionality in Apache Geronimo 3.x before 3.0.1, as used in IBM

WebSphere Application Server (WAS) Community Edition 3.0.0.3 and other products, does

not properly implement the RMI classloader, which allows remote attackers to execute

arbitrary code by using the JMX connector to send a crafted serialized object.

Unica Interact design ports

Some of these ports can be closed, or are not required by all Unica Interact installations,

depending on your configuration.

Unica Campaign application server port for HTTP

The default port where Unica Interact requests are handled.

Unica Campaign application server port for HTTPS

The default SSL port where Unica Interact requests are handled.

Unica Campaign listener port

The port that Unica Campaign uses internally to accept connections from the

web client.

Other Unica Campaign design ports

See the Campaign documentation for more information on these ports.

Unica Campaign JMX Connector port

Configure this port in Unica Campaign | monitoring | port in configuration

properties for contact response history monitorying only.

Unica Campaign operational monitoring server port

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 28

Configure this port in Unica Campaign | monitoring | serverURL in

configuration properties.

Logging in Interact

Design time

Interact uses the framework and mechanism provided by Campaign. See the Campaign

documentation for details.

Run time

Basic logging

Logging is performed using Apache Log4j2. The configuration is done through a standard

Log4j2 configuration file, which is provided through the Platform configuration setting

Affinium|Interact|general:log4jConfig. The value can either be an absolute or a

relative path to that file. If it is a relative path, it is relative to the value of environment

variable $INTERACT_HOME.

Some commonly used customization of the default logging behavior is included in the

following configuration file $INTERACT_HOME/conf/interact_log4j2.xml.

• Changing the logging level of a particular area in Interact.

• Enabling asynchronous logging.

• Applying their own logging levels at different outputs.

Centralized logging

Interact also provides a method for centralizing logs from all instances in a same server

group, which is enabled through the Platform configuration Affinium|Interact|general|

centralizedLogger:enabled. When enabled, all logs are persisted into table UACI_Log

in the runtime database. This persistence is performed in batches and the threshold

can be adjusted based on time and the pending logs using the configuration settings

maxDelayInSec and maxBatchSize, respectively, in the same category.

Session specific logging

Unica Interact V12.1.3 Administrator's Guide | 1 - Administer Unica Interact | 29

In addition, Interact can optionally print the logs associated to a specific session

into a separate file. This is enabled per session on basis of an API parameter

UACILogSeparationFileName, with its value being the full path of the output file. If this

target file already exists, new logs will be appended.

Chapter 2. Security management
Access to the Unica Interact runtime User Interface requires authentication. Only the Login

IDs defined in Unica Platform and having Unica Interact admin role can access the pages.

Authenticate the Unica Interact JSP pages
The Platform or LDAP users having InteractAdminRole or InteractUserRole can log in to

Interact Runtime Interface. The username and password must be created using the Unica

Platform or LDAP configuration. You will get logged out on closing the browser or tab. Your

username gets disabled if you attempt to login three times with wrong credentials. On the

username being disabled you must activate with Unica Platform admin. This authentication

is valid only for JSP pages.

Chapter 3. Configuring users
Unica Interact requires you to configure two sets of users, runtime environment users and

design environment users.

• Runtime users are created in the Unica Platform configured to work with the runtime

servers.

• Design time users are Unica Campaign users. Configure the security for the various

members of your design team as for Unica Campaign.

Configuring the runtime environment user
After you install Unica Interact, you must configure at least one Unica Interact user, the

runtime environment user. Runtime users are created in Unica Platform.

The runtime environment user provides access to the runtime tables. The runtime

environment user is the user name and password you use to deploy interactive channels.

The runtime server uses the web application server JDBC authentication for the database

credentials. You do not have to add any runtime environment data sources to the runtime

environment user.

An LDAP user and any Platform user can deploy an Interactive channel. The

InteractAdminRole is not required to deploy the Interactive channel.

When you create runtime users:

• If you have separate Unica Platform instances for each runtime server, you must

create the same user and password on each. All runtime servers that belong to the

same server group must share user credentials.

• If you use the database load utility, you must define the runtime tables as a data

source with login credentials for the runtime environment in your configuration

properties under Interact > general > systemTablesDataSource.

• If you enable security for JMX monitoring with the JMXMP protocol, you might need a

separate user for JMX monitoring security.

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 32

See the Unica Platform documentation for the steps to create the runtime users.

Interact Runtime supports roles and permissions to control user access to objects and

features in Interact Runtime. These roles and permissions can be configured in Platform.

The following are the Interact runtime permissions applicable for default Global Policy and

new policies.

Category Permissions Description

Interact View Interact Runtime Sta

tus

Checks initialization status,

view configuration valida

tion and About Page.

Interact Run Interact Runtime APIs Runs Interact Runtime

APIs.

Interact View Interact Admin Links Views other Admin page

links like JMX Sweep, Man

ager Configuration Sweep,

Offer Constraint, and Event

pattern states.

Configuring design environment users
Design environment users are Unica Campaign users. You configure your design

environment users in the same way you configure Unica Campaign role permissions.

Some design environment users also require some Unica Campaign permissions such as

Custom Macros.

When you create design environment users, note the following points:

• If you have any Unica Campaign users who have permission to edit interactive

flowcharts, give them access to the test run tables data source.

• If you installed and configured Unica Interact, the following extra options are available

for the default Global Policy and new policies.

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 33

Category Permissions

Campaigns • View Campaign Interaction Strategies - Ability to see but

not edit interaction strategy tabs in a campaign.

• Edit Campaign Interaction Strategies - Ability to make

changes to interaction strategy tabs, including treatment

rules.

• Delete Campaign Interaction Strategies - Ability to remove

interaction strategy tabs from campaigns. Deletion of

an interaction strategy tab is restricted if the interaction

strategy has been included in an interactive channel de

ployment.

• Add Campaign Interaction Strategies - Ability to create

new interaction strategy tabs in a campaign.

• Initiate® Campaign Interaction Strategy Deployments -

Ability to mark an interaction strategy tab for deployment

or undeployment.

Interactive Channels • Deploy Interactive Channels - Ability to deploy an interac

tive channel to Unica Interact runtime environments.

• Edit Interactive Channels - Ability to make changes to the

summary tab of interactive channels.

• Delete Interactive Channels - Ability to remove interactive

channels. Deletion of interactive channels is restricted if

the interactive channel has been deployed.

• View Interactive Channels - Ability to see but not edit in

teractive channels.

• Add Interactive Channels - Ability to create new interac

tive channels.

• View Interactive Channel Reports - Ability to see the analy

sis tab of the interactive channel.

• Add Interactive Channel Child Objects - Ability to add in

teraction points, zones, events, and categories.

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 34

Category Permissions

• Add Interaction Points/Zones - Ability to add/edit/delete

Interaction Points and Zones available under the Interac

tive channel ‘Interaction points’.

• Add Events/Patterns - Ability to add/edit/delete Events/

Patterns available under the Interactive channel ‘Events’

Tab.

• Add Offer Constraints - Abillity to add/edit/delete Offer

Constraints available under the Interactive channel ‘Con

straints’.

• Add Self Learning Model - Ability to add/edit/delete Self

Learning model available under the Interactive channel

‘Self Learning’.

• Add Triggered Messages - Ability to add/edit/save/delete

Triggered Messages available under the Interactive chan

nel ‘Triggered Messages’ tab.

• Add Simulator Scenarios - Ability to add/edit/run/delete

Simulator scenarios present under The Interactive Chan

nel ‘Simulator’ tab.

• View Offer Mapping - Ability to view existing offer map

pings.

• Edit Offer Mapping - Ability to add/edit/delete offer map

pings.

• Initiate Offer Mapping Deployment - Ability to mark offer

mapping for deployment.

Sessions • View Interactive Flowcharts - Ability to see an interactive

flowchart in a session.

• Add Interactive Flowcharts - Ability to create new interac

tive flowcharts in a session.

• Edit Interactive Flowcharts - Ability to make changes to in

teractive flowcharts.

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 35

Category Permissions

• Delete Interactive Flowcharts - Ability to remove interac

tive flowcharts. Deletion of interactive flowcharts is re

stricted if the interactive channel to which this interactive

flowchart is assigned has been deployed.

• Copy Interactive Flowcharts - Ability to copy interactive

flowcharts.

• Test Run Interactive Flowcharts - Ability to initiate a test

run of an interactive flowchart.

• Review Interactive Flowcharts - Ability to see an interac

tive flowchart and open processes to view settings, but

unable to make changes.

• Deploy Interactive Flowcharts - Ability to mark an interac

tive flowcharts for deployment or undeployment.

Global Learning • View Bin Definitions - Ability to view bin definitions avail

able under Global Learning.

• Add Bin definitions - Ability to add/edit/delete Bin Defini

tions available under Global Learning.

Global Definitions • View Real time attributes - Ability to view real time attrib

utes under Global Definition.

• Add Real time attributes - Ability to add/edit/modify real

time attributes available under Global Definition.

Example design environment permissions
This example lists the permissions that are granted to two different roles, one for users who

create interactive flowcharts, and one for users who define interaction strategies.

Interactive flowchart role
This table shows the permissions that are given to the interactive flowchart role:

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 36

Category Permission

Custom Macro The user role has these permissions:

• Add Custom Macros

• Edit Custom Macros

• Use Custom Macros

Derived Field The user role has these permissions:

• Add Derived Fields

• Edit Derived Fields

• Use Derived Fields

Flowchart Template The user role has these permissions:

• Paste Templates

Segment Template The user role has these permissions:

• Add Segments

• Edit Segments

Session The user role has these permissions:

• View Session Summary

• View Interactive Flowcharts

• Add Interactive Flowcharts

• Edit Interactive Flowcharts

• Copy Interactive Flowcharts

• Test Run Interactive Flowcharts

• Deploy Interactive Flowcharts

Interaction strategy role
This table shows the permissions that are given to the interaction strategy role:

Unica Interact V12.1.3 Administrator's Guide | 3 - Configuring users | 37

Category Permission

Campaign The user role has these permissions:

• View Campaign Summary

• Manage Campaign Target Cells

• View Campaign Interaction Strate

gies

• Edit Campaign Interaction Strate

gies

• Add Campaign Interaction Strate

gies

• Initiate® Campaign Interaction

Strategy Deployments

Offer The user role has these permissions:

• View Offer Summary

Segment Template The user role has these permissions:

• View Segment Summary

Session The user role has these permissions:

• Review Interactive Flowcharts

Chapter 4. Managing Unica Interact data
sources
Unica Interact requires several data sources to function properly. Some data sources

contain the information Unica Interact requires to function, other data sources contain your

data.

The following sections describe the Unica Interact data sources including information you

need to configure them correctly, and some suggestions for maintaining them.

Unica Interact data sources
Unica Interact requires several sets of data to function. The sets of data are stored and

retrieved from data sources, and the data sources you set up depend on the Unica Interact

features you are enabling.

• Unica Campaign system tables. Beyond all the data for Unica Campaign, the Unica

Campaign system tables contain data for Unica Interact components that you create

in the design environment, such as treatment rules and interactive channels. The

design environment and the Unica Campaign system tables use the same physical

database and schema.

• Runtime tables(systemTablesDataSource). This data source contains the deployment

data from the design environment, staging tables for contact and response history,

and runtime statistics.

• Profile tables (prodUserDataSource). This data source contains any customer

data, beyond information that is gathered in real time, that is required by interactive

flowcharts to properly place visitors into smart segments. If you are relying entirely

on real-time data, you do not need profile tables. If you are using profile tables, you

must have at least one profile table per audience level that is used by the interactive

channel.

The profile tables can also contain the tables that are used for augmenting offer

serving, including tables for offer suppression, score override, and global and

individual offer assignment.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 39

• Test run tables (testRunDataSource). This data source contains a sample of all

data that is required by interactive flowcharts to place visitors into smart segments,

including data that mimics what is gathered in real time during an interaction. These

tables are required for the server group that is designated as the test run server group

for the design environment only.

• Learning tables (learningTablesDataSource). This data source contains all data that

is gathered by the built-in learning utility. These tables can include a table that defines

dynamic attributes. If you are not using learning or are using an external learning

utility that you create, you do not need learning tables.

• Contact and response history for cross-session response

(contactAndResponseHistoryDataSource). This data source contains either the Unica

Campaign contact history tables or a copy of them. If you are not using the cross-

session response feature, you do not need to configure these contact history tables.

Databases and the applications
The data sources that you create for use by Unica Interact might also be used to exchange

or share data with other Unica applications.

The following diagram shows Unica Interact data sources and how they relate to Unica

applications.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 40

• Both Unica Campaign and the test run server group access the test run tables.

• The test run tables are used for interactive flowchart test runs only.

• When you are using a runtime server to test a deployment, including the Unica Interact

API, the runtime server uses the profile tables for data.

• If you configure the contact and response history module, the module uses a

background Extract, Transform, Load (ETL) process to move data from the runtime

staging tables to the Unica Campaign contact and response history tables.

• The reporting function queries data from the learning tables, runtime tables, and the

Unica Campaign system tables to display reports in Unica Campaign.

You should configure the testing runtime environments to use a different set of tables

than your production runtime environments. With separate tables between staging and

production, you can keep your testing results separate from your actual results. Note

that the contact and response history module always inserts data into the actual Unica

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 41

Campaign contact and response history tables (Unica Campaign has no testing contact

and response history tables). If you have separate learning tables for the testing runtime

environment, and you want to see the results in reports, you need a separate instance of

IBM® Cognos® BI running the learning reports for the testing environment.

Unica Campaign system tables
When you install the Unica Interact design environment, you also create new, Unica Interact-

specific tables in the Unica Campaign system tables. The tables that you create depend on

the Unica Interact features you are enabling.

If you enable the contact and response history module, the module copies contact

and response history from staging tables in the runtime tables to the contact and

response history tables in the Unica Campaign system tables. The default tables are

UA_ContactHistory, UA_DtlContactHist, and UA_ResponseHistory, but the contact and

response history module uses whichever tables are mapped in Unica Campaign for the

contact and response history tables.

If you use the global offers tables and the score override tables to assign offers, you may

need to populate the UACI_ICBatchOffers table in the Unica Campaign system tables if you

are using offers not contained in the treatment rules for the Interactive Channel.

Runtime tables
If you have more than one audience level, you must create staging tables for the contact

and response history data for each audience level.

The SQL scripts create the following tables for the default audience level:

• UACI_CHStaging

• UACI_CHOfferAttrib

• UACI_RHStaging

You must create copies of these three tables for each of your audience levels in the runtime

tables.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 42

If your Unica Campaign contact and response history tables have user defined fields, you

must create the same field names and types in the UACI_CHStaging and UACI_RHStaging

tables. You can populate these fields during runtime by creating name-value pairs of the

same name in session data. For example, your contact and response history tables contain

the field catalogID. You must add the catalogID field to both the UACI_CHStaging and

UACI_RHStaging tables. Later, the Unica Interact API populates this field by defining an

event parameter as a name-value pair named catalogID. Session data can be supplied by

the profile table, temporal data, learning, or the Unica Interact API.

The following diagram shows sample tables for the audiences Aud1 and Aud2. This

diagram does not include all tables in the runtime database.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 43

All fields in the tables are required. You can modify the CustomerID and the

UserDefinedFields to match your Unica Campaign contact and response history tables.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 44

Test run tables
The test run tables are used for test runs of interactive flowcharts only. Test runs of

interactive flowcharts should test your segmentation logic. You only need to configure one

test run database for your Unica Interact installation. The test run tables do not need to be

in a stand-alone database. You could, for example, use your customer data tables for Unica

Campaign.

The database user associated with the test run tables must have CREATE privileges to add

the test run result tables.

The test run database must contain all tables mapped in the interactive channel.

These tables should contain data to run scenarios you want to test in your interactive

flowcharts. For example, if your interactive flowcharts have logic to sort people into

segments based on the choice selected in a voice mail system, you should have at least

one row for every possible selection. If you are creating an interaction that works with a

form on your web site, you should include rows representing missing or malformed data, for

example, use name@domaincom for the value of an email address.

Each test run table must contain at least a list of IDs for the appropriate audience level, and

a column representing the real time data you expect to use. Since test runs do not have

access to real time data, you must supply sample data for every piece of expected real time

data. For example, if you want to use data you can collect in real time, such as the name of

the last web page visited, stored in the attribute lastPageVisited, or the number of items in

a shopping cart, stored in the attribute shoppingCartItemCount, you must create columns

with the same names, and populate the columns with sample data. This allows you to test

run the branches of your flowchart logic that are behavioral or contextual in nature.

Test runs of interactive flowcharts are not optimized for working with large sets of data. You

can limit the number of rows used for the test run in the Interaction process. However, this

always results in the first set of rows being selected. To ensure that different sets of rows

are selected, use different views of the test run tables.

To test the throughput performance of interactive flowcharts in runtime, you must create a

test runtime environment, including a profile table for the testing environment.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 45

In practice, you may require three sets of tables for testing, a test run table for test runs of

interactive flowcharts, test profile tables for the testing server group, which must not be the

production server group, but a set of production profile tables

Overriding the default data types used for dynamically created
tables
The Interact runtime environment dynamically creates tables under two scenarios: during a

test run of a flowchart and during the running of a Snapshot process that writes to a table

that doesn't already exist. To create these tables, Interact relies on hardcoded data types for

each supported database type.

You can override the default data types by creating a table of alternate data types, named

UACI_Column_types, in the testRunDataSource or prodUserDataSource. This additional

table allows Interact to accommodate rare cases that aren't covered by the hardcoded data

types.

When the UACI_Column_types table is defined, Interact uses the metadata for the columns

as the data types to be used for any table generation. If the UACI_Column_types table is not

defined, or if there are any exceptions encountered while trying to read the table, the default

data types are used.

At startup, the runtime system first checks the testRunDataSource for the

UACI_Column_types table. If the UACI_Column_types table does not exist in the

testRunDataSource, or if the prodUserDataSource is of a different database type, Interact

then checks the prodUserDataSource for the table.

Overriding the default data types
Use this procedure to override the default data types for dynamically created tables.

You must restart the runtime server whenever you change the UACI_Column_types table.

Plan to make your changes so that restarting the server has minimal affect on operations.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 46

1. Create a table in the TestRunDataSource or ProdUserDataSource with the following

properties:

Table Name: UACI_Column_types

Column Names:

• UACI_Float

• UACI_Number

• UACI_String

Use the appropriate data type supported by your database to define each column.

2. Restart the runtime server to allow Interact to recognize the new table.

Default data types for dynamically created tables
For each supported database that the Unica Interact runtime system uses, there are

hardcoded data types used by default for float, number, date/time, and string columns.

Table 1. Default data types for dynamically-created tables

Database Default data types

DB2® • float

• bigint

• timestamp

• varchar

Oracle • float

• number(19)

• timestamp

• varchar2

SQL Server • float

• bigint

• datetime

• nvarchar

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 47

Profile database
The contents of the profile database depend entirely on the data you need for configuring

your interactive flowcharts and Unica Interact API. Unica Interact requires or recommends

that each database contain certain tables or data.

The profile database must contain the following:

• All tables mapped in the interactive channel.

These tables must contain all the data required for running your interactive flowcharts

in production. These tables should be flattened, streamlined, and properly indexed.

As there is a performance cost to access dimensional data, you should use a

denormalized schema whenever possible. At a minimum, you should index the

profile table on the audience level ID fields. If there are other fields retrieved from

dimensional tables, these should be indexed appropriately to reduce database fetch

time. The Audience IDs for the profile tables must match the Audience IDs defined in

Unica Campaign.

• If you set the enableScoreOverrideLookup configuration property to true, you must

include a score override table for at least one audience level. You define the score

override table names with the scoreOverrideTable property.

The score override table can contain individual customer-to-offer pairings. You can

create a sample score override table, UACI_ScoreOverride by running the aci_usrtab

SQL script against your profile database. You should also index this table on the

Audience ID column.

If you set the enableScoreOverrideLookup property to false, you do not need to

include a score override table.

• If you set the enableDefaultOfferLookup configuration property to true, you must

include the global offers table (UACI_DefaultOffers). You can create the global offers

table by running the aci_usrtab SQL script against your profile database.

The global offers table can contain audience-to-offer pairings.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 48

• If you set the enableOfferSuppressionLookup property to true, you must include

an offer suppression table for at least one audience level. You define the offer

suppression table names with the offerSuppressionTable property.

The offer suppression table can contain a row for each offer suppressed for an

audience member, although an entry is not required for all audience members.

You can create a sample offer suppression table, UACI_BlackList by running the

aci_usrtab SQL script against your profile database.

If you set the enableOfferSuppressionLookup property to false, you do not need to

include an offer suppression table.

A large amount of data in any of these tables may impede performance. For best results,

put appropriate indexes on the audience level columns for tables used at runtime that have

large amounts of data.

All configuration properties referenced above are in the Interact > profile or the Interact >

profile > Audience Levels > AudienceLevel category. The aci_usrtab SQL script is located

in the ddl directory in your runtime environment installation directory.

The following diagram shows example tables for the test run and profile databases for the

audience levels Aud1 and Aud2.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 49

Learning tables
If you are using Unica Interact built-in learning, you must configure the learning tables.

These tables contain all the data the built-in learning feature learns on.

If you are using dynamic learning attributes, you must populate the UACI_AttributeList

table.

Learning involves writing to intermediate staging tables and aggregating information

from staging tables to learning tables. The insertRawStatsIntervalInMinutes and

aggregateStatsIntervalInMinutes configuration properties in the Interact >

offerserving > Built-in Learning Config category determine how often the learning

tables get populated.

The insertRawStatsIntervalInMinutes attribute determines how often the accept and

contact information for each customer and offer is moved from memory to the staging

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 50

tables, UACI_OfferStatsTX and UACI_OfferTxAll. The information stored in the staging

tables is aggregated and moved to UACI_OfferStats and UACI_OfferStatsAll tables

at regular intervals determined by the aggregateStatsIntervalInMinutes configuration

property.

Unica Interact built-in learning uses this data to calculate final scores for offers.

Contact history for cross-session response tracking
If you enable the cross-session response feature, the runtime environment needs read-

only access to the Unica Campaign contact history tables. You can configure the runtime

environment to view the Unica Campaign system tables, or you can create a copy of the

Unica Campaign contact history tables. If you create a copy of the tables, you must manage

the process of keeping the copy up to date. The contact and response history module will

not update the copy of the contact history tables.

You must run the aci_crhtab SQL script against these contact history tables to add tables

required for the cross-session response tracking feature.

Running database scripts to enable Unica Interact
features
To use the optional features that are available in Unica Interact, run database scripts against

the database to create tables or update existing tables.

Your Interact installation, both the design time environment and runtime environment,

includes feature ddl scripts. The ddl scripts add required columns to your tables.

To enable any one of the optional features, run the appropriate script against the database

or table which is indicated.

dbType is the database type, such as sqlsvr for Microsoft™ SQL Server, ora for Oracle,

db2 for DB2® , and MariaDB for MariaDB database.

Use the following table to run database scripts against the database to create tables or

update existing tables:

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 51

Table 2. Database scripts

This four-columned table provides information about the feature names in the first

column, feature scripts in the second column, details about running the database scripts in

the third column, and the changes in the tables in the fourth column.

Feature Name Feature Script Run Against Change

Global offers, of

fer suppression,

and score over

ride

aci_usrtab_dbType.sql

in Interact_Home\d

dl\acifeatures\

(Runtime environment in

stallation directory)

Your profile data

base (userProdData

Source)

Creates the UACI_

DefaultOffers, UACI_

BlackList, and UACI_

ScoreOverride tables.

Scoring aci_scoringfeature_db

Type.sql in Interac

t_Home\ddl\acifea

tures\ (Runtime envi

ronment installation di

rectory)

Score override tables

in your profile data

base (userProdData

Source)

Adds the Likelihood

Score and AdjEx

ploreScore columns.

Learning aci_lrnfeature_db

Type.sql in Inter

act_Home\inter

actDT\ddl\acifea

tures\ (Design time en

vironment installation di

rectory)

Unica Campaign

database that con

tains your contact

history tables

Adds the columns

RTSelectionMethod,

RTLearningMode,

and RTLearningMod

elID to the UA_Dtl

ContactHist table. Al

so adds the columns

RTLearningMode and

RTLearningModelID

to the UA_Respon

seHistory table. This

script is also required

by the reporting fea

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 52

Table 2. Database scripts

This four-columned table provides information about the feature names in the first

column, feature scripts in the second column, details about running the database scripts in

the third column, and the changes in the tables in the fourth column.

(continued)

Feature Name Feature Script Run Against Change

tures provided by

the optional Reports

Pack.

About Cross Session Contact Tracking
A contact event is posted to Interact after an offer is presented to an end user. Currently,

it is assumed that the end user acts as soon as the offer is presented. Thus, the contact

event must be posted within the same Interact session as the getOffers API request that

returns the original offer. However, there are many scenarios where contact events occur in

a different session.

Since, posting a contact event requires the session data and personalized offer attributes,

the required data must be kept in the system after getOffers. Due to the limitation of

storage, cross session contact events can be handled only within a limited period of time

after getOffers.

How does Cross Session Contact works?

• When a contact event is posted without a treatment code or an offer code, all the

treatments returned in the previous getOffers invocation are logged and are always

stored in the current session object. Interact searches for the matching treatment

amongst the available treatments returned in the previous getOffers invocation.

• If no treatment is found in the session object and cross session contact tracking is

enabled, Interact searches and loads the matching treatment in the configured data

store.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 53

• If no contact type is specified or the specified contact type is defined as a true contact

event, this event is sent to the learning engine and the offer suppression rules are

updated, if applicable.

• An error is returned, when no treatment is found.

Database and schema change

The following table is added in the runtime database. It contains the personalized

treatments delivered to the customers through the getOffers API calls or outbound calls.

This table is required for each audience level.

Table 3. UACI Treatment.

Column DataType Description

SeqNum number The internal ID of this treat

ment.

TreatmentCode varchar The treatment code of this

personalized treatment.

OfferID number The ID of the offer from

where this treatment is de

rived.

OfferCode varchar The code of the offer from

where this treatment is de

rived. If the offer code has

multiple parts, all parts are

concatenated into a single

comma separated string.

If the total length of offer

codes are long, the size of

this column may require to

be increased.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 54

Table 3. UACI Treatment. (continued)

Column DataType Description

PresentDate timestamp The timestamp when this

personalized treatment

was delivered.

IPName varchar The name of the interac

tion point created for this

treatment. If there is no as

sociated interaction point,

such as few triggered mes

sage cases, the value of

this field is null.

CustomerID number The audience ID, when

the audience level is "Cus

tomer". If the audience lev

el is not "Customer", this

column must be replaced

with the corresponding au

dience ID fields.

Contacted number This specifies whether a

contact event is posted to

this treatment. If this treat

ment is contacted, it re

turns a value '1' and if not

contacted, it returns a dif

ferent value.

Details varchar This specifies the informa

tion associated to this per

sonalized treatment, such

as the session parameters

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 55

Table 3. UACI Treatment. (continued)

Column DataType Description

and profile attributes re

quired for the correspond

ing CH/RH staging tables

and the personalized offer

attributes.

About contact and response history tracking
You can configure runtime environment to record contact and response history in the Unica

Campaign contact and response history tables. The runtime servers store contact and

response history in staging tables. The contact and response history module copies this

data from the staging tables to Unica Campaign contact and response history tables.

The contact and response history module functions only if you set the Campaign

> partitions > partition1 > Interact > interactInstalled and

contactAndResponseHistTracking > isEnabled properties on the Configuration page for

the design environment to yes.

If you are using the cross-session response tracking module, the contact and response

history module is a separate entity.

Contact and response types
You can record one contact type and two response types with Unica Interact. You can also

record more custom response types with the postEvent method.

contactAndResponseHistTracking table properties

This table lists the properties that are found in the contactAndResponseHistTracking

category:

Event Contact/response type Configuration Property

Log Offer Contact Contact contacted

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 56

Event Contact/response type Configuration Property

Log Offer Acceptance Response accept

Log Offer Rejection Response reject

UA_UsrResponseType table properties

Ensure the CountsAsResponse column of the UA_UsrResponseType table in the Unica

Campaign system tables is configured properly. All of these response types must exist in

the UA_UsrResponseType table.

To be a valid entry in the UA_UsrResponseType table, you must define a value for all the

columns in the table, including CountsAsResponse. Valid values for CountsAsResponse are:

• 0 - no response

• 1 - a response

• 2 - a reject

•

These responses are used for reporting.

Additional Contact types

In Interact, you can use the postEvent method in the Interact API to trigger a contact event.

You can also augment the system to allow the postEvent call to record additional custom

contact types. All of these contact types must exist in the UA_ContactStatus table in the

Campaign system tables. Using specific event parameters to the postEvent method, you can

record additional contact types and define whether it is true contact or not. To log additional

contact types, you must add the following event parameters:

UACIContactStatusCode - a string representing a contact type code. The value must be

a valid entry in the UA_ContactStatus table. To be a valid entry in the UA_ContactStatus

you must define all of the columns in the table, including CountsAsContact. Valid values

for CountsAsContact are 0 and 1. 0 indicates not as successful contact, 1 indicates as a

successful contact.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 57

Additional response types
In Unica Interact, you can use the postEvent method in the Unica Interact API to trigger

an event which logs an "accept" or "reject" action for an offer. You can also augment the

system to allow the postEvent call to record additional response types, such as Explore,

Consider, Commit, or Fulfill.

All of these response types must exist in the UA_UsrResponseType table in the Unica

Campaign system tables. Using specific event parameters to the postEvent method, you

can record additional response types and define whether an accept should be included

in learning.Also its suggested not to post multiple responses (Accept/Reject) for single

contact , as it may result in incorrect learning scores.

To log additional response types, you must add the following event parameters:

• UACIResponseTypeCode - a string representing a response type code. The value must

be a valid entry in the UA_UsrResponseType table.

To be a valid entry in the UA_UsrResponseType you must define all of the columns in

the table, including CountsAsResponse. Valid values for CountsAsResponse are 0, 1,

or 2. 0 indicates no response, 1 indicates a response, and 2 indicates a reject. These

responses are used for reporting.

• UACILogToLearning -

The parameter ‘UACILogToLearning’ is deprecated in version 11.0. Instead, the

actual values defined in ‘ UA_ContactStatus’ and ‘UA_UsrResponseType’ tables from

Campaign database along with the values defined in the ‘Affinium|interact|services|

contactHist|contactStatusCodes’ and ‘Affinium|interact|services|responseHist|

responseTypeCodes ‘ parameters would be considered by the Interact system.

’

If you pass ‘UACILogToLearning= 1’ in a postevent call, then the configured action

associated to the response type/contact status will be ignored and this event is

always treated as a true response/contact.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 58

You may want to create several events with the Log Offer Acceptance action, one for every

response type you want to log, or a single event with the Log Offer Acceptance action you

use for every postEvent call you use to log separate response types.

For example, create an event with the Log Offer Acceptance action for each type of

response. You define the following custom responses in the UA_UsrResponseType table [as

Name (code)]: Explore (EXP), Consider (CON), and Commit (CMT). You then create three

events and name them LogAccept_Explore, LogAccept_Consider, and LogAccept_Commit.

All three events are exactly the same (have the Log Offer Acceptance action), but the names

are different so that the person working with the API can distinguish between them.

Or, you could create a single event with the Log Offer Acceptance action that you use for all

custom response types. For example, name it LogCustomResponse.

When working with the API, there is no functional difference between the events, but the

naming conventions may make the code clearer. Also, if you give each custom response

a separate name, the Channel Event Activity Summary report displays more accurate

information.

First, set up all the name-value pairs

//Define name value pairs for the UACIResponseTypeCode

// Response type Explore

NameValuePair responseTypeEXP = new NameValuePairImpl();

responseTypeEXP.setName("UACIResponseTypeCode");

responseTypeEXP.setValueAsString("EXP");

responseTypeEXP.setValueDataType(NameValuePair.DATA_TYPE_STRING);

// Response type Consider

NameValuePair responseTypeCON = new NameValuePairImpl();

responseTypeCON.setName("UACIResponseTypeCode");

responseTypeCON.setValueAsString("CON");

responseTypeCON.setValueDataType(NameValuePair.DATA_TYPE_STRING);

// Response type Commit

NameValuePair responseTypeCMT = new NameValuePairImpl();

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 59

responseTypeCMT.setName("UACIResponseTypeCode");

responseTypeCMT.setValueAsString("CMT");

responseTypeCMT.setValueDataType(NameValuePair.DATA_TYPE_STRING);

//Define name value pairs for UACILOGTOLEARNING

//Does not log to learning

NameValuePair noLogToLearning = new NameValuePairImpl();

noLogToLearning.setName("UACILOGTOLEARNING");

noLogToLearning.setValueAsString("0");

noLogToLearning.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

//Logs to learning

NameValuePair LogToLearning = new NameValuePairImpl();

LogToLearning.setName("UACILogToLearning");

LogToLearning.setValueAsString("1");

LogToLearning.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

This first example shows using the individual events.

//EXAMPLE 1: This set of postEvent calls use the individually named events

//PostEvent with an Explore response

NameValuePair[] postEventParameters = { responseTypeEXP,

 noLogToLearning };

response = api.postEvent(sessionId, LogAccept_Explore,

 postEventParameters);

//PostEvent with a Consider response

NameValuePair[] postEventParameters = { responseTypeCON,

 noLogToLearning };

response = api.postEvent(sessionId, LogAccept_Consider,

 postEventParameters);

//PostEvent with a Commit response

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 60

NameValuePair[] postEventParameters = { responseTypeCOM, LogToLearning };

response = api.postEvent(sessionId, LogAccept_Commit, postEventParameters);

This second example shows using just one event.

//EXAMPLE 2: This set of postEvent calls use the single event

//PostEvent with an Explore response

NameValuePair[] postEventParameters = { responseTypeEXP,

 noLogToLearning };

response = api.postEvent(sessionId, LogCustomResponse,

 postEventParameters);

//PostEvent with a Consider response

NameValuePair[] postEventParameters = { responseTypeCON,

 noLogToLearning };

response = api.postEvent(sessionId, LogCustomResponse,

 postEventParameters);

//PostEvent with a Commit response

NameValuePair[] postEventParameters = { responseTypeCOM, LogToLearning };

response = api.postEvent(sessionId, LogCustomResponse,

 postEventParameters);

Both examples perform exactly the same actions, however, one version may be easier to

read than the other.

Runtime environment staging tables to Unica Campaign history
tables mapping
The Unica Interact contact history staging tables map to Unica Campaign history tables.

You must have one of the runtime environment staging tables for each audience level.

UACI_CHStaging contact history staging table mapping
This table shows how the UACI_CHStaging runtime environment staging table maps

to the Unica Campaign contact history table. The table names that are shown are the

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 61

sample tables that are created for the default audience in the runtime tables and the Unica

Campaign system tables.

Note:

By default, successfully processed records in this table and UACI_CHOfferAttrib

are deleted by the CH/RH ETL process. If, for any reason, such records are not

deleted and you want to delete them, the following SQL statements can be used for

deletion.

DELETE FROM UACI_CHOfferAttrib where ContactID in (SELECT ContactID

FROM UACI_CHStaging where Mark > 0);

DELETE FROM UACI_CHStaging where Mark > 0;

If you want to delete the records that were processed with failure, which are not

deleted by CH/RH ETL, the following SQL statements can be used.

DELETE FROM UACI_CHOfferAttrib where ContactID in (SELECT ContactID

FROM UACI_CHStaging where Mark = -1);

DELETE FROM UACI_CHStaging where Mark = -1;

Table 4. Contact History

UACI_CHStaging

Unica Interact contact histo

ry staging table column name

Unica Cam

paign contact

history table

Table column name

ContactID N/A N/A

TreatmentCode UA_Treatment TreatmentCode

CampaignID UA_Treatment CampaignID

OfferID UA_Treatment OfferID

CellID UA_Treatment CellID

CustomerID UA_DtlContactHist CustomerID

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 62

Table 4. Contact History (continued)

UACI_CHStaging

Unica Interact contact histo

ry staging table column name

Unica Cam

paign contact

history table

Table column name

ContactDate UA_DtlContactHist ContactDateTime

ExpirationDateTime UA_Treatment ExpirationDateTime

EffectiveDateTime UA_Treatment EffectiveDateTime

ContactType UA_DtlContactHist ContactStatusID

ContactStatusCode UA_DtlContactHist ContactStatusId

UserDefinedFields UA_DtlContactHist UserDefinedFields

ContactID is a key to join the UACI_CHOfferAtrib table with the UACI_CHStaging table. The

userDefinedFields column can contain any data that you choose.

UACI_CHOfferAttrib contact history staging table mapping

This table shows how the UACI_CHOfferAttrib runtime environment staging table maps

to the Unica Campaign contact history table. The table names that are shown are the

sample tables that are created for the default audience in the runtime tables and the Unica

Campaign system tables.

Table 5. Offer attributes

UACI_CHOfferAttrib

Unica Interact contact histo

ry staging table column name

Unica Cam

paign contact

history table

Table column name

ContactID N/A N/A

AttributeID UA_OfferHistAttrib AttributeID

StringValue UA_OfferHistAttrib StringValue

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 63

Table 5. Offer attributes (continued)

UACI_CHOfferAttrib

Unica Interact contact histo

ry staging table column name

Unica Cam

paign contact

history table

Table column name

NumberValue UA_OfferHistAttrib NumberValue

DateTimeValue UA_OfferHistAttrib DateTimeValue

UACI_RHStaging contact response history staging table mapping
This table shows how the UACI_RHStaging runtime environment staging table maps to

the Unica Campaign response history table. The table names that are shown are the

sample tables that are created for the default audience in the runtime tables and the Unica

Campaign system tables.

Note:

By default, successfully processed records in this table are deleted by the CH/RH

ETL process. If, for any reason, such records are not deleted and you want to delete

them, the following SQL statements can be used for deletion.

DELETE FROM UACI_RHStaging where Mark > 0;

If you want to delete the records that were processed with failure, which are not

deleted by Ch/RH ETL, the following SQL statements can be used.

DELETE FROM UACI_RHStaging where Mark = -1;

Table 6. Response history

UACI_RHStaging

Unica Interact response histo

ry staging table column name

Unica Campaign re

sponse history table
Table column name

SeqNum N/A N/A

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 64

Table 6. Response history (continued)

UACI_RHStaging

Unica Interact response histo

ry staging table column name

Unica Campaign re

sponse history table
Table column name

TreatmentCode UA_ResponseHisto

ry

TreatmentInstID

CustomerID UA_ResponseHisto

ry

CustomerID

ResponseDate UA_ResponseHisto

ry

ResponseDateTime

ResponseType UA_ResponseHisto

ry

ResponseTypeID

UserDefinedFields UA_ResponseHisto

ry

UserDefinedFields

SeqNum is a key that is used by the contact and response history module to identify data, but

is not recorded in the Unica Campaign response tables. The userDefinedFields column

can contain any data that you choose.

Additional columns in staging tables

If you add columns to the staging tables, the contact and response history module writes

them to the UA_DtlContactHist or UA_ResponseHistory tables in columns of the same

name.

For example, if you add the column linkFrom to your UACI_CHStaging table, the

contact and response history module copies that data to the linkFrom column in the

UA_DtlContactHist table.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 65

Additional columns in Unica Campaign contact and response history tables

If you have additional columns in your Unica Campaign contact and response history tables,

add matching columns to the staging tables before you run the contact and response

history module.

You populate extra columns in the staging tables by creating columns with the same names

as your name-value pairs in your runtime session data.

For example, you create name-value pairs NumberItemsInWishList and

NumberItemsInShoppingCart and add them to your UACI_RHStaging table. When a Log

Offer Acceptance or Log Offer Rejection event occurs, the runtime environment populates

those fields. The runtime environment populates the UACI_CHStaging table when a Log

Offer Contact event occurs.

Use tables to include a score for an offer

You can use the user-defined fields to include the score that is used to present an offer. Add

a column that is named FinalScore to both the UACI_CHStaging table in the runtime tables

and the UA_DtlContactHist table in the Unica Campaign system tables. Unica Interact

automatically populates the FinalScore column with the final score used for the offer if you

are using built-in learning.

If you are building a customized learning module, you can use the setActualValueUsed

method of the ITreatment interface and the logEvent method of the ILearning interface.

If you are not using learning, add a column that is named Score to both the UACI_CHStaging

table in the runtime tables and the UA_DtlContactHist table in the Unica Campaign system

tables. Unica Interact automatically populates the Score column with the score used for the

offer.

Create new history tables in the Unica Campaign and staging tables in the
Unica Interact

If you are using an audience level other than the Customer, then you will have to create new

history tables in the Unica Campaign, and new staging tables in the Unica Interact.

For example, the below sample script is used in the IBM DB2® design time database to

create history tables in the Unica Campaign for an audience level of type Account.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 66

DROP TABLE ACCT_UA_ResponseHistory;

DROP TABLE ACCT_UA_DtlContactHist;

DROP TABLE ACCT_UA_ContactHistory;

CREATE TABLE ACCT_UA_ResponseHistory (

 AccountID varchar(30) NOT NULL,

 TreatmentInstID bigint NOT NULL,

 ResponsePackID bigint NOT NULL,

 ResponseDateTime timestamp NOT NULL,

 WithinDateRangeFlg int,

 OrigContactedFlg int,

 BestAttrib int,

 FractionalAttrib float,

 DirectResponse int,

 CustomAttrib float,

 ResponseTypeID bigint,

 DateID bigint,

 TimeID bigint,

 UserDefinedFields char(18),

 CONSTRAINT ACCT_cRespHistory_PK

 PRIMARY KEY (AccountID, TreatmentInstID,

 ResponsePackID)

);

 CREATE TABLE ACCT_UA_ContactHistory (

 AccountID varchar(30) NOT NULL,

 CellID bigint NOT NULL,

 PackageID bigint NOT NULL,

 ContactDateTime timestamp,

 UpdateDateTime timestamp,

 ContactStatusID bigint,

 DateID bigint,

 TimeID bigint,

 UserDefinedFields char(18),

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 67

 CONSTRAINT ACCT_cContactHist_PK

 PRIMARY KEY (AccountID, CellID, PackageID)

);

 CREATE INDEX ACCT_cContactHist_IX1 ON ACCT_UA_ContactHistory

 (

 CellID

);

 CREATE INDEX ACCT_cContactHist_IX2 ON ACCT_UA_ContactHistory

 (

 PackageID ,

 CellID

);

 CREATE TABLE ACCT_UA_DtlContactHist (

 AccountID varchar(30) NOT NULL,

 TreatmentInstID bigint NOT NULL,

 ContactStatusID bigint,

 ContactDateTime timestamp,

 UpdateDateTime timestamp,

 UserDefinedFields char(18),

 DateID bigint NOT NULL,

 TimeID bigint NOT NULL

);

 CREATE INDEX ACCT_cDtlContHist_IX1 ON ACCT_UA_DtlContactHist

 (

 AccountID ,

 TreatmentInstID

);

 ALTER TABLE ACCT_UA_ResponseHistory

 ADD CONSTRAINT ACCT_cRespHistory_FK2

 FOREIGN KEY (TimeID)

 REFERENCES UA_Time (TimeID);

 ALTER TABLE ACCT_UA_ResponseHistory

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 68

 ADD CONSTRAINT ACCT_cRespHistory_FK4

 FOREIGN KEY (DateID)

 REFERENCES UA_Calendar (DateID);

 ALTER TABLE ACCT_UA_ResponseHistory

 ADD CONSTRAINT ACCT_cRespHistory_FK3

 FOREIGN KEY (ResponseTypeID)

 REFERENCES UA_UsrResponseType (

 ResponseTypeID);

 ALTER TABLE ACCT_UA_ResponseHistory

 ADD CONSTRAINT ACCT_cRespHistory_FK1

 FOREIGN KEY (TreatmentInstID)

 REFERENCES UA_Treatment (

 TreatmentInstID);

 ALTER TABLE ACCT_UA_ContactHistory

 ADD CONSTRAINT ACCT_cContactHist_FK2

 FOREIGN KEY (DateID)

 REFERENCES UA_Calendar (DateID);

 ALTER TABLE ACCT_UA_ContactHistory

 ADD CONSTRAINT ACCT_cContactHist_FK3

 FOREIGN KEY (TimeID)

 REFERENCES UA_Time (TimeID);

 ALTER TABLE ACCT_UA_ContactHistory

 ADD CONSTRAINT ACCT_cContactHist_FK1

 FOREIGN KEY (ContactStatusID)

 REFERENCES UA_ContactStatus (

 ContactStatusID);

 ALTER TABLE ACCT_UA_DtlContactHist

 ADD CONSTRAINT ACCT_cDtlContactH_FK3

 FOREIGN KEY (TimeID)

 REFERENCES UA_Time (TimeID);

 ALTER TABLE ACCT_UA_DtlContactHist

 ADD CONSTRAINT ACCT_cDtlContactH_FK2

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 69

 FOREIGN KEY (DateID)

 REFERENCES UA_Calendar (DateID);

 ALTER TABLE ACCT_UA_DtlContactHist

 ADD CONSTRAINT ACCT_cDtlContactH_FK1

 FOREIGN KEY (ContactStatusID)

 REFERENCES UA_ContactStatus (

 ContactStatusID);

alter table ACCT_UA_DtlContactHist add RTSelectionMethod int;

alter table ACCT_UA_ResponseHistory add RTSelectionMethod int;

The below sample script is used in the runtime time IBM DB2® database to create history

staging tables in the Unica Interact for an audience level of type Account.

DROP TABLE ACCT_UACI_RHStaging;

DROP TABLE ACCT_UACI_CHOfferAttrib;

DROP TABLE ACCT_UACI_CHStaging;

DROP TABLE ACCT_UACI_UserEventActivities;

DROP TABLE ACCT_UACI_EventPatternState;

CREATE TABLE ACCT_UACI_RHStaging (

 SeqNum bigint NOT NULL,

 TreatmentCode varchar(512),

 AccountID varchar(30),

 ResponseDate timestamp,

 ResponseType int,

 ResponseTypeCode varchar(64),

 Mark bigint NOT NULL

 DEFAULT 0,

 UserDefinedFields char(18),

 RTSelectionMethod int,

 CONSTRAINT iRHStaging_PK1

 PRIMARY KEY (SeqNum)

);

CREATE TABLE ACCT_UACI_CHOfferAttrib (

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 70

 ContactID bigint NOT NULL,

 AttributeID bigint NOT NULL,

 StringValue varchar(512),

 NumberValue float,

 DateTimeValue timestamp,

 CONSTRAINT ACCT_iCHOfferAttrib_PK

 PRIMARY KEY (ContactID, AttributeID)

);

 CREATE TABLE ACCT_UACI_CHStaging (

 ContactID bigint NOT NULL,

 TreatmentCode varchar(512),

 CampaignID bigint,

 OfferID bigint,

 CellID bigint,

 AccountID varchar(30),

 ContactDate timestamp,

 ExpirationDateTime timestamp,

 EffectiveDateTime timestamp,

 ContactType int,

 UserDefinedFields char(18),

 Mark bigint NOT NULL DEFAULT 0,

 RTSelectionMethod bigint,

 CONSTRAINT ACCT_iCHStaging_PK

 PRIMARY KEY (ContactID)

);

CREATE TABLE ACCT_UACI_UserEventActivity

(

 SeqNum bigint NOT NULL GENERATED ALWAYS AS IDENTITY,

 ICID bigint NOT NULL,

 ICName varchar(64) NOT NULL,

 CategoryID bigint NOT NULL,

 CategoryName varchar(64) NOT NULL,

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 71

 EventID bigint NOT NULL,

 EventName varchar(64) NOT NULL,

 TimeID bigint,

 DateID bigint,

 Occurrences bigint NOT NULL,

 AccountID varchar(30) not null,

 CONSTRAINT iUserEventActivity_PK

 PRIMARY KEY (SeqNum)

);

create table ACCT_UACI_EventPatternState

(

 UpdateTime bigint not null,

 State varchar(1000) for bit data,

 AccountID varchar(30) not null,

 CONSTRAINT iCustomerPatternState_PK

 PRIMARY KEY (AccountID,UpdateTime)

);

 ALTER TABLE ACCT_UACI_CHOfferAttrib

 ADD CONSTRAINT ACCT_iCHOfferAttrib_FK1

 FOREIGN KEY (ContactID)

 REFERENCES ACCT_UACI_CHStaging (ContactID);

Configuring JMX monitoring for the contact and response history
module
Use this procedure to configure JMX monitoring for the contact and response history

module. The JMXMP and RMI protocols are supported. Configuring JMX monitoring

does not enable security for the contact and response history module. You use the Unica

Platform for the design environment to configure the JMX monitoring.

To use your JMX monitoring tool for the contact and response history module, the default

address that is used for:

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 72

• The JMXMP protocol is service:jmx:jmxmp://CampaignServer:port/campaign.

• The RMI protocol is service:jmx:rmi:///jndi/rmi://CampaignServer:port/

campaign.

When you view the data in your JMX monitoring tool, the results attributes are organized

first by partition and next by audience level.

In Unica Platform for the design environment, edit the following configuration properties in

the Campaign > monitoring category.

Configuration property Setting

monitorEnabledForInteract True

port The port number for the JMX service

protocol The protocol to use:

• JMXMP

• RMI

Security is not enabled for the contact and re

sponse history module, even if you select the

JMXMP protocol.

About cross-session response tracking
Visitors may not always complete a transaction in a single visit to your touchpoint. A

customer may add an item to their shopping cart on your web site and not complete the

sale until two days later. Keeping the runtime session active indefinitely is not feasible. You

can enable cross-session response tracking to track an offer presentation in one session

and match it with a response in another session.

Unica Interact cross-session response tracking can match on treatment codes or offer

codes by default. You can also configure it to match any custom code of your choice.

Cross-session response matches on the available data. For example, your web site

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 73

includes an offer with a promotional code generated at the time of display for a discount

good for one week. A user may add items to their shopping cart, but not complete the

purchase until three days later. When you use the postEvent call to log an accept event,

you can include only the promotional code. Because the runtime cannot find a treatment

or offer code to match in the current session, the runtime places the accept event with the

available information in a cross-session response (XSessResponse) staging table. The

CrossSessionResponse service periodically reads the XSessResponse table and attempts

to match the records with the available contact history data. The CrossSessionResponse

service matches the promotional code to the contact history and collects all the required

data to log a proper response. The CrossSessionResponse service then writes the response

to the response staging tables, and if learning is enabled, the learning tables. The contact

and response history module then writes the response to the Unica Campaign contact and

response history tables. The successful processing of the cross-session response depends

on the original contact history records that has been migrated to the Unica Campaign

database by the contact history ETL.

Enable duplicate detection and suppression
To enable duplicate checking of responses and cross session responses, add the following

JVM parameter to the Interact runtime.

-Dcom.unicacorp.interact.rhDupeCheckLimit=<max records>

Here, <max records> is the maximum number of unique records to be held for checking

duplicates. This checking is disabled, if its value is 0, which is the default value.

In addition, the following JVM parameter can also be added to the Interact run time. If its

value is true, duplicated responses and cross session responses are suppressed. By default,

it is disabled.

-Dcom.unicacorp.interact.rhSuppressDupe=<true|false>

Once the duplicate check is enabled, a warning message is logged in interact.log with the

information of the duplicates. This check occurs at the following two stages in the code.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 74

• After Interact processes the response event, but before it is added into the memory

cache.

• When Interact is about to persist the response event into the staging table.

Moreover, a new property CacheInfo is added to the JMX bean

com.unicacorp.interact:type=Services,group=Response History Memory Cache Statistics.

When the duplicate check is enabled, it returns information about the memory cache in the

following format.

{<cache ID>=<earliest response timestamp>-><latest response timestamp>:

<number of records in this cache> - {<audience ID>, <treatment code>,

<response timestamp>=<number of occurrences>}}

For example:

{2043682026=20201113102136->20201113102136: 10 - {Customer ([1.0]),

7.a.ffffffff9aae0b53.4d37d0d3, 2020-11-13 10:21:36.377=10}}

Only the duplicated entries are included in the message.

It is similar to enabling duplicate checking of contacts, add the following JVM parameter to

Interact runtime. The following JVM parameters are required.

• -Dcom.unicacorp.interact.chDupeCheckLimit=<max records>

• -Dcom.unicacorp.interact.chSuppressDupe=<true|false>

The affected JMX bean is com.unicacorp.interact:type=Services,group=Contact History

Memory Cache Statistics

Cross-session response process

Cross-session response process starts with Interact initialization. It processes records in

cross session response staging table. The process keeps polling the table for new or retry

records for processing after a configurable time interval.

Affinium|interact|services|crossSessionResponse|xsessionProcessIntervalInSecs.

Successful records are purged from the table. Unsuccessful records are marked to

retry for a particular time. Affinium|interact|services|crossSessionResponse|

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 75

purgeOrphanResponseThresholdInMinutes. Records are not processed successfully

after multiple attempts.Affinium|interact|services|crossSessionResponse|

purgeOrphanResponseThresholdInMinutes. Minutes after the record response time, these

records are marked as "Failed".

To support the multiple runtime instances to work on same data, each cross-session

response process updates xsessionResponseBatchSize number of records to “In Process”

with a unique value for mark column known to that process only. The process attempts

to match these records with the available contact history data using the system-defined

SQLs for match byTreatmentCode and byOfferCode. For the records where match is found,

system triggers log response and the mark column is updated back to "success".

Note: Updating mark column with process-specific unique value is applicable only

when there is no “Override SQL” configured by the user. When “Override SQL” option

is used to define the matching query, cross-session response process takes the

exclusive database lock on the cross-session response staging table, processes

records, and releases lock.

If there is a large number of unprocessed records available in xSessionResponse

table, there can be performance issues when CrossSessionResponse

service attempts to process all records at once. To improve performance,

users can define Affinium|interact|services|crossSessionResponse|

xsessionResponseBatchSize to a positive integer value. CrossSessionResponse

service processes xsessionResponseBatchSize records at a time and loops

through the xSessionResponse table till all new or retry records are processed.

Cross-session response tracking data source configuration
Unica Interact cross-session response tracking matches session data from the runtime

environment with the Unica Campaign contact and response history. By default, cross-

session response tracking matches on treatment code or offer code. You can configure the

runtime environment to match on a custom, alternate code.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 76

• If you choose to match on an alternate code, you must define the alternate code in the

UACI_TrackingType table in the Unica Interact runtime tables.

• The runtime environment must have access to the Unica Campaign contact history

tables. This can be by either configuring the runtime environment to have access to

the Unica Campaign contact history tables, or by creating a copy of the contact history

tables in the runtime environment.

This access is read-only, and is separate from the contact and response history utility.

If you create a copy of the tables, it is your responsibility to ensure data in the

copy of the contact history is accurate. You can configure the length of time the

CrossSessionResponse service retains unmatched responses to match the how

often you refresh the data in the copy of the contact history tables using the

purgeOrphanResponseThresholdInMinutes property. If you are using the contact and

response history module, you should coordinate the ETL updates to ensure you have

the most current data.

Configuring contact and response history tables for cross-
session response tracking
Whether you create a copy of the contact history tables, or use the actual tables in the Unica

Campaign system tables, you must perform the following steps to configure the contact

and response history tables.

The contact and response history tables must be mapped properly in Unica Campaign prior

to performing these steps.

1. Run the aci_lrnfeature SQL script in the interactDT/ddl/acifeatures directory

in the Unica Interact design environment installation directory against the

UA_DtlContactHist and UA_ResponseHistory tables in your Unica Campaign system

tables.

This adds the RTSelectionMethod column to the UA_DtlContactHist and

UA_ResponseHistory tables. Run the aci_lrnfeature script against these tables for

each of your audience levels. Edit the script as necessary to work with the correct

table for each of your audience levels.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 77

2. If you want to copy the contact history tables to the runtime environment, do so now.

If you are creating a copy of the Unica Campaign contact history tables accessible

by the runtime environment for cross-session response tracking support, use the

following guidelines:

• Cross-session response tracking requires read-only access to these tables.

• Cross-session response tracking requires the following tables from the Unica

Campaign contact history.

◦ UA_DtlContactHist (for each audience level)

◦ UA_Treatment

You must update the data in these tables on a regular basis to ensure accurate

response tracking.

3. Run the aci_crhtab SQL script in the ddl directory in the Unica Interact runtime

environment installation directory against the contact and response history data

source.

This script creates the UACI_XsessResponse and UACI_CRHTAB_Ver tables.

4. Create a version of the UACI_XsessResponse table for each audience level.

To improve the performance of cross-session response tracking, you may want to limit

the amount of contact history data, either by the way in which you copy the contact

history data or by configuring a view in to the Unica Campaign contact history tables. For

example, if you have a business practice that no offer is valid for longer than 30 days,

you should limit the contact history data to the last 30 days. To modify the number of

days of contact history data to maintain, open the configuration property Campaign |

partitions | partitionn| Interact | contactAndResponseHistTracking and set the value of

daysBackInHistoryToLookupContact.

You will not see results from cross-session response tracking until the contact and

response history module runs. For example, the default processSleepIntervalInMinutes

is 60 minutes. Therefore, it may take at least an hour before cross-session responses

appear in your Unica Campaign response history.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 78

UACI_TrackingType table
The UACI_TrackingType table is part of the runtime environment tables. This table defines

the tracking codes used with cross-session response tracking. The tracking code defines

what method the runtime environment uses to match the current offer in a runtime session

with the contact and response history.

Column Type Description

TrackingCodeType int A number representing the tracking code type.

This number is referenced by the SQL commands

used to match information from the session data

to the contact and response history tables.

Name varchar(64) The name for the tracking code type. This is

passed in to session data using the UACI_

TrackingCodeType reserved parameter with the

postEvent method.

Description var

char(512)

A brief description of the tracking code type. This

field is optional.

By default, the runtime environment has two tracking code types defined, as shown in the

following table. For any alternate code, you must define a unique TrackingCodeType.

TrackingCodeType Name Description

1 Treatment

Code

UACI Generated Treatment Code

2 Offer Code UAC Campaign Offer Code

UACI_XSessResponse
The UACI_XSessResponse table is part of the runtime environment tables. This table is used

for cross-session response tracking.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 79

One instance of this table for each audience level must exist in the contact and response

history data source available for Unica Interact cross-session response tracking.

Column Type Description

SeqNumber bigint Identifier for the row of data. The CrossSessionRe

sponse service processes all records in the Seq

Number order.

ICID bigint Interactive channel ID

AudienceID bigint The audience ID for this audience level. The name

of this column must match the audience ID de

fined in Unica Campaign. The sample table con

tains the column CustomerID.

TrackingCode varchar(64) The value that is passed by UACIOfferTracking

Code parameter of the postEvent method.

TrackingCodeType int The numeric representation of the tracking code.

The value must be a valid entry in the UACI_Track

ingType table.

OfferID bigint The offer ID as defined in Unica Campaign.

ResponseType int The response type for this record. The value must

be a valid entry in the UA_UsrResponseType table.

ResponseTypeCode varchar(64) The response type code for this record. The value

must be a valid entry in the UA_UsrResponseType

table.

ResponseDate datetime The date of the response.

Mark bigint The value of this field identifies the state of the

record.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 80

Column Type Description

• 1 - In process. It is applicable when “Over

ride SQL” configuration is used. In this case,

the matching query defined by user is used

rather than the system generated SQL.

• Random Big Integer value – It is applica

ble when “Use System generated SQL” is

set or default matching query is used. Sys

tem updates the records to be processed

with a unique big integer value to identify the

records to be processed by that thread.

• 2 - Successful. It is applicable when contact

history match is found and log response is

executed successfully.

• NULL - New Records

• 0 - Retry. It is applicable when contact his

tory match is not found and the record is in

database for less than purgeOrphanRespon

seThresholdInMinutes minutes.

• -1 - Record has been in the database for

more than purgeOrphanResponseThresh

oldInMinutes minutes.

As part of the database administrator's mainte

nance of this table, you can check this field for

records that are not being matched, that is, all

records with value of -1. All records with value 2

are automatically removed by the CrossSession

Response service.

UsrDefinedFields char(18) Any custom fields that you want to include when

you are matching offer responses to the contact

and response history. For example, if you want to

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 81

Column Type Description

match on a promotional code, include a promo

tional code user-defined field.

Enabling cross-session response tracking
Use this procedure to enable cross-section response tracking.

You must configure the contact and response history module to take full advantage of

cross-session response tracking.

To use cross-session response tracking, you must configure the runtime environment to

have read-access to the Unica Campaign contact and response history tables. You can read

from either the actual Unica Campaign contact and response history tables in the design

environment, or a copy of the tables in the runtime environment data sources. Configuring

the runtime environment to have read-access to the contact and response history table is

separate from any contact and response history module configuration.

If you are matching on something other than treatment code or offer code, you must add it

to the UACI_TrackingType table.

1. Create the XSessResponse tables in the contact and response history tables

accessible to the runtime environment.

2. Define the properties in the contactAndResponseHistoryDataSource category for the

runtime environment.

3. Define the crossSessionResponseTable property for each audience level.

4. Create an OverridePerAudience category for each audience level.

Cross-session response offer matching
By default, cross-session response tracking matches on treatment codes or offer codes.

The crossSessionResponse service uses SQL commands to match treatment codes, offer

codes, or a custom code from session data to the Unica Campaign contact and response

history tables. You can edit these SQL commands to match any customizations you make

to your tracking codes, offer codes, or custom codes.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 82

Matching by treatment code

The SQL to match by treatment code must return all the columns in the XSessResponse

table for this audience level plus a column called OfferIDMatch. The value in the

OfferIDMatch column must be the offerId that goes with the treatment code in the

XSessResponse record.

The following is a sample of the default generated SQL command that match treatment

codes. Unica Interact generates the SQL to use the correct table names for the audience

level. This SQL is used if the Interact > services > crossSessionResponse >

OverridePerAudience > AudienceLevel > TrackingCodes > byTreatmentCode > SQL

property is set to Use System Generated SQL.

select distinct treatment.offerId as OFFERIDMATCH,

 tx.*,

 dch.RTSelectionMethod

from UACI_XSessResponse tx

Left Outer Join UA_Treatment treatment ON

 tx.trackingCode=treatment.treatmentCode

Left Outer Join UA_DtlContactHist dch ON tx.CustomerID = dch.CustomerID

Left Outer Join UA_ContactHistory ch ON tx.CustomerID = ch.CustomerID

AND treatment.cellID = ch.cellID

AND treatment.packageID=ch.packageID

where tx.mark=1

and tx.trackingCodeType=1

The values UACI_XsessResponse, UA_DtlContactHist, CustomerID, and UA_ContactHistory

are defined by your settings in Unica Interact. For example, UACI_XsessResponse is

defined by the Interact > profile > Audience Levels > [AudienceLevelName] >

crossSessionResponseTable configuration property.

If you have customized your contact and response history tables, you may need to revise

this SQL to work with your tables. You define SQL overrides in the Interact > services >

crossSessionResponse > OverridePerAudience > (AudienceLevel) > TrackingCodes

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 83

> byTreatmentCode > OverrideSQL property. If you provide some override SQL, you must

also change the SQL property to Override SQL.

Matching by offer code

The SQL to match by offer code must return all the columns in the XSessResponse

table for this audience level plus a column called TreatmentCodeMatch. The value in the

TreatmentCodeMatch column is the Treatment Code that goes with the Offer ID (and Offer

Code) in the XSessResponse record.

The following is a sample of the default generated SQL command that match offer

codes. Unica Interact generates the SQL to use the correct table names for the audience

level. This SQL is used if the Interact > services > crossSessionResponse >

OverridePerAudience > AudienceLevel > TrackingCodes > byOfferCode > SQL

property is set to Use System Generated SQL.

select treatment.treatmentCode as TREATMENTCODEMATCH,

 tx.*,

dch.RTSelectionMethod

from UACI_XSessResponse tx

Left Outer Join UA_DtlContactHist dch ON tx.CustomerID=dch.CustomerID

Left Outer Join UA_Treatment treatment ON tx.offerId = treatment.offerId

Left Outer Join

 (

 select max(dch.contactDateTime) as maxDate,

 treatment.offerId,

 dch.CustomerID

 from UA_DtlContactHist dch, UA_Treatment treatment,

 UACI_XSessResponse tx

 where tx.CustomerID=dch.CustomerID

 and tx.offerID = treatment.offerId

 and dch.treatmentInstId = treatment.treatmentInstId

 group by dch.CustomerID, treatment.offerId

) dch_by_max_date ON tx.CustomerID=dch_by_max_date.CustomerID

 and tx.offerId = dch_by_max_date.offerId

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 84

where tx.mark = 1

and dch.contactDateTime = dch_by_max_date.maxDate

and dch.treatmentInstId = treatment.treatmentInstId

and tx.trackingCodeType=2

union

select treatment.treatmentCode as TREATMENTCODEMATCH,

 tx.*,

 0

from UACI_XSessResponse tx

Left Outer Join UA_ContactHistory ch ON tx.CustomerID =ch.CustomerID

Left Outer Join UA_Treatment treatment ON tx.offerId = treatment.offerId

Left Outer Join

 (

 select max(ch.contactDateTime) as maxDate,

 treatment.offerId, ch.CustomerID

 from UA_ContactHistory ch, UA_Treatment treatment, UACI_XSessResponse

 tx

 where tx.CustomerID =ch.CustomerID

 and tx.offerID = treatment.offerId

 and treatment.cellID = ch.cellID

 and treatment.packageID=ch.packageID

 group by ch.CustomerID, treatment.offerId

) ch_by_max_date ON tx.CustomerID =ch_by_max_date.CustomerID

 and tx.offerId = ch_by_max_date.offerId

 and treatment.cellID = ch.cellID

 and treatment.packageID=ch.packageID

where tx.mark = 1

 and ch.contactDateTime = ch_by_max_date.maxDate

 and treatment.cellID = ch.cellID

 and treatment.packageID=ch.packageID

 and tx.offerID = treatment.offerId

 and tx.trackingCodeType=2

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 85

The values UACI_XsessResponse, UA_DtlContactHist, CustomerID, and UA_ContactHistory

are defined by your settings in Unica Interact. For example, UACI_XsessResponse is

defined by the Interact > profile > Audience Levels > [AudienceLevelName] >

crossSessionResponseTable configuration property.

If you have customized your contact and response history tables, you may need to revise

this SQL to work with your tables. You define SQL overrides in the Interact > services >

crossSessionResponse > OverridePerAudience > (AudienceLevel) > TrackingCodes

> byOfferCode > OverrideSQL property. If you provide some override SQL, you must also

change the SQL property to Override SQL.

Matching by alternate code

You can define an SQL command to match by some alternate code of your choice. For

example, you could have promotional codes or product codes separate from offer or

treatment codes.

You must define this alternate code in the UACI_TrackingType table in the Unica Interact

runtime environment tables.

You must provide SQL or a stored procedure in the Interact > services >

crossSessionResponse > OverridePerAudience > (AudienceLevel) > TrackingCodes

> byAlternateCode > OverrideSQL property which returns all the columns in the

XSessResponse table for this audience level plus the columns TreatmentCodeMatch and

OfferIDMatch. You may optionally return the offerCode in place of OfferIDMatch (in the

form of offerCode1, offerCode2, offerCodeN for N part offer codes). The values in the

TreatmentCodeMatch column and OfferIDMatch column (or offer code columns) must

correspond to the TrackingCode in the XSessResponse record.

For example, the following SQL pseudo code matches on the AlternateCode column in the

XSessResponse table.

Select m.TreatmentCode as TreatmentCodeMatch, m.OfferID as OfferIDMatch,

 tx.*

From MyLookup m, UACI_XSessResponse tx

Where m.customerId = tx.customerId

And m.alternateCode = tx.trackingCode

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 86

And tx.mark=1

And tx.trackingCodeType = <x>

Where <x> is the tracking code defined in the UACI_TrackingType table.

Using a database load utility with the runtime
environment
By default, the runtime environment writes contact and response history data from session

data into staging tables. On a very active production system, however, the amount of

memory required to cache all the data before runtime can write it to the staging tables

may be prohibitive. You can configure runtime to use a database load utility to improve

performance.

When you enable a database load utility, instead of holding all contact and response

history in memory before writing to the staging tables, runtime writes the data to a

staging file. You define the location of the directory containing the staging files with the

externalLoaderStagingDirectory property. This directory contains several subdirectories.

The first subdirectory is the runtime instance directory, which contains the contactHist and

respHist directories. The contactHist and respHist directories contain uniquely named

subdirectories in the format of audienceLevelName.uniqueID.currentState, which contain

the staging files.

Current® State Description

CACHE Contents of directory currently being written to a file.

READY Contents of directory ready to be processed.

RUN Contents of directory currently being written to the database.

PROCESSED Contents of directory have been written to the database.

ERROR An error occurred while writing the contents of directory to the

database.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 87

Current® State Description

ATTN Contents of directory need attention. That is, you may need to

take some manual steps to complete writing the contents of

this directory to the database.

RERUN Contents of directory ready to be written to the database. You

should rename a directory from ATTN or ERROR to RERUN after

you have corrected the problem.

You can define the runtime instance directory by defining the

interact.runtime.instance.name JVM property in the application server startup

script. For example, you could add -Dinteract.runtime.instance.name=instance2

to your web application server startup script. If not set, the default name is

DefaultInteractRuntimeInstance.

The samples directory contains sample files to assist you with writing your own database

load utility control files.

Enabling a database load utility with runtime environment
Use this procedure to enable a database load utility with the runtime environment.

You must define any command or control files for your database load utility before you

configure runtime environment to use them. These files must exist in the same location on

all runtime servers in the same server group.

Unica Interact provides sample command and control files in the loaderService directory in

your Unica Interact runtime server installation.

1. Confirm that the runtime environment user has login credentials for the runtime tables

data source that is defined in Interact > general > systemTablesDataSource in

your configuration properties.

2. Define the Interact > general > systemTablesDataSource > loaderProperties

configuration properties.

3. Define the Interact > services >externalLoaderStagingDirectory property.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 88

4. Revise the Interact > services > responseHist > fileCache configuration

properties, if necessary.

5. Revise the Interact > services > contactHist > fileCache configuration

properties, if necessary.

6. Restart the runtime server.

Event pattern ETL process
To process large amounts of Unica Interact event pattern data and to make that data

available for queries and reporting purposes, you can install a stand-alone Extract,

Transform, Load (ETL) process on any supported server for optimal performance.

In Interact, all event pattern data for a given AudienceID is stored as a single collection in

the runtime database tables. The AudienceID and pattern state information is stored as

a Binary Large Object (BLOB). To perform any SQL queries or reporting based on event

patterns, this new ETL process is necessary to break up the object into tables into a target

database. To accomplish this, the stand-alone ETL process takes event pattern data from

the Unica Interact runtime database tables, processes it on the schedule you specify, and

stores it in the target database where it is available for SQL queries or additional reporting.

In addition to moving and transforming event pattern data to the target database, the stand-

alone ETL process also synchronizes the data in the target database with the most current

information in your Unica Interact runtime database. For example, if you delete an event

pattern in the Unica Interact runtime, that event pattern's processed data is removed from

the target database the next time the ETL process runs. Event pattern state information

is kept up to date as well. So the information stored about event patterns in the target

database is solely current data, not historical information.

Running the stand-alone ETL process
When you launch the stand-alone ETL process on a server, it runs continuously in the

background until stopped. The process follows the instructions in the Unica Platform

configuration properties to determine frequency, database connections, and other details

during its operation.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 89

Before you run the stand-alone ETL process, ensure that you complete the following tasks:

• You must have the permissions of an Interact Admin user role.

• You must have installed the process on a server, and configured both the files on the

server and in the Unica Platform correctly for your configuration.

Note:

If you are running the ETL process on Microsoft Windows for a language other

than US English, use chcp at the command prompt to set the code page for the

language you are using. For example, you might use any of the following codes:

ja_jp=932, zh_cn=936, ko_kr=949, ru_ru=1251 and for de_de, fr_fr, it_it, es_es,

pt_br, use 1252. To ensure proper character display, use the chcp command in the

Windows command prompt prior to launching the ETL process.

After you have installed and configured the stand-alone ETL process, you are ready to

launch the process.

1. Open a command prompt on the server where the ETL process is installed.

2. Navigate to the <Interact_home>/PatternStateETL/bin directory that

contains the executable files for the ETL process.

3. To run ETL report, add -Dcom.ibm.interact.logconfiglocation=PatternStateETL/

bin/etl_log4j2.xml.

4. Run the command.bat file (on Microsoft Windows) or command.sh file (on UNIX-like

operating systems) with the following parameters:

• -u <username>. This value must be a valid Unica Platform user, and you

must have configured that user with access to the TargetDS and RuntimeDS

datasources that the ETL process will use.

• -p <password>. Replace <password> with the password matching the user

you specified. If the password for this user is blank, specify two double quotes

(as in -p ""). The password is optional when you run the command file; if you

omit the password with the command, you are prompted to enter it when the

command runs.

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 90

• -c <profileName>. Replace <profileName> with the exact name you specified in

the Unica Platform in the Interact | PatternStateETL configuration you created.

The name you enter here must match the value you specified in the New

category name field when you created the configuration.

• start. The start command is required to start the process.

The complete command to start the process would therefore take the following form:

command.bat -u <username> -p <password> -c <profileName> start

The stand-alone ETL process runs, and continues to run in the background until you stop the

process or until the server is restarted.

Note:

The first time that you run the process, the accumulated event pattern data may

take a considerable amount of time to run. Subsequent times that the process runs

will work with only the most recent set of event pattern data and takes less time to

complete.

Be aware that you can also provide the help argument to the command.bat or

command.sh file to see all available options, as in the following example:

command.bat help

Stopping the stand-alone ETL process
When you launch the stand-alone ETL process on a server, it runs continuously in the

background until stopped.

1. Open a command prompt on the server where the ETL process is installed.

2. Navigate to the <Interact_home>/PatternStateETL/bin directory that

contains the executable files for the ETL process.

3. Run the command.bat file (on Microsoft Windows) or command.sh file (on UNIX-like

operating systems) with the following parameters:

Unica Interact V12.1.3 Administrator's Guide | 4 - Managing Unica Interact data sources | 91

• -u <username>. This value must be a valid Unica Platform user, and you must

have configured that user with access to the TargetDS and RuntimeDS data

sources that the ETL process will use.

• -p <password>. Replace <password> with the password matching the user

you specified. If the password for this user is blank, specify two double quotes

(as in -p ""). The password is optional when you run the command file; if you

omit the password with the command, you are prompted to enter it when the

command runs.

• -c <profileName>. Replace <profileName> with the exact name you specified in

the Unica Platform in the Interact | PatternStateETL configuration you created.

The name you enter here must match the value you specified in the New

category name field when you created the configuration.

• stop. The stop command is required to stop the process. If you use this

command, any ongoing ETL operation will complete before the process shuts

down.

To shut down the ETL process without waiting for any ongoing operations to

complete, use forcestop instead of stop.

The complete command to start the process would therefore take the following form:

command.bat -u <username> -p <password> -c <profileName> stop

The stand-alone ETL process stops.

Chapter 5. Offer serving
You can configure Unica Interact in many ways to enhance how it selects offers to present.

The following sections describe these optional features in detail.

Offer eligibility
The purpose of Unica Interact is to present eligible offers. Simply, Unica Interact presents

the most optimal among the eligible offers, based on the visitor, the channel, and the

situation.

Treatment rules are only the start of how Unica Interact determines which offers are eligible

for a customer. Unica Interact has several optional features which you can implement to

enhance how the runtime environment determines which offers to present. None of these

features guarantee that an offer is presented to a customer. These features influence the

probability that an offer is eligible to be presented to a customer. You can use as many or as

few of these features as you need to implement the best solution for your environment.

There are three main areas where you can influence offer eligibility: generating the list of

candidate offers, determining the marketing score, and learning.

Generating a list of candidate offers
Generating a list of candidate offers has two major stages. The first stage is generating

a list of all possible offers for which the customer may be eligible. The second stage is

filtering out any offer for which the customer is no longer eligible. There are several places

in both stages where you can influence the generation of the candidate offer list.

This diagram shows the stages of the candidate offer list generation. The arrows show the

order of precedence. For example, if an offer passes the Max # of times to present an offer

filter, but fails the Global offer inclusion rules filter, the runtime environment excludes the

offer.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 93

• Global offer assignments - You can define global offers by audience level using the

global offers table.

• Treatment rules - The basic method to define offers by segment by interaction point

using the interaction strategy tab.

• Individual offer assignments - You can define specific offer assignments by customer

using the score override table.

• Offer expiration date - When you create an offer in Unica Campaign, you can define an

expiration date. If the expiration date for an offer has passed, the runtime environment

excludes the offer.

• Campaign start and end date - When you create a campaign in Unica Campaign,

you can define a start and end date for the campaign. If the start date for the

campaign has not occurred or the end date for the campaign has passed, the runtime

environment excludes the offer.

• Offer suppression - You can define offer suppression for specific audience members

using the offer suppression table.

• Max # times to present an offer - When you define an interactive channel, you define

the maximum number of times to present an offer to a customer per session. If the

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 94

offer has already been presented this number of times, the runtime environment

excludes the offer.

• Global offer inclusion rules - You can define a boolean expression to filter offers

on an audience level using the global offers table. If the result is false, the runtime

environment excludes the offer.

• Advanced options - You can use the Consider this rule eligible if the following

expression is true advanced option in a treatment rule to filter offers on a segment

level. If the result is false, the runtime environment excludes the offer.

• Individual offer inclusion rules - You can define a boolean expression to filter offers

on a customer level using the score override table. If the result is false, the runtime

environment excludes the offer.

Calculate the marketing score
There are many ways to influence (by using a calculation) or override the marketing score.

This diagram shows the different stages where you can influence or override the marketing

score.

The arrows show the order of precedence. For example, if you define an expression to

determine the marketing score in the Advanced Options for a treatment rule and define

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 95

an expression in the score override table, the expression in the score override table takes

precedence.

• Global score - You can define a score per audience level using the global offers table.

• Marketer's score - You can define a score per segment using the slider in a treatment

rule.

• Score Override score - You can define a score per customer using the score override

table.

• Global offer inclusion rules - You can define an expression which calculates a score

per audience level using the global offers table.

• Advanced Options - You can define an expression which calculates a score per

segment using the Use the following expression as the marketing score advanced

option in a treatment rule.

• Score override offer inclusion rules - You can define an expression which calculates a

score per customer using the score override table.

Influencing learning
If you are using the Unica Interact built-in learning module, you can influence the learning

output beyond the standard learning configurations such as the list of learning attributes or

the confidence level. You can override components of the learning algorithm while using the

remaining components.

You can override learning using the LikelihoodScore and AdjExploreScore columns of the

default offers and score override tables. You can add these columns to the default offers

and score override tables using the aci_scoringfeature feature script. To properly use

these overrides, you need a thorough understanding of Unica Interact built-in learning.

The learning module takes the list of candidate offers and the marketing score per

candidate offer and uses them in the final calculations. The offer list is used with the

learning attributes to calculate the likelihood (accept probability) that the customer will

accept the offer. Using these probabilities and the historical number of presentations to

balance between exploration and exploitation, the learning algorithm determines the offer

weight. Finally, the built-in learning takes the offer weight, multiplies it by the final marketing

score and returns a final score. The offers are sorted by this final score.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 96

Suppress offers
You can configure the runtime environment to suppress offers.

There are several ways in which the runtime environment suppresses an offer:

• The Maximum # of times to show any offer during a single visit element of an

interactive channel.

You define the Maximum # of times to show any offer during a single visit when you

create or edit an interactive channel.

• The use of an offer suppression table.

You create an offer suppression table in your profile database.

• Offers whose expiration date has passed.

• Offers from expired campaigns.

• Offers excluded because they do not pass an offer inclusion rule (treatment rule

advanced option).

• Offers already explicitly accepted or rejected in a Unica Interact session. If a customer

explicitly accepts or rejects an offer, that offer is suppressed during the session.

Enabling offer suppression
Use this procedure to enable offer suppression.

You can configure Unica Interact to reference a list of suppressed offers.

1. Create an offerSuppressionTable, a new table for every audience that contains the

audience ID and the offer ID.

2. Set the enableOfferSuppressionLookup property to true.

3. Set the Interact > profile > offerSuppressionTable property to the name of the

offer suppression table for the appropriate audience.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 97

Offer suppression table

The offer suppression table enables you to suppress an offer for a specific audience ID. For

example, if your audience is Customer, you can suppress an offer for the customer John

Smith. A version of this table for at least one audience level must exist in your production

profile database. You can create a sample offer suppression table, UACI_Blacklist by

running the aci_usrtab SQL script against your profile database. The aci_usrtab SQL

script is located in the ddl directory in your runtime environment installation directory.

You must define the AudienceID and OfferCode1 fields for each row. You can add additional

columns if your Audience ID or Offer Code consists of multiple columns. These columns

must match the column names defined in Unica Campaign. For example if you define the

audience Customer by the fields HHold_ID and MemberNum, you must add HHold_ID and

MemberNum to the offer suppression table.

Name Description

AudienceID (Required) The name of this column must match the name of the col

umn defining the audience ID in Unica Campaign. If your audience ID

consists of multiple columns, you can add them to this table. Each row

must contain the audience ID to which you assign the default offer, for

example, customer1.

OfferCode1 (Required) The offer code for the offer you are overriding. If your offer

codes are made of multiple fields, you can add the additional columns,

for example OfferCode2, and so on.

Ignore Offer Suppression
OfferSuppression for a session can be Ignored using the parameters below:

1. UACIIgnoreBlackList

TRUE – When we pass this parameter as true then all offers available in Black List table will

be displayed/returned to user.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 98

FALSE – When this is passed as false then all offer available in Black List table wont be

displayed/returned to user

2. UACIIgnoreSuppressionRules

TRUE – When we pass this parameter as true then all suppressed offer on real time will be

displayed/returned to user.

FALSE – When we pass this as false then all real time suppressed offer will not be

displayed/returned as per rule.

If these parameters are not passed its by default considered as false.

The parameters affect only getOffers calls in that session. After the parameter is set,

Interact does not check suppression rules while processing contact and response events,

so a contact/response event can be posted to a suppressed offer.

Suppression rules defined on offers are triggered by users' real time activities.

The blacklist table means UACI_BlackList or its equivalent, depending on how customers

name it, and ILPB can populate its contents.

Global offers and individual assignments
You can configure the runtime environment to assign specific offers beyond the treatment

rules configured on the Interaction Strategy tab. You can define global offers for any

member of an audience level and individual assignments for specific audience members.

For example, you can define a global offer for all households to see when no others are

available, and then create an individual offer assignment for the specific Smith household.

You can constrain both global offers and individual assignments by zone, cell, and offer

inclusion rules. Both global offers and individual assignments are configured by adding data

to specific tables in your production profile database.

For global offers and individual assignments to function properly, all referenced cell and

offer codes must exist in the deployment. To ensure the required data is available, you must

configure default cell codes and the UACI_ICBatchOffers table.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 99

Defining the default cell codes
If you use the default offers or score override tables for global or individual offer

assignments, you must define default cell codes. The DefaultCellCode is used when there

is no defined cell code in a particular row in the default offers or score override tables.

Reporting uses this default cell code.

The DefaultCellCode must match the cell code format that is defined in Unica Campaign.

This cell code is used for all offer assignments that appear in reporting.

If you define unique default cell codes, you can easily identify offers that are assigned by the

default offers or score override tables.

Define the DefaultCellCode property for each audience level and table type in the

IndividualTreatment category.

Defining offers not used in a treatment rule
If you use the default offers or score override tables, you must ensure that all offer codes

exist in the deployment. If you know that all offers you use in the default offers or score

override tables are used in your treatment rules, the offers exist in the deployment. However,

any offer that is not used in a treatment rule must be defined in the UACI_ICBatchOffers

table.

The UACI_ICBatchOffers table exists in the Unica Campaign system tables.

Populate the UACI_ICBatchOffers table with offer codes that you use in the default offer or

score override tables. The table has the following format:

Column Name Type Description

ICName varchar(64) The name of the interactive channel the offer is

associated with. If you are using the same offer

with two different interactive channels, you must

provide a row for each interactive channel.

OfferCode1 varchar(64) The first part of the offer code.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 100

Column Name Type Description

OfferCode2 varchar(64) The second part of the offer code.

OfferCode3 varchar(64) The third part of the offer code.

OfferCode4 varchar(64) The fourth part of the offer code.

OfferCode5 varchar(64) The fifth part of the offer code

About the global offers table
The global offers table enables you to define treatments at the audience level. For example,

you can define a global offer for every member of the audience Household.

You can define global settings for the following elements of Unica Interact offer serving.

• Global offer assignment

• Global marketer's score, by a number or by an expression

• Boolean expression to filter offers

• Learning probability and weight, if you are using Unica Interact Built-in Learning

• Global learning override

Assigning global offers
Use this procedure to configure the runtime environment to assign global offers for an

audience level, beyond anything that is defined in treatment rules.

1. Create a table that is called UACI_DefaultOffers in your profile database.

To create the UACI_DefaultOffers table with the correct columns, use the

aci_usrtab ddl file.

2. Set the Interact > profile > enableDefaultOfferLookup property to true.

Global offer table
The global offer table must exist in your profile database. You can create the global offer

table, UACI_DefaultOffers by running the aci_usrtab SQL script against your profile

database.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 101

The aci_usrtab SQL script is located in the ddl directory in your runtime environment

installation directory .

You must define the AudienceLevel, and OfferCode1 fields for each row. The other fields

are optional to constrain your offer assignments further or influence the built-in learning at

the audience level.

For best performance, you should create an index on this table on the audience level

column.

Name Type Description

AudienceLevel varchar(64) (Required) The name of the audience level you as

sign the default offer to, for example, customer or

household. This name must match the audience

level as defined in Unica Campaign.

OfferCode1 varchar(64) (Required) The offer code for the default offer. If

your offer codes are made of multiple fields, you

can add the additional columns, for example Of

ferCode2 and so on.

If you are adding this offer to provide a global of

fer assignment, you must add this offer to the

UACI_ICBatchOffers table.

Score float A number to define the marketing score for this

offer assignment.

OverrideTypeID int If set to 1, if the offer does not exist in the candi

date list of offers, add this offer to the list as well

as using any score data for the offer. In general,

use 1 to provide global offer assignments.

If set to 0, null, or any number other than 1, use

any data for the offer only if the offer exists in the

candidate list of offers. In most cases, a treat

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 102

Name Type Description

ment rule or individual assignment will override

this setting.

Predicate varchar(4000) You can enter expressions in this column as for

advanced options for treatment rules. You can

use the same variables and macros available to

you when writing advanced options for treatment

rules. The behavior of this column depends on the

value in the EnableStateID column.

• If the EnableStateID is 2, this column

works the same as Consider this rule eligi

ble if the following expression is true op

tion in the advanced options for treatment

rules to constrain this offer assignment.

This column must contain a boolean ex

pression, and resolve to true to include this

offer.

If you accidentally define an expression that

resolves to a number, any non-zero number

is considered true and zero is considered

false.

• If the EnableStateID is 3, this column

works the same as Use the following ex

pression as the marketing score option in

the advanced options for treatment rules to

constrain this offer. This column must con

tain an expression that resolves to a num

ber.

• If the EnableStateID is 1, Unica Interact ig

nores any value in this column.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 103

Name Type Description

Note: To assign score to an offer, the fol

lowing sequence is considered.

• Final score field

• Score [column]

• Predicate column

If you want to assign score from the pred

icate column, then you must leave the

score column as null.

FinalScore float A number to override the final score used to or

der the final list of returned offers. This column

is used if you have enabled the built-in learning

module. You can implement your own learning to

use this column.

CellCode varchar(64) The cell code for a deployed interactive segment

to which you want to assign this default offer. If

your cell codes are made of multiple fields, you

can add the additional columns.

You must provide a cell code if OverrideTypeID

is 0 or null. If you do not include a cell code, the

run time environment ignores this row of data.

If the OverrideTypeID is 1, you do not have to

provide a cell code in this column. If you do not

provide a cell code, the runtime environment us

es the cell code defined in the DefaultCellCode

property for this audience level and table for re

porting purposes.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 104

Name Type Description

Zone varchar(64) The name of the zone to which you want this of

fer assignment to apply. If NULL, this applies to

all zones.

EnableStateID int The value in this column defines the behavior of

the Predicate column.

• 1 - Do not use the Predicate column.

• 2 - Use Predicate as a boolean to filter the

offer. This follows the same rules as the

Consider this rule eligible if the following

expression is true advanced option in a

treatment rule.

• 3 - Use Predicate to define the marketer's

score. This follows the same rules as the

Use the following expression as the mar

keting score advanced option in a treat

ment rule.

Any row where this column is Null or any value

other than 2 or 3 ignores the Predicate column.

LikelihoodScore float This column is used only to influence built-in

learning. You can add this column with the aci_

scoringfeature ddl.

AdjExploreScore float This column is used only to influence built-in

learning. You can add this column with the aci_

scoringfeature ddl.

Suppression

Count

int This field is for Exclusive offer suppression. The

field is located on the Strategy page. Once you

save the Suppression Count in the Strategy Ad

vance Option for rule then the 'Suppression Count'

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 105

Name Type Description

value is updated in this column, By default the val

ue is 0.

Max Score int By default the value is false(0) and in the Strategy

once you select Max score for rule and save the

Strategy then the value becomes true(1).

About the score override table
The score override table allows you to define treatments on an audience ID or individual

level. For example, if your audience level is Visitor, you can create overrides for specific

visitors.

You can define overrides for the following elements of Unica Interact offer serving.

• Individual offer assignment

• Individual marketer's score, by a number or by an expression

• Boolean expression to filter offers

• Learning probability and weight, if you are using Built-in Learning

• Individual learning override

Configuring score overrides
You can configure Unica Interact to use a score that is generated from a modeling

application instead of the marketing score.

1. Create a score override table for each audience level for which you want to provide

overrides.

To create a sample score override table with the correct columns, use the aci_usrtab

ddl file.

2. Set the Interact > Profile > enableScoreOverrideLookup property to true.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 106

3. Set the scoreOverrideTable property to the name of the score override table for each

audience level for which you want to provide overrides.

You do not need to provide a score override table for every audience level.

Score override table
The score override table must exist in your production profile database. You can create a

sample score override table, UACI_ScoreOverride by running the aci_usrtab SQL script

against your profile database.

The aci_usrtab SQL script is located in the ddl directory in your runtime environment

installation directory.

You must define the AudienceID, OfferCode1, and Score fields for each row. The values in

the other fields are optional to constrain your individual offer assignments further or provide

score override information for the built-in learning.

Name Type Description

AudienceID varchar(64) (Required) The name of this column must match

the name of the column defining the audience ID

in Unica Campaign. The sample table created by

the aci_usrtab ddl file create this column as the

CustomerID column. If your audience ID consists

of multiple columns, you can add them to this ta

ble. Each row must contain the audience ID to

which you assign the individual offer, for example,

customer1. For best performance, you should cre

ate an index on this column.

OfferCode1 varchar(64) (Required) The offer code for the offer. If your of

fer codes are made of multiple fields, you can add

the additional columns, for example OfferCode2

and so on.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 107

Name Type Description

If you are adding this offer to provide an individual

offer assignment, you must add this offer to the

UACI_ICBatchOffers table.

Score float A number to define the marketing score for this

offer assignment.

OverrideTypeID int If set to 0 or null (or any number other than 1),

use any data for the offer only if the offer exists

in the candidate list of offers. In general, use 0 to

provide score overrides. You must provide a cell

code

If set to 1, if the offer does not exist in the candi

date list of offers, add this offer to the list as well

as using any score data for the offer. In general,

use 1 to provide individual offer assignments.

Predicate varchar(4000) You can enter expressions in this column as for

advanced options for treatment rules. You can

use the same variables and macros available to

you when writing advanced options for treatment

rules. The behavior of this column depends on the

value in the EnableStateID column.

• If the EnableStateID is 2, this column

works the same as Consider this rule eligi

ble if the following expression is true op

tion in the advanced options for treatment

rules to constrain this offer assignment.

This column must contain a boolean ex

pression, and resolve to true to include this

offer.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 108

Name Type Description

If you accidentally define an expression that

resolves to a number, any non-zero number

is considered true and zero is considered

false.

• If the EnableStateID is 3, this column

works the same as Use the following ex

pression as the marketing score option in

the advanced options for treatment rules to

constrain this offer. This column must con

tain an expression that resolves to a num

ber.

• If the EnableStateID is 1, Unica Interact ig

nores any value in this column.

Note: To assign score to an offer, the fol

lowing sequence is considered.

• Final score field

• Score [column]

• Predicate column

If you want to assign score from the pred

icate column, then you must leave the

score column as null.

FinalScore float A number to override the final score used to or

der the final list of returned offers. This column

is used if you have enabled the built-in learning

module. You can implement your own learning to

use this column.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 109

Name Type Description

CellCode varchar(64) The cell code for an interactive segment to which

you want to assign this offer. If your cell codes

are made of multiple fields, you can add the addi

tional columns.

You must provide a cell code if OverrideTypeID

is 0 or null. If you do not include a cell code, the

run time environment ignores this row of data.

If the OverrideTypeID is 1, you do not have to

provide a cell code in this column. If you do not

provide a cell code, the runtime environment us

es the cell code defined in the DefaultCellCode

property for this audience level and table for re

porting purposes.

Zone varchar(64) The name of the zone to which you want this of

fer assignment to apply. If NULL, this applies to

all zones.

EnableStateID int The value in this column defines the behavior of

the Predicate column.

• 1 - Do not use the Predicate column.

• 2 - Use Predicate as a boolean to filter the

offer. This follows the same rules as the

Consider this rule eligible if the following

expression is true advanced option in a

treatment rule.

• 3 - Use Predicate to define the marketer's

score. This follows the same rules as the

Use the following expression as the mar

keting score advanced option in a treat

ment rule.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 110

Name Type Description

Any row where this column is Null or any value

other than 2 or 3 ignores the Predicate column.

LikelihoodScore float This column is used only to influence built-in

learning. You can add this column with the aci_

scoringfeature ddl.

AdjExploreScore float This column is used only to influence built-in

learning. You can add this column with the aci_

scoringfeature ddl.

Suppression

Count

int This field is for Exclusive offer suppression. The

field is located on the Strategy page. Once you

save the Suppression Count in the Strategy Ad

vance Option for rule then the 'Suppression Count'

value is updated in this column, By default the val

ue is 0.

Max Score int By default the value is false(0) and in the Strategy

once you select Max score for rule and save the

Strategy then the value becomes true(1).

Unica Interact built-in learning overview
While you do everything you can to ensure that you propose the right offers to the right

segments, you can always learn something from actual selections of your visitors. The

actual behavior of your visitors should influence your strategy. You can take response

history and run it through some modeling tools to get a score which you can include in your

interactive flowcharts.

However, this data is not real-time.

Unica Interact provides two options for you to learn from your visitor's actions in real time:

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 111

• Built-in learning module - The runtime environment has a Naive Bayesian-based

learning module. This module monitors customer attributes of your choosing and

uses that data to help select which offers to present.

• Learning API - The runtime environment also has a learning API for you to write your

own learning module.

You do not have to use learning. By default, learning is disabled.

Unica Interact learning module
The Unica Interact learning module monitors visitor's responses to offers and visitor

attributes.

Learning module modes

The learning module has two general modes:

• Exploration - the learning module serves offers in order so it can gather enough

response data to optimize the estimation that is used during the exploitation mode.

Offers served during exploration do not necessarily reflect the optimal choice.

• Exploitation - after enough data is collected by the exploration phase, the learning

module uses the probabilities to help select the offers to present.

The learning module uses two properties to alternates between exploration mode and

exploitation mode. The two properties are:

• a confidence level that you configure with the confidenceLevel property.

• a probability that the learning module presents a random offer that you configure with

the percentRandomSelection property.

Confidence level property

You set the confidenceLevel to a percentage that represents how sure (or confident)

the learning module must be before its scores for an offer are used in arbitration. At first,

when the learning module has no data to work from, the learning module relies entirely

upon the marketing score. After every offer is presented as many times as defined by the

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 112

minPresentCountThreshold, the learning module enters the exploration mode. Without

much data to work with, the learning module is not confident that the percentages it

calculates are correct. Therefore, it stays in the exploration mode.

The learning module assigns weights to each offer. To calculate the weights, the learning

module uses a formula that takes in as input the configured confidence level, the historical

acceptance data, and the current session data. The formula inherently balances between

exploration and exploitation, and returns the appropriate weight.

Random selection property

To ensure that the system is not biased toward the offers that perform best during early

stages, Unica Interact presents a random offer the percentRandomSelection percent of the

time. This random offer percentage forces the learning module to recommend offers other

than the most successful to determine whether other offers would be more successful if

they had greater exposure. For example, if you configure percentRandomSelection to 5,

then 5% of the time the learning module presents a random offer and adds the response

data to its calculations.

You can set the % Random to specify the change that the returned offer is randomly

selected, without considering scores, for each zone on the Interaction Points tab of the

Interactive Channel window.

How the learning module determines offers

The learning module determines which offers are presented in the following way.

1. Calculates the probability that a visitor selects an offer.

2. Calculates the offer weight by using the probability from step 1 and determines

whether to be in exploration or exploitation mode.

3. Calculates a final score for each offer by using the marketing score and the offer

weight from step 2.

4. Sorts the offers by the scores that are determined in step 3 and returns the requested

number of top offers.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 113

For example, the learning module determines that a visitor is 30% likely to accept offer A

and 70% likely to accept offer B and to exploit this information. From the treatment rules,

the marketing score for offer A is 75 and 55 for offer B. However, the calculations in step

3 makes the final score for offer B higher than offer A, therefore, the runtime environment

recommends offer B.

Note: Multiple response events against a single contact event skews the learning

score.

Weight factor properties

Learning is also based on the recencyWeightingFactor property and the

recencyWeightingPeriod property. These properties let you to add more weight to

more recent data than older data. The recencyWeightingFactor is the percentage of

weight to give to the recent data. The recencyWeightingPeriod is the length of time

that is recent. For example, you configure the recencyWeightingFactor to 0.30 and the

recencyWeightingPeriod to 24. These settings mean that the previous 24 hours of data are

30% of all data considered. For a week's worth of data, all of the data averaged across the

first six days is 70% of the data, and the last day is 30% of the data.

Staging table data written

Every session writes the following data to a learning staging table:

• Offer contact

• Offer acceptance

• Learning attributes

At a configurable interval, an aggregator reads the data from the staging table, compiles

it, and writes it to a table. The learning module reads this aggregated data and uses it in

calculations.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 114

Enabling the learning module
All runtime servers have a built-in learning module. By default, this learning module is

disabled. You the enable learning module by changing a configuration property.

In Unica Platform for the runtime environment, edit the following configuration properties in

the Interact > offerserving category.

Configuration property Setting

optimizationType BuiltInLearning

Learning attributes
The learning module learns using visitor's attributes, the states of Event Patterns and

offer acceptance data. You can select which visitor attributes you monitor. These visitor

attributes can be anything within a customer profile, including some event parameter you

collect in real time.

Attributes from dimensional tables are not supported in learning.

While you can configure any number of attributes to monitor, HCL recommends that you

configure no more than ten learning attributes between the static and dynamic learning

attributes, as well as follow these guidelines.

• Select independent attributes.

Do not select attributes that are similar. For example, if you create an attribute called

HighValue, and that attribute is defined by a calculation based on salary, do not select

both HighValue and Salary. Similar attributes do not help the learning algorithm.

• Select attributes with discrete values.

If an attribute has value ranges, you must select an exact value. For example, if you

want to use salary as an attribute, you should give each salary range a specific value,

the range 20,000-30,000 should be A, 30,001-40,000 should be B, and so on.You can

also define bins in interact and learning system will automatically do the mapping

• Limit the number of attributes you track so you do not impede performance.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 115

The number of attributes you can track depends on your performance requirements

and your Unica Interact installation. If you can, use another modeling tool (such as

PredictiveInsight) to determine the top ten predictive attributes. You can configure the

learning module to automatically prune attributes that are not predictive, but that also

has a performance cost.

You can manage performance by defining both the number of attributes you monitor

and the number of values per attribute you monitor. The Campaign > partitions >

partition1 > Interact > learning > maxAttributeNames property defines the

maximum number of visitor attributes you track. The maxAttributeValues property defines

the maximum number of values you track per attribute. All other values are assigned to a

category defined by the value of the otherAttributeValue property. However, the learning

engine only tracks the first values it encounters. For example, you are tracking the visitor

attribute eye color. You are only interested in the values blue, brown, and green, so you set

maxAttributeValues to 3. However, the first three visitors have the values blue, brown, and

hazel. This means that all visitors with green eyes are assigned the otherAttributeValue.

You can also use dynamic learning attributes which enable you to define your learning

criteria more specifically. Dynamic learning attributes let you learn on the combination of

two attributes as a single entry. For example consider the following profile information.

Visitor ID Card Type Card Balance

1 Gold Card $1,000

2 Gold Card $9,000

3 Bronze Card $1,000

4 Bronze Card $9,000

If you use standard learning attributes, you can only learn on card type and balance

individually. Visitors 1 and 2 will be grouped together same based on Card Type, and visitors

2 and 4 grouped based on Card Balance. This may not be an accurate predictor of offer

acceptance behavior. If Gold Card holders tend to have higher balances, the behavior of

Visitor 2 may be radically different than Visitor 4, which would skew the standard learning

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 116

attributes. However, if you use dynamic learning attributes, each of these visitors is learned

on individually and the predictions will be more accurate.

If you use dynamic learning attributes, and the visitor has two valid values for an attribute,

the learning module selects the first value it finds.

If you set the enablePruning property to yes, the learning module algorithmically

determines which attributes are not predictive and ceases to consider those attributes when

calculating weights. For example, if you are tracking an attribute representing hair color,

and the learning module determines that there is no pattern to accepting an offer based

on the visitor's hair color, the learning module ceases to consider the hair color attribute.

Attributes are re-evaluated every time the learning aggregation process runs (defined by the

aggregateStatsIntervalInMinutes property). Dynamic learning attributes are also pruned.

Event pattern states can now be used in Learning. The name of event patterns, with the

prefixed value specified in configuration setting Affinium|Campaign|partitions|partition1|

Interact|flowchart:eventPatternPrefix, can be added into a learning model and global

learning attributes.

They are treated the same as profile attributes.

The values of an event pattern can be one of the following:

0 - condition not met

1 - condition met

-1 - expired

-2 - disabled

-3 - not activated yet

Defining a learning attribute
Use this procedure to define a learning attribute.

You can configure up to the maxAttributeNames number of visitor attributes.

The (learningAttributes) is a template to create new learning attributes. You must enter

a new name for each attribute. You cannot create two categories with the same name

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 117

In Unica Platform for the design environment, edit the following configuration properties in

the Campaign > partitions > partitionn > Interact > learning category.

Configuration property Setting

attributeName The attributeName must match the name of a name-

value pair in the profile data. This name is case-insensi

tive.

Define dynamic learning attributes
To define dynamic learning attributes, you must populate the UACI_AttributeList table in

the Learning data source.

All columns in this table have the type of varchar(64).

Column Description

AttributeName The name of the dynamic attribute upon which you want

to learn. This value must be an actual value possible in

the AttributeNameCol.

AttributeNameCol The fully qualified column name (hierarchical structure,

starting from profile table) where the AttributeName

can be found. This column name does not have to be a

standard learning attribute.

AttributeValueCol The fully qualified column name (hierarchical structure,

starting from profile table) where the associated value

for the AttributeName can be found.

For example, consider the following profile table and its associated dimension table.

Table 7. MyProfileTable

VisitorID KeyField

1 Key1

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 118

Table 7. MyProfileTable (continued)

VisitorID KeyField

2 Key2

3 Key3

4 Key4

Table 8. MyDimensionTable

KeyField CardType CardBalance

Key1 Gold Card 1000

Key2 Gold Card 9000

Key3 Bronze Card 1000

Key4 Bronze Card 9000

The following is a sample UACI_AttributeList table matching on card type and balance.

Table 9. UACI_AttributeList

AttributeName AttributeNameCol AttributeValueCol

Gold Card MyProfileTable.MyDimension

Table. CardType

MyProfileTable.MyDimension

Table. CardBalance

Bronze Card MyProfileTable.MyDimension

Table. CardType

MyProfileTable.MyDimension

Table. CardBalance

Unica Interact AutoBinning

In Interact, the built-in learning algorithm works partly by saving and analysing the values

of profile attributes at the time offers were contacted and responded. Some attributes may

have virtually unlimited number of unique values. However, due to limited resources in an

Interact system, you can save only a small number of them. In addition, often it is more

reasonable to do the analysis based on the ranges of the values. You can use this feature

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 119

is to create such bins in Interact and the learning sub-system will automatically do the

mapping.

You can create the bin definitions from Interact -> Global Learning -> All Bin Definitions

page. While adding, or editing a bin definition you can select profile attributes from list of

ALL attributes from all mapped profile tables. The types of a Bin Definition can be either

Range or List. The “Range" type can only have mathematic operators, the “List" type can

only have “contains" operator and consists of list of values.

Example for “Range" type bin:

low income < =30000

30000 < medium income < =60000

high income > 60000

Example for “List" type bin:

New England: MA, NH, CT

North West: MI, IL

A bin definition is global data across all interactive channels and across all learning models.

All bin definitions will be deployed as part of Global Deployment Data. You can deploy them

in any interactive channel, deploying once and deployed for ALL. After that, the new bin

definitions are saved into a memory cache, which is visible only to the built-in learning sub-

system.

When a contact or response event is posted, the value of a profile attribute is mapped to a

bin if such bin exists. The “bin" values is used while logging to the learning tables. If bins

are defined for the attribute and the attribute value is not part of any bin definitions, then

attribute value will be logged as OTHER in learning tables.

Configuring the runtime environment to recognize external
learning modules
You can use the Learning Java™ API to write your own learning module. You must configure

the runtime environment to recognize your learning utility in Unica Platform.

Unica Interact V12.1.3 Administrator's Guide | 5 - Offer serving | 120

You must restart the Unica Interact runtime server for these changes to take effect.

1. In Unica Platform for the runtime environment, edit the following configuration

properties in the Interact > offerserving category. The configuration properties

for the learning optimizer API exist in Interact > offerserving > External

Learning Config category.

Configuration property Setting

optimizationType ExternalLearning

externalLearningClass class name for the external learning

externalLearningClassPath The path to the class or JAR files on the run

time server for the external learning. If you

are using a server group and all the runtime

servers reference the same instance of Uni

ca Platform, every server must have a copy of

the class or JAR files in the same location.

2. Restart the Unica Interact runtime server for these changes to take effect.

Chapter 6. Understanding the Unica Interact
API
Unica Interact serves offers dynamically to a wide variety of touchpoints. For example, you

can configure the runtime environment and your touchpoint to send messages to your call

center employees informing them of the best up sell or cross sell prospects for a customer

who has called with a specific type of service inquiry. You can also configure the runtime

environment and your touchpoint to provide tailored offers to a customer (visitor) who has

entered a particular area of your Web site.

The Unica Interact application programming interface (API) allows you to configure your

touchpoint and a runtime server to work together to serve the best possible offers. Using

the API, the touchpoint can request information from the runtime server to assign the visitor

to a group (a segment) and present offers based on that segment. You can also log data for

later analysis to refine your offer presentation strategies.

The Unica Interact API also allows for end-user client to server communication through

JavaScript.

In order to provide you with the greatest possible flexibility in integrating Unica Interact with

your environments, HCL provides a web service accessible using the Unica Interact API.

By default, all parameters are stored in the current session, hence all subsequent APIs are

affected. The UACIPreRemoveParameter and UACIPostRemoveParameter parameters can be

used to remove unwanted parameters from the session.

A flag transient is added to all API parameters. If a parameter's value is INVOCATION (1),

then that parameter is effective only during the process of this API invocation. The default is

SESSION (0).

Unica Interact API dataflow
This example shows how the API works between your touchpoint and the runtime

environment. The visitor takes only four actions - log in, navigate to page that displays

offers, select an offer, and log out. You can design your integration to be as complicated as

you need, within the limits of your performance requirements.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 122

This diagram shows a simple implementation of the Unica Interact API.

A visitor logs in to a website and navigates to a page that displays offers. The visitor selects

an offer and logs out. While the interaction is simple, several events occur both in the

touchpoint and the runtime server:

1. Starting a session

2. Navigating to a page

3. Selecting an offer

4. Closing the session

Starting the session

When the visitor logs in, it triggers a startSession.

The startSession method does four things:

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 123

1. It creates a new runtime session

2. It sends a request to load the customer profile data into the session

3. It sends a request to use the profile data and start an interactive flowchart to place the

customer into segments. This flowchart run is asynchronous.

4. The runtime server loads any offer suppression and global and individual offer

treatment information into the session. The session data is held in memory during the

session.

Navigating to a page

The visitor navigates the site until the visitor reaches a pre-defined interaction point. In

the figure, the second interaction point (Select choice) is a place where the visitor clicks a

link that presents a set of offers. The touchpoint manager configured the link to trigger an

executeBatch method for selecting an offer.

Selecting an offer

This diagram shows the API call that triggers the executeBatch method.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 124

The executeBatch method lets you call more than one method in a single call to the runtime

server. This particular executeBatch calls two other methods, getOffers and postEvent.

The getOffers method requests a list of offers. The runtime server uses the segmentation

data, the offer suppression list, the treatment rules, and the learning module to propose a

set of offers. The runtime server returns a set of offers that are displayed on the content

page.

The postEvent method triggers one of the events that are defined in the design

environment. In this particular case, the event sends a request to log the offers that are

presented to contact history.

The visitor selects one of the offers (Pick offer).

This diagram shows the postEvent method.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 125

The user interface control that is associated with selecting the offer is configured to send

another postEvent method. This event sends a request to log the offer acceptance to

response history.

Closing the session

After the visitor selects the offer, the visitor is finished with the website and logs out. The

log out command is linked to the endSession method.

This diagram shows the endSession method.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 126

The endSession method closes the session. If the visitor forgets to log out, there is a

configurable session timeout to ensure that all sessions eventually end. If you want to

keep any of the data passed to the session, such as information included in parameters in

the startSession or setAudience methods, work with the person who creates interactive

flowcharts. The person who creates an interactive flowchart can use the Snapshot process

to write that data to a database before the session ends and that data is lost. You can then

use the postEvent method to call the interactive flowchart that contains the Snapshot

process.

Simple interaction planning example
In this example, you are designing an interaction for a cellular phone company's website.

You create three different offers, set up logging for the offers, assign treatment codes to the

offer, and show a series of pictures that link to the offers.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 127

Design process

To design an interaction for this client, you:

1. Identify the requirements for the client's summary page

2. Create interaction points for the offer requirements

3. Configure logging for the offers

4. Create treatment codes

5. Link a series of rotating images to the offers

This example is basic, and does not show the best way to write the integration. For example,

none of these examples include any error checking that uses the Response class.

Identify requirements for the cell phone plan summary page

The following diagram shows the layout for the cell phone plan summary page.

You define the following items to meet the requirements for the cell phone plan summary

page:

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 128

Requirement Implementation

One offer to be displayed in a zone that is

dedicated to offers about upgrades

The area on the page that displays the up

grade offer must be defined. Also, after

Unica Interact picks an offer to display,

the information must be logged.

• Interaction point: ip_planSummary

BottomRight

• Event: evt_logOffer

Two offers for phone upgrades

Each area on the page that displays the

phone upgrades must be defined.

• Interaction point: ip_planSummary

TopRight

• Interaction point: ip_planSummary

BottomLeft

For analysis, you need to log which offers

are accepted, and which offers are reject

ed.

• Event: evt_offerAccept

• Event: evt_offerReject

You also know that you must pass the

treatment code of an offer whenever you

log an offer contact, acceptance, or rejec

tion.

NameValuePair

Display three rotating images on the page.

Link the images to the offers.

Create Interaction points

Now you can ask the design environment user to create the interaction points and events

for you while you start to code the integration with your touchpoint.

For each interaction point that displays an offer, you need to first get an offer, then extract

the information that you need to display the offer. For example, request an offer for the

lower right area of your web page (planSummaryBottomRight)

Response response=getOffers(sessionID, ip_planSummaryBottomRight, 1)

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 129

This response call returns a response object that includes an OfferList response. However,

your web page cannot use an OfferList object. You need an image file for the offer, which

you know is one of the offer attributes (offerImg). You need to extract the offer attribute

you need from the OfferList.

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

{

 Offer offer = offerList.getRecommendedOffers()[0];

 NameValuePair[] attributes = offer.getAdditionalAttributes();

 for(NameValuePair attribute: attributes)

 {

 if(attribute.getName().equalsIgnoreCase("offerImg"))

 {

 /* Use this value in your code for the page, for

 example: stringHtml = " */

 }

 }

}

Configure logging

Now that you are displaying the offer, you want to log it as a contact.

NameValuePair evtParam_TreatmentCode = new NameValuePairImpl();

evtParam_TreatmentCode.setName("UACIOfferTrackingCode");

evtParam_TreatmentCode.setValueAsString(offer.getTreatmentCode());

evtParam_TreatmentCode.setValueDataType(NameValuePair.DATA_TYPE_STRING);

postEvent(sessionID, evt_logOffer, evtParam_TreatmentCode)

Instead of calling each of these methods singularly, you can use the executeBatch method,

as shown in the following example for the planSummaryBottomLeft portion of the web page.

Command getOffersCommand = new CommandImpl();

getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 130

getOffersCommand.setInteractionPoint(ip_planSummaryBottomLeft);

getOffersCommand.setNumberRequested(1);

Command postEventCommand = new CommandImpl();

postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);

postEventCommand.setEvent(evt_logOffer);

/** Build command array */

Command[] commands =

{

 getOffersCommand,

 postEventCommand

};

/** Make the call */

BatchResponse batchResponse = api.executeBatch(sessionId, commands);

You do not need to define the UACIOfferTrackingCode in this example. The Unica Interact

runtime server automatically logs the last recommended list of treatments as contacts if

you do not supply the UACIOfferTrackingCode.

Create treatment codes

Where necessary, you create a NameValuePair to contain the treatment code, as in the

following example.

NameValuePair evtParam_TreatmentCode = new NameValuePairImpl();

evtParam_TreatmentCode.setName("UACIOfferTrackingCode");

evtParam_TreatmentCode.setValueAsString(offer.getTreatmentCode());

evtParam_TreatmentCode.setValueDataType(NameValuePair.DATA_TYPE_STRING);

Link images to offers

For the second area on the page that displays a phone upgrade, you wrote something to

change the image displayed every 30 seconds. You decide to rotate between three images

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 131

and you use the following to retrieve the set of offers to cache for use in your code to rotate

the images.

Response response=getOffers(sessionID, ip_planSummaryBottomLeft, 3)

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

{

 for(int x=0;x<3;x++)

 {

 Offer offer = offerList.getRecommendedOffers()[x];

 if(x==0)

 {

 // grab offerimg attribute value and store somewhere;

 // this will be the first image to display

 }

 else if(x==1)

 {

 // grab offerimg attribute value and store somewhere;

 // this will be the second image to display

 }

 else if(x==2)

 {

 // grab offerimg attribute value and store somewhere;

 // this will be the third image to display

 }

 }

}

You must write your client code fetch from the local cache and log to contact only once for

each offer after its image is displayed. To log the contact, the UACITrackingCode parameter

needs to be posted as before. Each offer has a different tracking code.

NameValuePair evtParam_TreatmentCodeSTR = new NameValuePairImpl();

NameValuePair evtParam_TreatmentCodeSBR = new NameValuePairImpl();

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 132

NameValuePair evtParam_TreatmentCodeSBL = new NameValuePairImpl();

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

 {

 for(int x=0;x<3;x++)

 {

 Offer offer = offerList.getRecommendedOffers()[x];

 if(x==0)

 {

 evtParam_TreatmentCodeSTR.setName("UACIOfferTrackingCode");

 evtParam_TreatmentCodeSTR.setValueAsString(offer.getTreatmentCode());

 evtParam_TreatmentCodeSTR.setValueDataType(NameValuePair.DATA_TYPE_STRING)

;

 }

 else if(x==1)

 {

 evtParam_TreatmentCodeSBR.setName("UACIOfferTrackingCode");

 evtParam_TreatmentCodeSBR.setValueAsString(offer.getTreatmentCode());

 evtParam_TreatmentCodeSBR.setValueDataType(NameValuePair.DATA_TYPE_STRING)

;

 }

 else if(x==2)

 {

 evtParam_TreatmentCodeSBL.setName("UACIOfferTrackingCode");

 evtParam_TreatmentCodeSBL.setValueAsString(offer.getTreatmentCode());

 evtParam_TreatmentCodeSBL.setValueDataType(NameValuePair.DATA_TYPE_STRING)

;

 }

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 133

 }

}

For each offer, if the offer is clicked, you log the offer that is accepted and the offers that

are rejected. (In this scenario, offers not explicitly selected are considered rejected.) The

following is an example if the ip_planSummaryTopRight offer is selected:

postEvent(sessionID, evt_offerAccept, evtParam_TreatmentCodeSTR)

postEvent(sessionID, evt_offerReject, evtParam_TreatmentCodeSBR)

postEvent(sessionID, evt_offerReject, evtParam_TreatmentCodeSBL)

In practice, it would be best to send these three postEvent calls with the executeBatch

method.

Designing the Unica Interact API integration
Building your Unica Interact API integration with your touchpoint requires some designing

before you can begin implementation. You need to work with your marketing team to decide

on where in your touchpoint you want the runtime environment to serve offers (define your

interaction points) and what other kind of tracking or interactive functionality you want to

use (define your events).

In the design phase, these may be mere outlines. For example, for a telecommunications

web site, the customer's plan summary page should display one offer regarding plan

upgrade and two offers for phone upgrades.

Once your company has decided where and how they wish to interact with customers, you

need to use Unica Interact to define the details. A flowchart author needs to design the

interactive flowcharts that will be used when re-segmentation events occur. You need to

decide on the number and names of interaction points and events, as well as what data

needs to be passed along for proper segmentation, event posting, and offer retrieval.

The design environment user defines the interaction points and events for the Interactive

Channel. You then use those names as you code the integration with your touchpoint in the

runtime environment. You should also define what metric information is required, to define

when you need to log offer contacts and responses.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 134

Points to consider
When you design an interaction, keep in mind the effects that no eligible offer, an

unreachable runtime server, process timing have on the interaction. Be specific when

you define offer rejections. Consider the optional product features that can enhance the

interaction.

When you are designing your interaction:

Create some default filler content

Create default filler content, a benign branding message or empty content, for

every interaction point where offers can be presented. This filler content is

used when there are no offers eligible to be served to the current visitor in the

current situation. You assign this default filler content as the default string for

the interaction point.

Include an alternative method of presenting content

Include some method of presenting content in case your touchpoint cannot

reach the runtime server group for some unforeseen reason.

Consider the time that running flowcharts takes

When you trigger events that resegment your visitor, including postEvent and

setAudience, keep in mind that running flowcharts does take some amount

of time. The getOffers method waits until segmentation is finished before

the getOffers method runs. Overly frequent resegmentation can hinder

getOffers call response performance.

Decide what an "offer rejection" means

Several reports, such as the Channel Offer Performance Summary report,

present the number of times an offer is rejected. This report shows the

number of times a postEvent triggered a Log Offer Rejection action. You need

to determine whether the Log Offer Rejection action is for an actual rejection,

such as clicking a link labeled No, thanks. Or is Log Offer Rejection action for

an offer that is ignored, such as a page that displays three different banner

ads, none of which are selected.

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 135

Decide which offer selection features to use

There are several optional features you can use to enhance Unica Interact

offer selection. These features include:

• Learning

• Offer suppression

• Individual offer assignments

• Other elements of offer serving

You need to determine how many, if any, of these optional features would

enhance your interactions.

API Authentication
This feature provides you the option to enable authentication on Unica Interact API

calls. When it is enabled, Unica Interact RT checks if an incoming API request has a valid

authentication token, if not, it authenticates it using the supplied username and password

with Unica Platform or LDAP. The request is rejected if the token is not valid and username /

password is not valid. Each token has a non-extendable lifetime of the Unica Interact

session cache becomes timeout. The token is tied with the session-Id, which is provided

during the startSession() API call. So all the other API calls validate this token before

proceeding. This feature is disabled by default.

Note:

Third-party applications that intercept or modify network requests (e.g. load

balancers, firewalls, proxies, request filters, antivirus, etc.) may interfere with

Interact API / Deployment / Authentication requests.

Interact authentication may fail during deployment despite correct credentials, if

third party applications (load balancers, firewalls, proxies, request filters, antivirus,

etc.) are configured to intercept or rewrite messages on the network or app server.

The result can be Interact deployment messages having their content length set

to 0 by a third party, even though they have the correct authentication response

content. Campaign has provided a workaround that reads the content regardless of

Unica Interact V12.1.3 Administrator's Guide | 6 - Understanding the Unica Interact API | 136

the content-length tampering, thus restoring successful deployment authentication

responses until the reason for the third-party tampering is found. This is not an

Interact problem and you must contact Campaign support for the fix.

Chapter 7. Managing the Unica Interact API
Whenever you use the startSession method, you create a Unica Interact runtime session

on the runtime server. You can use configuration properties to manage the sessions on a

runtime server.

You may need to configure these settings as you implement your Unica Interact integration

with your touchpoint.

These configuration properties are in the sessionManagement category.

Locale and the Unica Interact API
You can use Unica Interact for non-English touchpoints. The touchpoint and all strings in the

API use the locale defined for the runtime environment user.

You can select only one locale per server group.

For example, in the runtime environment, you create two users, asm_admin_en with the user

locale set to English, and asm_admin_fr with the user locale set to French. If your touchpoint

is designed for French speakers, define the asmUserForDefaultLocale property for the

runtime environment as asm_admin_fr. When the client library (interact_client.jar) is used to

connect the client application to Interact run time servers, an HTTP proxy can be configured

optionally with authentication between the client application and Interact runtime. To enable

the proxy for Interact APIs, add below JVM parameters and restart the application server

where client application is deployed.

-Dcom.hcl.interact.http.proxyHost=<IP address of the proxy server>

-Dcom.hcl.interact.http.proxyPort=<Listening port of the proxy server>

Please below parameters when authentication is required for the proxy server.

-Dcom.hcl.interact.http.proxyUsername= <Username for connecting to the proxy server.

don’t include if no authentication required>

-Dcom.hcl.interact.http.proxyPassword=<Password for connecting to the proxy server. don’t

include if no authentication required>

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 138

About JMX monitoring
Unica Interact provides Java™ Management Extensions (JMX) monitoring service that you

can access with any JMX monitoring application. This JMX monitoring enables you to

monitor and manage your runtime servers.

The JMX attributes provide a lot of detailed information about the runtime server. For

example, the JMX attribute ErrorCount gives the number of error messages logged

since last reset or system start. You can use this information to see how often there

are errors in your system. If you have coded your web site to only call an end session if

someone completes a transaction, you could also compare the startSessionCount to the

endSessionCount to see how many transactions are incomplete.

Unica Interact supports the RMI and JMXMP protocols, as defined by JSR 160. You can

connect to the JMX monitoring service with any JSR160-compliant JMX client.

Interactive flowcharts can be monitored with JMX monitoring only. Information about

Interactive flowcharts does not appear in Unica Campaign Monitoring.

Note: If you are using IBM® WebSphere® with a node manager, you must define the

Generic JVM Argument to enable JMX monitoring.

Configuring Unica Interact to use JMX monitoring with the RMI
protocol
Use this procedure to configure Unica Interact to use JMX monitoring with the RMI protocol.

The default address for monitoring for the RMI protocol is service:jmx:rmi:///jndi/

rmi://RuntimeServer:port/interact.

In Unica Platform for the runtime environment, edit the following configuration properties in

the Interact > monitoring category.

Configuration property Setting

protocol RMI

http://jcp.org/en/jsr/detail?id=160

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 139

Configuration property Setting

port The port number for the JMX service

enableSecurity False

The Unica Interact implementation of the RMI protocol

does not support security.

Configuring Unica Interact to use JMX monitoring with the
JMXMP protocol
Use this procedure to configure Unica Interact to use JMX monitoring with the JMXMP

protocol.

The JMXMP protocol requires two extra libraries in the following order in the classpath,

InteractJMX.jar and jmxremote_optional.jar. Both of these files can be found in the lib

directory of your runtime environment installation.

If you enable security, the user name and password must match a user in Unica Platform for

the runtime environment. You cannot use an empty password.

The default address for monitoring for the JMXMP protocol is

service:jmx:jmxmp://RuntimeServer:port.

1. Verify that the InteractJMX.jar and jmxremote_optional.jar libraries are in the

classpath in order. If they are not in the classpath, add them to the classpath.

2. In Unica Platform for the runtime environment, edit the following configuration

properties in the Interact > monitoring category.

Configuration property Setting

protocol JMXMP

port the port number for the JMX service

enableSecurity False to disable security, or True to enable security

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 140

Configuring Unica Interact to use the jconsole scripts for JMX
monitoring
If you do not have a separate JMX monitoring application, you can use the jconsole that is

installed with the JVM. You can start the jconsole with the startup scripts in the Interact/

tools directory.

The jconsole script uses the JMXMP protocol for monitoring by default. The default settings

for jconsole.bat are:

The JMXMP connection

%JAVA_HOME%\bin\jconsole.exe -J-Djava.class.path=%JAVA_HOME%

 \lib\jconsole.jar;INTERACT_LIB%\interactJMX.jar; INTERACT_LIB%

 \jmxremote_optional.jar service:jmx:jmxmp://%HOST%:%PORT%

The RMI connection

%JAVA_HOME%\bin\jconsole.exe -J-Djava.class.path=%JAVA_HOME%

 \lib\jconsole.jar;INTERACT_LIB%\jmxremote_optional.jar

 service:jmx:rmi:///jndi/rmi://%HOST%:%PORT%/interact

1. Open Interact\tools\jconsole.bat (Windows™) or Interact/tools/jconsole.sh

(UNIX) in a text editor.

2. Set INTERACT_LIB to the full path to the InteractInstallationDirectory/lib

directory.

3. Set HOST to the host name of the runtime server you want to monitor.

4. Set PORT to the port you configured JMX to listen on with the Interact > monitoring

> port property.

5. Optional: If you are using the RMI protocol for monitoring, add a comment before the

JMXMP connection and remove the comment before the RMI connection.

JMX attributes
There are multiple attributes available for JMX monitoring. Design environment attributes

include contact response history ETL monitoring. Runtime environment attributes include

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 141

exceptions, several different flowchart attributes, locale, logger, and thread pool statistics.

Several service statistics attributes are also available. All data that is provided by JMX

monitoring is since the last reset or system start. For example, a count is of the number of

items since last reset or system start, not since installation.

Contact Response History ETL Monitor attributes

The Contact Response History ETL Monitor attributes are part of the design environment.

All of the following attributes are part of the runtime environment.

Table 10. Contact Response History ETL Monitor

Attribute Description

AvgCHExecutionTime The average number of milliseconds

it takes for the contact and response

history module to write to the con

tact history table. This average is

calculated only for the operations

that were successful and for which

there was at least one record that

was written to the contact history ta

ble.

AvgETLExecutionTime The average number of milliseconds

it takes for the contact and response

history module to read data from the

runtime environment. The average

includes the time for successful as

well as failed operations.

AvgRHExecutionTime The average number of milliseconds

it takes for the contact and response

history module to write to the re

sponse history table. This average

is calculated only for the operations

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 142

Table 10. Contact Response History ETL Monitor (continued)

Attribute Description

that were successful and for which

there was at least one record that

was written to the response history

table.

ErrorCount The number of error messages that

were logged since last reset or sys

tem start, if any.

HighWaterMarkCHExecutionTime The maximum number of millisec

onds it took for the contact and re

sponse history module to write to

the contact history table. This value

is calculated only for the operations

that were successful and for which

there was at least one record that

was written to the contact history ta

ble.

HighWaterMarkETLExecutionTime The maximum number of millisec

onds it took for the contact and re

sponse history module to read data

from the runtime environment. The

calculation includes both successful

as well as failed operations.

HighWaterMarkRHExecutionTime The maximum number of millisec

onds it took for the contact and re

sponse history module to write to

the response history table. This val

ue is calculated only for the opera

tions that were successful and for

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 143

Table 10. Contact Response History ETL Monitor (continued)

Attribute Description

which there was at least one record

that was written to the response his

tory table.

LastExecutionAverage The number of milliseconds the con

tact and response history module

took to perform each copy.

NumberOfExecutions The number of times the contact

and response history module has

run since initialization.

LastExecutionStart The time the last run of the contact

and response history module start

ed.

LastExecutionSuccessful If true, the last run of the contact and

response history module was suc

cessful. If false, an error occurred.

NumberOfContactHistoryRecordsMarked The number of contact history

records in the UACI_CHStaging table

that are being moved during the cur

rent run of the contact and response

history module. This value is greater

than zero only if the contact and re

sponse history module is running.

NumberOfResponseHistoryRecordsMarked The number of response history

records in the UACI_RHStaging table

that are being moved during the cur

rent run of the contact and response

history module. This value is greater

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 144

Table 10. Contact Response History ETL Monitor (continued)

Attribute Description

than zero only if the contact and re

sponse history module is running.

Exception attributes

Exception attributes are part of the runtime environment.

Table 11. Exceptions

Attribute Description

errorCount The number of error messages that were

logged since last reset or system start.

warningCount The number of warning messages that

were logged since last reset or system

start.

Flowchart Engine Statistics attributes

Flowchart Engine Statistics attributes are part of the runtime environment.

Table 12. Flowchart Engine Statistics

Attribute Description

activeProcessBoxThreads Active count of flowchart process

threads (shared between all execu

tions) that are currently running.

activeSchedulerThreads Active count of Flowchart Scheduler

threads that are currently running.

avgExecutionTimeMillis Average flowchart execution time in

milliseconds.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 145

Table 12. Flowchart Engine Statistics (continued)

Attribute Description

CurrentJobsInProcessBoxQueue The number of jobs that are wait

ing to be run by flowchart process

threads.

CurrentJobsInSchedulerQueue The number of jobs that are wait

ing to be run by Flowchart Scheduler

threads.

maximumProcessBoxThreads Maximum number of flowchart

process threads (shared between all

executions) that can be run.

maximumSchedulerThreads Maximum number of Flowchart

Scheduler threads (one thread per

execution) that can be run.

numExecutionsCompleted Total number of flowchart execu

tions that completed.

numExecutionsStarted Total number of flowchart execu

tions started.

Specific flowcharts by interactive channel attributes

Specific flowcharts by interactive channel attributes are part of the runtime environment.

Table 13. Specific flowcharts by interactive channel

Attribute Description

AvgExecutionTimeMillis Average execution time in millisec

onds for this flowchart in this inter

active channel.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 146

Table 13. Specific flowcharts by interactive channel (continued)

Attribute Description

HighWaterMarkForExecutionTime Maximum execution time in millisec

onds for this flowchart in this inter

active channel.

LastCompletedExecutionTimeMillis Execution time in milliseconds for

the last completion of this flowchart

in this interactive channel.

NumExecutionsCompleted Total number of executions that

have completed for this flowchart in

this interactive channel.

NumExecutionsStarted Total number of executions that are

started for this flowchart in this in

teractive channel.

Locale attributes

Locale attributes are part of the runtime environment.

Table 14. Locale

Attribute Description

locale Locale setting for JMX client.

Logger Configuration attributes

Logger Configuration attributes are part of the runtime environment.

Table 15. Logger Configuration

Attribute Description

category Change the log category on which the log

level can be manipulated.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 147

Services Thread Pool Statistics attributes

Services Thread Pool Statistics attributes are part of the runtime environment.

Table 16. Services Thread Pool Statistics

Attribute Description

activeContactHistThreads The approximate number of threads

that are actively running tasks for

Contact History and Response Histo

ry.

activeFlushCacheToDBThreads The approximate number of threads

that are actively running tasks to

flush cached statistics to the data

store.

activeOtherStatsThreads The approximate number of threads

that are actively running tasks for El

igible Stats, Event Activities, and De

fault Stats.

CurrentHighWaterMarkInContactHistQueue Greatest number of entries queued

to be logged by the service that col

lects the contact and response his

tory data.

CurrentHighWaterMark InFlushCachetoD

BQueue

Greatest number of entries queued

to be logged by the service that

writes the data in the cache to the

database tables.

CurrentHighWaterMarkInOtherStatsQueue Greatest number of entries queued

to be logged by the service that col

lects the offer eligibility statistics,

default string usage statistics, event

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 148

Table 16. Services Thread Pool Statistics (continued)

Attribute Description

activity statistics, and the custom

log to table data.

currentMsgsInContactHistQueue The number of jobs in the queue for

the thread pool that is used for Con

tact History and Response History.

currentMsgsInFlushCacheToDBQueue The number of jobs in the queue for

the thread pool that is used to flush

cached statistics to the data store.

currentMsgsInOtherStatsQueue The number of jobs in the queue for

the thread pool that is used for Eli

gible Stats, Event Activities, and De

fault Stats.

maximumContactHistThreads The largest number of threads that

have ever simultaneously been in the

pool that is used for Contact History

and Response History.

maximumFlushCacheToDBThreads The largest number of threads that

have ever simultaneously been in the

pool that is used for flushing cached

statistics to the data store.

maximumOtherStatsThreads The largest number of threads that

have ever simultaneously been in the

pool that is used for Eligible Stats,

Event Activities, and Default Stats.

Service Statistics attributes

The Service Statistics consist of a set of attributes for each service.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 149

• ContactHistoryMemoryCacheStatistics - The service that collects data for the contact

history staging tables.

• CustomLoggerStatistics - The service that collects custom data to write to a table (an

event that uses the UACICustomLoggerTableName event parameter).

• Default Statistics - The service that collects the statistics regarding the number of

times the default string for the interaction point was used.

• Eligibility Statistics - The service that writes the statistics for eligible offers.

• Event Activity Statistics - The service that collects the event statistics, both system

events such as getOffer or startSession and user events that are triggered by

postEvent.

• Response History Memory Cache Statistics - The service that writes to the response

history staging tables.

• Cross-session Response Statistics - The service that collects the cross-session

response tracking data.

Table 17. Service Statistics

Attribute Description

Count The number of messages

processed.

ExecTimeInsideMutex The amount of time spent process

ing messages for this service, ex

cluding time spent waiting for oth

er threads, in milliseconds. If there

is a great difference between Exec

TimeInsidMutex and ExecTimeMillis,

you might need to change the thread

pool size for the service.

ExecTimeMillis The amount of time spent process

ing messages for this service, in

cluding time spent waiting for other

threads, in milliseconds.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 150

Table 17. Service Statistics (continued)

Attribute Description

ExecTimeOfDBInsertOnly The amount of time in milliseconds

spent processing the batch insert

portion only.

HighWaterMark The maximum number of messages

that are processed for this service.

NumberOfDBInserts The total number of batch inserts

run.

TotalRowsInserted The total number of rows that are in

serted into the database.

Service Statistics - Database Load Utility attributes

Service Statistics - Database Load Utility attributes are part of the runtime environment.

Table 18. Service Statistics - Database Load Utility

Attribute Description

ExecTimeOfWriteToCache The amount of time in milliseconds spent

writing to file cache, including writing to

files and getting the primary key from

database when necessary.

ExecTimeOfLoaderDBAccessOnly The amount of time in milliseconds spent

running database loader portion only.

ExecTimeOfLoaderThreads The amount of time in milliseconds spent

by database loader threads.

ExecTimeOfFlushCacheFiles The amount of time in milliseconds spent

flushing the cache and re-creating new

ones.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 151

Table 18. Service Statistics - Database Load Utility (continued)

Attribute Description

ExecTimeOfRetrievePKDBAccess The amount of time in milliseconds spent

retrieving the primary key database ac

cess.

NumberOfDBLoaderRuns The total number of database loader runs.

NumberOfLoaderStagingDirCreated The total number of staging directories

that are created.

NumberOfLoaderStagingDirRemoved The total number of staging directories

that are removed.

NumberOfLoaderStaging DirMovedToAt

tention

The total number of staging directories

that are renamed to attention.

NumberOfLoaderStagingDirMovedToError The total number of staging directories

that are renamed to error.

NumberOfLoaderStagingDirRecovered The total number of staging directories re

covered, including at startup time and re

run by background threads.

NumberOfTimesRetrievePKFromDB The total number of times the primary key

was retrieved from database.

NumberOfLoaderThreadsRuns The total number of database loader

threads runs.

NumberOfFlushCacheFiles The total number of times the file cache

was flushed.

API Statistics attributes

API Statistics attributes are part of the runtime environment.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 152

Table 19. API Statistics

Attribute Description

endSessionCount The number of endSession API calls since

last reset or system start.

endSessionAverage Time that is elapsed for the each endSes

sion API call in milliseconds.

executeBatchCount The number of executeBatch API calls

since last reset or system start.

executeBatchAverage Time that is elapsed for the each exe

cuteBatch API call in milliseconds.

getOffersCount The number of getOffers API calls since

last reset or system start.

getOffersAverage Time that is elapsed for the each getOf

fer API call in milliseconds.

getProfileCount The number of getProfile API calls since

last reset or system start.

getProfileAverage Time that is elapsed for the each getPro

fileAverage API call in milliseconds.

getVersionCount The number of getVersion API calls since

last reset or system start.

getVersionAverage Time that is elapsed for the each getVer

sion API call in milliseconds.

loadOfferSuppressionAverage Time that is elapsed for the each loadOf

ferSuppression API call.

LoadOffersBySQLCount The number of LoadOffersBySQL API calls

since last reset or system start.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 153

Table 19. API Statistics (continued)

Attribute Description

LoadOffersBySQLAverage Time that is elapsed for the each LoadOf

fersBySQL API call in milliseconds.

loadProfileAverage Time that is elapsed for the each load

Profile API call in milliseconds.

loadScoreOverrideAverage Time that is elapsed for the each loadS

coreOverride API call in milliseconds.

postEventCount The number of postEvent API calls since

last reset or system start.

postEventAverage Time that is elapsed for the each

postEvent API call in milliseconds.

runSegmentationAverage Time that is elapsed for the each runSeg

mentation API call in milliseconds.

setAudienceCount The number of setAudience API calls

since last reset or system start.

setAudienceAverage Time that is elapsed for the each setAu

dience API call in milliseconds.

setDebugCount The number of setDebug API calls since

last reset or system start.

setDebugAverage Time that is elapsed for the each setDe

bug API call in milliseconds.

startSessionCount The number of startSession API calls

since last reset or system start.

startSessionAverage Average time that is elapsed for each

startSession API call in milliseconds.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 154

Table 19. API Statistics (continued)

Attribute Description

ActiveSessionCount The number of sessions that are currently

active in the interact run time instance.

Note: The ActiveSessionCount

in JMX MBean com.unicacorp

.interact:type=api, group=Statis

tics does not consider timed out

events and hence it could show in

correct active count.

Learning Optimizer Statistics attributes

Learning Optimizer Statistics attributes are part of the runtime environment.

Table 20. Learning Optimizer Statistics

Attribute Description

LearningOptimizerAcceptCalls The number of accept events that are

passed into the learning module.

LearningOptimizer AcceptTrackingAver

age

The total number of milliseconds spent

logging the accept events in the learning

module.

LearningOptimizerContactCalls The number of contact events that are

passed into the learning module.

LearningOptimizer ContactTrackingAver

age

The total number of milliseconds spent

logging the contact events in the learning

module.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 155

Table 20. Learning Optimizer Statistics (continued)

Attribute Description

LearningOptimizerLogOtherCalls The number of non-contact and non-ac

cept events that are passed into the learn

ing module.

LearningOptimizer LogOtherTrackingAver

age

The average in milliseconds spent in log

ging other events (non-contact and non-

accept) in the learning module.

LearningOptimizer NonRandomCalls The number of times the configured learn

ing implementation was applied.

LearningOptimizer RandomCalls The number of times the configured learn

ing implementation was bypassed and

random selection was applied.

LearningOptimizer RecommendCalls The number of recommend requests that

are passed into the learning module.

LearningOptimizer RecommendAverage The total number of milliseconds spent in

the learning recommend logic.

Default Offer Statistics attributes

Default Offer Statistics attributes are part of the runtime environment.

Table 21. Default Offer Statistics

Attribute Description

LoadDefaultOffersAverage Time that is elapsed on the default

offers loading.

DefaultOffersCalls The number of times the default of

fers loading.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 156

Triggered Message Dispatchers attributes

Triggered Message Dispatchers attributes are part of the runtime environment.

Table 22. Triggered Message Dispatchers

Attribute Description

NumRequested The total number of offers that were

requested for dispatching using this

dispatcher.

NumDispatched The total number of offers this dis

patcher successfully dispatched.

AvgExecutionTime The average time in milliseconds

this dispatcher uses for dispatching

an offer. Only the offers that were

successfully dispatched to gateways

are counted in the calculation.

CurrentQueueSize The number of offers currently wait

ing to be dispatched.

GatewayInvocation The number of offers and average

dispatching time in milliseconds

dispatched to each gateway by this

dispatcher. The format of its val

ue is {gateway name=[number of

offers, average dispatching

time]}.

Triggered Message Gateways attributes

Triggered Message Gateways attributes are part of the runtime environment.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 157

Table 23. Triggered Message Gateways

Attribute Description

NumValidationRequested The total number of offers this gate

way requested for validation.

NumValidated The total number of offers this gate

way successfully validated.

AvgValidationTime The average time in milliseconds

this gateway uses for validating an

offer. Only the offers that were suc

cessfully validated are counted in

the calculation.

NumDeliveryRequested The total number of offers this gate

way requested for delivery.

NumDelivered The total number of offers this gate

way successfully delivered.

AvgDeliveryTime The average time in milliseconds

this gateway uses for delivering an

offer. Only the offers that were suc

cessfully delivered are counted in

the calculation.

Triggered Message Messages attributes

Triggered Message Messages attributes are part of the runtime environment.

Table 24. Triggered Message Messages

Attribute Description

ProcessSuccessCount The total number of times this trig

gered message successfully execut

ed.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 158

Table 24. Triggered Message Messages (continued)

Attribute Description

AvgSuccessProcessTime The average time in milliseconds

this triggered message spends for

each successful execution.

ProcessErrorCount The total number of times this trig

gered message unsuccessfully exe

cuted.

AvgErrorProcessTime The average time in milliseconds

this triggered message spends for

each unsuccessful execution.

SelectBranchCount The total number of times branch se

lection was executed while process

ing triggered messages.

AvgSelectBranchTime The average time in milliseconds

branch selection execution uses

while processing triggered mes

sages.

SelectOfferCount The total number of times offer se

lection was executed while process

ing triggered messages.

AvgSelectOfferTime The average time in milliseconds of

fer selection execution uses while

processing triggered messages.

SelectChannelCount The total number of times channel

selection was executed while pro

cessing triggered messages.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 159

Table 24. Triggered Message Messages (continued)

Attribute Description

AvgSelectChannelTime The average time in milliseconds

channel selection execution uses

while processing triggered mes

sages.

FlowchartWaitCount The total number of times this trig

gered message waited for segmen

tation to complete.

AvgFlowchartWaitTime The average time in milliseconds

this triggered message waited for

segmentation to complete in each

execution.

WaitFlowchartTimeoutCount The total number of times this trig

gered message timed out while wait

ing for segmentation to complete.

Table 25. Activity Orchestrator Gateways information

Attribute Description

NumReceived The number of messages received by Ac

tivity Orchestrator Receiver.

NumProcessed The number of messages processed for

Activity Orchestrator Receiver.

AvgProcessTime The average processing time of the num

ber of messages processed for Activity

Orchestrator Receiver.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 160

Table 26. Kafka Statistics Information

Attributes Description

NumMessagesInTopic The number of messages recorded in top

ic along with topic name.

Running The running status of Kafka server.

TopicDetails The details of topics along with leader

and followers.

ListOfTopics The list of topics of Kafka server, except

the default topic.

Table 27. Zookeeper Statistics Information

Attribute Description

Running The running status of Zookeeper server.

JMX operations
There are several operations available for JMX monitoring.

The following table describes the operations available for JMX monitoring.

Group Attribute Description

Logger Configuration activateDebug Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to debug.

Logger Configuration activateError Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to error.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 161

Group Attribute Description

Logger Configuration activateFatal Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to fatal.

Logger Configuration activateInfo Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to info.

Logger Configuration activateTrace Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to trace.

Logger Configuration activateWarn Set log level for the log file that is de

fined in Interact/conf/interact_

log4j.properties to warn.

Locale changeLocale Change the JMX client's locale. Unica In

teract supported locales are de, en, es,

and fr.

ContactResponseHistory

ETLMonitor

reset Reset all counters.

Default Offer Statistics updatePollPeri

od

Updates defaultOfferUpdatePollPeriod.

This value, in seconds, tells the system

how long to wait before the system up

dates the default offers in the cache. If

set to -1, the system reads the number

of default offers only at startup.

Thread monitoring
In order to help monitor system activities, the "Thread Info" link is added to the Admin page

of Interact runtime user interface. The Thread Info link displays the threads that currently

run in the application server hosting this runtime instance with the following information.

Unica Interact V12.1.3 Administrator's Guide | 7 - Managing the Unica Interact API | 162

• ID: ID of this thread.

• Thread Name: Name of this thread.

• Alive: Specifies whether this thread is alive.

• Demon: Specifies whether this thread is a demon thread.

• CPU Time: The total CPU time in milliseconds this thread has consumed.

• User Time: The total user CPU time in milliseconds this thread has consumed.

• Wait Time: The total time in milliseconds this thread has spent in waiting state.

• Wait Count: The number of occurrence this thread is put into waiting state.

• Block Time: The total time in milliseconds this thread is in blocked state.

• Block Count: The number of occurrences this thread is put into blocked state.

• State: The current state of this thread.

• Waited Lock: The lock this thread is waiting for. It is empty if it is not waiting for any

lock.

• Held Monitors: The monitor (lock) this thread is currently holding.

• Stack Trace: The current stack trace of this thread. By default. it only displays the top

entry, and clicking it expands to show the full stack.

Chapter 8. Classes and methods for the Unica
Interact Java, SOAP, and REST API
The following sections list requirements and other details you should know before you work

with the Unica Interact API.

Note: This section assumes you are familiar with your touchpoint, the Java™

programming language, and working with a Java-based API.

The Unica Interact API has a Java™ client adaptor that uses Java™ serialization over HTTP.

In addition, Unica Interact supplies a WSDL to support SOAP clients. The WSDL exposes

the same set of functions as the Java™ client adaptor, so the following sections, except for

examples, still apply.

Note: Multiple occurrences of any parameter in a single API call is not supported.

Unica Interact API Classes
The Unica Interact API is based on the InteractAPI class.

There are 6 supporting interfaces.

• AdvisoryMessage

• BatchResponse

• NameValuePair

• Offer

• OfferList

• Response

These interfaces have 3 supporting concrete classes. The following two concrete classes

need to be instantiated and passed in as arguments into the Unica Interact API methods:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 164

• NameValuePairImpl

• CommandImpl

A third concrete class, called AdvisoryMessageCode is available to provide the constants

used to distinguish the message codes returned from the server whenever applicable.

The rest of this section describes the methods which comprise the Unica Interact API.

Methods to pass the authentication parameters if API
Authentication enabled before API calls
If API Authentication is enabled then you can use following methods to pass the

authentication parameters such as credentials or token before any API call.

setAuthenticationParameter

This method sets the authentication parameter to the requested API call.

setAuthenticationParameter(String username, String password)

• username: Unica Platform username

• password

setAuthenticationParameter(String token)

token: token obtained from server

Java™ serialization over HTTP prerequisites
The Java™ client adapter uses Java™ serialization over HTTP.

The prerequisites for using the Java™ client adapter for Java™ serialization over HTTP are:

1. Add the following file to your CLASSPATH:

Unica Interact_Home/lib/interact_client.jar

2. All objects that are passed back and forth between the client and the server can be

found in the package com.unicacorp.interact.api. For more details, see the Unica

Interact API Javadoc installed on the runtime server in Unica Interact_Home/

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 165

docs/apiJavaDoc. You can view the Javadoc by opening the index.html file in

that location with any web browser.

3. To get an instance of the InteractAPI class, call the static method getInstance with

the url of the Unica Interact runtime server.

SOAP prerequisites
Before you can access the runtime server with SOAP, you do several prerequisite tasks to

configure your environment.

Important: Performance testing shows that the Java™ serialization adapter

performs at a much higher rate than a generated SOAP client. For best performance,

use the Java™ serialization adapter whenever possible.

To access the runtime server with SOAP, you must do the following:

1. Convert the Unica Interact API WSDL with the SOAP toolkit of your choice.

The Unica Interact API WSDL is installed with Unica Interact in the Interact/conf

directory.

When you configure SOAP using the WSDL XML files, you must modify your URLs to

the host name and port of the runtime server.

The text of the WSDL is available at the end of Unica Interact Administration guide.

2. Install and configure the runtime server.

The runtime server must be running to fully test your integration.

3. Verify that you are using the correct SOAP version.

Unica Interact uses axis2 1.3 as the SOAP infrastructure on the Unica Interact runtime

servers. For details about what versions of SOAP axis2 1.3 supports, see the following

website:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 166

Apache Axis2

Unica Interact was tested with the axis2, XFire, JAX-WS-Ri, DotNet, SOAPUI, and IBM®

RAD SOAP clients.

REST prerequisites
One method of calling the Unica Interact API is by using JSON (JavaScript™ Object

Notation) format calls over HTTP, referred to here as the REST API. The REST API has

the advantage of having better performance than SOAP, although the Java™ serialization

adapter is still the fastest method for Unica Interact API calls.

Before you begin using the REST API, be aware of the following:

• The URL that supports REST calls to the Unica Interact API is:

http://Unica Interact_Runtime_Server:PORT/interact/servlet/

RestServlet, substituting the actual host name or IP address of the Unica Interact

runtime server and the port on which Unica Interact is deployed.

• There are two Unica Interact classes specific to the REST API: RestClientConnector,

which serves as a helper to connect to an Unica Interact run time instance via REST

with the format of JSON, and RestFieldConstants, which describes the underlying

format of the JSON message that is used for API requests and responses.

• A sample REST client is provided at Unica Interact _Home/samples/

javaApi/InteractRestClient.java. Although the sample code is a simple

example, it should provide a good starting point for demonstrating how the REST API

is used.

• For a complete description of the REST API classes along with all other Unica

Interact API information, see the Javadoc installed on the runtime server at Unica

Interact_Home/docs/apiJavaDoc.

• The REST API returns SessionIDs and messages in the HTML-escaped format and not

in the Unicode format.

• If API Authentication is enabled, then need to pass credentials or token in the request

header.

http://ws.apache.org/axis2/
http://ws.apache.org/axis2/

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 167

◦ Input Header Parameters

▪ Credentials

▪ m_user_name

▪ Header Parameter — Platform username

▪ m_user_password

▪ Header Parameter — Platform user password

▪ Token

▪ m_tokenId

▪ Header Parameter — token

◦ Output Header Parameters

▪ m_tokenId

▪ Header Parameter — token

Other than the information mentioned here, the REST API supports all of the methods that

are supported by the other protocols for using the Unica Interact API.

API JavaDoc
In addition to Unica Interact Administrator guide, the Javadoc for the Unica Interact API is

installed with the runtime server. The Javadoc is installed for your reference in the Unica

Interact_Home/docs/apiJavaDoc directory.

API examples
All of the examples in the guide were created with the Java™ serialization over HTTP

adapter. The classes generated from the WSDL can vary based on the SOAP toolkit and the

options you select. If you are using SOAP, these examples might not work the same in your

environment.

Working with session data
When you initiate a session with the startSession method, session data is loaded into

memory. Throughout the session, you can read and write to the session data (which is a

superset of the static profile data).

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 168

The session contains the following data:

• Static profile data

• Segment assignments

• Real-time data

• Offer recommendations

All session data is available until you call the endSession method, or the sessionTimeout

time elapses. Once the session ends, all data not explicitly saved to contact or response

history or some other database table is lost.

The data is stored as a set of name-value pairs. If the data is read from a database table, the

name is the column of the table.

You can create these name-value pairs as you work with the Unica Interact API. You do

not need to declare all name-value pairs in a global area. If you set new event parameters

as name-value pairs, the runtime environment adds the name-value pairs to the session

data. For example if you use event parameters with the postEvent method, the runtime

environment adds the event parameters to the session data, even if the event parameters

were not available in the profile data. This data exists in the session data only.

You can overwrite session data at any time. For example, if part of the customer

profile includes creditScore, you can pass in an event parameter using the custom

type NameValuePair. In the NameValuePair class, you can use the setName and

setValueAsNumeric methods to change the value. The name needs to match. Within

the session data, the name is not case-sensitive. Therefore, the name creditscore or

CrEdItScOrE would both overwrite creditScore.

Only the last data written to the session data is kept. For example, startSession loads the

profile data for the value of lastOffer. A postEvent method overwrites lastOffer. Then a

second postEvent method overwrites lastOffer. The runtime environment keeps only the

data written by the second postEvent method in the session data.

When the session ends, the data is lost, unless you made special considerations such

as using a Snapshot process in your interactive flowchart to write the data to a database

table. If you are planning on using Snapshot processes, remember that the names need to

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 169

match the limitations of your database. For example, if your are allowed only 256 characters

for the name of a column, then the name for the name-value pair should not exceed 256

characters.

About the InteractAPI class
The InteractAPI class contains the methods which you use to integrate your touchpoint

with the runtime server. All other classes and methods in the Unica Interact API support the

methods in this class.

You must compile your implementation against interact_client.jar located in the lib

directory of your Unica Interact runtime environment installation. interact_client.jar

depends on log4j-api, log4j-core, commons-lang, commons-lang3, and commons-

httpclient. Those dependencies must be manually installed and their locations must be

manually added into the classpath of the client application that uses interact_client.jar.

endSession
The endSession method marks the end of the runtime session. When the runtime server

receives this method, the runtime server logs to history, clears memory, and so on.

endSession(String sessionID, NameValuePair[] parameters)

• sessionID - Unique string identifying the session.

• parameters - NameValuePair objects identifying any parameters that are required to

be passed with the API request.

If the endSession method is not called, runtime sessions timeout. The timeout period is

configurable with the sessionTimeout property.

Return value

The runtime server responds to the endSession method with the Response object with the

following attributes populated:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 170

• SessionID

• ApiVersion

• StatusCode

• AdvisoryMessages

Example

The following example shows the endSession method and how you can parse the response.

sessionId is the same string to identify the session used by the startSession call which

started this session.

response = api.endSession(sessionId);

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("endSession call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("endSession call processed with a warning");

 }

 else

 {

 System.out.println("endSession call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("endSession",

 response.getAdvisoryMessages());

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 171

executeBatch
The executeBatch method enables you to execute several methods with a single request to

the runtime server.

executeBatch(String sessionID, CommandImpl[] commands)

• sessionID-A string identifying the session ID. This session ID is used for all

commands run by this method call.

• commandImpl[]-An array of CommandImpl objects, one for each command you want

to perform.

The result of calling this method is equivalent to explicitly calling each method in the

Command array. This method minimizes the number of actual requests to the runtime

server. The runtime server runs each method serially; for each call, any error or warnings

are captured in the Response object that corresponds to that method call. If an error is

encountered, the executeBatch continues with the rest of the calls in the batch. If the

running of any method results in an error, the top level status for the BatchResponse object

reflects that error. If no error occurred, the top level status reflects any warnings that may

have occurred. If no warning occurred, then the top level status reflects a successful run of

the batch.

Return value

The runtime server responds to the executeBatch with a BatchResponse object.

Example

The following example shows how to call all the getOffer and postEvent methods with a

single executeBatch call, and a suggestion for how to handle the response.

/** Define all variables for all members of the executeBatch*/

String sessionId="MySessionID-123";

String interactionPoint = "Overview Page Banner 1";

int numberRequested=1;

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 172

String eventName = "logOffer";

/** build the getOffers command */

Command getOffersCommand = new CommandImpl();

getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);

getOffersCommand.setInteractionPoint(interactionPoint);

getOffersCommand.setNumberRequested(numberRequested);

/** build the postEvent command */

Command postEventCommand = new CommandImpl();

postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);

postEventCommand.setEventParameters(postEventParameters);

postEventCommand.setEvent(eventName);

/** Build command array */

Command[] commands =

{

 getOffersCommand,

 postEventCommand,

};

/** Make the call */

BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */

// Top level status code is a short cut to determine if there

// are any non-successes in the array of Response objects

if(batchResponse.getBatchStatusCode() == Response.STATUS_SUCCESS)

{

 System.out.println("ExecuteBatch ran perfectly!");

}

else if(batchResponse.getBatchStatusCode() == Response.STATUS_WARNING)

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 173

{

 System.out.println("ExecuteBatch call processed with at least one

 warning");

}

else

{

 System.out.println("ExecuteBatch call processed with at least one

 error");

}

// Iterate through the array, and print out the message for any

 non-successes

for(Response response : batchResponse.getResponses())

{

 if(response.getStatusCode()!=Response.STATUS_SUCCESS)

 {

 printDetailMessageOfWarningOrError("executeBatchCommand",

 response.getAdvisoryMessages());

 }

}

Writing executeBatch() XML requests for the Interact SOAP API
Use these steps to write executeBatch() XML requests for the Unica Interact SOAP API.

The request XML for a single operation SOAP API calls (startSession, getOffers,

setAudience, endSession, and so on) must not be directly copied or pasted into a multiple

operation executeBatch() call. The subcommands in the executeBatch() calls have

slightly different WSDL and XML request structures than those of the single operation

API calls. The structural differences cause failure responses from the server if the XML

elements are copied and pasted from single operation API requests into multiple operation

executeBatch requests.

Sample failure responses:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 174

** XML Response Element:

 <ns0:faultstring>org.apache.axis2.databinding.ADBException:

Unexpected subelement audienceID</ns0:faultstring>

** Interact Server Exception: java.lang.Exception:

 org.apache.axis2.databinding.

ADBException: Unexpected subelement audienceID at

*** ...

 com.unicacorp.interact.api.soap.service.v1.xsd.CommandImpl$Factory.parse

(CommandImpl.java:1917) at

Use these steps to write an executeBatch() XML request. You can refer to single operation

API call requests for parameter values during these steps, but do not copy and paste XML

elements.

1. Use a WSDL processing tool (for example, SoapUI) to create a well-formed

executeBatch() XML request from the Unica Interact WSDL file.

2. Add subcommands to the request after the WSDL definition for executeBatch() child

elements.

3. Complete the subcommand arguments after the WSDL definition for executeBatch()

child elements.

getInstance
The getInstance method creates an instance of the Unica Interact API that communicates

with the specified runtime server.

getInstance(String URL)

Important: Every application you write using the Unica Interact API must call

getInstance to instantiate an InteractAPI object which is mapped to a runtime

server specified by the URL parameter.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 175

For server groups, if you are using a load balancer, use the hostname and port you configure

with the load balancer. If you do not have a load balancer, you will have to include logic to

rotate between the available runtime servers.

This method is applicable for the Java™ serialization over HTTP adapter only. There is no

corresponding method defined in the SOAP WSDL. Each SOAP client implementation has its

own way of establishing the endpoint URL.

• URL - A string identifying the URL for the runtime instance. For example, http://

localhost:7001/Interact/servlet/InteractJSService.

Return value

The runtime server returns the InteractAPI.

Example

The following example shows how to instantiate an InteractAPI object that points to a

runtime server instance running on the same machine as your touchpoint.

InteractAPI

 api=InteractAPI.getInstance("http://localhost:7001/interact/servlet/Intera

ctJSService");

getOffers
The getOffers method enables you to request offers from the runtime server.

getOffers(String sessionID, String interactionPoint, int numberOfOffers,

 NameValuePair[] parameters)

• sessionID-a string identifying the current session.

• interactionPoint-a string identifying the name of the interaction point this method

references.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 176

Note: This name must match the name of the interaction point defined in

interactive channel exactly.

• numberOfOffers-an integer identifying the number of offers requested.

• parameters - NameValuePair objects identifying any parameters that are required to

be passed with the API request.

The getOffers method waits the number of milliseconds defined in the

segmentationMaxWaitTimeInMS property for all re-segmentation to complete before

running. Therefore, if you call a postEvent method which triggers a re-segmentation or a

setAudience method immediately before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffers with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

• SessionID

• StatusCode

• NameValuePair

Example

This example shows requesting a single offer for the Overview Page Banner 1 interaction

point and a way to handle the response.

sessionId is the same string to identify the runtime session used by the startSession call

which started this session.

String interactionPoint = "Overview Page Banner 1";

int numberRequested=1;

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 177

/** Make the call */

response = api.getOffers(sessionId, interactionPoint, numberRequested);

/** Process the response appropriately */

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("getOffers call processed with no warnings or

 errors");

 /** Check to see if there are any offers */

 OfferList offerList=response.getOfferList();

 if(offerList.getRecommendedOffers() != null)

 {

 for(Offer offer : offerList.getRecommendedOffers())

 {

 // print offer

 System.out.println("Offer Name:"+offer.getOfferName());

 }

 }

 else // count on the default Offer String

 System.out.println("Default offer:"+offerList.getDefaultString());

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("getOffers call processed with a warning");

 }

 else

 {

 System.out.println("getOffers call processed with an error");

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 178

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("getOffers",

 response.getAdvisoryMessages());

Decimal places in offer scores are returned in the getOffer response in the NameValue Pair.

When offers are returned to the requesting inbound channels, the channels use the scores

to prioritize the offers. The decimal digits are not removed, and so the channel knows which

offer has a higher score in case decimal numbers are returned.

getOffersForMultipleInteractionPoints
The getOffersForMultipleInteractionPoints method enables you to request offers from

the runtime server for multiple IPs with deduplication.

getOffersForMultipleInteractionPoints(String sessionID, String requestStr,

 NameValuePair[] parameters)

• sessionID - a string identifying the current session.

• requestStr - a string providing an array of GetOfferRequest objects.

• parameters - NameValuePair objects identifying any parameters that are required to

be passed with the API request.

Each GetOfferRequest object specifies:

◦ ipName - The interaction point (IP) name for which the object is requesting

offers

◦ numberRequested - The number of unique offers it needs for the specified IP

◦ offerAttributes - Requirements on the attributes of the delivered offers using an

instance of OfferAttributeRequirements

◦ duplicationPolicy - Duplication policy ID for the offers that will be delivered

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 179

Duplication policies determine whether duplicated offers will be returned

across different interaction points in a single method call. (Within an individual

interaction point, duplicated offers are never returned.) Currently, two

duplication policies are supported.

▪ NO_DUPLICATION (ID value = 1). None of the offers that have been

included in the preceding GetOfferRequest instances will be included

in this GetOfferRequest instance (that is, Unica Interact will apply de-

duplication).

▪ ALLOW_DUPLICATION (ID value = 2). Any of the offers satisfying the

requirements specified in this GetOfferRequest instance will be included.

The offers that have been included in the preceding GetOfferRequest

instances will not be reconciled.

The order of requests in the array parameter is also the priority order when offers are

being delivered.

For example, suppose the IPs in the request are IP1, then IP2, that no duplicated

offers are allowed (a duplication policy ID = 1), and each is requesting two offers. If

Unica Interact finds offers A, B, and C for IP1 and offers A and D for IP2, the response

will contain offers A and B for IP1, and only offer D for IP2.

Also note that when the duplication policy ID is 1, the offers that have been delivered

via an IP with higher priority will not be delivered via this IP.

The getOffersForMultipleInteractionPoints method waits the number of milliseconds

defined in the segmentationMaxWaitTimeInMS property for all re-segmentation to complete

before running. Therefore, if you call a postEvent method which triggers a re-segmentation

or a setAudience method immediately before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffersForMultipleInteractionPoints with a

Response object with the following attributes populated:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 180

• AdvisoryMessages

• ApiVersion

• array of OfferList

• SessionID

• StatusCode

Example

InteractAPI api = InteractAPI.getInstance("url");

 String sessionId = "123";

 String requestForIP1 = "{IP1,5,1,(5,attr1=1|numeric;attr2=value2|string,

 (3,attr3=value3|string)(3,attr4=4|numeric))}";

 String requestForIP2 = "{IP2,3,2,(3,attr5=value5|string)}";

 String requestForIP3 = "{IP3,2,1}";

 String requestStr = requestForIP1 + requestForIP2 + requestForIP3;

 Response response = api.getOffersForMultipleInteractionPoints(sessionId,

 requestStr);

 if (response.getStatusCode() == Response.STATUS_SUCCESS) {

 // Check to see if there are any offers

 OfferList[] allOfferLists = response.getAllOfferLists();

 if (allOfferLists != null) {

 for (OfferList ol : allOfferLists) {

 System.out.println

("The following offers are delivered for interaction

 point " + ol.getInteractionPointName() + ":");

 for (Offer o : ol.getRecommendedOffers()) {

 System.out.println(o.getOfferName());

 }

 }

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 181

 else {

 System.out.println("getOffersForMultipleInteractionPoints() method calls

 returns an error with code: " + response.getStatusCode());

 }

Note that the syntax of the requestStr is the following:

requests_for_IP[<requests_for_IP]

where

<requests_for_IP> = {ip_name,number_requested_for_this_ip,

 dupe_policy[,child_requirements]]}

attribute_requirements = (number_requested_for_these_attribute_requirements

 [,attribute_requirement[;individual_attribute_requirement])

 [,(attribute_requirements))

individual_attribute_requirement = attribute_name=attribute_value |

 attribute_type

In the example shown above, requestForIP1 ({IP1,5,1,(5,attr1=1|numeric;

attr2=value2|string, (3,attr3=value3|string)(3,attr4=4|numeric))}) means,

for the interaction point named IP1, deliver at most 5 distinct offers that can not also be

returned for any other interaction points during this same method call. All of those 5 offers

must have a numeric attribute named attr1 which must have the value 1, and must have

a string attribute named attr2 which must have the value value2. Out of those 5 offers, a

maximum of 3 must have a string attribute named attr3 which must have the value value3,

and a maximum of 3 must have a numeric attribute named attr4 which must have the

value 4.

The allowed attribute types are numeric, string, and datetime, and the format of a datetime

attribute value must be MM/dd/yyyy HH:mm:ss. To retrieve the returned offers, use the

method Response.getAllOfferLists(). To help understand the syntax, the example in

setGetOfferRequests builds the same instance of GetOfferRequests, while using Java™

objects, which is preferred.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 182

getProfile
The getProfile method enables you to retrieve the profile and temporal information about

the visitor visiting the touchpoint.

getProfile(String sessionID, NameValuePair[] parameters)

• sessionID-a string identifying the session ID.

• parameters - NameValuePair objects identifying any parameters that are required to

be passed with the API request.

Return value

The runtime server responds to getProfile with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• ProfileRecord

• SessionID

• StatusCode

Example

The following is an example of using getProfile and a way to handle the response.

sessionId is the same string to identify the session used by the startSession call which

started this session.

response = api.getProfile(sessionId);

/** Process the response appropriately */

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("getProfile call processed with no warnings or

 errors");

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 183

 // Print the profile - it's just an array of NameValuePair objects

 for(NameValuePair nvp : response.getProfileRecord())

 {

 System.out.println("Name:"+nvp.getName());

 if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))

 {

 System.out.println("Value:"+nvp.getValueAsDate());

 }

 else

 if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))

 {

 System.out.println("Value:"+nvp.getValueAsNumeric());

 }

 else

 {

 System.out.println("Value:"+nvp.getValueAsString());

 }

 }

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("getProfile call processed with a warning");

 }

 else

 {

 System.out.println("getProfile call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("getProfile",

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 184

 response.getAdvisoryMessages());

getVersion
The getVersion method returns the version of the current implementation of the Unica

Interact runtime server.

getVersion()

Best practice is to use this method when you initialize the touchpoint with the Unica Interact

API.

Return value

The runtime server responds to the getVersion with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• StatusCode

Example

This example shows a simple way to call getVersion and process the results.

response = api.getVersion();

/** Process the response appropriately */

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("getVersion call processed with no warnings or

 errors");

 System.out.println("API Version:" + response.getApiVersion(););

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 185

 System.out.println("getVersion call processed with a warning");

 }

 else

 {

 System.out.println("getVersion call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("getVersion",

 response.getAdvisoryMessages());

postEvent
The postEvent method enables you to execute any event defined in the interactive channel.

postEvent(String sessionID, String eventName, NameValuePairImpl[]

eventParameters)

• sessionID: a string identifying the session ID.

• eventName: a string identifying the name of the event.

Note: The name of the event must match the name of the event as defined in

the interactive channel. This name is case-insensitive.

• eventParameters. NameValuePairImpl objects identifying any parameters that need

to be passed with the event.

If this event triggers re-segmentation, you must ensure that all data required by the

interactive flowcharts is available in the session data. If any of these values have not

been populated by prior actions (for example, from startSession or setAudience, or

loading the profile table) you must include an eventParameter for every missing value.

For example, if you have configured all profile tables to load into memory, you must

include a NameValuePair for temporal data required for the interactive flowcharts.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 186

If you are using more than one audience level, you most likely have different sets of

eventParameters for each audience level. You should include some logic to ensure

you are selecting the correct set of parameters for the audience level.

Important: If this event logs to response history, you must pass the treatment

code for the offer. You must define the name for the NameValuePair as

"UACIOfferTrackingCode".

You can only pass one treatment code per event. If you do not pass the treatment

code for an offer contact, Unica Interact logs an offer contact for every offer in the

last recommended list of offers. If you do not pass the treatment code for a response,

Unica Interact returns an error.

• There are several other reserved parameters used with postEvent and other methods

and are discussed later in this section.

Any request for re-segmentation or writing to contact or response history does not wait for

a response.

Re-segmentation does not clear prior segmentation results for the current audience level.

You can use the UACIExecuteFlowchartByName parameter to define specific flowcharts to

run. The getOffers method waits for re-segmentation to finish before running. Therefore,

if you call a postEvent method, which triggers a re-segmentation immediately before a

getOffers call, there might be a delay.

Return value

The runtime server responds to postEvent with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• SessionID

• StatusCode

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 187

Example

The following postEvent example shows sending new parameters for an event which

triggers re-segmentation, and a way to handle the response.

sessionId is the same string to identify the session used by the startSession call which

started this session.

String eventName = "SearchExecution";

NameValuePair parmB1 = new NameValuePairImpl();

parmB1.setName("SearchString");

parmB1.setValueAsString("mortgage");

parmB1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB2 = new NameValuePairImpl();

parmB2.setName("TimeStamp");

parmB2.setValueAsDate(new Date());

parmB2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parmB3 = new NameValuePairImpl();

parmB3.setName("Browser");

parmB3.setValueAsString("IE6");

parmB3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB4 = new NameValuePairImpl();

parmB4.setName("FlashEnabled");

parmB4.setValueAsNumeric(1.0);

parmB4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parmB5 = new NameValuePairImpl();

parmB5.setName("TxAcctValueChange");

parmB5.setValueAsNumeric(0.0);

parmB5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 188

NameValuePair parmB6 = new NameValuePairImpl();

parmB6.setName("PageTopic");

parmB6.setValueAsString("");

parmB6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair[] postEventParameters = { parmB1,

 parmB2,

 parmB3,

 parmB4,

 parmB5,

 parmB6

};

/** Make the call */

response = api.postEvent(sessionId, eventName, postEventParameters);

/** Process the response appropriately */

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("postEvent call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("postEvent call processed with a warning");

 }

 else

 {

 System.out.println("postEvent call processed with an error");

 }

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 189

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("postEvent",

 response.getAdvisoryMessages());

setAudience
The setAudience method enables you to set the audience ID and level for a visitor.

setAudience(String sessionID, NameValuePairImpl[] audienceID,

 String audienceLevel, NameValuePairImpl[] parameters)

• sessionID - a string identifying the session ID.

• audienceID - an array of NameValuePairImpl objects that defines the audience ID.

• audienceLevel - a string that defines the audience level.

• parameters - NameValuePairImpl objects identifying any parameters that need to be

passed with setAudience. These values are stored in the session data and can be

used for segmentation.

You must have a value for every column in your profile. This is a superset of all

columns in all the tables defined for the interactive channel and any real-time data. If

you have already populated all the session data with startSession or postEvent, you

do not need to send new parameters.

The setAudience method triggers a re-segmentation. The getOffers method waits for

re-segmentation to finish before running. Therefore, if you call a setAudience method

immediately before a getOffers call, there may be a delay.

The setAudience method also loads the profile data for the audience ID. You can use the

setAudience method to force a reload of the same profile data loaded by the startSession

method.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 190

Return value

The runtime server responds to setAudience with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• SessionID

• StatusCode

Example

For this example, the audience level stays the same, but the ID changes, as if an anonymous

user logs in and becomes known.

sessionId and audienceLevel are the same strings to identify the session and audience

level used by the startSession call which started this session.

NameValuePair custId2 = new NameValuePairImpl();

custId2.setName("CustomerId");

custId2.setValueAsNumeric(123.0);

custId2.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair[] newAudienceId = { custId2 };

/** Parameters can be passed in as well. For this example, there are no

 parameters,

* therefore pass in null */

NameValuePair[] noParameters=null;

/** Make the call */

response = api.setAudience(sessionId, newAudienceId, audienceLevel,

 noParameters);

 /** Process the response appropriately */

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 191

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("setAudience call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("setAudience call processed with a warning");

 }

 else

 {

 System.out.println("setAudience call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("setAudience",

 response.getAdvisoryMessages());

setDebug
The setDebug method enables you to set the logging verbosity level for all code paths for

the session.

setDebug(String sessionID, boolean debug)

• sessionID-a string which identifies the session ID.

• debug-a boolean which enables or disables debug information. Valid values are true

or false. If true, Unica Interact logs debug information to the runtime server log.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 192

Return value

The runtime server responds to setDebug with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• SessionID

• StatusCode

Example

The following example shows changing the debug level of the session.

sessionId is the same string to identify the session used by the startSession call which

started this session.

boolean newDebugFlag=false;

/** make the call */

response = api.setDebug(sessionId, newDebugFlag);

/** Process the response appropriately */

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("setDebug call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("setDebug call processed with a warning");

 }

 else

 {

 System.out.println("setDebug call processed with an error");

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 193

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("setDebug",

 response.getAdvisoryMessages());

startSession
The startSession method creates and defines a runtime session.

startSession(String sessionID,

 boolean relyOnExistingSession,

 boolean debug,

 String interactiveChannel,

 NameValuePairImpl[] audienceID,

 String audienceLevel,

 NameValuePairImpl[] parameters)

startSession can trigger up to five actions:

• create a runtime session.

• load visitor profile data for the current audience level into the runtime session,

including any dimension tables marked for loading in the table mapping defined for

the interactive channel.

• trigger segmentation, running all interactive flowcharts for the current audience level.

• load offer suppression data into the session, if the enableOfferSuppressionLookup

property is set to true.

• load score override data into the session, if the enableScoreOverrideLookup property

is set to true.

The startSession method requires the following parameters:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 194

• sessionID-a string which identifies the session ID. You must define the session ID. For

example, you could use a combination of customer ID and timestamp.

To define what makes a runtime session, a session id has to be specified. This

value is managed by the client. All method calls for the same session id has to be

synchronized by the client. The behavior for concurrent API calls with the same

session id is undefined.

• relyOnExistingSession - a boolean which defines whether this session uses a new

or an existing session. Valid values are true or false. If true, you must supply an

existing session ID with the startSession method. If false, you must supply a new

session ID.

If you set relyOnExistingSession to true and a session exists, the runtime

environment uses the existing session data and does not reload any data or

trigger segmentation. If the session does not exist, the runtime environment

creates a new session, including loading data and triggering segmentation. Setting

relyOnExistingSession to true and using it with all startSession calls is useful if

your touchpoint has a longer session length than the runtime session. For example,

a web site session is alive for 2 hours, but the runtime session is only alive for 20

minutes.

If you call startSession twice with the same session ID, all session data from the first

startSession call is lost if relyOnExistingSession is false.

• debug - a boolean which enables or disables debug information. Valid values are true

or false. If true, Unica Interact logs debug information to the runtime server logs. The

debug flag is set for each session individually. Therefore, you can trace debug data for

an individual session.

• interactiveChannel-a string defining the name of the interactive channel this session

refers to. This name must match the name of the interactive channel defined in Unica

Campaign exactly.

• audienceID - an array of NameValuePairImpl objects where the names must match

the physical column names of any table containing the audience ID.

• audienceLevel - a string defining the audience level.

• parameters - NameValuePairImpl objects identifying any parameters that need to be

passed with startSession. These values can be used for segmentation.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 195

If you have several interactive flowcharts for the same audience level, you must

include a superset of all columns in all the tables. If you configure the runtime to load

the profile table, and the profile table contains all the columns you require, you do

not need to pass any parameters, unless you want to overwrite the data in the profile

table. If your profile table contains a subset of the required columns, you must include

the missing columns as parameters.

If the audienceID or audienceLevel are invalid and relyOnExistingSession is false, the

startSession call fails. If the interactiveChannel is invalid, startSession fails, whether

relyOnExistingSession is true or false.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID, but the first session has expired, Unica Interact creates a new session.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID but a different audienceID or audienceLevel, the runtime server changes

the audience for the existing session.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID but a different interactiveChannel, the runtime server creates a new

session.

Return value

The runtime server responds to startSession with a Response object with the following

attributes populated:

• AdvisoryMessages (if StatusCode does not equal 0)

• ApiVersion

• SessionID

• StatusCode

Note: Due to limitations of IEEE 754 floating-point numbers, not all numeric values,

including AudienceIDs, SessionIDs, and session parameters, can be exactly

represented in Interact, even if they can be exactly represented in the profile table.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 196

In addition, integer values greater than 2ˆ53 (9007199254740992), may not be used

as Audience ID values.

Example

The following example shows one way to call startSession.

String sessionId="MySessionID-123";

String audienceLevel="Customer";

NameValuePair custId = new NameValuePairImpl();

custId.setName("CustomerId");

custId.setValueAsNumeric(1.0);

custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair[] initialAudienceId = { custId };

boolean relyOnExistingSession=false;

boolean initialDebugFlag=true;

String interactiveChannel="Accounts Website";

NameValuePair parm1 = new NameValuePairImpl();

parm1.setName("SearchString");

parm1.setValueAsString("");

parm1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm2 = new NameValuePairImpl();

parm2.setName("TimeStamp");

parm2.setValueAsDate(new Date());

parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parm3 = new NameValuePairImpl();

parm3.setName("Browser");

parm3.setValueAsString("IE6");

parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm4 = new NameValuePairImpl();

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 197

parm4.setName("FlashEnabled");

parm4.setValueAsNumeric(1.0);

parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parm5 = new NameValuePairImpl();

parm5.setName("TxAcctValueChange");

parm5.setValueAsNumeric(0.0);

parm5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parm6 = new NameValuePairImpl();

parm6.setName("PageTopic");

parm6.setValueAsString("");

parm6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

/** Specifying the parameters (optional) */

NameValuePair[] initialParameters = { parm1,

 parm2,

 parm3,

 parm4,

 parm5,

 parm6

 };

/** Make the call */

response = api.startSession(sessionId, relyOnExistingSession,

 initialDebugFlag,

 interactiveChannel, initialAudienceId, audienceLevel, initialParameters);

/** Process the response appropriately */

processStartSessionResponse(response);

processStartSessionResponse is a method which handles the response object returned by

startSession.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 198

public static void processStartSessionResponse(Response response)

{

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("startSession call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("startSession call processed with a warning");

 }

 else

 {

 System.out.println("startSession call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("StartSession",

 response.getAdvisoryMessages());

}

Offer deduplication across offer attributes
Using the Unica Interact application programming interface (API), two API calls

deliver offers: getOffers and getOffersForMultipleInteractionPoints.

getOffersForMultipleInteractionPoints can prevent the return of duplicate offers at

the OfferID level, but cannot deduplicate offers across offer category. So, for example,

for Unica Interact to return only one offer from each offer category, a workaround was

previously required. With the introduction of two parameters to the startSession API call,

offer deduplication across offer attributes, such as category, is now possible.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 199

This list summarizes the parameters that were added to the startSession API call. For

more information about these parameters or any aspect of the Unica Interact API, see the

Unica Interact Administrator's Guide, or the Javadoc files included with your Unica Interact

installation in <Unica Interact_Home>/docs/apiJavaDoc.

• UACIOfferDedupeAttribute. To create a startSession API call with offer

deduplication, so that the subsequent getOffer calls return only one offer from each

category, you must include the UACIOfferDedupeAttribute parameter as part of the

API call. You can specify a parameter in the name,value,type format, as shown here:

UACIOfferDedupeAttribute,<attributeName>,string

In this example, you would replace <attributeName> with the name of the offer

attribute you want to use as the criterion for deduplication, such as Category.

Note: Unica Interact examines the offers that have the same attribute value

you specify (such as Category) and deduplicate to remove all but the offer

that has the highest score. If the offers that have the duplicate attribute also

have identical scores, Unica Interact returns a random selection from among

the matching offers.

• UACINoAttributeDedupeIfFewerOf. When you include the

UACIOfferDedupeAttribute in the startSession call, you can also set this

UACINoAttributeDedupeIfFewerOf parameter to specify the behavior in cases where

the offer list after deduplication no longer contains enough offers to satisfy the

original request.

For example, if you set UACIOfferDedupeAttribute to use the offer category to

deduplicate offers, and your subsequent getOffers call requests that eight offers be

returned, deduplication might result in fewer than eight eligible offers. In that case,

setting UACINoAttributeDedupeIfFewerOf parameter to true would result in adding

some of the duplicated to the eligible list to satisfy the requested number of offers. In

this example, if you set the parameter to false, the number of offers that are returned

would be fewer than the requested number.

UACINoAttributeDedupeIfFewerOf is set to true by default.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 200

For example, suppose you specified as a startSession parameter that the deduplication

criterion is offer Category, as shown here:

UACIOfferDedupeAttribute, Category, string;UACINoAttributeDedupeIfFewerOffer,

0, string

These parameters together cause Unica Interact to deduplicate offers based on the offer

attribute "Category," and to return only the deduplicated offers even if the resulting number

of offers is fewer than requested (UACINoAttributeDedupeIfFewerOffer is false).

When you issue a getOffers API call, the original set of eligible offers might include these

offers:

• Category=Electronics: Offer A1 with a score of 100 and Offer A2 with a score of 50.

• Category=Smartphones: Offer B1 with a score of 100, Offer B2 with a score of 80, and

offer B3 with a score of 50.

• Category=MP3Players: Offer C1 with a score of 100, Offer C2 with a score of 50.

In this case, there were two duplicate offers that match the first category, three duplicate

offers that match the second category, and two duplicate offers that match the third

category. The offers that are returned would be the highest scoring offers from each

category, which are Offer A1, Offer B1, and Offer C1.

If the getOffers API call requested six offers, this example set

UACINoAttributeDedupeIfFewerOffer to false, so only three offers would be returned.

If the getOffers API call requested six offers, and this example omitted the

UACINoAttributeDedupeIfFewerOffer parameter, or specifically set it to true, some of the

duplicate offers would be included in the result to satisfy the requested number.

Reserved parameters
There are several reserved parameters used with the Unica Interact API. Some are required

for the runtime server, and others you can use for additional features.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 201

API parameters

Feature Parameter Description

Log to cus

tom table

(Scope-ses

sion)

UACICustomLoggerTable

Name

The name of a table in the runtime tables da

ta source. If you provide this parameter with

a valid table name, the runtime environment

writes all session data to the selected table.

All column names in the table that match

session data NameValuePair are populated.

The runtime environment populates any col

umn that does not match a session name-

value pair with a null. You can manage the

process which writes to the database with

the customLogger configuration properties.

Log to a

specific file

(Scope-ses

sion)

UACILogSeparationFile

Name

Custom log filename: This parameter en

ables the runtime environment to write all

logs that belong to this session to the speci

fied log file. The file with the specified name

is created at default log location, if not avail

able.

For simulator, the parameter is automatical

ly added. Log file name format is <Simula

tor-Basic-{scenarioName}.log>, <Sim

ulator-Advanced-{scenarioName}.log>,

and <Simulator-Coverage-{scenarioN

ame}.log> for basic, advanced, and cover

age scenarios, respectively.

Multiple

response

types

UACILogToLearning An integer with the value 1 or 0. 1 indicates

the runtime environment should log the

event as an accept to the learning system or

enable offer suppression within a session.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 202

Feature Parameter Description

0 indicates the runtime environment should

not log the event to the learning system or

enable offer suppression within a session.

This parameter enables you to create sever

al postEvent methods logging different re

sponse types without influencing learning.

You do not need to define this parameter for

events set to log a contact, accept, or reject.

You must use this parameter in conjunction

with UACIResponseTypeCode. If you do not

define UACILOGTOLEARNING, the runtime envi

ronment assumes the default value of 0 (un

less the event triggers a log contact, accept,

or reject).

(Scope-in

vocation)

UACIResponseTypeCode A value representing a response type code.

The value must be a valid entry in the UA_Us

rResponseType table

Response

tracking

(Scope-in

vocation)

UACIOfferTrackingCode The treatment code for the offer. You must

define this parameter if the event logs to

contact or response history. You can only

pass one treatment code per event. If you

do not pass the treatment code for an offer

contact, the runtime environment logs an of

fer contact for every offer in the last recom

mended list of offers. If you do not pass the

treatment code for a response, the runtime

environment returns an error. If you config

ure the cross-session response tracking, you

can use the UACIOfferTrackingcodeType

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 203

Feature Parameter Description

parameter to define what type of tracking

code you use other than treatment code.

Cross-ses

sion re

sponse

tracking

(Scope-in

vocation)

UACIOfferTrackingCode

Type

A number which defines the tracking code

type. 1 is the default treatment code, and 2

is the offer code. All codes must be valid en

tries in the UACI_TrackingType table. You

can add other, custom codes to this table.

Specific

flowchart

execution

(Scope-in

vocation)

UACIExecuteFlowchart

ByName

If you define this parameter for any method

which triggers segmentation (startSession,

setAudience, or a postEvent that triggers

re-segmentation), instead of running all flow

charts for the current audience level, Unica

Interact runs only the named flowcharts. You

can provide a list of flowcharts separated by

a pipe (|) character.

Ability to

limit the

offer field

in getOf

fers API

at Interact

RunTime

(Scope-

Session)

UACIOfferFields and

UACIExcludeOfferFields

You can include/exclude the UACIOffer

Fields and UACIExcludeOfferFields attrib

utes of an offer by passing these attribute

in the parameter of startSession, setAudi

ence, or a postEvent.

Reset Event

Pattern

(Scope-In

vocation)

• ResetEventPat

tern. This parame

ter resets event pat

tern states for all

You can reset the states of a specific pat

tern or all patterns for a particular audience

ID, which is associated to the session. You

must post event with a special parameter.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 204

Feature Parameter Description

patterns for the Au

dience ID.

• PatternToReset.

This parameter re

sets event pattern

states for specific

event patterns. Ei

ther Pattern ID or

Pattern Name can

be reset. This para

meter can be only

passed with Reset

EventPattern para

meter.

The event must not have any associated ex

plicit actions.

Reset of

fer sup

pression

(Scope-In

vocation)

• ResetOfferSup

pression.This pa

rameter resets offer

suppression rules

for all offers for the

Audience ID.

• OfferToResetSup

pression. This pa

rameter resets offer

suppression rules

for specific offers.

Either offer ID or of

fer code can be re

set. To reset offer

suppression for of

fers having offer

code with multiple

You can reset the states of a specific offer

suppression rule or all offer suppression

rules for a particular audience ID, which is

associated to the session. You must post

event with a special parameter. The event

must not have any associated explicit ac

tions.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 205

Feature Parameter Description

parts, offer code

must be separated

by commas. For ex

ample, offer Code1,

offer Code2, offer

Code3 and so on.

This parameter can

be only passed with

ResetOfferSuppres

sion parameter.

Remove

session pa

rameter be

fore API

call (Scope-

Session)

UACIPreRemoveParame

ter. Comma separated

names of the parameters

that you want to remove

from the session before

API call.

This parameter is helpful when you want to

remove some parameters already set in the

session by previous API calls. Multiple pa

rameter names can be passed and comma

separated.

Remove

session pa

rameter

after API

call (Scope-

Session)

UACIPostRemoveParame

ter. Comma separated

names of the parameters

that you want to remove

from the session after the

API call is executed.

This parameter is helpful when you want to

remove some parameters that are not re

quired for further processing. Multiple pa

rameter names can be passed and comma

separated.

Synchro

nous flow

chart ex

ecution

(Scope-

Session)

UACIWaitForSegmenta

tion

If you define this parameter for any method

which triggers segmentation (startSession,

setAudience, or a postEvent that triggers re-

segmentation), flowcharts for the current

audience level are executed synchronous

ly. Timeout for this synchronous execution

is defined by Platform configuration at path

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 206

Feature Parameter Description

Affinium|interact|offerserving|segmen

tationMaxWaitTimeInMS

Example : UACIWaitForSegmentation|true|

string

Get the

cached

offers

(Scope-In

vocation)

UACICachedOffers If you define this parameter for getOffers

API call, then the offers from previous get

Offers call are returned without executing

the arbitration logic. If previous list of of

fers is empty, then offer arbitration takes

place and new set of offers are returned. Of

fer caching feature is enabled when Plat

form configuration at path Affinium|inter

act|offerserving|enableOfferCaching

is set to True. Example: UACICachedOf

fers|true|string

Include of

fers from

related au

dience IDs

(Scope-

Session)

UACISupplementAudience The additional audience IDs whose eligible

offers require to be included while getting

offers for the session's audience ID. It has

the format of audienceLevel1,audience

Id1Field1=value1[,audienceId1Field

N=valueN]. Multiple occurrences of this pa

rameter can be used if multiple audience IDs

are required for getting offers.

Related

Sessions

(Scope-In

vocation)

UACIEmbeddedSession Specifies whether to execute this batch in

a separate session. 1 - Yes, 0 - No. It is ef

fective only in startSession and setAudience

when this API request is the first command

in an executeBatch invocation.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 207

Feature Parameter Description

Related

Sessions

(Scope-In

vocation)

UACIIncludeArbitration Specifies whether to include offer arbitration

summary in the response of getOffers and

getOffersForMultipleInteractionPoints

request. If API historization is enabled, the

same information is saved together with that

as well. 1 - Yes, 0 - No.

Contact

Tracking

(Scope-In

vocation)

UACIContactStatusCode Parameter is a string representing a contact

type code. Parameter value must be a valid

entry in the UA_ContactStatus table.

Response

Tracking

(Scope-In

vocation)

UACIResponseTypeCode A value representing a response type code.

The value must be a valid entry in the UA_Us

rResponseType table.

(Scope-

Session)

UACIPurgePriorWhite

ListOnLoad

This parameter when used while calling set

Audience method,reloads the white list table

in an existing session. If you set UACIPurge

PriorWhiteListOnLoad= 1, the previously

loaded contents of white list will be removed

from this session.

(Scope-

Session)

UACIPurgePriorBlack

ListOnLoad

This parameter when used while calling set

Audience method reloads the black list table

in an existing session. If you set UACIPurge

PriorWhiteListOnLoad= 1, the previously

loaded contents of white list will be removed

from this session.

Offer Dedu

plication

UACINoAttributeDedupe

IfFewerOffer

When you include UACIOfferDedupeAt

tribute in the startSession call, you can al

so set UACINoAttributeDedupeIfFewerOf

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 208

Feature Parameter Description

(Scope-

Session)

fer parameter to specify the behavior in cas

es where the offer list after deduplication no

longer contains enough offers to satisfy the

original request.

For example, if you set UACIOfferDedupeAt

tribute to use the offer category to dedupli

cate offers and this getOffers call requests

that eight offers be returned, deduplication

may result in fewer than eight eligible of

fers. In that case, setting UACINoAttribut

eDedupeIfFewerOffer parameter to true

would result in adding some of the duplicat

ed offers to the eligible list to satisfy the re

quested number of offers.

UACINoAttributeDedupeIfFewerOffer is

set to true by default.

Offer Sup

pression

(Scope-

Session)

UACIgnoreBlackList TRUE – When we pass this parameter as

true then the contents in Black List table will

not be used to suppress otherwise eligible

offers.

FALSE – When this is passed as false then

all offer available in Black List table will not

be displayed/returned to user. This is the de

fault behavior.

Offer Sup

pression

(Scope-

Session)

UACIIgnoreSuppression

Rules

TRUE – When we pass this parameter as

true then all real time offer suppressed rules

will be skipped during offer arbitration.

FALSE – When we pass this as false then all

real time suppressed offer will not be dis

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 209

Feature Parameter Description

played/returned as per rule. This is the de

fault behavior.

Offer Fil

teration

(Scope-In

vocation)

UACIEnableOfferMap

pingFilter

This parameter is defined along with the fil

ter name at runtime during getOffers. The

particular filter will be applied to get offers

from FlexOffers mapping table.

Offer Fil

teration

(Scope-In

vocation)

UACIDisableOfferMap

pingFilter

This parameter is defined along with the fil

ter name at runtime during getOffers. The

particular filter will not be applied while get

ting offers from the table

Event Pat

tern States

(Scope-

Session)

UACIMergePatternStates If this parameter is set with a value of 1,

when the audience ID of a session changes

from anonymous (not found in the profile) to

known (exist in the profile), the event activi

ties happened in the current session will be

kept and merged to the existing activities of

the known audience ID.

If its value is set to 0 (the default), the event

activities of the anonymout audience ID will

be discarded.

This parameter, when specified, overrides

the configuration setting Affinium|inter

act|services|eventPattern:mergeUn

knownUserInSessionStates.

Event Pat

tern States

(Scope-

Session)

UACISavePatternStates When this parameter is set with a value of 1,

if the audience ID of a session is anonymous

(not found in the profile), the states of the

event patterns updated in the current ses

sion will be saved when this session ends.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 210

Feature Parameter Description

When this parameter is set with a value of 0

(the default), if the audience ID of a session

is anonymous (not found in the profile), the

states of the event patterns updated in the

current session will be discarded when this

session ends.

This parameter, when specified, overrides

the following configuration setting Affini

um|interact|services|eventPattern:per

sistUnknownUserStates.

Event Pat

tern States

(Scope-

Session)

UACIShowPatternStates To include the states of event patterns be

longing to the current audience ID in the re

sponse of postEvent API call.

Profile

Filtering

(Scope-

Session)

UACIProfileFields A pipe (|) separated string with each compo

nent being a profile field name. If this para

meter is passed and is not empty, only val

ues of the specified fields will be returned on

calling getProfile method.

Profile

Filtering

(Scope-

Session)

UACIGetProfileShowDim

Fields

If this parameter is passed with value equal

to 1, the dimensional fields (usually the

fields in dimensional profile table(s) will be

returned on getProfile call. Otherwise, only

the top level fields are returned. The default

value is 0.

Offer Fil

teration

(Scope-

Session)

UACIQueryOffersBySQL To detect whether or not engine should exe

cute the offersBySQL logic on getOffers call.

To enable, set Affinium|interact|pro

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 211

Feature Parameter Description

file|Audience Levels|Customer|Offers

By Raw SQL|enableOffersByRawSQL to true.

Offer Filter

ation

(Scope-

Session)

UACIOffersBySQLTem

plate

To fetch offer sql from configuration

(Affinium|interact|profile|Audience

Levels|Customer|Offers By Raw SQL|

<SQL Template name>).The sql referenced

by this parameter overrides the default SQL

(Affinium|interact|profile|Audience

Levels|Customer|Offers By Raw SQL|de

faultSQLTemplate) specified in configura

tion for the Offer By Raw SQL feature.

Offer Attrib

utes(out

put)

UACICellCode If an offer attributes contain an attribute

matching "UACICellCode", the cell code for

the treatment will be returned as the value

for this offer attribute on a getOffers call.

Offer Attrib

utes (out

put)

UACICellName If an offer attributes contain an attribute

matching "UACICellName", the cell name for

the treatment will be returned as the value

for this offer attribute on a getOffers call.

Offer Attrib

utes (out

put)

UACIZoneID If an offer attributes contain an attribute

matching "UACIZoneID", the zone id for the

treatment will be returned as the value for

this offer attribute on a getOffers call.

Offer Attrib

utes (out

put)

UACISegmentID If an offer attributes contain an attribute

matching "UACISegmentID", the segment id

for the treatment will be returned as the val

ue for this offer attribute on a getOffers call.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 212

Feature Parameter Description

Offer Attrib

utes (out

put)

UACIOfferID If an offer attributes contain an attribute

matching "UACIOfferID", the offer Id for the

treatment will be returned as the value for

this offer attribute on a getOffers call.

Offer Attrib

utes (out

put)

UACIOfferListID If the return offer is selected from an offer

list configured in a rule, this attribute is in

cluded in the response to indicate the ID of

the offerList for the treatment.

Offer Attrib

utes

(output)

UACIABTestBranchName If the returned offer is the outcome of an A/

B testing, this attribute is included in the re

sponse to indicate the name of the selected

A/B testing branch.

Runtime environment reserved parameters
The following reserved parameters are used by the runtime environment. Do not use these

names for your event parameters.

• UACIResponseTypeCode

• UACIContactStatusCode

• UACILogToLearning

• UACIOfferTrackingCode

• UACIOfferTrackingCodeType

• ResetEventPattern

• PatternToReset

• ResetOfferSuppression

• OfferToResetSuppression

• UACICustomLoggerTableName

• UACIExecuteFlowchartByName

• UACIOffersBySQLTemplate

• UACIQueryOffersBySQL

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 213

• UACIGetProfileShowDimFields

• UACIProfileFields

• UACIOfferFields

• UACIExcludeOfferFields

• UACIPurgePriorBlackListOnLoad

• UACIPurgePriorWhiteListOnLoad

• UACIMergePatternStates

• UACIResetMergedPatternStates

• UACISavePatternStates

• UACIShowPatternStates

• UACIOfferDedupeAttribute

• UACINoAttributeDedupeIfFewerOffer

• UACIIgnoreBlackList

• UACIIgnoreSuppressionRules

• UACILogSeparationFileName

• UACICachedOffers

• UACIWaitForSegmentation

• UACIPreRemoveParameter

• UACIPostRemoveParameter

• UACIInteractiveChannelName

• UACIInteractiveChannelID

• UACIInteractionPointName

• UACIInteractionPointID

• UACIEventName

• UACIEventID

• UACISessionID

• UACIEnableOfferMappingFilter

• UACIDisableOfferMappingFilter

• UACICellCode

• UACICellName

• UACIOfferID

• UACISegmentID

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 214

• UACIZoneID

• UACIABTestBranchName

• UACIEmbeddedSession

• UACIEventTime

• UACIIncludeArbitration

• UACIIncludeAttributeMetadata

About the AdvisoryMessage class
The advisoryMessage class contains methods which define the advisory message object.

The advisory message object is contained in the Response object. Every method in the

InteractAPI returns a Response object. (Except for the executeBatch method, which returns

a batchResponse object.)

If there is an error or a warning, the Unica Interact server populates the advisory message

object. The advisory message object contains the following attributes:

• DetailMessage-a verbose description of the advisory message. This attribute may

not be available for all advisory messages. If available, the DetailMessage may not be

localized.

• Message-a short description of the advisory message.

• MessageCode-a code number for the advisory message.

• StatusLevel-a code number for the severity of the advisory message.

You retrieve the advisoryMessage objects by using the getAdvisoryMessages method.

getDetailMessage
The getDetailMessage method returns the detailed, verbose description of an Advisory

Message object. Not all messages have a detailed message.

getDetailMessage()

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 215

Return value

The Advisory Message object returns a string.

Example

// For any non-successes, there should be advisory messages explaining why

if(response.getStatusCode() != Response.STATUS_SUCCESS)

{

 for(AdvisoryMessage msg : response.getAdvisoryMessages())

 {

 System.out.println(msg.getMessage());

 // Some advisory messages may have additional detail:

 System.out.println(msg.getDetailMessage());

 }

}

getMessage
The getMessage method returns the brief description of an Advisory Message object.

getMessage()

Return value

The Advisory Message object returns a string.

Example

The following method prints out the message and detailed message of an

AdvisoryMessage object.

// For any non-successes, there should be advisory messages explaining why

if(response.getStatusCode() != Response.STATUS_SUCCESS)

{

 for(AdvisoryMessage msg : response.getAdvisoryMessages())

 {

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 216

 System.out.println(msg.getMessage());

 // Some advisory messages may have additional detail:

 System.out.println(msg.getDetailMessage());

 }

}

getMessageCode
The getMessageCode method returns the internal error code associated with an Advisory

Message object if the status level is 2 (STATUS_LEVEL_ERROR).

getMessageCode()

Return value

The AdvisoryMessage object returns an integer.

Example

The following method prints out the message code of an AdvisoryMessage object.

public static void printMessageCodeOfWarningOrError(String

 command,AdvisoryMessage[] messages)

 {

 System.out.println("Calling "+command);

 for(AdvisoryMessage msg : messages)

 {

 System.out.println(msg.getMessageCode());

getStatusLevel
The getStatusLevel method returns the status level of an Advisory Message object.

getStatusLevel()

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 217

Return value

The Advisory Message object returns an integer.

• 0 - STATUS_LEVEL_SUCCESS-The method called completed with no errors.

• 1 - STATUS_LEVEL_WARNING-The method called completed with at least one warning

(but no errors).

• 2 - STATUS_LEVEL_ERROR-The method called did not complete successfully and has

at least one error.

Example

The following method prints out the status level of an AdvisoryMessage object.

public static void printMessageCodeOfWarningOrError(String

 command,AdvisoryMessage[] messages)

 {

 System.out.println("Calling "+command);

 for(AdvisoryMessage msg : messages)

 {

 System.out.println(msg.getStatusLevel());

About the AdvisoryMessageCode class
The advisoryMessageCode class contains methods which define the advisory message

codes. You retrieve the advisory message codes with the getMessageCode method.

Advisory message codes
You retrieve the advisory message codes with the getMessageCode method.

This table lists and describes the advisory message codes.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 218

Code Message text Description

1 INVALID_SESSION_ID The session ID does not reference a

valid session.

2 ERROR_TRYING_TO_ABORT_ SEGMEN

TATION

An error occurred while trying to abort

segmentation during an endSession

call.

3 INVALID_INTERACTIVE_CHANNEL The argument that was passed in for

interactive channel does not reference

a valid interactive channel.

4 INVALID_EVENT_NAME The argument that was passed in for

the event does not reference a valid

event for the current interactive chan

nel.

5 INVALID_INTERACTION_POINT The argument that was passed in for

the interaction point does not reference

a valid interaction point for the current

interactive channel.

6 ERROR_WHILE_MAKING_INITIAL_ SEG

MENTATION_REQUEST

An error was encountered when sub

mitting a segmentation request.

7 SEGMENTATION_RUN_FAILED The segmentation ran partly, but result

ed in an error.

8 PROFILE_LOAD_FAILED The attempt to load the profile or di

mension tables failed.

9 OFFER_SUPPRESSION_LOAD_FAILED The attempt to load the offer suppres

sion table failed.

10 COMMAND_METHOD_ UN

RECOGNIZED

A command method that was speci

fied for a command within an execute

Batch call is not valid.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 219

Code Message text Description

11 ERROR_TRYING_TO_POST_EVENT _

PARAMETERS

An error occurred while posting the

event parameters.

12 LOG_SYSTEM_EVENT_EXCEPTION An exception occurred when trying to

submit system event (End Session, Get

Offer, Get Profile, Set Audience, Set De

bug, or Start Session) for logging.

13 LOG_USER_EVENT_EXCEPTION An exception occurred when trying to

submit user event for logging.

14 ERROR_TRYING_TO_LOOK_UP_EVENT An error occurred when trying to look

up the event name.

15 ERROR_TRYING_TO_LOOK_UP _INTER

ACTIVE_CHANNEL

An error occurred when trying to look

up the interactive channel name.

16 ERROR_TRYING_TO_LOOK_UP _INTER

ACTION_POINT

An error occurred when trying to look

up the interaction point name.

17 RUNTIME_EXCEPTION_ ENCOUN

TERED

An unexpected runtime exception was

encountered.

18 ERROR_TRYING_TO_EXECUTE_

ASSOCIATED_ACTION

An error occurred while trying to run as

sociated action (Trigger Resegmenta

tion, Log Offer Contact, Log Offer Ac

ceptance, or Log Offer Rejection).

19 ERROR_TRYING_RUN_FLOWCHART An error occurred while trying to run

flowchart.

20 FLOWCHART_FAILED A flowchart run failed.

21 FLOWCHART_ABORTED A flowchart run was aborted.

22 FLOWCHART_NEVER_RUN A specified flowchart was never run.

23 FLOWCHART_STILL_RUNNING A flowchart is still running.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 220

Code Message text Description

24 ERROR_WHILE_READING_ PARAME

TERS

An error occurred while reading para

meters.

25 ERROR_WHILE_LOADING_ RECOM

MENDED_OFFERS

Error while loading recommended of

fers

26 ERROR_WHILE_LOGGING_DEFAULT _

TEXT_STATISTICS

An error occurred while logging default

text statistics (the number of times the

default string for the interaction point

displayed).

27 SCORE_OVERRIDE_LOAD_FAILED The score override table failed to load.

28 NULL_AUDIENCE_ID The audience identifier is empty.

29 UNRECOGNIZED_AUDIENCE_LEVEL An unrecognized audience level was

specified.

30 MISSING_AUDIENCE_FIELD An audience field is missing.

31 INVALID_AUDIENCE_FIELD_TYPE An invalid audience field type was

specified.

32 UNSUPPORTED_AUDIENCE_FIELD

_TYPE

Unsupported audience field type

33 TIMEOUT_REACHED_ON_GET_ OFFER

S_CALL

The getOffers call reached timeout

without returning offers.

34 INTERACT_INITIALIZATION_NOT_

COMPLETED_SUCCESSFULLY

The runtime server initialization did not

complete successfully.

35 SESSION_ID_UNDEFINED The session identifier is undefined.

36 INVALID_NUMBER_OF_OFFERS_ RE

QUESTED

An invalid number of offers was re

quested.

37 NO_SESSION_EXIST_BUT_WILL_ CRE

ATE_NEW_ONE

No session existed, but one was creat

ed.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 221

Code Message text Description

38 AUDIENCE_ID_NOT_FOUND_IN_

PROFILE_TABLE

The specified audience identifier is not

in the profile table.

39 LOG_CUSTOM_LOGGER_EVENT_ EX

CEPTION

An exception occurred when trying to

submit custom logging data event.

40 SPECIFIED_FLOWCHART_FOR_ EXE

CUTION_DOES_NOT_EXIST

The specified flowchart cannot be run

because it does not exist.

41 AUDIENCE_NOT_DEFINED_IN_ CON

FIGURATION

The specified audience is not defined

in the configuration.

42 Unable to load offers from raw SQL The raw SQL is unable to load offers.

43 Invalid duplicate policy The duplicate policy for sessionID is

not valid.

44 Error saving the event pattern states

for audienceID

An error occurred while saving the

event pattern states for audienceID.

45 Invalid expression The expression is invalid.

46 Empty expression The expression is empty.

47 Error trying to evaluate an event pattern An error occurred while trying to evalu

ate an event pattern.

48 Error loading event pattern state for au

dience ID

An error occurred while loading event

pattern state for audience ID.

49 Error loading/updating session An error occurred while loading or up

dating session.

50 Error loading/updating event pattern

state for audience ID

An error occurred while loading or up

dating event pattern state for audience

ID

51 Error creating OpDetection run time

service

An error occurred while creating OpDe

tection run time service.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 222

Code Message text Description

52 Error retrieving latest event pattern

states from OpDetection for sessionId

An error occurred while retrieving latest

event pattern states from OpDetection

for sessionId.

53 Error posting event to OpDetection for

sessionId

An error occurred while posting event

to OpDetection for sessionId.

54 Error contacting OpDetection service

for server

An error occurred while contacting Op

Detection service for server.

55 OpDetection service won't be contact

ed for next {0} minutes

The OpDetection service cannot be

contacted for next {0} minutes.

56 Missing required parameter(s) {0} for

event {1}.

The required parameter(s) {0} for event

{1} are missing.

57 The event is configured to log as con

tact, but no offers have been recom

mended

The event is configured to log as con

tact, but no offers have been recom

mended .

58 Log to contact requested but treat

mentCode not valid

The log to contact requested, but the

treatmentCode is not valid for session

Code.

59 Failed to get batch response for ad

vanced scenario simulator run. See log

on server for more details.

Unable to get batch response for ad

vanced scenario simulator run. See log

on server for more details.

60 Log to response requested but tracking

code not valid for sessionCode

The log to response is requested, but

tracking code is not valid for session

Code.

61 Log to contact requested but contact

status code not valid for sessionCode:

{0} contact status code: {1}

The log to contact requested, but con

tact status code is not valid for ses

sionCode.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 223

Code Message text Description

62 Log to response requested but re

sponse type code not valid for session

Code: {0} response type code: {1}

The log to response requested but re

sponse type code not valid for session

Code.

63 Authentication failed. Token is not

available

The authentication failed as token is

not available.

64 Authentication failed. SessionId is not

available

The authentication failed as SessionId

is not available.

65 Authentication failed. Token is not as

sociated with the requested sessionId.

The authentication failed as token is

not associated with the requested ses

sionId.

66 Unauthorized request. Invalid token or

credentials.

The request is unauthorized as token or

credentials is invalid.

67 Error generating token An error occurred while generating to

ken.

68 Error: Failed to get batch response for

basic scenario simulator run. See log

on server for more details.

Failed to get batch response for basic

scenario simulator run.

69 No valid license The license is not valid.

70 Unable to create or find a session Unable to create or find a session

71 Flowchart failed for session id: {0} The flowchart has failed the session.

72 Flowchart execution timed out for ses

sion id: {0}

The flowchart execution timed out for

the session.

73 Campaign API to get Static Segments

failed for session id: {0}

The Campaign API gets Static Seg

ments failed for the session.

74 Campaign API to get Static Segments

timed out for session id: {0}

The Campaign API get Static Segments

timed out for the session.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 224

Code Message text Description

101 Response for command Response for command

102 Status code Status code

103 API version API version

104 Session ID Session ID

105 Advisory message Advisory message

106 Message code Message code

107 Message Message

108 Detailed message Detailed message

109 Status level Status level

110 No advisory message No advisory message

111 No profile record No profile record

112 Offers for Interaction Point Offers for Interaction Point

113 Default text Default text

114 Recommended offer Recommended offer

115 Offer score Offer score

116 Offer name Offer name

117 Offer description Offer description

118 Offer code Offer code

119 Offer parameters Offer parameters120

120 Treatment Code Treatment Code

121 No recommended offers No recommended offers

122 No offer list No offer list

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 225

Code Message text Description

123 Name Name

124 Type Type

125 Date value Date value

126 String value String value

127 Numeric value Numeric value

128 Unable to find a valid receiver and/or a

valid gateway

Unable to find a valid receiver and/or a

valid gateway

129 Invalid receiver: {0} The receiver is invalid.

130 Invalid gateway: {0} The gateway is invalid.

131 Message sent to receiver {0} for gate

way {1} successfully

The message sent to receiver for gate

way is successful.

132 No valid receiver available There is no valid receiver available.

133 Invalid format of Parameter - {0} The format of parameter is invalid.

134 Invalid format of AudienceID The format of AudienceID is invalid.

135 Invalid Parameter {0}, invalid value {1} The parameter is invalid with an invalid

value.

136 Invalid AudienceID {0}, invalid value {1} The audienceID is invalid with an in

valid value.

137 Invalid Parameter {0}, invalid data type

{1}

The parameter is invalid with an invalid

data type.

138 Invalid AudienceID {0}, invalid data type

{1}

The audienceID is invalid with an in

valid data type.

139 Invalid Parameter {0}, expected data

type {1}, but received {2}

Invalid Parameter {0}, expected data

type {1}, but received {2}

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 226

Code Message text Description

140 Cannot find the offer to reset the sup

pression rules: {0}.

Cannot find the offer to reset the sup

pression rules.

141 Cannot find the event pattern to reset:

{0}

Cannot find the event pattern to reset.

142 Invalid format of request, missing Para

meter: {0}

The format of request is invalid with a

missing parameter.

201 Inputs provided for the API are invalid The inputs provided for the API are in

valid.

202 Internal error occurred. Please check

the logs for more details

An internal error occurred. Check the

logs for more details.

203 Invalid IC Id or Name: {0} The IC Id or Name is invalid.

204 Error trying to lookup IC Name: {0} in

deployment cache.

An error occurred while trying to lookup

IC Name: {0} in deployment cache.

205 Input parameter {0} is missing The input parameter is missing.

206 Authentication failed Authentication failed

207 User name is required User name is required.

About the BatchResponse class
The BatchResponse class contains methods which define the results of the executeBatch

method.

The Batch Response object contains the following attributes:

• BatchStatusCode-The highest Status Code value for all the responses requested by

the executeBatch method.

• Responses-An array of the Response objects requested by the executeBatch method.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 227

getBatchStatusCode
The getBatchStatusCode method returns the highest status code from the array of

commands executed by the executeBatch method.

getBatchStatusCode()

Return value

The getBatchStatusCode method returns an integer.

• 0 - STATUS_SUCCESS-The method called completed with no errors.

• 1 - STATUS_WARNING-The method called completed with at least one warning (but no

errors).

• 2 - STATUS_ERROR-The method called did not complete successfully and has at least

one error.

Example

The following code sample gives an example of how to retrieve the BatchStatusCode.

// Top level status code is a short cut to determine if there are any

// non-successes in the array of Response objects

if(batchResponse.getBatchStatusCode() == Response.STATUS_SUCCESS)

{

 System.out.println("ExecuteBatch ran perfectly!");

}

else if(batchResponse.getBatchStatusCode() == Response.STATUS_WARNING)

{

 System.out.println("ExecuteBatch call processed with at least one

 warning");

}

else

{

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 228

 System.out.println("ExecuteBatch call processed with at least one

 error");

}

// Iterate through the array, and print out the message for any

 non-successes

for(Response response : batchResponse.getResponses())

{

 if(response.getStatusCode()!=Response.STATUS_SUCCESS)

 {

 printDetailMessageOfWarningOrError("executeBatchCommand",

 response.getAdvisoryMessages());

 }

}

getResponses
The getResponses method returns the array of response objects that correspond to the

array of commands executed by the executeBatch method.

getResponses()

Return value

The getResponses method returns an array of Response objects.

Example

The following example selects all the responses and prints out any advisory messages if

the command was not successful.

for(Response response : batchResponse.getResponses())

{

 if(response.getStatusCode()!=Response.STATUS_SUCCESS)

 {

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 229

 printDetailMessageOfWarningOrError("executeBatchCommand",

 response.getAdvisoryMessages());

 }

}

About the Command interface
The executeBatch method requires you to pass in an array of objects that implements the

Command interface. You should use the default implementation, CommandImpl to pass in the

Command objects.

The following table lists the command, the method of the InteractAPI class the command

represents, and the Command interface methods you must use for each command. You do

not need to include a session ID because the executeBatch method already includes the

session ID.

Command
Interact

API Method
Command Interface Methods

COMMAND_ENDSESSION endSession None.

COMMAND_GETOFFERS getOffers • setInteractionPoint

• setNumberRequested

COMMAND_GETPROFILE getProfile None.

COMMAND_GETVERSION getVersion None.

COMMAND_POSTEVENT postEvent • setEvent

• setEventParameters

COMMAND_SETAUDIENCE setAudience • setAudienceID

• setAudienceLevel

• setEventParameters

COMMAND_SETDEBUG setDebug setDebug

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 230

Command
Interact

API Method
Command Interface Methods

COMMAND_STARTSESSION startSession • setAudienceID

• setAudienceLevel

• setDebug

• setEventParameters

• setInteractiveChannel

• setRelyOnExistingSession

setAudienceID
The setAudienceID method defines the AudienceID for the setAudience and startSession

commands.

setAudienceID(audienceID)

• audienceID-an array of NameValuePair objects which define the AudienceID.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling startSession

and setAudience.

NameValuePair custId = new NameValuePairImpl();

custId.setName("CustomerId");

custId.setValueAsNumeric(1.0);

custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair[] initialAudienceId = { custId };

. . .

Command startSessionCommand = new CommandImpl();

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 231

startSessionCommand.setAudienceID(initialAudienceId);

. . .

Command setAudienceCommand = new CommandImpl();

setAudienceCommand.setAudienceID(newAudienceId);

. . .

/** Build command array */

Command[] commands =

 {

 startSessionCommand,

 setAudienceCommand,

 };

/** Make the call */

 BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */

 processExecuteBatchResponse(batchResponse);

setAudienceLevel
The setAudienceLevel method defines the Audience Level for the setAudience and

startSession commands.

setAudienceLevel(audienceLevel)

• audienceLevel-a string containing the Audience Level.

Important: The name of the audienceLevel must match the name of the

audience level as defined in Unica Campaign exactly. It is case-sensitive.

Return value

None.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 232

Example

The following example is an excerpt from an executeBatch method calling startSession

and setAudience.

String audienceLevel="Customer";

. . .

Command startSessionCommand = new CommandImpl();

startSessionCommand.setAudienceID(initialAudienceId);

. . .

Command setAudienceCommand = new CommandImpl();

setAudienceCommand.setAudienceLevel(audienceLevel);

. . .

/** Build command array */

Command[] commands =

 {

 startSessionCommand,

 setAudienceCommand,

 };

/** Make the call */

 BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */

 processExecuteBatchResponse(batchResponse);

setDebug
The setDebug method defines the debug level for the startSession command.

setDebug(debug)

If true, the runtime server logs debug information to the runtime server log. If false, the

runtime server does not log any debug information. The debug flag is set for each session

individually. Therefore, you can trace debut data for an individual runtime session.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 233

• debug-a boolean (true or false).

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling startSession

and setDebug.

boolean initialDebugFlag=true;

boolean newDebugFlag=false;

. . .

/* build the startSession command */

Command startSessionCommand = new CommandImpl();

startSessionCommand.setDebug(initialDebugFlag);

. . .

/* build the setDebug command */

Command setDebugCommand = new CommandImpl();

setDebugCommand.setMethodIdentifier(Command.COMMAND_SETDEBUG);

setDebugCommand.setDebug(newDebugFlag);

/** Build command array */

Command[] commands =

 {

 startSessionCommand,

 setDebugCommand,

 };

/** Make the call */

 BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */

 processExecuteBatchResponse(batchResponse);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 234

setEvent
The setEvent method defines the name of the event used by the postEvent command.

setEvent(event)

• event-A string which contains the event name.

Important: The name of the event must match the name of the event as defined in

the interactive channel exactly. It is case-sensitive.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling postEvent.

String eventName = "SearchExecution";

Command postEventCommand = new CommandImpl();

postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);

postEventCommand.setEventParameters(postEventParameters);

postEventCommand.setEvent(eventName);

setEventParameters
The setEventParameters method defines the event parameters used by the postEvent

command. These values are stored in the session data.

setEventParameters(eventParameters)

• eventParameters-an array of NameValuePair objects defining the event parameters.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 235

For example, if the event is logging an offer to contact history, you must include the

treatment code of the offer.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling postEvent.

NameValuePair parmB1 = new NameValuePairImpl();

parmB1.setName("SearchString");

parmB1.setValueAsString("mortgage");

parmB1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB2 = new NameValuePairImpl();

parmB2.setName("TimeStamp");

parmB2.setValueAsDate(new Date());

parmB2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parmB3 = new NameValuePairImpl();

parmB3.setName("Browser");

parmB3.setValueAsString("IE6");

parmB3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB4 = new NameValuePairImpl();

parmB4.setName("FlashEnabled");

parmB4.setValueAsNumeric(1.0);

parmB4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parmB5 = new NameValuePairImpl();

parmB5.setName("TxAcctValueChange");

parmB5.setValueAsNumeric(0.0);

parmB5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 236

NameValuePair parmB6 = new NameValuePairImpl();

parmB6.setName("PageTopic");

parmB6.setValueAsString("");

parmB6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair[] postEventParameters = { parmB1,

 parmB2,

 parmB3,

 parmB4,

 parmB5,

 parmB6

 };

. . .

Command postEventCommand = new CommandImpl();

postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);

postEventCommand.setEventParameters(postEventParameters);

postEventCommand.setEvent(eventName);

setGetOfferRequests
The setGetOfferRequests method sets the parameter for retrieving offers used by the

getOffersForMultipleInteractionPoints command.

setGetOfferRequests(numberRequested)

• numberRequested - an array of GetOfferRequest objects defining the parameter for

retrieving offers.

Return value

None.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 237

Example

The following example is an excerpt from a GetOfferRequest method calling

setGetOfferRequests.

GetOfferRequest request1 = new GetOfferRequest(5,

 GetOfferRequest.NO_DUPLICATION);

 request1.setIpName("IP1");

 OfferAttributeRequirements offerAttributes1 = new

 OfferAttributeRequirements();

 NameValuePairImpl attr1 = new NameValuePairImpl("attr1",

 NameValuePair.DATA_TYPE_NUMERIC, 1);

 NameValuePairImpl attr2 = new NameValuePairImpl("attr2",

 NameValuePair.DATA_TYPE_STRING, "value2");

 NameValuePairImpl attr3 = new NameValuePairImpl("attr3",

 NameValuePair.DATA_TYPE_STRING, "value3");

 NameValuePairImpl attr4 = new NameValuePairImpl("attr4",

 NameValuePair.DATA_TYPE_NUMERIC, 4);

 offerAttributes1.setNumberRequested(5);

 offerAttributes1.setAttributes(new NameValuePairImpl[] {attr1,

 attr2});

 OfferAttributeRequirements childAttributes1 = new

 OfferAttributeRequirements();

 childAttributes1.setNumberRequested(3);

 childAttributes1.setAttributes(new NameValuePairImpl[] {attr3});

 OfferAttributeRequirements childAttributes2 = new

 OfferAttributeRequirements();

 childAttributes2.setNumberRequested(3);

 childAttributes2.setAttributes(new NameValuePairImpl[] {attr4});

 offerAttributes1.setChildRequirements(Arrays.asList(childAttributes1,

 childAttributes2));

 request1.setOfferAttributes(offerAttributes1);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 238

 GetOfferRequest request2 = new GetOfferRequest(3,

 GetOfferRequest.ALLOW_DUPLICATION);

 request2.setIpName("IP2");

 OfferAttributeRequirements offerAttributes2 = new

 OfferAttributeRequirements();

 offerAttributes2.setNumberRequested(3);

 offerAttributes2.setAttributes(new NameValuePairImpl[] {new

 NameValuePairImpl("attr5",

 NameValuePair.DATA_TYPE_STRING, "value5")});

 request2.setOfferAttributes(offerAttributes2);

 GetOfferRequest request3 = new GetOfferRequest(2,

 GetOfferRequest.NO_DUPLICATION);

 request3.setIpName("IP3");

 request3.setOfferAttributes(null);

 Command getOffersMultiIPCmd = new CommandImpl();

 getOffersMultiIPCmd.setGetOfferRequests(new GetOfferRequest[]

 {request1,

 request2, request3});

setInteractiveChannel
The setInteractiveChannel method defines the name of the interactive channel used by

the startSession command.

setInteractiveChannel(interactiveChannel)

• interactiveChannel-a string containing the interactive channel name.

Important: The interactiveChannel must match the name of the interactive channel

as defined in Unica Campaign exactly. It is case-sensitive.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 239

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling startSession.

String interactiveChannel="Accounts Website";

. . .

Command startSessionCommand = new CommandImpl();

startSessionCommand.setInteractiveChannel(interactiveChannel);

setInteractionPoint
The setInteractionPoint method defines the name of the interaction point used by the

getOffers and postEvent commands.

setInteractionPoint(interactionPoint)

• interactionPoint-a string containing the interaction point name.

Important: The interactionPoint must match the name of the interaction point as

defined in the interactive channel exactly. It is case-sensitive.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling getOffers.

String interactionPoint = "Overview Page Banner 1";

int numberRequested=1;

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 240

Command getOffersCommand = new CommandImpl();

getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);

getOffersCommand.setInteractionPoint(interactionPoint);

getOffersCommand.setNumberRequested(numberRequested);

setMethodIdentifier
The setMethodIdentifier method defines the type of command contained in the

command object.

setMethodIdentifier(methodIdentifier)

• methodIdentifier-a string containing the type of command.

The valid values are:

◦ COMMAND_ENDSESSION-represents the endSession method.

◦ COMMAND_GETOFFERS-represents the getOffers method.

◦ COMMAND_GETPROFILE-represents the getProfile method.

◦ COMMAND_GETVERSION-represents the getVersion method.

◦ COMMAND_POSTEVENT-represents the postEvent method.

◦ COMMAND_SETAUDIENCE-represents the setAudience method.

◦ COMMAND_SETDEBUG-represents the setDebug method.

◦ COMMAND_STARTSESSION-represents the startSession method.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling getVersion and

endSession.

Command getVersionCommand = new CommandImpl();

getVersionCommand.setMethodIdentifier(Command.COMMAND_GETVERSION);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 241

Command endSessionCommand = new CommandImpl();

endSessionCommand.setMethodIdentifier(Command.COMMAND_ENDSESSION);

Command[] commands =

{

 getVersionCommand,

 endSessionCommand

};

setNumberRequested
The setNumberRequested method defines the number of offers requested by the getOffers

command.

setNumberRequested(numberRequested)

• numberRequested-an integer defining the number of offers requested by the

getOffers command.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling getOffers.

String interactionPoint = "Overview Page Banner 1";

int numberRequested=1;

Command getOffersCommand = new CommandImpl();

getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);

getOffersCommand.setInteractionPoint(interactionPoint);

getOffersCommand.setNumberRequested(numberRequested);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 242

setRelyOnExistingSession
The setRelyOnExistingSession method defines a boolean defining whether the

startSession command uses an existing session or not.

setRelyOnExistingSession(relyOnExistingSession)

If true, the session ID for executeBatch must match an existing session ID. If false, you

must supply a new session ID with the executeBatch method.

• relyOnExistingSession-a boolean (true or false).

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling startSession.

boolean relyOnExistingSession=false;

. . .

Command startSessionCommand = new CommandImpl();

startSessionCommand.setRelyOnExistingSession(relyOnExistingSession);

About the NameValuePair interface
Many methods in the Unica Interact API either return NameValuePair objects or require you

to pass NameValuePair objects as arguments. When passing as arguments into a method,

you should use the default implementation NameValuePairImpl.

getName
The getName method returns the name component of a NameValuePair object.

getName()

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 243

Return value

The getName method returns a string.

Example

The following example is an excerpt from a method which processes the response object

for getProfile.

for(NameValuePair nvp : response.getProfileRecord())

{

 System.out.println("Name:"+nvp.getName());

}

getValueAsDate
The getValueAsDate method returns the value of a NameValuePair object.

getValueAsDate()

You should use getValueDataType before using getValueAsDate to confirm you are

referencing the correct data type.

Return value

The getValueAsDate method returns a date.

Example

The following example is an excerpt from a method which processes a NameValuePair and

prints the value if it is a date.

if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATE))

{

 System.out.println("Value:"+nvp.getValueAsDate());

}

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 244

getValueAsNumeric
The getValueAsNumeric method returns the value of a NameValuePair object.

getValueAsNumeric()

You should use getValueDataType before using getValueAsNumeric to confirm you are

referencing the correct data type.

Return value

The getValueAsNumeric method returns a double. If, for example, you are retrieving a value

originally stored in your profile table as an Integer, getValueAsNumeric returns a double.

Example

The following example is an excerpt from a method which processes a NameValuePair and

prints the value if it is numeric.

if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))

{

 System.out.println("Value:"+nvp.getValueAsNumeric());

}

getValueAsString
The getValueAsString method returns the value of a NameValuePair object.

getValueAsString()

You should use getValueDataType before using getValueAsString to confirm you are

referencing the correct data type.

Return value

The getValueAsString method returns a string. If, for example, you are retrieving a value

originally stored in your profile table as a char, varchar, or char[10], getValueAsString

returns a string.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 245

Example

The following example is an excerpt from a method which processes a NameValuePair and

prints the value if it is a string.

if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_STRING))

{

 System.out.println("Value:"+nvp.getValueAsString());

}

getValueDataType
The getValueDataType method returns the data type of a NameValuePair object.

getValueDataType()

You should use getValueDataType before using getValueAsDate, getValueAsNumeric, or

getValueAsString to confirm you are referencing the correct data type.

Return value

The getValueDataType method returns a string indicating whether the NameValuePair

contains a data, number, or string.

The valid values are:

• DATA_TYPE_DATETIME-a date containing a date and time value.

• DATA_TYPE_NUMERIC-a double containing a number value.

• DATA_TYPE_STRING-a string containing a text value.

Example

The following example is an excerpt from a method which processes the response object

from a getProfile method.

for(NameValuePair nvp : response.getProfileRecord())

{

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 246

 System.out.println("Name:"+nvp.getName());

 if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))

 {

 System.out.println("Value:"+nvp.getValueAsDate());

 }

 else if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))

 {

 System.out.println("Value:"+nvp.getValueAsNumeric());

 }

 else

 {

 System.out.println("Value:"+nvp.getValueAsString());

 }

}

setName
The setName method defines the name component of a NameValuePair object.

setName(name)

• name-a string containing the name component of a NameValuePair object.

Return value

None.

Example

The following example shows how to define the name component of a NameValuePair.

NameValuePair custId = new NameValuePairImpl();

custId.setName("CustomerId");

custId.setValueAsNumeric(1.0);

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 247

custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair[] initialAudienceId = { custId };

setValueAsDate
The setValueAsDate method defines the value of a NameValuePair object.

setValueAsDate(valueAsDate)

• valueAsDate-a date containing the date and time value of a NameValuePair object.

Return value

None.

Example

The following example shows how to define the value component of a NameValuePair if the

value is a date.

NameValuePair parm2 = new NameValuePairImpl();

parm2.setName("TimeStamp");

parm2.setValueAsDate(new Date());

parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

setValueAsNumeric
The setValueAsNumeric method defines the value of a NameValuePair object.

setValueAsNumeric(valueAsNumeric)

• valueAsNumeric-a double containing the numeric value of a NameValuePair object.

Return value

None.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 248

Example

The following example shows how to define the value component of a NameValuePair if the

value is a numeric.

NameValuePair parm4 = new NameValuePairImpl();

parm4.setName("FlashEnabled");

parm4.setValueAsNumeric(1.0);

parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

setValueAsString
The setValueAsString method defines the value of a NameValuePair object.

setValueAsString(valueAsString)

• valueAsString-a string containing the value of a NameValuePair object

Return value

None.

Example

The following example shows how to define the value component of a NameValuePair if the

value is a numeric.

NameValuePair parm3 = new NameValuePairImpl();

parm3.setName("Browser");

parm3.setValueAsString("IE6");

parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

setValueDataType
The setValueDataType method defines the data type of a NameValuePair object.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 249

getValueDataType(valueDataType)

The valid values are:

• DATA_TYPE_DATETIME-a date containing a date and time value.

• DATA_TYPE_NUMERIC-a double containing a number value.

• DATA_TYPE_STRING-a string containing a text value.

Return value

None.

Example

The following examples show how to set the data type of the value of a NameValuePair.

NameValuePair parm2 = new NameValuePairImpl();

parm2.setName("TimeStamp");

parm2.setValueAsDate(new Date());

parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parm3 = new NameValuePairImpl();

parm3.setName("Browser");

parm3.setValueAsString("IE6");

parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm4 = new NameValuePairImpl();

parm4.setName("FlashEnabled");

parm4.setValueAsNumeric(1.0);

parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

setScope(scope)
The setScope method defines the lifetime of this NameValuePair object.

The following are the valid values.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 250

• Scope.INVOCATION: The NameValuePair object is effective during the process of this

API invocation. Its value is not saved in the session.

• Scope.SESSION: the NameValuePair object is effective from the beginning of this API

invocation until it is removed. Its value is saved in the session. This is the default.

Return value

None

getScope()
The getScope method gets the scope of NamevaluePair method.

The following are the valid values.

• Scope.INVOCATION: The NameValuePair object is effective during the process of this

API invocation. Its value is not saved in the session.

• Scope.SESSION: The NameValuePair object is effective from the beginning of this API

invocation until it is removed. Its value is saved in the session.

Return value

The getScope method returns a value of Scope enum.

About the Offer class
The Offer class contains methods which define an Offer object. This offer object contains

many of the same properties of an offer in Unica Campaign.

The offer object contains the following attributes:

• AdditionalAttributes-NameValuePairs containing any custom offer attributes you

have defined in Unica Campaign.

• Description-The description of the offer.

• EffectiveDate-The effective date of the offer.

• ExpirationDate-The expiration date of the offer.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 251

• OfferCode-The offer code of the offer.

• OfferName-The name of the offer.

• TreatmentCode-The treatment code of the offer.

• Score-The marketing score of the offer, or the score defined by the

ScoreOverrideTable if the enableScoreOverrideLookup property is true.

getAdditionalAttributes
The getAdditionalAttributes method returns the custom offer attributes defined in Unica

Campaign.

getAdditionalAttributes()

Return value

The getAdditionalAttributes method returns an array of NameValuePair objects.

Example

The following example sorts through all the additional attributes, checking for the effective

date and expiration date, and printing out the other attributes.

 for(NameValuePair offerAttribute : offer.getAdditionalAttributes())

 {

 // check to see if the effective date exists

 if(offerAttribute.getName().equalsIgnoreCase("effectiveDate"))

 {

 System.out.println("Found effective date");

 }

 // check to see if the expiration date exists

 else

 if(offerAttribute.getName().equalsIgnoreCase("expirationDate"))

 {

 System.out.println("Found expiration date");

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 252

 }

 printNameValuePair(offerAttribute);

 }

 }

 public static void printNameValuePair(NameValuePair nvp)

 {

 // print out the name:

 System.out.println("Name:"+nvp.getName());

 // based on the datatype, call the appropriate method to get the

 value

 if(nvp.getValueDataType()==NameValuePair.DATA_TYPE_DATETIME)

 System.out.println("DateValue:"+nvp.getValueAsDate());

 else if(nvp.getValueDataType()==NameValuePair.DATA_TYPE_NUMERIC)

 System.out.println("NumericValue:"+nvp.getValueAsNumeric());

 else

 System.out.println("StringValue:"+nvp.getValueAsString());

 }

getDescription
The getDescription method returns the description of the offer defined in Unica Campaign.

getDescription()

Return value

The getDescription method returns a string.

Example

The following example prints the description of an offer.

for(Offer offer : offerList.getRecommendedOffers())

{

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 253

 // print offer

 System.out.println("Offer Description:"+offer.getDescription());

}

getOfferCode
The getOfferCode method returns the offer code of the offer as defined in Unica Campaign.

getOfferCode()

Return value

The getOfferCode method returns an array of strings containing the offer code of the offer.

Example

The following example prints the offer code of an offer.

for(Offer offer : offerList.getRecommendedOffers())

{

 // print offer

 System.out.println("Offer Code:"+offer.getOfferCode());

}

getOfferName
The getOfferName method returns the name of the offer as defined in Unica Campaign.

getOfferName()

Return value

The getOfferName method returns string.

Example

The following example prints the name of an offer.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 254

for(Offer offer : offerList.getRecommendedOffers())

{

// print offer

System.out.println("Offer Name:"+offer.getOfferName());

}

getScore
The getScore method returns a score, which is based on the offers you configured.

getScore()

The getScore method returns one of the following:

• If you did not enabled the default offers table, score override table, or built-in learning,

this method returns the marketing score of the offer as defined on the interaction

strategy tab.

• If you enabled the default offers or score override table and not enabled built-

in learning, this method returns the score of the offer as defined by the order of

precedence between the default offers table, the marketer's score, and the score

override table.

• If you enabled built-in learning, this method returns the final score that the built-in

learning used to order offers.

Return value

The getScore method returns an integer that represents the score of the offer.

Example

The following example prints the score of an offer.

for(Offer offer : offerList.getRecommendedOffers())

{

// print offer

System.out.println("Offer Score:"+offer.getOfferScore());

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 255

}

getTreatmentCode
The getTreatmentCode method returns the treatment code of the offer as defined in Unica

Campaign.

getTreatmentCode()

Because Unica Campaign uses the treatment code to identify the instance of the offer

served, this code must be returned as an event parameter when using the postEvent

method to log a contact, acceptance, or rejection event of the offer. If you are logging

an offer acceptance or rejection, you must set the name value of the NameValuePair

representing the treatment code to UACIOfferTrackingCode.

Return value

The getTreatmentCode method returns a string.

Example

The following example prints the treatment code of an offer.

for(Offer offer : offerList.getRecommendedOffers())

{

 // print offer

 System.out.println("Offer Treatment Code:"+offer.getTreatmentCode());

}

About the OfferList class
The OfferList class contains methods which define the results of the getOffers method.

The OfferList object contains the following attributes:

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 256

• DefaultString-The default string defined for the interaction point in the interactive

channel.

• RecommendedOffers-An array of the Offer objects requested by the getOffers

method.

The OfferList class works with lists of offers. This class is not related to Unica Campaign

offer lists.

getDefaultString
The getDefaultString method returns the default string for the interaction point as defined

in Unica Campaign.

getDefaultString()

If the RecommendedOffers object is empty, you should configure your touchpoint to present

this string to ensure some content is presented. Unica Interact populates the DefaultString

object only if the RecommendedOffers object is empty.

Return value

The getDefaultString method returns a string.

Example

The following example gets the default string if the offerList object does not contain any

offers.

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

{

 for(Offer offer : offerList.getRecommendedOffers())

 {

 System.out.println("Offer Name:"+offer.getOfferName());

 }

}

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 257

else // count on the default Offer String

 System.out.println("Default offer:"+offerList.getDefaultString());

getRecommendedOffers
The getRecommendedOffers method returns an array of Offer objects requested by the

getOffers method.

getRecommendedOffers()

If the response to getRecommendedOffer is empty, the touchpoint should present the result

of getDefaultString.

Return value

The getRecommendedOffers method returns an Offer object.

Example

The following example processes the OfferList object, and prints the offer name for all the

recommended offers.

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

{

 for(Offer offer : offerList.getRecommendedOffers())

 {

 // print offer

 System.out.println("Offer Name:"+offer.getOfferName());

 }

}

else // count on the default Offer String

System.out.println("Default offer:"+offerList.getDefaultString());

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 258

About the Response class
The Response class contains methods which define the results of any of the InteractAPI

class methods.

The Response object contains the following attributes:

• AdvisoryMessages-an array of advisory messages. This attribute is populated only if

there were warnings or errors when the method ran.

• ApiVersion-a string containing the API version. This attribute is populated by the

getVersion method.

• OfferList-the OfferList object containing the offers requested by the getOffers

method.

• ProfileRecord-an array of NameValuePairs containing profile data. This attribute is

populated by the getProfile method.

• SessionID-a string defining the session ID. This is returned by all InteractAPI class

methods.

• StatusCode-a number stating if the method ran without error, with a warning, or with

errors. This is returned by all InteractAPI class methods.

getAdvisoryMessages
The getAdvisoryMessages method returns an array of Advisory Messages from the

Response object.

getAdvisoryMessages()

Return value

The getAdvisoryMessages method returns an array of Advisory Message objects.

Example

The following example gets the AdvisoryMessage objects from a Response object and

iterates through them, printing out the messages.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 259

AdvisoryMessage[] messages = response.getAdvisoryMessages();

 for(AdvisoryMessage msg : messages)

 {

 System.out.println(msg.getMessage());

 // Some advisory messages may have additional detail:

 System.out.println(msg.getDetailMessage());

 }

getApiVersion
The getApiVersion method returns the API version of a Response object.

getApiVersion()

The getVersion method populates the ApiVersion attribute of a Response object.

Return value

The Response object returns a string.

Example

The following example is an excerpt from a method which processes the response object

for getVersion.

if(response.getStatusCode() == Response.STATUS_SUCCESS)

{

 System.out.println("getVersion call processed with no warnings or

 errors");

 System.out.println("API Version:" + response.getApiVersion());

}

getOfferList
The getOfferList method returns the OfferList object of a Response object.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 260

getOfferList()

The getOffers method populates the OfferList object of a Response object.

Return value

The Response object returns an OfferList object.

Example

The following example is an excerpt from a method which processes the response object

for getOffers.

OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)

{

 for(Offer offer : offerList.getRecommendedOffers())

 {

 // print offer

 System.out.println("Offer Name:"+offer.getOfferName());

 }

}

getAllOfferLists
The getAllOfferLists method returns an array of all OfferLists of a Response object.

getAllOfferLists()

This is used by the getOffersForMultipleInteractionPoints method that populates the

OfferList array object of a Response object.

Return value

The Response object returns an OfferList array.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 261

Example

The following example is an excerpt from a method which processes the response object

for getOffers.

OfferList[] allOfferLists = response.getAllOfferLists();

 if (allOfferLists != null) {

 for (OfferList ol : allOfferLists) {

 System.out.println("The following offers are delivered for interaction

 point "

 + ol.getInteractionPointName() + ":");

 for (Offer o : ol.getRecommendedOffers()) {

 System.out.println(o.getOfferName());

 }

 }

 }

getProfileRecord
The getProfileRecord method returns the profile records for the current session as an

array of NameValuePair objects. These profile records also include any eventParameters

added earlier in the runtime session.

getProfileRecord()

The getProfile method populates the profile record NameValuePair objects of a Response

object.

Return value

The Response object returns an array of NameValuePair objects.

Example

The following example is an excerpt from a method which processes the response object

for getOffers.

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 262

for(NameValuePair nvp : response.getProfileRecord())

{

 System.out.println("Name:"+nvp.getName());

 if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))

 {

 System.out.println("Value:"+nvp.getValueAsDate());

 }

 else if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))

 {

 System.out.println("Value:"+nvp.getValueAsNumeric());

 }

 else

 {

 System.out.println("Value:"+nvp.getValueAsString());

 }

}

getSessionID
The getSessionID method returns session ID.

getSessionID()

Return value

The getSessionID method returns a string.

Example

The following example shows a message you can display at the end or beginning of your

error handling to indicate to which session any errors pertain.

System.out.println("This response pertains to

 sessionId:"+response.getSessionID());

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 263

getStatusCode
The getStatusCode method returns the status code of a Response object.

getStatusCode()

Return value

The Response object returns an integer.

• 0 - STATUS_SUCCESS - The method called completed with no errors. There may or

may not be Advisory Messages.

• 1 - STATUS_WARNING - The method called completed with at least one warning

message (but no errors). Query Advisory Messages for more details.

• 2 - STATUS_ERROR - The method called did not complete successfully and has at

least one error message. Query Advisory Messages for more details.

Example

The following is an example of how you can use getStatusCode in error handling.

public static void processSetDebugResponse(Response response)

{

 // check if response is successful or not

 if(response.getStatusCode() == Response.STATUS_SUCCESS)

 {

 System.out.println("setDebug call processed with no warnings or

 errors");

 }

 else if(response.getStatusCode() == Response.STATUS_WARNING)

 {

 System.out.println("setDebug call processed with a warning");

 }

 else

 {

Unica Interact V12.1.3 Administrator's Guide | 8 - Classes and methods for the Unica Interact Java, SOAP, and REST API | 264

 System.out.println("setDebug call processed with an error");

 }

 // For any non-successes, there should be advisory messages explaining

 why

 if(response.getStatusCode() != Response.STATUS_SUCCESS)

 printDetailMessageOfWarningOrError("setDebug",

 response.getAdvisoryMessages());

}

Chapter 9. Classes and methods for the Unica
Interact JavaScript API
The following sections list requirements and other details you should know before you work

with the Unica Interact JavaScript API.

The Unica Interact API supports a javascript flavor to allow for end-user client (browser) to

server communication.

Note: This section assumes you are familiar with a JavaScript-based API.

Note: Multiple occurrences of any parameter in a single API call is not supported.

JavaScript prerequisites
Before you use the Unica Interact JavaScript API on a website you must include the

interactapi.js file on your web pages.

Working with session data
When you initiate a session with the startSession method, session data is loaded into

memory. Throughout the session, you can read and write to the session data (which is a

superset of the static profile data).

The session contains the following data:

• Static profile data

• Segment assignments

• Real-time data

• Offer recommendations

All session data is available until you call the endSession method, or the sessionTimeout

time elapses. Once the session ends, all data not explicitly saved to contact or response

history or some other database table is lost.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 266

The data is stored as a set of name-value pairs. If the data is read from a database table, the

name is the column of the table.

You can create these name-value pairs as you work with the Unica Interact API. You do

not need to declare all name-value pairs in a global area. If you set new event parameters

as name-value pairs, the runtime environment adds the name-value pairs to the session

data. For example if you use event parameters with the postEvent method, the runtime

environment adds the event parameters to the session data, even if the event parameters

were not available in the profile data. This data exists in the session data only.

You can overwrite session data at any time. For example, if part of the customer

profile includes creditScore, you can pass in an event parameter using the custom

type NameValuePair. In the NameValuePair class, you can use the setName and

setValueAsNumeric methods to change the value. The name needs to match. Within

the session data, the name is not case-sensitive. Therefore, the name creditscore or

CrEdItScOrE would both overwrite creditScore.

Only the last data written to the session data is kept. For example, startSession loads the

profile data for the value of lastOffer. A postEvent method overwrites lastOffer. Then a

second postEvent method overwrites lastOffer. The runtime environment keeps only the

data written by the second postEvent method in the session data.

When the session ends, the data is lost, unless you made special considerations such

as using a Snapshot process in your interactive flowchart to write the data to a database

table. If you are planning on using Snapshot processes, remember that the names need to

match the limitations of your database. For example, if your are allowed only 256 characters

for the name of a column, then the name for the name-value pair should not exceed 256

characters.

Working with the callback parameter
The callback function is an additional parameter of each method of the Unica Interact

JavaScript API.

The main browser process is a single threaded event loop. Executing a long-running

operation within a single-threaded event loop, blocks the process. This is stops the

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 267

process from processing other events while it waits for your operation to complete. In

order to prevent blocks on long-running operations, the XMLHttpRequest provides an

asynchronous interface. You pass it a callback to run after the operation is complete, and

while it processes, it gives control back to the main event loop instead of blocking the

process.

If the method was successful, the callback function calls onSuccess. If the method failed,

the callback function calls onError.

For example, if you wanted to display offers on your web page, you would use the

getOffers method and use the callback to display on the page. The web page behaves

normally and does not wait for Unica Interact to return the offers. Instead, when Unica

Interact does return the offers, the response is sent back in the callback parameter. You can

parse the callback data and show offers on the page.

You can use one generic callback for all functions or you can also use specific callbacks for

specific functions.

You can use var callback = InteractAPI.Callback.create(onSuccess, onError); to

create a generic callback function.

You can use the following function to create a specific callback function for the getOffers

method.

var callbackforGetOffer = InteractAPI.Callback.create(onSuccessofGetOffer,

onErrorofGetOffer);

About the InteractAPI class
The InteractAPI class contains the methods which you use to integrate your touchpoint

with the runtime server. All other classes and methods in the Unica Interact API support the

methods in this class.

You must compile your implementation against interact_client.jar located in the lib

directory of your Unica Interact runtime environment installation.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 268

startSession
The startSession method creates and defines a runtime session.

 function callStartSession(commandsToExecute, callback) {

 //read configured start session

 var ssId = document.getElementById('ss_sessionId').value;

 var icName = document.getElementById('ic').value;

 var audId = document.getElementById('audienceId').value;

 var audLevel = document.getElementById('audienceLevel').value;

 var params = document.getElementById('ss_parameters').value;

 var relyOldSs = document.getElementById('relyOnOldSession').value;

 var debug = document.getElementById('ss_isDebug').value;

 InteractAPI.startSession(ssId, icName,

 getNameValuePairs(audId), audLevel,

 getNameValuePairs(params), relyOldSs,

 debug, callback) ;

}

startSession can trigger up to five actions:

• create a runtime session.

• load visitor profile data for the current audience level into the runtime session,

including any dimension tables marked for loading in the table mapping defined for

the interactive channel.

• trigger segmentation, running all interactive flowcharts for the current audience level.

• load offer suppression data into the session, if the enableOfferSuppressionLookup

property is set to true.

• load score override data into the session, if the enableScoreOverrideLookup property

is set to true.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 269

The startSession method requires the following parameters:

• sessionID-a string which identifies the session ID. You must define the session ID. For

example, you could use a combination of customer ID and timestamp.

To define what makes a runtime session, a session id has to be specified. This

value is managed by the client. All method calls for the same session id has to be

synchronized by the client. The behavior for concurrent API calls with the same

session id is undefined.

• relyOnExistingSession - a boolean which defines whether this session uses a new

or an existing session. Valid values are true or false. If true, you must supply an

existing session ID with the startSession method. If false, you must supply a new

session ID.

If you set relyOnExistingSession to true and a session exists, the runtime

environment uses the existing session data and does not reload any data or

trigger segmentation. If the session does not exist, the runtime environment

creates a new session, including loading data and triggering segmentation. Setting

relyOnExistingSession to true and using it with all startSession calls is useful if

your touchpoint has a longer session length than the runtime session. For example,

a web site session is alive for 2 hours, but the runtime session is only alive for 20

minutes.

If you call startSession twice with the same session ID, all session data from the first

startSession call is lost if relyOnExistingSession is false.

• debug - a boolean which enables or disables debug information. Valid values are true

or false. If true, Unica Interact logs debug information to the runtime server logs. The

debug flag is set for each session individually. Therefore, you can trace debug data for

an individual session.

• interactiveChannel-a string defining the name of the interactive channel this session

refers to. This name must match the name of the interactive channel defined in Unica

Campaign exactly.

• audienceID - an array of NameValuePairImpl objects where the names must match

the physical column names of any table containing the audience ID.

• audienceLevel - a string defining the audience level.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 270

• parameters - NameValuePairImpl objects identifying any parameters that need to be

passed with startSession. These values are stored in the session data and can be

used for segmentation.

If you have several interactive flowcharts for the same audience level, you must

include a superset of all columns in all the tables. If you configure the runtime to load

the profile table, and the profile table contains all the columns you require, you do

not need to pass any parameters, unless you want to overwrite the data in the profile

table. If your profile table contains a subset of the required columns, you must include

the missing columns as parameters.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

If the audienceID or audienceLevel are invalid and relyOnExistingSession is false, the

startSession call fails. If the interactiveChannel is invalid, startSession fails, whether

relyOnExistingSession is true or false.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID, but the first session has expired, Unica Interact creates a new session.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID but a different audienceID or audienceLevel, the runtime server changes

the audience for the existing session.

If relyOnExistingSession is true, and you make a second startSession call using the

same sessionID but a different interactiveChannel, the runtime server creates a new

session.

Return value

The runtime server responds to startSession with a Response object with the following

attributes populated:

• AdvisoryMessages (if StatusCode does not equal 0)

• ApiVersion

• SessionID

• StatusCode

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 271

Offer deduplication across offer attributes
Using the Unica Interact application programming interface (API), two API calls

deliver offers: getOffers and getOffersForMultipleInteractionPoints.

getOffersForMultipleInteractionPoints can prevent the return of duplicate offers at

the OfferID level, but cannot deduplicate offers across offer category. So, for example,

for Unica Interact to return only one offer from each offer category, a workaround was

previously required. With the introduction of two parameters to the startSession API call,

offer deduplication across offer attributes, such as category, is now possible.

This list summarizes the parameters that were added to the startSession API call. For

more information about these parameters or any aspect of the Unica Interact API, see the

Unica Interact Administrator's Guide, or the Javadoc files included with your Unica Interact

installation in <Unica Interact_Home>/docs/apiJavaDoc.

• UACIOfferDedupeAttribute. To create a startSession API call with offer

deduplication, so that the subsequent getOffer calls return only one offer from each

category, you must include the UACIOfferDedupeAttribute parameter as part of the

API call. You can specify a parameter in the name,value,type format, as shown here:

UACIOfferDedupeAttribute,<attributeName>,string

In this example, you would replace <attributeName> with the name of the offer

attribute you want to use as the criterion for deduplication, such as Category.

Note: Unica Interact examines the offers that have the same attribute value

you specify (such as Category) and deduplicate to remove all but the offer

that has the highest score. If the offers that have the duplicate attribute also

have identical scores, Unica Interact returns a random selection from among

the matching offers.

• UACINoAttributeDedupeIfFewerOffer. When you include the

UACIOfferDedupeAttribute in the startSession call, you can also set this

UACINoAttributeDedupeIfFewerOffer parameter to specify the behavior in cases

where the offer list after deduplication no longer contains enough offers to satisfy the

original request.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 272

For example, if you set UACIOfferDedupeAttribute to use the offer category to

deduplicate offers, and your subsequent getOffers call requests that eight offers be

returned, deduplication might result in fewer than eight eligible offers. In that case,

setting UACINoAttributeDedupeIfFewerOffer parameter to true would result in

adding some of the duplicated to the eligible list to satisfy the requested number of

offers. In this example, if you set the parameter to false, the number of offers that are

returned would be fewer than the requested number.

UACINoAttributeDedupeIfFewerOffer is set to true by default.

For example, suppose you specified as a startSession parameter that the deduplication

criterion is offer Category, as shown here:

UACIOfferDedupeAttribute,Category,string;

UACINoAttributeDedupeIfFewerOffer,1,string

By default, the UACIOfferDedupeAttribute will not deduplicate offers if fewer than the

requested number is returned . However, to ensure that the deduplication happens when

fewer than requested offers are returned, the UACINoAttributeDedupeIfFewerOffer

parameter must be provided and must be set to 1.

These parameters together cause Unica Interact to deduplicate offers based on the offer

attribute "Category," and to return only the deduplicated offers even if the resulting number

of offers is fewer than requested (UACINoAttributeDedupeIfFewerOffer is false).

When you issue a getOffers API call, the original set of eligible offers might include these

offers:

• Category=Electronics: Offer A1 with a score of 100 and Offer A2 with a score of 50.

• Category=Smartphones: Offer B1 with a score of 100, Offer B2 with a score of 80, and

offer B3 with a score of 50.

• Category=MP3Players: Offer C1 with a score of 100, Offer C2 with a score of 50.

In this case, there were two duplicate offers that match the first category, three duplicate

offers that match the second category, and two duplicate offers that match the third

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 273

category. The offers that are returned would be the highest scoring offers from each

category, which are Offer A1, Offer B1, and Offer C1.

If the getOffers API call requested six offers, this example set

UACINoAttributeDedupeIfFewerOffer to false, so only three offers would be returned.

If the getOffers API call requested six offers, and this example omitted the

UACINoAttributeDedupeIfFewerOffer parameter, or specifically set it to true, some of the

duplicate offers would be included in the result to satisfy the requested number.

postEvent
The postEvent method enables you to execute any event defined in the interactive channel.

function callPostEvent(commandsToExecute, callback) {

 var ssId = document.getElementById('pe_sessionId').value;

 var ev = document.getElementById('event').value;

 var params = document.getElementById('parameters').value;

 InteractAPI.postEvent(ssId, ev, getNameValuePairs(params),

 callback);

}

• sessionID: a string identifying the session ID.

• eventName: a string identifying the name of the event.

Note: The name of the event must match the name of the event as defined in

the interactive channel. This name is case-insensitive.

• eventParameters. NameValuePairImpl objects identifying any parameters that need

to be passed with the event. These values are stored in the session data.

If this event triggers re-segmentation, you must ensure that all data required by the

interactive flowcharts is available in the session data. If any of these values have not

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 274

been populated by prior actions (for example, from startSession or setAudience, or

loading the profile table) you must include an eventParameter for every missing value.

For example, if you have configured all profile tables to load into memory, you must

include a NameValuePair for temporal data required for the interactive flowcharts.

If you are using more than one audience level, you most likely have different sets of

eventParameters for each audience level. You should include some logic to ensure

you are selecting the correct set of parameters for the audience level.

Important: If this event logs to response history, you must pass the treatment

code for the offer. You must define the name for the NameValuePair as

"UACIOfferTrackingCode".

You can only pass one treatment code per event. If you do not pass the treatment

code for an offer contact, Unica Interact logs an offer contact for every offer in the

last recommended list of offers. If you do not pass the treatment code for a response,

Unica Interact returns an error.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

• There are several other reserved parameters used with postEvent and other methods

and are discussed later in this section.

Any request for re-segmentation or writing to contact or response history does not wait for

a response.

Re-segmentation does not clear prior segmentation results for the current audience level.

You can use the UACIExecuteFlowchartByName parameter to define specific flowcharts to

run. The getOffers method waits for re-segmentation to finish before running. Therefore,

if you call a postEvent method, which triggers a re-segmentation immediately before a

getOffers call, there might be a delay.

Return value

The runtime server responds to postEvent with a Response object with the following

attributes populated:

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 275

• AdvisoryMessages

• ApiVersion

• OfferList

• Profile

• SessionID

• StatusCode

getOffers
The getOffers method enables you to request offers from the runtime server.

function callGetOffers(commandsToExecute, callback) {

 var ssId = document.getElementById('go_sessionId').value;

 var ip = document.getElementById('go_ipoint').value;

 var nofRequested = 5 ;

 var nreqString = document.getElementById('offersRequested').value;

 InteractAPI.getOffers(ssId, ip, nofRequested, callback);

}

• session ID-a string identifying the current session.

• Interaction point-a string identifying the name of the interaction point this method

references.

Note: This name must match the name of the interaction point defined in

interactive channel exactly.

• nofRequested-an integer identifying the number of offers requested.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 276

The getOffers method waits the number of milliseconds defined in the

segmentationMaxWaitTimeInMS property for all re-segmentation to complete before

running. Therefore, if you call a postEvent method which triggers a re-segmentation or a

setAudience method immediately before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffers with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

• Profile

• SessionID

• StatusCode

• NameValuePair

Decimal places in offer scores are returned in the getOffer response in the NameValue Pair.

When offers are returned to the requesting inbound channels, the channels use the scores

to prioritize the offers. The decimal digits are not removed, and so the channel knows which

offer has a higher score in case decimal numbers are returned.

getOffersForMultipleInteractionPoints
The getOffersForMultipleInteractionPoints method enables you to request offers from

the runtime server for multiple IPs with deduplication.

function callGetOffersForMultipleInteractionPoints(commandsToExecute,

 callback) {

 var ssId = document.getElementById('gop_sessionId').value;

 var requestDetailsStr =

 document.getElementById('requestDetail').value;

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 277

 //trim string

 var trimmed = requestDetailsStr.replace(/\{/g, "");

 var parts = trimmed.split("}");

 //sanitize strings

 for(i = 0; i < parts.length; i += 1) {

 parts[i] = parts[i].replace(/^\s+|\s+$/g, "");

 }

 //build get offer requests

 var getOffReqs = [];

 for(var i = 0; i < parts.length; i += 1) {

 var getofReqObj = parseGetOfferReq(parts[i]);

 if (getofReqObj) {

 getOffReqs.push(getofReqObj);

 InteractAPI.getOffersForMultipleInteractionPoints

 (ssId, getOffReqs, callback);

}

• session ID - a string identifying the current session.

• requestDetailsStr - a string providing an array of GetOfferRequest objects.

Each GetOfferRequest object specifies:

◦ ipName - The interaction point (IP) name for which the object is requesting

offers

◦ numberRequested - The number of unique offers it needs for the specified IP

◦ offerAttributes - Requirements on the attributes of the delivered offers using an

instance of OfferAttributeRequirements

◦ duplicationPolicy - Duplication policy ID for the offers that will be delivered

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 278

Duplication policies determine whether duplicated offers will be returned

across different interaction points in a single method call. (Within an individual

interaction point, duplicated offers are never returned.) Currently, two

duplication policies are supported.

▪ NO_DUPLICATION (ID value = 1). None of the offers that have been

included in the preceding GetOfferRequest instances will be included

in this GetOfferRequest instance (that is, Unica Interact will apply de-

duplication).

▪ ALLOW_DUPLICATION (ID value = 2). Any of the offers satisfying the

requirements specified in this GetOfferRequest instance will be included.

The offers that have been included in the preceding GetOfferRequest

instances will not be reconciled.

◦ callback - If the method was successful, the callback function calls onSuccess.

If the method failed, the callback function calls onError.

The order of requests in the array parameter is also the priority order when offers are

being delivered.

For example, suppose the IPs in the request are IP1, then IP2, that no duplicated

offers are allowed (a duplication policy ID = 1), and each is requesting two offers. If

Unica Interact finds offers A, B, and C for IP1 and offers A and D for IP2, the response

will contain offers A and B for IP1, and only offer D for IP2.

Also note that when the duplication policy ID is 1, the offers that have been delivered

via an IP with higher priority will not be delivered via this IP.

The getOffersForMultipleInteractionPoints method waits the number of milliseconds

defined in the segmentationMaxWaitTimeInMS property for all re-segmentation to complete

before running. Therefore, if you call a postEvent method which triggers a re-segmentation

or a setAudience method immediately before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffersForMultipleInteractionPoints with a

Response object with the following attributes populated:

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 279

• AdvisoryMessages

• ApiVersion

• Array of OfferList

• Profile

• SessionID

• StatusCode

setAudience
The setAudience method enables you to set the audience ID and level for a visitor.

function callSetAudience(commandsToExecute, callback) {

 var ssId = document.getElementById('sa_sessionId').value;

 var audId = document.getElementById('sa_audienceId').value;

 var audLevel = document.getElementById('sa_audienceLevel').value;

 var params = document.getElementById('sa_parameters').value;

 InteractAPI.setAudience(ssId, getNameValuePairs(audId),audLevel,

 getNameValuePairs(params), callback);

}

• sessionID - a string identifying the session ID.

• audienceID - an array of NameValuePairImpl objects that defines the audience ID.

• audienceLevel - a string that defines the audience level.

• parameters - NameValuePairImpl objects identifying any parameters that need to be

passed with setAudience. These values are stored in the session data and can be

used for segmentation.

You must have a value for every column in your profile. This is a superset of all

columns in all the tables defined for the interactive channel and any real-time data. If

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 280

you have already populated all the session data with startSession or postEvent, you

do not need to send new parameters.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

The setAudience method triggers a re-segmentation. The getOffers method waits for

re-segmentation to finish before running. Therefore, if you call a setAudience method

immediately before a getOffers call, there may be a delay.

The setAudience method also loads the profile data for the audience ID. You can use the

setAudience method to force a reload of the same profile data loaded by the startSession

method.

The setAudience method reloads the while list and the black list table in an

existing session . You can use the setAudience method with the parameters

UACIPurgePriorWhiteListOnLoad and UACIPurgePriorBlackListOnLoad to reload the

white list table and black list table in an existing session.

By default, when the setAudience method is called, all the contents of the

black list is removed. You can set the UACIPurgePriorWhiteListOnLoad and

UACIPurgePriorBlackListOnLoad parameters in the setAudience call as follows:

• If you set UACIPurgePriorBlackListOnLoad= 0, all the contents of the white list table

are preserved.

• If you set UACIPurgePriorWhiteListOnLoad= 1 the contents of the table are removed

and the contents of the white list or black list for the audience ID will be loaded from

the database. Once completed, re-segmentation will start.

Return value

The runtime server responds to setAudience with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 281

• Profile

• SessionID

• StatusCode

getProfile
The getProfile method enables you to retrieve the profile and temporal information about

the visitor visiting the touchpoint.

function callGetProfile(commandsToExecute, callback) {

 var ssId = document.getElementById('gp_sessionId').value;

 InteractAPI.getProfile(ssId, callback);

}

• session ID-a string identifying the session ID.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

Return value

The runtime server responds to getProfile with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

• ProfileRecord

• SessionID

• StatusCode

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 282

endSession
The endSession method marks the end of the runtime session. When the runtime server

receives this method, the runtime server logs to history, clears memory, and so on.

function callEndSession(commandsToExecute, callback) {

 var ssId = document.getElementById('es_sessionId').value;

 InteractAPI.endSession(ssId, callback);

}

• session ID - Unique string identifying the session.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

If the endSession method is not called, runtime sessions timeout. The timeout period is

configurable with the sessionTimeout property.

Return value

The runtime server responds to the endSession method with the Response object with the

following attributes populated:

• SessionID

• ApiVersion

• OfferList

• Profile

• StatusCode

• AdvisoryMessages

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 283

setDebug
The setDebug method enables you to set the logging verbosity level for all code paths for

the session.

function callSetDebug(commandsToExecute, callback) {

 var ssId = document.getElementById('sd_sessionId').value;

 var isDebug = document.getElementById('isDebug').value;

 InteractAPI.setDebug(ssId, isDebug, callback);

}

• sessionID-a string which identifies the session ID.

• debug-a boolean which enables or disables debug information. Valid values are true

or false. If true, Unica Interact logs debug information to the runtime server log.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

Return value

The runtime server responds to setDebug with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

• Profile

• SessionID

• StatusCode

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 284

getVersion
The getVersion method returns the version of the current implementation of the Unica

Interact runtime server.

function callGetVersion(commandsToExecute, callback) {

 InteractAPI.getVersion(callback);

}

Best practice is to use this method when you initialize the touchpoint with the Unica Interact

API.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

Return value

The runtime server responds to the getVersion with a Response object with the following

attributes populated:

• AdvisoryMessages

• ApiVersion

• OfferList

• Profile

• SessionID

• StatusCode

executeBatch
The executeBatch method enables you to execute several methods with a single request to

the runtime server.

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 285

function callExecuteBatch(commandsToExecute, callback) {

 if (!commandsToExecute)

 return ;

 InteractAPI.executeBatch(commandsToExecute.ssid,

 commandsToExecute.commands, callback);

}

• session ID-A string identifying the session ID. This session ID is used for all

commands run by this method call.

• commands-An array of command objects, one for each command you want to

perform.

• callback - If the method was successful, the callback function calls onSuccess. If the

method failed, the callback function calls onError.

The result of calling this method is equivalent to explicitly calling each method in the

Command array. This method minimizes the number of actual requests to the runtime

server. The runtime server runs each method serially; for each call, any error or warnings

are captured in the Response object that corresponds to that method call. If an error is

encountered, the executeBatch continues with the rest of the calls in the batch. If the

running of any method results in an error, the top level status for the BatchResponse object

reflects that error. If no error occurred, the top level status reflects any warnings that may

have occurred. If no warning occurred, then the top level status reflects a successful run of

the batch.

Return value

The runtime server responds to the executeBatch with a BatchResponse object.

JavaScript API example

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 286

 function isJavaScriptAPISelected() {

 var radios = document.getElementsByName('api');

 for (var i = 0, length = radios.length; i < length; i++) {

 if (radios[i].checked) {

 if (radios[i].value === 'JavaScript')

 return true ;

 else // only one radio can be logically checked

 break;

 }

 }

 return false;

 }

 function processFormForJSInvocation(e) {

 if (!isJavaScriptAPISelected())

 return;

 if (e.preventDefault) e.preventDefault();

 var serverurl = document.getElementById('serviceUrl').value ;

 InteractAPI.init({ "url" : serverurl });

 var commandsToExecute = { "ssid" : null, "commands" : [] };

 var callback = InteractAPI.Callback.create(onSuccess, onError);

 callStartSession(commandsToExecute, callback);

 callGetOffers(commandsToExecute, callback);

 callGetOffersForMultipleInteractionPoints(commandsToExecute,

 callback);

 callPostEvent(commandsToExecute, callback);

 callSetAudience(commandsToExecute, callback);

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 287

 callGetProfile(commandsToExecute, callback);

 callEndSession(commandsToExecute, callback);

 callSetDebug(commandsToExecute, callback);

 callGetVersion(commandsToExecute, callback);

 callExecuteBatch(commandsToExecute, callback);

 // You must return false to prevent the default form behavior

 return false;

 }

 function callStartSession(commandsToExecute, callback) {

 //read configured start session

 var ssId = document.getElementById('ss_sessionId').value;

 var icName = document.getElementById('ic').value;

 var audId = document.getElementById('audienceId').value;

 var audLevel = document.getElementById('audienceLevel').value;

 var params = document.getElementById('ss_parameters').value;

 var relyOldSs = document.getElementById('relyOnOldSession').value;

 var debug = document.getElementById('ss_isDebug').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createStartSessionCmd(

 icName, getNameValuePairs(audId),

 audLevel, getNameValuePairs(params),

 relyOldSs, debug));

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 288

 }

 else {

 InteractAPI.startSession(ssId, icName,

 getNameValuePairs(audId), audLevel,

 getNameValuePairs(params), relyOldSs,

 debug, callback) ;

 }

 }

 function callGetOffers(commandsToExecute, callback) {

 var ssId = document.getElementById('go_sessionId').value;

 var ip = document.getElementById('go_ipoint').value;

 var nofRequested = 5 ;

 var nreqString = document.getElementById('offersRequested').value;

 if (!nreqString && nreqString!== '')

 nofRequested = Number(nreqString);

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createGetOffersCmd(ip,

 nofRequested));

 }

 else {

 InteractAPI.getOffers(ssId, ip, nofRequested, callback);

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 289

 function callPostEvent(commandsToExecute, callback) {

 var ssId = document.getElementById('pe_sessionId').value;

 var ev = document.getElementById('event').value;

 var params = document.getElementById('parameters').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.

 CommandUtil.createPostEventCmd

 (ev, getNameValuePairs(params)));

 }

 else {

 InteractAPI.postEvent(ssId, ev, getNameValuePairs(params),

 callback);

 }

 }

 function callGetOffersForMultipleInteractionPoints

 (commandsToExecute, callback) {

 var ssId = document.getElementById('gop_sessionId').value;

 var requestDetailsStr =

 document.getElementById('requestDetail').value;

 //trim string

 var trimmed = requestDetailsStr.replace(/\{/g, "");

 var parts = trimmed.split("}");

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 290

 //sanitize strings

 for(i = 0; i < parts.length; i += 1) {

 parts[i] = parts[i].replace(/^\s+|\s+$/g, "");

 }

 //build get offer requests

 var getOffReqs = [];

 for(var i = 0; i < parts.length; i += 1) {

 var getofReqObj = parseGetOfferReq(parts[i]);

 if (getofReqObj) {

 getOffReqs.push(getofReqObj);

 }

 }

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createGetOffersForMultiple

 InteractionPointsCmd(getOffReqs));

 }

 else {

 InteractAPI.getOffersForMultipleInteractionPoints

 (ssId, getOffReqs, callback);

 }

 }

 function parseGetOfferReq(ofReqStr) {

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 291

 if (!ofReqStr || ofReqStr==="")

 return null;

 var posIp = ofReqStr.indexOf(',');

 var ip = ofReqStr.substring(0,posIp);

 var posNmReq = ofReqStr.indexOf(',', posIp+1);

 var numReq = ofReqStr.substring(posIp+1,posNmReq);

 var posDup = ofReqStr.indexOf(',', posNmReq+1);

 var dupPolicy = null;

 var reqAttributes = null;

 if (posDup===-1)

 dupPolicy = ofReqStr.substring(posNmReq+1);

 else

 dupPolicy = ofReqStr.substring(posNmReq+1,posDup);

 //check if request string has attributes

 var reqAttrPos = ofReqStr.search(/\(/g);

 if (reqAttrPos!==-1) {

 var reqAttributesStr = ofReqStr.substring(reqAttrPos);

 reqAttributesStr = trimString(reqAttributesStr);

 reqAttributesStr = removeOpenCloseBrackets(reqAttributesStr);

 reqAttributes = parseReqAttributes(reqAttributesStr);

 }

 return InteractAPI.GetOfferRequest.create(ip, parseInt(numReq),

 parseInt(dupPolicy), reqAttributes);

 }

 //trim string

 function trimString(strToTrim) {

 if (strToTrim)

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 292

 return strToTrim.replace(/^\s+|\s+$/g, "");

 else

 return null;

 }

 function trimStrArray(strArray) {

 if (!strArray) return ;

 for(var i = 0; i < strArray.length; i += 1) {

 strArray[i] = trimString(strArray[i]);

 }

 }

 //remove open and close brackets in the end

 function removeOpenCloseBrackets(strToUpdate) {

 if (strToUpdate)

 return strToUpdate.replace(/^\(+|\)+$/g, "");

 else

 return null;

 }

 function parseReqAttributes(ofReqAttrStr) {

 //sanitize string

 ofReqAttrStr = trimString(ofReqAttrStr);

 ofReqAttrStr = removeOpenCloseBrackets(ofReqAttrStr);

 if (!ofReqAttrStr || ofReqAttrStr==="")

 return null;

 //get the number requested

 var pos = ofReqAttrStr.indexOf(",");

 var numRequested = ofReqAttrStr.substring(0,pos);

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 293

 ofReqAttrStr = ofReqAttrStr.substring(pos+1);

 //first part will be attribute and rest will be child attributes

 var parts = [];

 pos = ofReqAttrStr.indexOf(",");

 if (pos!==-1) {

 parts.push(ofReqAttrStr.substring(0,pos));

 parts.push(ofReqAttrStr.substring(pos+1));

 }

 else {

 parts.push(ofReqAttrStr);

 }

 for(var i = 0; i < parts.length; i += 1) {

 //sanitize string

 parts[i] = trimString(parts[i]);

 parts[i] = removeOpenCloseBrackets(parts[i]);

 parts[i] = trimString(parts[i]);

 }

 //build list of attributes

 var attributes = [];

 var idx = 0;

 if (parts[0]) {

 var attParts = parts[0].split(";");

 for (idx=0; idx<attParts.length; idx++) {

 attParts[idx] = trimString(attParts[idx]);

 attParts[idx] = removeOpenCloseBrackets(attParts[idx]);

 attParts[idx] = trimString(attParts[idx]);

 var atrObj = parseAttribute(attParts[idx]);

 if (atrObj) attributes.push(atrObj);

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 294

 }

 }

 //build list of child attributes

 var childAttributes = [];

 if (parts[1]) {

 var childAttParts = parts[1].split(")");

 for (idx=0; idx<childAttParts.length; idx++) {

 childAttParts[idx] = trimString(childAttParts[idx]);

 childAttParts[idx] =

 removeOpenCloseBrackets(childAttParts[idx]);

 childAttParts[idx] = trimString(childAttParts[idx]);

 //get the number requested

 var noReqPos = childAttParts[idx].indexOf(",");

 var numReqAt = childAttParts[idx].substring(0,noReqPos);

 childAttParts[idx] =

 childAttParts[idx].substring(noReqPos+1);

 childAttParts[idx] = trimString(childAttParts[idx]);

 var atrObjParsed = parseAttribute(childAttParts[idx]);

 if (atrObjParsed) {

 var childReq =

 InteractAPI.OfferAttributeRequirements.create

 (parseInt(numReqAt), [atrObjParsed], null);

 childAttributes.push(childReq);

 }

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 295

 return

 InteractAPI.OfferAttributeRequirements.create(parseInt(numRequested),

 attributes, childAttributes);

 }

 function parseAttribute(attStr) {

 attStr = trimString(attStr);

 if (!attStr || attStr==="")

 return null;

 var pos1 = attStr.indexOf("=");

 var pos2 = attStr.indexOf("|");

 var nvp = InteractAPI.NameValuePair.create

 (attStr.substring(0,pos1),

 attStr.substring(pos1+1, pos2),

 attStr.substring(pos2+1));

 return nvp;

 }

function callSetAudience(commandsToExecute, callback) {

 if (!document.getElementById('checkSetAudience').checked)

 return ;

 var ssId = document.getElementById('sa_sessionId').value;

 var audId = document.getElementById('sa_audienceId').value;

 var audLevel = document.getElementById('sa_audienceLevel').value;

 var params = document.getElementById('sa_parameters').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 296

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createSetAudienceCmd

 (getNameValuePairs(audId), audLevel,

 getNameValuePairs(params)));

 }

 else {

 InteractAPI.setAudience(ssId, getNameValuePairs(audId),

 audLevel, getNameValuePairs(params),

 callback);

 }

 }

 function callGetProfile(commandsToExecute, callback) {

 var ssId = document.getElementById('gp_sessionId').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createGetProfileCmd());

 }

 else {

 InteractAPI.getProfile(ssId, callback);

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 297

 function callEndSession(commandsToExecute, callback) {

 var ssId = document.getElementById('es_sessionId').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createEndSessionCmd());

 }

 else {

 InteractAPI.endSession(ssId, callback);

 }

 }

 function callSetDebug(commandsToExecute, callback) {

 var ssId = document.getElementById('sd_sessionId').value;

 var isDebug = document.getElementById('isDebug').value;

 if (commandsToExecute && !commandsToExecute.ssid) {

 commandsToExecute.ssid = ssId;

 }

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createSetDebugCmd(isDebug));

 }

 else {

 InteractAPI.setDebug(ssId, isDebug, callback);

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 298

 }

 }

 function callGetVersion(commandsToExecute, callback) {

 if (commandsToExecute && commandsToExecute.commands) {

 commandsToExecute.commands.push(InteractAPI.CommandUtil.

 createGetVersionCmd());

 }

 else {

 InteractAPI.getVersion(callback);

 }

 }

 function callExecuteBatch(commandsToExecute, callback) {

 if (!commandsToExecute)

 return ;

 InteractAPI.executeBatch(commandsToExecute.ssid,

 commandsToExecute.commands, callback);

 }

 function getNameValuePairs(parameters) {

 if (parameters === '')

 return null ;

 var parts = parameters.split(';');

 var nvpArray = new Array(parts.length);

 for(i = 0; i < parts.length; i += 1) {

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 299

 var nvp = parts[i].split(',') ;

 var value = null;

 if

 (nvp[2]===InteractAPI.NameValuePair.prototype.TypeEnum.NUMERIC) {

 if (isNaN(nvp[1])) {

 value = nvp[1]; //a non number was provided as

 number,

 pass it to API as it is

 }

 else {

 value = Number(nvp[1]);

 }

 }

 else {

 value = nvp[1];

 }

 //special handling NULL value

 if (value && typeof value === 'string') {

 if (value.toUpperCase() === 'NULL') {

 value = null;

 }

 }

 nvpArray[i] = InteractAPI.NameValuePair.create(nvp[0], value,

 nvp[2]) ;

 }

 return nvpArray;

 }

 function showResponse(textDisplay) {

 var newWin = open('','Response','height=300,width=300,titlebar=no,

 scrollbars=yes,toolbar=no,

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 300

 resizable=yes,menubar=no,location=no,status=no');

 if (newWin.locationbar !== 'undefined' && newWin.locationbar

 && newWin.locationbar.visible)

 newWin.locationbar.visible = false;

 var displayHTML = '<META HTTP-EQUIV="Content-Type"

 CONTENT="text/html; charset=UTF-8">

 <html><head><style>TD { border-width : thin; border-style :

 solid }</style.'

 + "<script language='Javascript'>"

 + "var desiredDomain = 'unicacorp.com'; "

 + "if (location.href.indexOf(desiredDomain)>=0)

 "

 + "{ document.domain = desiredDomain;} "

 + "</script></head><body> "

 + textDisplay

 + "</body></html>" ;

 newWin.document.body.innerHTML = displayHTML;

 newWin.focus() ;

 }

 function onSuccess(response) {

 showResponse("********Response********
 " +

 JSON.stringify(response)) ;

 }

 function onError(response) {

 showResponse("********Error********
 " + response) ;

 }

 function formatResoponse(response) {

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 301

 }

 function printBatchResponse(batResponse) {

 }

 function printResponse(response) {

 }

Example response JavaScript object onSuccesss
This example shows the three variables for the response JavaScript object; offerLists,

messages, and profile.

offerList returns a non null list if you call getOffer or

getOffersForMultipleInteractionPoints as an API or as part of your batch commands.

You should always check null on this before you perform any operation on this variable.

You should always check the status of the messages JavaScript response.

Profile is returned non null if you use getProfile as an API or part of your batch

commands. If you do not use getProfile, you can ignore this variable. You should always

check null on this before you perform any operation on this variable.

function onSuccess(response)

InteractAPI.ResponseTransUtil._buildResponse = function(response) {

 'use strict';

 if (!response) return null;

 var offerList = null;

 //transform offerLists to JS Objects

 if (response.offerLists) {

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 302

 offerList = [];

 for (var ofListCt=0;

 ofListCt<response.offerLists.length;ofListCt++) {

 var ofListObj =

 this._buildOfferList(response.offerLists[ofListCt]);

 if (ofListObj) offerList.push(ofListObj);

 }

 }

 var messages = null;

 //transform messages to JS Objects

 if (response.messages) {

 messages = [];

 for (var msgCt=0; msgCt<response.messages.length;msgCt++) {

 var msgObj =

 this._buildAdvisoryMessage(response.messages[msgCt]);

 if (msgObj) messages.push(msgObj);

 }

 }

 var profile = null;

 //transform profile nvps to JS Objects

 if (response.profile) {

 profile = [];

 for (var nvpCt=0; nvpCt<response.profile.length;nvpCt++) {

 var nvpObj =

 this._buildNameValuePair(response.profile[nvpCt]);

 if (nvpObj) profile.push(nvpObj);

 }

 }

 return InteractAPI.Response.create(response.sessionId,

Unica Interact V12.1.3 Administrator's Guide | 9 - Classes and methods for the Unica Interact JavaScript API | 303

 response.statusCode, offerList,

 profile, response.version,

 messages) ;

 };

Chapter 10. About the ExternalCallout API
Unica Interact offers an extensible macro, EXTERNALCALLOUT, for use with your interactive

flowcharts. This macro enables you to perform custom logic to communicate with external

systems during flowchart runs. For example, if you want to calculate the credit score of a

customer during a flowchart run, you can create a Java™ class (a callout) to do so and then

use the EXTERNALCALLOUT macro in a Select process in your interactive flowchart to get the

credit score from your callout.

Configuring EXTERNALCALLOUT has two major steps. First, you must create a Java™ class

which implements the ExternalCallout API. Second, you must configure the necessary Unica

Platform configuration properties on the runtime server in the Interact | flowchart |

ExternalCallouts category.

In addition to the information in this section, the JavaDoc for the ExternalCallout

API is available on any Unica Interact runtime server in the Interact/docs/

externalCalloutJavaDoc directory.

IAffiniumExternalCallout interface
The ExternalCallout API is contained in the interface IAffiniumExternalCallout. You must

implement the IAffiniumExternalCallout interface to use the EXTERNALCALLOUT macro.

The class that implements the IAffiniumExternalCallout should have a constructor with

which it can be initialized by the runtime server.

• If there are no constructors in the class, the Java™ compiler creates a default

constructor and this is sufficient.

• If there are constructors with arguments, a public constructor with no argument

should be provided, which will be used by the runtime server.

When developing your external callout, remember the following:

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 305

• Each expression evaluation with an external callout creates a new instance of the

class. You must manage thread safety issues for static members in the class.

• If your external callout uses system resources, such as files or a database connection,

you must manage the connections. The runtime server does not have a facility to

clean up connections automatically.

You must compile your implementation against interact_externalcallout.jar located in

the lib directory of your Unica Interact runtime environment installation.

IAffiniumExternalCallout enables the runtime server to request data from your Java™

class. The interface consists of four methods:

• getNumberOfArguments

• getValue

• initialize

• shutdown

Adding a web service for use with the EXTERNALCALLOUT macro
Use this procedure to add a web service to use with the EXTERNALCALLOUT macro.

The EXTERNALCALLOUT macro recognizes callouts only if you defined the appropriate

configuration properties.

In Unica Platform for the runtime environment, add or define the following configuration

properties in the Interact > flowchart > externalCallouts category.

Configuration property Setting

externalCallouts catego

ry

Create a category for your external callout

class The class names for your external callout

classpath The classpath to your external callout class files

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 306

Configuration property Setting

Parameter Data category If your external callout requires parameters, create new

parameter configuration properties for them and assign

each a value

getNumberOfArguments
Interact allows variable number of arguments to be passed to your external callout.

getNumberOfArguments method must return -1 to allow variable number of arguments. The

getNumberOfArguments method returns the number of arguments expected by the Java™

class with which you are integrating.

getNumberOfArguments()

Return value

The getNumberOfArguments method returns an integer.

Example

The following example shows printing the number of arguments.

public int getNumberOfArguments()

{

 return 0;

}

getValue
The getValue method performs the core functionality of the callout and returns the results.

getValue(audienceID, configData, arguments)

The getValue method requires the following parameters:

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 307

• audienceID - a value which identifies the audience ID.

• configData - a map with key-value pairs of configuration data required by the callout.

• arguments - the arguments required by the callout. Each argument can be a String,

Double, Date, or a List of one of these. A List argument can contain null values,

however, a List cannot contain, for example, a String and a Double.

Argument type checking should be done within your implementation.

If the getValue method fails for any reason, it returns CalloutException.

Return value

The getValue method returns a list of Strings.

Example

public List<String> getValue(AudienceId audienceId, Map<String,

 String> configurationData, Object... arguments) throws CalloutException

{

 Long customerId = (Long) audienceId.getComponentValue("Customer");

 // now query scoreQueryUtility for the credit score of customerId

 Double score = scoreQueryUtility.query(customerId);

 String str = Double.toString(score);

 List<String> list = new LinkedList<String>();

 list.add(str);

 return list;

}

UACITimeout parameter
UACITimeout allows the user to set a timeout in milliseconds for which the system must

wait for the external callout execution to complete. If external callout does not complete

execution with in the time configured in UACITimeout, system throws a timeout exception in

the logs, cancels this execution, and returns blank as result of expression. UACITimeout can

be set as a parameter to the external callout

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 308

initialize
The initialize method is called once when the runtime server starts. If there are any

operations which may impede performance during runtime, such as loading a database

table, they should be performed by this method.

initialize(configData)

The initialize method requires the following parameter:

• configData - a map with key-value pairs of configuration data required by the callout.

Unica Interact reads these values from the External Callout parameters defined in the

Interact > Flowchart > External Callouts > [External Callout] > Parameter

Data category.

If the initialize method fails for any reason, it returns CalloutException.

Return value

None.

Example

public void initialize(Map<String, String> configurationData) throws

 CalloutException

{

 // configurationData has the key-value pairs specific to the

 environment

 // the server is running in

 // initialize scoreQueryUtility here

}

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 309

shutdown
The shutdown method is called once when the runtime server shuts down. If there are any

clean up tasks required by your call out, they should run at this time.

shutdown(configData)

The shutdown method requires the following parameter:

• configData-a map with key-value pairs of configuration data required by the callout.

If the shutdown method fails for any reason, it returns CalloutException.

Return value

None.

Example

public void shutdown(Map<String, String> configurationData) throws

 CalloutException

{

 // shutdown scoreQueryUtility here

}

ExternalCallout API example
This example creates an external callout that gets a credit score.

Create an external callout that gets a credit score:

1. Create a file that is called GetCreditScore.java with the following contents. This

file assumes that there is a class that is called ScoreQueryUtility that fetches a

score from a modeling application.

import java.util.Map;

import com.unicacorp.interact.session.AudienceId;

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 310

import

 com.unicacorp.interact.flowchart.macrolang.storedobjs.IAffiniumExtern

alCallout;

import

 com.unicacorp.interact.flowchart.macrolang.storedobjs.CalloutExceptio

n;

import java.util.Random;

public class GetCreditScore implements IAffiniumExternalCallout

{

 // the class that has the logic to query an external system for a

 customer's credit score

 private static ScoreQueryUtility scoreQueryUtility;

 public void initialize(Map<String, String> configurationData) throws

 CalloutException

 {

 // configurationData has the key- value pairs specific to the

 environment the server is running in

 // initialize scoreQueryUtility here

 }

 public void shutdown(Map<String, String> configurationData) throws

 CalloutException

 {

 // shutdown scoreQueryUtility here

 }

 public int getNumberOfArguments()

 {

 // do not expect any additional arguments other than the customer's

 id

 return 0;

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 311

 }

 public List<String> getValue(AudienceId audienceId, Map<String,

 String> configurationData,

 Object... arguments) throws CalloutException

 {

 Long customerId = (Long) audienceId.getComponentValue("Customer");

 // now query scoreQueryUtility for the credit score of customerId

 Double score = scoreQueryUtility.query(customerId);

 String str = Double.toString(score);

 List<String> list = new LinkedList<String>();

 list.add(str);

 return list;

 }

}

2. Compile GetCreditScore.java to GetCreditScore.class.

3. Create a JAR file called creditscore.jar containing GetCreditScore.class

and the other class files it uses.

4. Copy the JAR file to some location on the runtime server, for example /data/

interact/creditscore.jar.

5. Create an External Callout with name GetCreditScore and classpath as /data/

interact/creditscore.jar in the externalCallouts category on the Manage

Configurations page.

6. In an interactive flowchart, the callout can be used as

EXTERNALCALLOUT('GetCreditScore').

IInteractProfileDataService interface
The Profile Data Services API is contained in the interface iInteractProfileDataService.

This interface allows you to import hierarchical data into an Unica Interact session via one

or more external data sources (such as a flat file, web service, and so on) at the time the

Unica Interact session starts or the audience ID of an Unica Interact session changes.

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 312

To develop hierarchical data import using the Profile Data Services API, you

must write a Java class that pulls information from any data source and maps

it to an ISessionDataRootNode object, then refer to that mapped data using the

EXTERNALCALLOUT macro in a Select process of an interactive flowchart.

You must compile your implementation against interact_externalcallout.jar located in

the lib directory of your Unica Interact runtime environment installation.

For a complete set of Javadoc documentation for using this interface, view the files in

Interact_home/docs/externalCalloutJavaDoc with any web browser.

For a sample implementation of how to use the Profile Data Service, including commented

descriptions of how the example was implemented, see Interact_home/samples/

externalcallout/XMLProfileDataService.java.

Note: The sample implementation is intended to be used only as an example. You

should not use this sample in your implementation.

Adding a data source for use with Profile Data Services
Use this procedure to add a data source to use with the Profile Data Services.

The EXTERNALCALLOUT macro recognizes a data source for Profile Data Services hierarchical

data import only if you defined the appropriate configuration properties.

In Unica Platform for the runtime environment, add or define the following configuration

properties in the Interact > profile > Audience Levels > [AudienceLevelName] >

Profile Data Services category.

Configuration property Setting

New category Name cate

gory

The name of the data source you are defining. The name

that you enter here must be unique among the data

sources for the same audience level.

enabled Indicates whether the data source is enabled for the au

dience level in which it is defined.

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 313

Configuration property Setting

className The fully qualified name of the data source class that

implements IInteractProfileDataService

classPath The classpath to your Profile Data Services class files. If

you omit it, the class path of the containing application

server is used by default.

priority category The priority of this data source within this audience

level. It must be a unique value among all of the data

sources for each audience level. (That is, if a priority is

set to 100 for a data source, no other data source within

the audience level can have a priority of 100.)

IParameterizableCallout interface
The Parameterizable Callout API is contained in the interface IParameterizableCallout.

This interface is the base interface of the exposed API interfaces that can accept

parameters from the configuration via Unica Platform. Since this is a base interface, it

should not be directly implemented. The parameter are retrieved from the child nodes of

the Parameter Data node under the category that references this implementation. In the

following example, ESB is a custom implementation of the profile data service, which in turn

implements the IParameterizableCallout interface. The parameters endPoint and login,

together with their values are passed into this implementation class when Unica Interact

engine tries to initialize and terminate it.

Profile Data Services

...ESB

 ...Parameter Data

 ...endPoint

 ...login

The interface consists of two methods:

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 314

• initialize

• shutdown

initialize
The initialize method initializes this implementation class.

void initialize(java.util.Map<java.lang.String,java.lang.String>

 configurationData)

 throws CalloutException

The initialize method requires the following parameter:

• configurationData - a map with name value pairs of parameters configured by users

Throws

CalloutException

shutdown
The shutdown method shuts down this implementation class.

void shutdown(java.util.Map<java.lang.String,java.lang.String>

 configurationData)

 throws CalloutException

The shutdown method requires the following parameter:

• configurationData - a map with name value pairs of parameters configured by users

Throws

CalloutException

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 315

ITriggeredMessageAction interface
The Triggered Message Action API is contained in the interface ITriggeredMessageAction.

This interface allows you to get and set the name of this instance.

The ITriggeredMessageAction interface serves as a base interface for other interfaces and

should never be directly implemented.

The interface consists of two methods:

• getName

• setName

getName
The getName method returns the name of the ITriggeredMessageAction instance.

java.lang.String getName()

setName
The setName method sets the name of the ITriggeredMessageAction instance.

void setName(java.lang.String name)

While you initialize the implementation class of this interface, Unica Interact sets the name

of the interface with the name given in the configuration UI.

In the following example, the name of this gateway is InteractLog.

triggeredMessage

 ...gateways

 ...InteractLog

The setName method requires the following parameter:

• name - the name you want to set for the ITriggeredMessageAction instance.

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 316

IChannelSelector interface
The Channel Selector API is contained in the interface IChannelSelector. This interface

allows you to selects the outbound channels based on the offer to be sent and session

attributes.

For a sample implementation of how to use the Triggered Message Action, including

commented descriptions of how the example was implemented, see Interact_home/

samples/triggeredmessage/SampleChannelSelector.java.

Note: The sample implementation is intended to be used only as an example. You

should not use this sample in your implementation.

You should try to use this implementation instead of writing your own.

The interface consists of one method:

• selectChannels

selectChannels
The selectChannels method selects the outbound channels that the passed-in offer should

be sent to with the IChannelSelector interface.

java.util.List<java.lang.String> selectChannels

 (java.util.Map<java.lang.String,java.util.Map<java.lang.String,

 java.lang.Object>> availableChannels,

 com.unicacorp.interact.api.Offer offer,

 com.unicacorp.interact.treatment.

 optimization.IInteractSessionData

 sessionData)

Unica Interact tries to send this offer to all those returned channels.

The selectChannels method requires the following parameters:

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 317

• availableChannels - a map of available outbound channels, which are configured

in the Triggered Message UI in the Unica Interact design time settings. In each

entry of the map, the key is the name of the channel and the value is the configured

parameters for that channel in the Unica Interact design time. The iteration order of

this map matches the order defined on that UI. If Profile Preferred Channel is used

on the Triggered Message UI, it is replaced by the actual channel before this method

is invoked. In addition, if the same channel occurs multiple times on the UI, only the

occurrence with the highest priority is kept and all the duplicates are removed.

• offer - the offer to be delivered

• sessionData - the attributes currently stored in the associated Unica Interact session

IDispatcher interface
The Dispatcher API is contained in the interface IDispatcher. This interface sends offers to

targeted gateways.

Since there is only one instance of this class for each configured dispatcher, the

implementation of this interface must be stateless from the perspective of Unica Interact.

For a sample implementation of how to use the Triggered Message Action, including

commented descriptions of how the example was implemented, see Interact_home/

samples/triggeredmessage/SampleDispatcher.java.

Note: The sample implementation is intended to be used only as an example. You

should not use this sample in your implementation.

You should try to use this implementation instead of writing your own.

The interface consists of one method:

• dispatch

dispatch
The dispatch method sends offers to the target gateways in the IDispatcher interface.

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 318

boolean dispatch(java.lang.String channel,

 java.lang.String gatewayName,

 java.util.Collection<com.unicacorp.interact.api.Offer> offers,

 com.unicacorp.interact.api.NameValuePair[] profileData)

 throws com.unicacorp.interact.exceptions.InteractException

Once outbound channels are selected for a candidate offer, Unica Interact tries to send the

candidate offers to the handlers associated to the channel. The handlers are attempted

based on their defined priorities from high to low. For each handler, Unica Interact invokes

this method of the configured dispatcher. It is up to the implementation of this dispatcher

instance how to route the offer to the target gateway, which is configured in the same

handler. If there are multiple offers sent to the same handler as a result of the same

triggered message evaluation, Unica Interact tries to send all these offers in one batch.

The dispatch method requires the following parameters:

• channel - the outbound channel these offers are sent to

• gatewayName - the name of the target gateway

• offers - the offers to be sent to the gateway in a batch

• profileData - profile attributes populated by IGateway.validate and are passed to

IGateway.deliver

Return value

The dispatch method returns if the dispatch succeeded or failed

Throws

com.unicacorp.interact.exceptions.InteractException

IGateway interface
The Gateway API is contained in the interface IGateway. This interface receives offers from

Unica Interact and sends the offers to their destination.

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 319

Each implementation of this interface communicates with a particular destination. The

destination must perform the necessary data transformation, attribute population, and

similar destination related work.

For a sample implementation of how to use the Triggered Message Action, including

commented descriptions of how the example was implemented, see Interact_home/

samples/triggeredmessage/SampleOutboundGateway.java.

Note: The sample implementation is intended to be used only as an example.

You should not use this sample in your implementation. For example:

SampleOutboundGateway is included under sample directory for implementation

reference.

The interface consists of two methods:

• deliver

• validate

deliver
The deliver method is called to send the offer or offers to a destination in the IGateway

interface.

void deliver(java.util.Collection<com.unicacorp.interact.api.Offer> offers,

 com.unicacorp.interact.api.NameValuePair[]

 profileData,

 java.lang.String channel)

The deliver method requires the following parameters:

• offers - the offer to be sent

• profileData - the profile attributes the validate method populates in parameterMap

• channel - the outbound channel these offers will be sent to

Unica Interact V12.1.3 Administrator's Guide | 10 - About the ExternalCallout API | 320

validate
The validate method validates candidate offers in the IGateway interface.

java.util.Collection<com.unicacorp.interact.api.Offer> validate

 (com.unicacorp.interact.treatment.optimization.

 IInteractSessionData sessionData,

 java.util.Collection<com.unicacorp.interact.api.Offer>

 candidateOffers,

 java.util.Map<java.lang.String,java.lang.Object> parameterMap,

 java.lang.String channel)

The Unica Interact engine invokes this method to validate the candidate offers. The

implementation of this method should check the offers, offer attributes, and session

attributes against the requirements of the destination to determine which offer or offers can

be sent through this gateway. In addition, it may add necessary parameters into the passed-

in map, which is passed back to deliver method.

The validate method requires the following parameters:

• sessionData - the attributes currently stored in the associated Unica Interact session

• candidateOffers - the offers Unica Interact selected based on the offer selection

method, its parameters, and other factors. These offers are eligible to be delivered

from the perspective of Unica Interact, but still subject to the gateway.

• parameterMap - a map the implementation of this method should use to pass

parameters to its deliver method

• channel - the outbound channel these offers will be sent to

Chapter 11. Unica Interact utilities
This section describes the administrative utilities available with Unica Interact.

Run Deployment Utility (runDeployment.sh/.bat)
The runDeployment command-line tool lets you deploy an interactive channel for

a specific server group from the command line, using the settings provided by a

deployment.properties file that outlines all the possible parameters and is available

in the same location as the runDeployment tool itself. The ability to run an interactive

channel deployment from the command line is specifically useful when you are using the

OffersBySQL feature. For example, you might configure a Unica Campaign batch flowchart

to run on a periodic basis. When the flowchart run completes, a trigger can be called to

initialize deployment of the offers in the OffersBySQL table using this command line tool.

Description

You can find the runDeployment command-line tool installed automatically on the Unica

Interact Design Time server, in the following location:

Interact_home/interactDT/tools/deployment/runDeployment.sh (or

runDeployment.bat on a Windows™ server)

The only argument passed in to the command is the location of a file called

deployment.properties that describes all of the possible parameters needed to deploy

the interactive channel/runtime server group combination. A sample file is provided for

reference.

Note: Before using the runDeployment utility, you must first edit it with any text

editor to provide the location of the Java™ runtime environment on the server. For

example, you might specify Interact_home/jre or Platform_home/jre as the

path, if either of those directories contains the Java™ runtime you want the utility to

use. Alternatively, you could provide the path to any Java™ runtime environment that

is supported for use with this release of the products.

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 322

Using the runDeployment utility in a secure (SSL) environment

To use the runDeployment utility when security has been enabled on the Unica Interact

server (and therefore connecting over an SSL port), you need to add the trust store Java

property as follows:

1. When you are editing the deployment.properties file for your interactive channel

deployment, modify the deploymentURL property to use the secure SSL URL, as in this

example:

deploymentURL=https://<HOST>.<DOMAIN>:<PORT>/Campaign/interact/

InvokeDeploymentServlet

2. Edit the runDeployment.sh or runDeployment.bat script using any text editor to

add the following argument to the line beginning with ${JAVA_HOME}:

-Djavax.net.ssl.trustStore=<TrustStorePath>

For example, the line might look like this after you add the trust store argument:

${JAVA_HOME}/bin/java -Djavax.net.ssl.trustStore=<TrustStorePath>

-cp ${CLASSPATH}com.unicacorp.Campaign.interact.deployment.tools.

InvokeDeploymentClient $1

Replace <TrustStorePath> with the path to the actual SSL trust store.

Running the utility

After you have edited the utility to provide the Java™ runtime environment, and you have

customized a copy of the deployment.properties file to match your environment, you

can run the utility with this command:

Interact_home/interactDT/tools/deployment/runDeployment.sh

deployment.properties

Replace Interact_home with the actual value of the Unica Interact design time installation,

and replace deployment.properties with the actual path and name of the properties file you

have customized for this deployment.

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 323

Sample deployment.properties file

The sample deployment.properties file contains a commented listing of all of the

parameters you must customize to match your own environment. The sample file also

contains comments that explain what each parameter is, and why you might need to

customize a particular value.

###

####

#

The following properties feed into the InvokeDeploymentClient program.

The program will look for a deploymentURL setting. The program will post

 a

request against that url; all other settings are posted as parameters in

that request. The program then checks the status of the deployment and

returns back when the deployment is at a terminal state (or if the

specified waitTime has been reached).

#

the output of the program will be of this format:

<STATE> : <Misc Detail>

#

where state can be one of the following:

ERROR

RUNNING

SUCCESS

#

Misc Detail is data that would normally populate the status message area

in the deployment gui of the IC summary page. NOTE: HTML tags may exist

in the Misc Detail

#

###

####

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 324

###

####

deploymentURL: url to the InvokeDeployment servlet that resides in

 Interact

Design time. should be in the following format:

http://dt_host:port/Campaign/interact/InvokeDeploymentServlet

###

####

deploymentURL=http://localhost:7001/Campaign/interact/InvokeDeploymentServl

et

###

####

dtLogin: this is the login that you would use to login to the Design

 Time if

you had wanted to deploy the IC via the deployment gui inside the IC

 summary

page.

###

####

dtLogin=asm_admin

###

####

dtPW: this is the PW that goes along with the dtLogin

###

####

dtPW=

###

####

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 325

icName: this is the name of the Interactive Channel that you want to

 deploy

###

####

icName=ic1

###

####

partition: this is the name of the partition

###

####

partition=partition1

###

####

request: this is the type of request that you want this tool to execute

currently, there two behaviors. If the value is "deploy", then the

 deployment

will be executed. All other values would cause the tool to simply return

 the

status of the last deployment of the specified IC.

###

####

request=deploy

###

####

serverGroup: this is the name of the server group that you would like to

deploy the IC.

###

####

serverGroup=defaultServerGroup

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 326

###

####

serverGroupType: this will indicate whether or not this deployment is

 going

against production server group or a test server group. 1 denotes

 production

2 denotes test.

###

####

serverGroupType=1

###

####

rtLogin: this is the account used to authenticate against the server

 group

that you are deploying to.

###

####

rtLogin=asm_admin

###

####

rtPW: this is the password associated to the rtLogin

###

####

rtPW=

###

####

waitTime: Once the tool submits the deployment request, the tool will

 check

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 327

the status of the deployment. If the deployment has not completed (or

failed), then the tool will continue to poll the system for the status

 until

a completed state has been reached, OR until the specified waitTime (in

seconds) has been reached.

###

####

waitTime=5

###

####

pollTime: If the status of a deployment is still in running state, then

 the

tool will continue to check the status. It will sleep in between status

checks a number of seconds based on the pollTime setting .

###

####

pollTime=3

###

####

global: Setting to false will make the tool NOT deploy the global

 settings.

Non-availability of the property will still deploy the global settings.

###

####

global=true

Cleanup Expired Token Utility

To implement the code and configuration in Interact runtime, the expired tokens must

be removed from the UACI_RTToken table. This must be done automatically using a

Unica Interact V12.1.3 Administrator's Guide | 11 - Unica Interact utilities | 328

background thread with a configurable interval. This background must be generic, so that it

can be used for cleaning other tables.

Configuration Changes

A node “Cleanup” is added under the path “Affinium|interact|services” to perform cleanup

related activities. A sub node “expiredTokens” is added under the path “Affinium|interact|

services|Cleanup” to perform the cleanup operation for the expired tokens. You must set the

"enable" field as true under the path “Affinium|interact|services|Cleanup|expiredTokens”.

The default value of the "enable" field of “expiredTokens” is set as True. The valid values are

True and False.

Note: Users can insert the tokens in UACI_RTToken table by starting a session and

enabling “tokenAuthentication” field under the path “Affinium|interact|general|API”.

Optional JVM Parameters

Users can set the following JVM parameters under the JVM options.

• -Dcom.unica.interact.cleanupThreadPoolCoreSize=1

• -Dcom.unica.interact.cleanupInitialDelay=300

• -Dcom.unica.interact.cleanupDelay=300

• -Dcom.unica.interact.cleanupBatchSize=5000

where

• cleanupThreadPoolCoreSize is the number of threads required to keep in the pool. If

not set, the system takes the default value as 1.

• cleanupInitialDelay is the time to delay the first execution in seconds. If not set, the

system takes the default value as 300.

• cleanupDelay is the delay between the termination of one execution and the

commencement of the next in seconds. If not set, the system takes the default value

as 300.

• cleanupBatchSize is the number of expired tokens which the users want to delete in

one attempt. If not set, the system takes the default value as 5000.

Chapter 12. About the Learning API
Unica Interact offers a learning module which uses a naive-bayesian algorithm to monitor

visitor actions and propose optimal offers (in terms of acceptance). You can implement the

same Java™ interface with your own algorithms using the Learning API to create your own

learning module.

Note: If you use External learning, the example reports regarding learning

(Interactive Offer Learning Details and the Interactive Segment Lift Analysis reports)

do not return valid data.

At the simplest level, the learning API provides methods to collect data from the runtime

environment and to return an ordered list of recommended offers.

You can collect the following data from Unica Interact

• Offer contact data

• Offer acceptance data

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 330

• All session data

• Unica Campaign specific offer data

• Configuration properties defined in the learning category for the design environment

and the offerserving category for the runtime environment

You can use this data in your algorithms to create a list of proposed offers. You then return

a list of recommended offers, in order of highest to lowest recommendation.

Although not shown in the diagram, you can also use the learning API to collect data

for your learning implementation. You can keep this data in memory, or log it to a file or

database for further analysis.

After creating your Java™ classes, you can convert them to jar files. Once you create your jar

files, you must also configure the runtime environment to recognize your external learning

module by editing configuration properties. You must copy your Java™ classes or jar files to

every runtime server using your external learning module.

Besides the information in this guide, the JavaDoc for the learning optimizer API is available

on any runtime server in the Interact/docs/learningOptimizerJavaDoc directory.

You must compile your implementation against interact_learning.jar located in the lib

directory of your Unica Interact runtime environment installation.

When writing your custom learning implementation, you should keep the following

guidelines in mind.

• Performance is critical.

• Must work with multi-threading and be thread safe.

• Must manage all external resources with failure modes and performance in mind.

• Use exceptions, logging (log4j), and memory appropriately.

Configuring the runtime environment to recognize
external learning modules
You can use the Learning Java™ API to write your own learning module. You must configure

the runtime environment to recognize your learning utility in Unica Platform.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 331

You must restart the Unica Interact runtime server for these changes to take effect.

1. In Unica Platform for the runtime environment, edit the following configuration

properties in the Interact > offerserving category. The configuration properties

for the learning optimizer API exist in Interact > offerserving > External

Learning Config category.

Configuration property Setting

optimizationType ExternalLearning

externalLearningClass class name for the external learning

externalLearningClassPath The path to the class or JAR files on the run

time server for the external learning. If you

are using a server group and all the runtime

servers reference the same instance of Uni

ca Platform, every server must have a copy of

the class or JAR files in the same location.

2. Restart the Unica Interact runtime server for these changes to take effect.

ILearning interface
The learning API is built around the ILearning interface. You must implement the

ILearning interface to support the customized logic of your learning module.

Among other things, the ILearning interface enables you to collect data from the runtime

environment for your Java™ class, and to send a list of recommended offers back to the

runtime server.

initialize
The initialize method is called once when the runtime server starts. If there are any

operations that do not need to be repeated, but may impede performance during runtime,

such as loading static data from a database table, they should be performed by this

method.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 332

initialize(ILearningConfig config, boolean debug)

• config - an ILearningConfig object defines all the configuration properties relevant to

learning.

• debug - a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before writing

to a log.

If the initialize method fails for any reason, it throws an LearningException.

Return value

None.

logEvent
The logEvent method is called by the runtime server whenever the Unica Interact API posts

an event that is configured to log as a contact or response. Use this method to log contact

and response data to a database or file for reporting and learning purposes. For example, if

you want to algorithmically determine the likelihood of a customer accepting an offer based

on criteria, use this method to log the data.

logEvent(ILearningContext context,

 IOffer offer,

 IClientArgs clientArgs,

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 333

 IInteractSession session,

 boolean debug)

• context-an ILearningContext object defining the learning context of the event, for

example, contact, accept, or reject.

• offer-an IOffer object defining the offer about which this event is being logged.

• clientArgs-an IClientArgs object defining any parameters. Currently, logEvent, does

not require any clientArgs, so this parameter may be empty.

• session-an IInteractSession object defining all session data.

• debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before writing

to a log.

If the logEvent method fails, it throws a LearningException.

Return value

None.

optimizeRecommendList
The optimizeRecommendList method should take the list of recommended offers

and the session data and return a list containing the requested number of offers. The

optimizeRecommendList method should order the offers in some way, with your own

learning algorithm. The list of offers must be ordered so that the offers you want to serve

first are at the beginning of the list. For example, if your learning algorithm gives a low score

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 334

to the best offers, the offers should be ordered 1, 2, 3. If your learning algorithm gives a high

score to the best offers, the offers should be ordered 100, 99, 98.

optimizeRecommendList(list(ITreatment) recList,

 IClientArgs clientArg, IInteractSession session,

 boolean debug)

The optimizeRecommendList method requires the following parameters:

• recList-a list of the treatment objects (offers) recommended by the runtime

environment.

• clientArg-an IClientArgs object containing at least the number of offers requested by

the runtime environment.

• session-an IInteractSession object containing all the session data.

• debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before writing

to a log.

If the optimizeRecommendList method fails, it throws a LearningException.

Return value

The optimizeRecommendList method returns a List of ITreatment objects.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 335

reinitialize
The runtime environment calls the reinitialize method every time there is a new

deployment. This method passes all learning configuration data. If you have any services

required by the learning API that read configuration properties, this interface should restart

them.

reinitialize(ILearningConfig config,

 boolean debug)

• config-an ILearningConfig object which contains all the configuration properties.

• debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before writing

to a log.

If the logEvent method fails, it throws a LearningException.

Return value

None.

shutdown
The runtime environment calls the shutdown method when the runtime server shuts down.

If there are any clean up tasks required by your learning module, they should execute at this

time.

shutdown(ILearningConfig config, boolean debug)

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 336

The shutdown method requires the following parameters.

• config - an ILearningConfig object which defines all the configuration properties.

• debug - a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before writing

to a log.

If the shutdown method fails for any reason, it throws a LearningException.

Return value

None.

IAudienceID interface
The IAudienceID interface supports the IInteractSession interface. This is an interface to

the audience ID. Since your audience ID may be made of several parts, this interface enables

you to access all the elements of the audience ID as well as the audience level name.

getAudienceLevel
The getAudienceLevel method returns audience level.

getAudienceLevel()

Return value

The getAudienceLevel method returns a string that defines the audience level.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 337

getComponentNames
The getComponentNames method gets a set of the names of the components which

comprise the audience ID. For example, if your audience ID is consists of the values of

customerName and accountID, getComponentNames would return a set containing the strings

customerName and accountID.

getComponentNames()

Return value

A set of strings containing the names of the components of the audience ID.

getComponentValue
The getComponentValue method returns the value for the named component.

getComponentValue(String componentName)

• componentName-a string defining the name of the component for which you want to

retrieve the value. This string is case insensitive.

Return value

The getComponentValue method returns an object that defines the value of the component.

IClientArgs
The IClientArgs interface supports the ILearning interface. This interface is an

abstraction to cover any data passed into the server from the touchpoint that is not already

covered by the session data. For example, the number of offers requested by the Unica

Interact API getOffers method. This data is stored in a map.

getValue
The getValue method returns the value of the requested map element.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 338

getValue(int clientArgKey)

The following elements are required in the map.

• 1 - NUMBER_OF_OFFERS_REQUESTED. The number of offers requested by the

getOffers method of the Unica Interact API. This constant returns an integer.

Return value

The getValue method returns an object that defines value of the requested map constant.

IInteractSession
The IInteractSession interface supports the ILearning interface. This is an interface to

the current session in the runtime environment.

getAudienceId
The getAudienceId method returns an AudienceID object. Use the IAudienceID interface

to extract the values.

getAudienceId()

Return value

The getAudienceId method returns an AudienceID object.

getSessionData
The getSessionData method returns an unmodifiable map of session data where the name

of the session variable is the key. The name of the session variable is always uppercased.

Use the IInteractSessionData interface to extract values.

getSessionData()

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 339

Return value

The getSessionData method returns an IInteractSessionData object.

IInteractSessionData interface
The IInteractSessionData interface supports the ILearning interface. This is an interface

to the runtime session data for the current visitor. Session data is stored as a list of name-

value pairs. You can also use this interface to change the value of data in the runtime

session.

getDataType
The getDataType method returns the data type for the specified parameter name.

getDataType(string parameterName)

Return value

The getDataType method returns an InteractDataType object. IntearctDataType is a Java™

enum represented by Unknown, String, Double, Date, or List.

getParameterNames
The getParameterNames method returns a set of all the names of the data in the current

session.

getParameterNames()

Return value

The getParameterNames method returns a set of names for which values have been set.

Each name in the set can be passed into getValue(String) to return a value.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 340

getValue
The getValue method returns the object value corresponding to the specified

parameterName. Object can either be a String, Double, or a Date.

getValue(parameterName)

The getValue method requires the following parameter:

• parameterName-a string defining the name of the session data name-value pair.

Return value

The getValue method returns an object containing the value of the parameter named.

setValue
The setValue method enables to set a value for the specified parameterName. The value can

be can either be a String, Double, or a Date.

setValue(string parameterName, object value)

The setValue method requires the following parameters:

• parameterName - a string defining the name of the session data name-value pair.

• value - an object defining the value of the designated parameter.

Return value

None.

ILearningAttribute
The ILearningAttribute interface supports the ILearningConfig interface. This

is an interface to the learning attributes defined in configuration properties in the

learningAttributes category.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 341

getName
The getName method returns the name of the learning attribute.

getName()

Return value

The getName method returns a string that defines the name of the learning attribute.

ILearningConfig
The ILearningConfig interface supports the ILearning interface. This is an interface to the

configuration properties for learning. All of these methods return the value of the property.

The interface consists of 15 methods:

• getAdditionalParameters - returns a map of any additional properties defined in the

External Learning Config category

• getAggregateStatsIntervalInMinutes - returns an int

• getConfidenceLevel - returns an int

• getDataSourceName - returns a string

• getDataSourceType - returns a string

• getInsertRawStatsIntervalInMinutes - returns an int

• getLearningAttributes - returns a list of ILearningAttribute objects

• getMaxAttributeNames - returns an int

• getMaxAttributeValues - returns an int

• getMinPresentCountThreshold - returns an int

• getOtherAttributeValue - returns a string

• getPercentRandomSelection - returns an int

• getRecencyWeightingFactor - returns a float

• getRecencyWeightingPeriod - returns an int

• isPruningEnabled - returns a boolean

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 342

ILearningContext
The ILearningContext interface supports the ILearning interface.

getLearningContext
The getLearningContext method return the constant that tells us whether or not this is a

contact, accept or reject scenario.

getLearningContext()

• 1-LOG_AS_CONTACT

• 2-LOG_AS_ACCEPT

• 3-LOG_AS_REJECT

4 and 5 are reserved for future use.

Return value

The getLearningContext method returns an integer.

getResponseCode
The getResponseCode method returns response code assigned to this offer. This value must

exist in the UA_UsrResponseType table in the Unica Campaign system tables.

getResponseCode()

Return value

The getResponseCode method returns a string that defines the response code.

IOffer
The IOffer interface supports the ITreatment interface. This is an interface to the offer

object defined in the design environment. Use the IOffer interface to collect the offer

details from the runtime environment.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 343

getCreateDate
The getCreateDate method returns the date the offer was created.

getCreateDate()

Return value

The getCreateDate method returns a date that defines the date the offer was created.

getEffectiveDateFlag
The getEffectiveDateFlag method returns a number that defines the effective date of the

offer.

getEffectiveDateFlag()

• 0-the effective date is an absolute date, such as March 15, 2010.

• 1-the effective date is the date of recommendation.

Return value

The getEffectiveDateFlag method returns an integer that defines the effective date of the

offer.

getExpirationDateFlag
The getExpirationDateFlag method returns an integer value that describes the expiration

date of the offer.

getExpirationDateFlag()

• 0-an absolute date, for example March 15, 2010.

• 1-some number of days after the recommendation, for example 14.

• 2-end of month after recommendation. If an offer is presented on March 31st, the

offer expires that day.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 344

Return value

The getExpirationDateFlag method returns an integer that describes the expiration date

of the offer.

getOfferAttributes
The getOfferAttributes method returns offer attributes defined for the offer as an

IOfferAttributes object.

getOfferAttributes()

Return value

The getOfferAttributes method returns an IOfferAttributes object.

getOfferCode
The getOfferCode method returns the offer code of the offer as defined in Unica Campaign.

getOfferCode()

Return value

The getOfferCode method returns an IOfferCodeobject.

getOfferDescription
The getOfferDescription method returns the description of the offer defined in Unica

Campaign.

getOfferDescription()

Return value

The getOfferDescription method returns a string.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 345

getOfferID
The getOfferID method returns the offer ID as defined in Unica Campaign.

getOfferID()

Return value

The getOfferID method returns a long that defines the offer ID.

getOfferName
The getOfferName method returns the name of the offer as defined in Unica Campaign.

getOfferName()

Return value

The getOfferName method returns a string.

getUpdateDate
The getUpdateDate method returns date of when the offer was last updated.

getUpdateDate()

Return value

The getUpdateDate method returns a date that defines when the offer was last updated.

IOfferAttributes
The IOfferAttributes interface supports the IOffer interface. This is an interface

to the offer attributes that are defined for an offer in the design environment. Use the

IOfferAttributes interface to collect the offer attributes from the runtime environment.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 346

getParameterNames
The getParameterNames method returns a list of the offer parameter names.

getParameterNames()

Return value

The getParameterNames method returns a set that defines the list of offer parameter

names.

getValue
The getValue method returns an object that defines the value of the offer attribute.

getValue(String parameterName)

The getValue method returns value of the given offer attribute.

Return value

IOfferCode interface
The IOfferCode interface supports the ILearning interface. This is an interface to the offer

code that was defined for an offer in the design environment. An offer code can be made

of one to many Strings. Use the IOfferCode interface to collect the offer code from the

runtime environment.

getPartCount
The getPartCount method returns the number of parts that make up an offer code.

getPartCount()

Return value

The getPartCount method returns an integer defining the number of parts of the offer code.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 347

getParts
The getParts method gets an unmodifiable list of the offer code parts.

getParts()

Return value

The getParts method returns an unmodifiable list of the offer code parts.

LearningException
The LearningException class supports the ILearning interface. Some methods within

the interface will require implementations to throw a LearningException which is a simple

subclass of java.lang.Exception. It is highly recommended for debugging purposes that

the LearningException be constructed with the root exception if a root exception exists.

IScoreOverride
The IScoreOverride interface supports ITreatment interface. This interface enables you to

read the data defined in the score override or default offers table.

getOfferCode
The getOfferCode method returns the value of the offer code columns in the score override

table for this audience member.

getOfferCode()

Return value

The getOfferCode method returns an IOfferCode object that defines the value of the offer

code columns in the score override table.

getParameterNames
The getParameterNames method returns the list of parameters.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 348

getParameterNames()

Return value

The getParameterNames method returns a set that defines the list of parameters.

The IScoreOverride method contains the following parameters. Unless otherwise stated,

theses parameters are the same as the score override table.

• ADJ_EXPLORE_SCORE_COLUMN

• CELL_CODE_COLUMN

• ENABLE_STATE_ID_COLUMN

• ESTIMATED_PRESENT_COUNT - For overriding estimated present count (during offer

weight calculation)

• FINAL_SCORE_COLUMN

• LIKELIHOOD_SCORE_COLUMN

• MARKETER_SCORE

• OVERRIDE_TYPE_ID_COLUMN

• PREDICATE_COLUMN - For creating a boolean expression to determine offer eligibility

• PREDICATE_SCORE - For creating an expression that results in a numeric score

• SCORE_COLUMN

• ZONE_COLUMN

You can also reference any column you add to the score override or default offers table

using the same name as the column.

getValue
The getValue method returns the value of the zone column in the score override table for

this audience member.

getValue(String parameterName)

• parameterName-a string defining the name of the parameter for which you want the

value.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 349

Return value

The getValue method returns an object defining the value of the requested parameter.

ISelectionMethod
The ISelection interface indicates the method used to come up with the recommended

list. The default value for the Treatment object is EXTERNAL_LEARNING so you do not have

to set this value. The value is ultimately stored into Detailed Contact History for reporting

purposes.

You can extend this interface beyond the existing constants if you want to store the data for

analysis later. For example, you could create two different learning modules and implement

them on separate server groups. You could extend the ISelection interface to include

SERVER_GROUP_1 and SERVER_GROUP_2. You could then compare the results of your two

learning modules.

ITreatment interface
The ITreatment interface supports the ILearning interface as an interface to the

Treatment information. A treatment represents the offer assigned to a particular cell

as defined in the design environment. From this interface, you can obtain cell and offer

information as well as the assigned marketing score.

getCellCode
The getCellCode method returns the cell code as defined in Unica Campaign. The cell is the

cell assigned to the smart segment associated with this offer.

getCellCode()

Return value

The getCellCode method returns a string that defines the cell code.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 350

getCellId
The getCellId method returns the internal ID of the cell as defined in Unica Campaign. The

cell is the cell assigned to the smart segment associated with this offer.

getOfferName()

Return value

The getCellId method returns a long that defines the cell ID.

getCellName
The getCellName method returns the name of the cell as defined in Unica Campaign. The

cell is the cell assigned to the smart segment associated with this offer.

getCellName()

Return value

The getCellName method returns a string that defines the cell name.

getLearningScore
The getLearningScore method returns the score for this treatment.

Return value
The getLearningScore method returns an integer that defines the score determined by the

learning algorithm. The precedence as follows.

1. Return the override value, if present in Override values map keyed by

IScoreoveride.PREDICATE_SCORE_COLUMN.

2. Return predicate score if the value is not null.

3. Return the marketers score, if present in Override values map keyed by

IScoreoveride.SCORE.

4. Return the marketers score.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 351

getMarketerScore
The getMarketerScore method returns the marketer's score defined by the slider on the

interaction strategy tab for the offer.

getMarketerScore()

To retrieve a marketer's score defined by the interaction strategy tab advanced options, use

getPredicateScore.

To retrieve the marketer's score actually used by the treatment, use getLearningScore.

Return value

The getMarketerScore method returns an integer that defines the marketer's score.

getOffer
The getOffer method returns the offer for the treatment.

getOffer()

Return value

The getOffer method returns an IOffer object that defines the offer for this treatment.

getOverrideValues
The getOverrideValues method returns overrides defined in the default offers or score

override table.

getOverrideValues()

Return value

The getOverrideValues method returns an IScoreOverride object.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 352

getPredicate
The getPredicate method returns the predicate defined by the predicate column of the

default offers table, score override table or the treatment rules advanced options.

getPredicate()

Return value

The getPredicate method returns a string that defines predicate defined by the predicate

column of the default offers table, score override table or the treatment rules advanced

options.

getPredicateScore
The getPredicateScore method returns the score set by the predicate column of the

default offers table, score override table or the treatment rules advanced options.

getPredicateScore()

Return value

The getPredicateScore method returns a double that defines the score set by the predicate

column of the default offers table, score override table, or the treatment rules advanced

options.

getScore
The getScore method returns the marketing score that is defined either by the interaction

strategy in Unica Campaign or by the score override table.

getScore()

The getScore method returns one of the following:

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 353

• The marketing score of the offer as defined on the interaction strategy tab in Unica

Campaign if the enableScoreOverrideLookup property is set to false.

• The score of the offer as defined by the scoreOverrideTable if the

enableScoreOverrideLookup property is set to true.

Return value

The getScore method returns an integer that represents the score of the offer.

getTreatmentCode
The getTreatmentCode method returns the treatment code.

getTreatmentCode()

Return value

The getTreatmentCode method returns a string that defines the treatment code.

setActualValueUsed
Use the setActualValueUsed method to define what values are used at various stages in

the learning algorithm execution.

setActualValueUsed(string parmName, object value)

For example, if you use this method to write to the contact and response history tables, and

modify the existing sample reports, you can include data from your learning algorithm in

reporting.

• parmName-a string defining the name of the parameter you are setting.

• value-an object defining the value of the parameter you are setting.

Return value

None.

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 354

Learning API example
This section contains a sample implementation of the ILearningInterface. Note that

this implementation is just a sample and is not designed to be used in a production

environment.

This example keeps track of accept and contact counts and uses the ratio of accept to

contacts for a particular offer as the acceptance probability rate for the offer. Offers not

presented get higher priority for recommending. Offers with at least one contact are be

ordered based on descending acceptance probability rate.

In this example, all counts are kept in memory. This is not a realistic scenario as the runtime

server will run out of memory. In a real production scenario, the counts should be persisted

into a database.

package com.unicacorp.interact.samples.learning.v2;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import

 com.unicacorp.interact.samples.learning.SampleOptimizer.MyOfferSorter;

import com.unicacorp.interact.treatment.optimization.IClientArgs;

import com.unicacorp.interact.treatment.optimization.IInteractSession;

import com.unicacorp.interact.treatment.optimization.ILearningConfig;

import com.unicacorp.interact.treatment.optimization.ILearningContext;

import com.unicacorp.interact.treatment.optimization.IOffer;

import com.unicacorp.interact.treatment.optimization.LearningException;

import com.unicacorp.interact.treatment.optimization.v2.ILearning;

import com.unicacorp.interact.treatment.optimization.v2.ITreatment;

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 355

/**

 * This is a sample implementation of the learning optimizer.

 * The interface ILearning may be found in the interact.jar library.

 *

 * To actually use this implementation, select ExternalLearning as the

 optimizationType in the offerServing node

 * of the Unica Interact application within the Platform configuration.

 Within the offerserving node there is also

 * an External Learning config category - within there you must set the

 name of the class to this:

 * com.unicacorp.interact.samples.learning.v2.SampleLearning. Please note

 however, this implementation is just a sample

 * and was not designed to be used in a production environment.

 *

 *

 * This example keeps track of accept and contact counts and uses the ratio

 of accept to contacts

 * for a particular offer as the acceptance probability rate for the offer.

 *

 *

 * Offers not presented will get higher priority for recommending.

 * Offers with at least one contact will be ordered based on descending

 acceptance probability rate.

 *

 * Note: all counts are kept in memory. This is not a realistic scenario

 since you would run out of memory sooner or

 * later. In a real production scenario, the counts should be persisted

 into a database.

 *

 */

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 356

public class SampleLearning implements ILearning

{

 // A map of offer ids to contact count for the offer id

 private Map<Long,Integer> _offerToContactCount = new HashMap<Long,

 Integer>();

 // A map of offer ids to contact count for the offer id

 private Map<Long,Integer> _offerToAcceptCount = new HashMap<Long,

 Integer>();

 /* (non-Javadoc)

 * @see

 com.unicacorp.interact.treatment.optimization.v2.ILearning#initialize

 * (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig,

 boolean)

 */

 public void initialize(ILearningConfig config, boolean debug) throws

 LearningException

 {

 // If any remote connections are required, this is a good place to

 initialize those connections as this

 // method is called once at the start of the interact runtime

 webapp.

 // This example does not have any remote connections and prints for

 debugging purposes that this method will

 // be called

 System.out.println("Calling initialize for SampleLearning");

 }

 /* (non-Javadoc)

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 357

 * @see

 com.unicacorp.interact.treatment.optimization.v2.ILearning#reinitialize

 * (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig,

 boolean)

 */

 public void reinitialize(ILearningConfig config, boolean debug) throws

 LearningException

 {

 // If an IC is deployed, this reinitialize method is called to

 allow the implementation to

 // refresh any updated configuration settings

 System.out.println("Calling reinitialize for SampleLearning");

 }

 /* (non-Javadoc)

 * @see

 com.unicacorp.interact.treatment.optimization.v2.ILearning#logEvent

 *

 (com.unicacorp.interact.treatment.optimization.v2.ILearningContext,

 * com.unicacorp.interact.treatment.optimization.v2.IOffer,

 * com.unicacorp.interact.treatment.optimization.v2.IClientArgs,

 * com.unicacorp.interact.treatment.optimization.IInteractSession,

 boolean)

 */

 public void logEvent(ILearningContext context, IOffer offer,

 IClientArgs clientArgs,

 IInteractSession session, boolean debug) throws LearningException

 {

 System.out.println("Calling logEvent for SampleLearning");

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 358

 if(context.getLearningContext()==ILearningContext.LOG_AS_CONTACT)

 {

 System.out.println("adding contact");

 // Keep track of all contacts in memory

 synchronized(_offerToAcceptCount)

 {

 Integer count = _offerToAcceptCount.get(offer.getOfferId());

 if(count == null)

 count = new Integer(1);

 else

 count++;

 _offerToAcceptCount.put(offer.getOfferId(), ++count);

 }

 }

 else

 if(context.getLearningContext()==ILearningContext.LOG_AS_ACCEPT)

 {

 System.out.println("adding accept");

 // Keep track of all accept counts in memory by adding to the

 map

 synchronized(_offerToAcceptCount)

 {

 Integer count = _offerToAcceptCount.get(offer.getOfferId());

 if(count == null)

 count = new Integer(1);

 else

 count++;

 _offerToAcceptCount.put(offer.getOfferId(), ++count);

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 359

 }

 /* (non-Javadoc)

 * @see

 com.unicacorp.interact.treatment.optimization.v2.ILearning#optimizeRecomme

ndList

 * (java.util.List,

 com.unicacorp.interact.treatment.optimization.v2.IClientArgs,

 * com.unicacorp.interact.treatment.optimization.IInteractSession,

 boolean)

 */

 public List<ITreatment> optimizeRecommendList(List<ITreatment>

 recList,

 IClientArgs clientArgs, IInteractSession session, boolean debug)

 throws LearningException

 {

 System.out.println("Calling optimizeRecommendList for

 SampleLearning");

 // Sort the candidate treatments by calling the sorter defined in

 this class and return the sorted list

 Collections.sort(recList,new MyOfferSorter());

 // now just return what was asked for via "numberRequested"

 variable

 List<ITreatment> result = new ArrayList<ITreatment>();

 for(int

 x=0;x<(Integer)clientArgs.getValue(IClientArgs.NUMBER_OF_OFFERS_REQUESTED)

 && x<recList.size();x++)

 {

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 360

 result.add(recList.get(x));

 }

 return result;

 }

 /* (non-Javadoc)

 * @see

 com.unicacorp.interact.treatment.optimization.v2.ILearning#shutdown

 * (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig,

 boolean)

 */

 public void shutdown(ILearningConfig config, boolean debug) throws

 LearningException

 {

 // If any remote connections exist, this would be a good place to

 gracefully

 // disconnect from them as this method is called at the shutdown of

 the Interact runtime

 // webapp. For this example, there is nothing really to do

 // except print out a statement for debugging.

 System.out.println("Calling shutdown for SampleLearning");

 }

 // Sort by:

 // 1. offers with zero contacts - for ties, order is based on original

 input

 // 2. descending accept probability rate - for ties, order is based on

 original input

 public class MyOfferSorter implements Comparator<ITreatment>

 {

 private static final long serialVersionUID = 1L;

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 361

 /* (non-Javadoc)

 * @see java.lang.Comparable#compareTo(java.lang.Object)

 */

 public int compare(ITreatment treatment1, ITreatment treatment2)

 {

 // get contact count for both treatments

 Integer contactCount1 =

 _offerToContactCount.get(treatment1.getOffer().getOfferId());

 Integer contactCount2 =

 _offerToContactCount.get(treatment2.getOffer().getOfferId());

 // if treatment hasn't been contacted, then that wins

 if(contactCount1 == null || contactCount1 == 0)

 return -1;

 if(contactCount2 == null || contactCount2 == 0)

 return 1;

 // get accept counts

 Integer acceptCount1 =

 _offerToAcceptCount.get(treatment1.getOffer().getOfferId());

 Integer acceptCount2 =

 _offerToAcceptCount.get(treatment2.getOffer().getOfferId());

 float acceptProbability1 = (float) acceptCount1 / (float)

 contactCount1;

 float acceptProbability2 = (float) acceptCount2 / (float)

 contactCount2;

 // descending order

Unica Interact V12.1.3 Administrator's Guide | 12 - About the Learning API | 362

 return (int) (acceptProbability2 - acceptProbability1);

 }

 }

}

Chapter 13. Unica Interact WSDL
The Unica Interact installation includes two WDSL (Web Services Description Language)

XML files that describe the available web services and how to access them. You can view

these files in your Unica Interact home directory, and an example is shown here.

After you have installed Unica Interact, you can find the Unica Interact WSDL files in the

following location:

• <Interact_home>/conf/InteractService.wsdl

• <Interact_home>/conf/InteractAdminService.wsdl

With each software release or fix pack, there can be changes to the Unica Interact WDSL.

See the Unica Interact Release Notes or the readme files with the release for details.

A copy of the InteractService.wsdl is shown here for reference. To ensure that you

are using the latest information, see the WDSL files that are installed with Unica Interact.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:ns0="http://soap.api.interact.unicacorp.com"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 bloop="http://api.interact.unicacorp.com/xsd"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 targetNamespace="http://soap.api.interact.unicacorp.com">

 <wsdl:types>

 <xs:schema xmlns:ns="http://soap.api.interact.unicacorp.com"

 attributeFormDefault="qualified"

 elementFormDefault="qualified"

 targetNamespace="http://soap.api.interact.unicacorp.com">

 <xs:element name="executeBatch">

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 364

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="commands"

 nillable="false" type="ns1:CommandImpl"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="executeBatchResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:BatchResponse"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="endSession">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="endSessionResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 365

 </xs:element>

 <xs:element name="getOffers">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element minOccurs="1" name="iPoint" nillable="false"

 type="xs:string"/>

 <xs:element minOccurs="1" name="numberRequested" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getOffersResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getProfile">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getProfileResponse">

 <xs:complexType>

 <xs:sequence>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 366

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getVersionResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="postEvent">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element minOccurs="1" name="eventName" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1"

 name="eventParameters"

 nillable="true" type="ns1:NameValuePairImpl"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="postEventResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 367

 </xs:complexType>

 </xs:element>

 <xs:element name="setAudience">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID"

 nillable="false" type="ns1:NameValuePairImpl"/>

 <xs:element minOccurs="1" name="audienceLevel" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="parameters"

 nillable="true" type="ns1:NameValuePairImpl"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="setAudienceResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="setDebug">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element minOccurs="1" name="debug" type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 368

 </xs:element>

 <xs:element name="setDebugResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="startSession">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" name="sessionID" nillable="false"

 type="xs:string"/>

 <xs:element minOccurs="1" name="relyOnExistingSession"

 type="xs:boolean"/>

 <xs:element minOccurs="1" name="debug" type="xs:boolean"/>

 <xs:element minOccurs="1" name="interactiveChannel" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID"

 nillable="false" type="ns1:NameValuePairImpl"/>

 <xs:element minOccurs="1" name="audienceLevel" nillable="false"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="parameters"

 nillable="true" type="ns1:NameValuePairImpl"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="startSessionResponse">

 <xs:complexType>

 <xs:sequence>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 369

 <xs:element minOccurs="1" name="return" nillable="false"

 type="ns1:Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 <xs:schema xmlns:ax21="http://api.interact.unicacorp.com/xsd"

 attributeFormDefault="qualified"

 elementFormDefault="qualified"

 targetNamespace="http://api.interact.unicacorp.com/xsd">

 <xs:complexType name="Command">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID"

 nillable="true" type="ax21:NameValuePair"/>

 <xs:element minOccurs="1" name="audienceLevel" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="debug" type="xs:boolean"/>

 <xs:element minOccurs="1" name="event" nillable="true"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="eventParameters"

 nillable="true" type="ax21:NameValuePair"/>

 <xs:element minOccurs="1" name="interactionPoint" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="interactiveChannel" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="methodIdentifier" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="numberRequested" type="xs:int"/>

 <xs:element minOccurs="1" name="relyOnExistingSession"

 type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 370

 <xs:complexType name="NameValuePair">

 <xs:sequence>

 <xs:element minOccurs="1" name="name" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="valueAsDate" nillable="true"

 type="xs:dateTime"/>

 <xs:element minOccurs="1" name="valueAsNumeric" nillable="true"

 type="xs:double"/>

 <xs:element minOccurs="1" name="valueAsString" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="valueDataType" nillable="true"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CommandImpl">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID"

 nillable="true" type="ax21:NameValuePairImpl"/>

 <xs:element minOccurs="1" name="audienceLevel" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="debug" type="xs:boolean"/>

 <xs:element minOccurs="1" name="event" nillable="true"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="eventParameters"

 nillable="true" type="ax21:NameValuePairImpl"/>

 <xs:element minOccurs="1" name="interactionPoint" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="interactiveChannel" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="methodIdentifier" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="numberRequested" type="xs:int"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 371

 <xs:element minOccurs="1" name="relyOnExistingSession"

 type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="NameValuePairImpl">

 <xs:sequence>

 <xs:element minOccurs="1" name="name" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="valueAsDate" nillable="true"

 type="xs:dateTime"/>

 <xs:element minOccurs="1" name="valueAsNumeric" nillable="true"

 type="xs:double"/>

 <xs:element minOccurs="1" name="valueAsString" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="1" name="valueDataType" nillable="true"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="BatchResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="batchStatusCode" type="xs:int"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="responses"

 nillable="false" type="ax21:Response"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Response">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0"

 name="advisoryMessages" nillable="true" type="ax21:AdvisoryMessage"/>

 <xs:element minOccurs="0" name="apiVersion" nillable="false"

 type="xs:string"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 372

 <xs:element minOccurs="0" name="offerList" nillable="true"

 type="ax21:OfferList"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="profileRecord"

 nillable="true" type="ax21:NameValuePair"/>

 <xs:element minOccurs="0" name="sessionID" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="0" name="statusCode" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="AdvisoryMessage">

 <xs:sequence>

 <xs:element minOccurs="0" name="detailMessage" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="0" name="message" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="0" name="messageCode" type="xs:int"/>

 <xs:element minOccurs="0" name="statusLevel" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="OfferList">

 <xs:sequence>

 <xs:element minOccurs="0" name="defaultString" nillable="true"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="0"

 name="recommendedOffers" nillable="true" type="ax21:Offer"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Offer">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0"

 name="additionalAttributes" nillable="true" type="ax21:NameValuePair"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 373

 <xs:element minOccurs="0" name="description" nillable="true"

 type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="offerCode"

 nillable="true" type="xs:string"/>

 <xs:element minOccurs="0" name="offerName" nillable="true"

 type="xs:string"/>

 <xs:element minOccurs="0" name="score" type="xs:int"/>

 <xs:element minOccurs="0" name="treatmentCode" nillable="true"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="setAudienceRequest">

 <wsdl:part name="parameters" element="ns0:setAudience"/>

 </wsdl:message>

 <wsdl:message name="setAudienceResponse">

 <wsdl:part name="parameters" element="ns0:setAudienceResponse"/>

 </wsdl:message>

 <wsdl:message name="postEventRequest">

 <wsdl:part name="parameters" element="ns0:postEvent"/>

 </wsdl:message>

 <wsdl:message name="postEventResponse">

 <wsdl:part name="parameters" element="ns0:postEventResponse"/>

 </wsdl:message>

 <wsdl:message name="getOffersRequest">

 <wsdl:part name="parameters" element="ns0:getOffers"/>

 </wsdl:message>

 <wsdl:message name="getOffersResponse">

 <wsdl:part name="parameters" element="ns0:getOffersResponse"/>

 </wsdl:message>

 <wsdl:message name="startSessionRequest">

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 374

 <wsdl:part name="parameters" element="ns0:startSession"/>

 </wsdl:message>

 <wsdl:message name="startSessionResponse">

 <wsdl:part name="parameters" element="ns0:startSessionResponse"/>

 </wsdl:message>

 <wsdl:message name="getVersionRequest"/>

 <wsdl:message name="getVersionResponse">

 <wsdl:part name="parameters" element="ns0:getVersionResponse"/>

 </wsdl:message>

 <wsdl:message name="setDebugRequest">

 <wsdl:part name="parameters" element="ns0:setDebug"/>

 </wsdl:message>

 <wsdl:message name="setDebugResponse">

 <wsdl:part name="parameters" element="ns0:setDebugResponse"/>

 </wsdl:message>

 <wsdl:message name="executeBatchRequest">

 <wsdl:part name="parameters" element="ns0:executeBatch"/>

 </wsdl:message>

 <wsdl:message name="executeBatchResponse">

 <wsdl:part name="parameters" element="ns0:executeBatchResponse"/>

 </wsdl:message>

 <wsdl:message name="getProfileRequest">

 <wsdl:part name="parameters" element="ns0:getProfile"/>

 </wsdl:message>

 <wsdl:message name="getProfileResponse">

 <wsdl:part name="parameters" element="ns0:getProfileResponse"/>

 </wsdl:message>

 <wsdl:message name="endSessionRequest">

 <wsdl:part name="parameters" element="ns0:endSession"/>

 </wsdl:message>

 <wsdl:message name="endSessionResponse">

 <wsdl:part name="parameters" element="ns0:endSessionResponse"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 375

 </wsdl:message>

 <wsdl:portType name="InteractServicePortType">

 <wsdl:operation name="setAudience">

 <wsdl:input message="ns0:setAudienceRequest"

 wsaw:Action="urn:setAudience"/>

 <wsdl:output message="ns0:setAudienceResponse"

 wsaw:Action="urn:setAudienceResponse"/>

 </wsdl:operation>

 <wsdl:operation name="postEvent">

 <wsdl:input message="ns0:postEventRequest" wsaw:Action="urn:postEvent"/>

 <wsdl:output message="ns0:postEventResponse"

 wsaw:Action="urn:postEventResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getOffers">

 <wsdl:input message="ns0:getOffersRequest" wsaw:Action="urn:getOffers"/>

 <wsdl:output message="ns0:getOffersResponse"

 wsaw:Action="urn:getOffersResponse"/>

 </wsdl:operation>

 <wsdl:operation name="startSession">

 <wsdl:input message="ns0:startSessionRequest"

 wsaw:Action="urn:startSession"/>

 <wsdl:output message="ns0:startSessionResponse"

 wsaw:Action="urn:startSessionResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getVersion">

 <wsdl:input message="ns0:getVersionRequest"

 wsaw:Action="urn:getVersion"/>

 <wsdl:output message="ns0:getVersionResponse"

 wsaw:Action="urn:getVersionResponse"/>

 </wsdl:operation>

 <wsdl:operation name="setDebug">

 <wsdl:input message="ns0:setDebugRequest" wsaw:Action="urn:setDebug"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 376

 <wsdl:output message="ns0:setDebugResponse"

 wsaw:Action="urn:setDebugResponse"/>

 </wsdl:operation>

 <wsdl:operation name="executeBatch">

 <wsdl:input message="ns0:executeBatchRequest"

 wsaw:Action="urn:executeBatch"/>

 <wsdl:output message="ns0:executeBatchResponse"

 wsaw:Action="urn:executeBatchResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getProfile">

 <wsdl:input message="ns0:getProfileRequest"

 wsaw:Action="urn:getProfile"/>

 <wsdl:output message="ns0:getProfileResponse"

 wsaw:Action="urn:getProfileResponse"/>

 </wsdl:operation>

 <wsdl:operation name="endSession">

 <wsdl:input message="ns0:endSessionRequest"

 wsaw:Action="urn:endSession"/>

 <wsdl:output message="ns0:endSessionResponse"

 wsaw:Action="urn:endSessionResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="InteractServiceSOAP11Binding"

 type="ns0:InteractServicePortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="setAudience">

 <soap:operation soapAction="urn:setAudience" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 377

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="postEvent">

 <soap:operation soapAction="urn:postEvent" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getOffers">

 <soap:operation soapAction="urn:getOffers" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="startSession">

 <soap:operation soapAction="urn:startSession" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getVersion">

 <soap:operation soapAction="urn:getVersion" style="document"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 378

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="setDebug">

 <soap:operation soapAction="urn:setDebug" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="executeBatch">

 <soap:operation soapAction="urn:executeBatch" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getProfile">

 <soap:operation soapAction="urn:getProfile" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 379

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="endSession">

 <soap:operation soapAction="urn:endSession" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="InteractServiceSOAP12Binding"

 type="ns0:InteractServicePortType">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="document"/>

 <wsdl:operation name="setAudience">

 <soap12:operation soapAction="urn:setAudience" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="postEvent">

 <soap12:operation soapAction="urn:postEvent" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 380

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getOffers">

 <soap12:operation soapAction="urn:getOffers" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="startSession">

 <soap12:operation soapAction="urn:startSession" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getVersion">

 <soap12:operation soapAction="urn:getVersion" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="setDebug">

 <soap12:operation soapAction="urn:setDebug" style="document"/>

 <wsdl:input>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 381

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="executeBatch">

 <soap12:operation soapAction="urn:executeBatch" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getProfile">

 <soap12:operation soapAction="urn:getProfile" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="endSession">

 <soap12:operation soapAction="urn:endSession" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 382

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="InteractServiceHttpBinding"

 type="ns0:InteractServicePortType">

 <http:binding verb="POST"/>

 <wsdl:operation name="setAudience">

 <http:operation location="InteractService/setAudience"/>

 <wsdl:input>

 <mime:content part="setAudience" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="setAudience" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="postEvent">

 <http:operation location="InteractService/postEvent"/>

 <wsdl:input>

 <mime:content part="postEvent" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="postEvent" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getOffers">

 <http:operation location="InteractService/getOffers"/>

 <wsdl:input>

 <mime:content part="getOffers" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="getOffers" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 383

 <wsdl:operation name="startSession">

 <http:operation location="InteractService/startSession"/>

 <wsdl:input>

 <mime:content part="startSession" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="startSession" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getVersion">

 <http:operation location="InteractService/getVersion"/>

 <wsdl:input>

 <mime:content part="getVersion" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="getVersion" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="setDebug">

 <http:operation location="InteractService/setDebug"/>

 <wsdl:input>

 <mime:content part="setDebug" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="setDebug" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="executeBatch">

 <http:operation location="InteractService/executeBatch"/>

 <wsdl:input>

 <mime:content part="executeBatch" type="text/xml"/>

 </wsdl:input>

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 384

 <wsdl:output>

 <mime:content part="executeBatch" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getProfile">

 <http:operation location="InteractService/getProfile"/>

 <wsdl:input>

 <mime:content part="getProfile" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="getProfile" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="endSession">

 <http:operation location="InteractService/endSession"/>

 <wsdl:input>

 <mime:content part="endSession" type="text/xml"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content part="endSession" type="text/xml"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="InteractService">

 <wsdl:port name="InteractServiceSOAP11port_http"

 binding="ns0:InteractServiceSOAP11Binding">

 <soap:address

 location="http://localhost:7001/interact/services/InteractService"/>

 </wsdl:port>

 <wsdl:port name="InteractServiceSOAP12port_http"

 binding="ns0:InteractServiceSOAP12Binding">

Unica Interact V12.1.3 Administrator's Guide | 13 - Unica Interact WSDL | 385

 <soap12:address

 location="http://localhost:7001/interact/services/InteractService"/>

 </wsdl:port>

 <wsdl:port name="InteractServiceHttpport"

 binding="ns0:InteractServiceHttpBinding">

 <http:address

 location="http://localhost:7001/interact/services/InteractService"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Chapter 14. Unica Interact runtime
environment configuration properties
This section describes all the configuration properties for the Unica Interact runtime

environment.

Interact | general
These configuration properties define general settings for your runtime environment

environment, including the default logging level and the locale setting.

log4jConfig

Description

The location of the file containing the log4j properties. This path can be

either absolute or relative to the INTERACT_HOME environment variable.

INTERACT_HOME is the location of the Unica Interact installation directory.

Default value

./conf/interact_log4j2.xml

asmUserForDefaultLocale

Description

The asmUserForDefaultLocale property defines the Unica user from which

Unica Interact derives its locale settings.

The locale settings define what language displays in the design time and run

time what language advisory messages from the Unica Interact API are in. If

the locale setting does not match your machines operating system settings,

Unica Interact still functions, however the design time display and advisory

messages may be in a different language.

Default value

asm_admin

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 387

configurationRefreshInMins

Description

The Admin User with Admin Role (Platform) can turn on or off the feature

for dynamically update configuration data by setting the configuration

refresh in minutes value <=0 (off) or >0 (on). For example, the current value

of configuration refresh in minutes is 5 minute. The configuration changes

may need up to 5 minutes to be effective. The new set value of configuration

refresh then take effect in minutes. The system will refresh some of the config

data as per the new changed value after this.

Note: Auto refresh is not supported for the following configuration parameters:

1. General — all data source config no support, only top level config support

2. Monitoring

3. profile

4. cacheManagement

5. triggedMessage

6. activityOrchestrator

7. simulator

8. ETL

Interact | general | API
This configuration property defines setting for the authentication of the Unica Interact APIs.

tokenAuthentication

Description

Use this tokenAuthentication property to enable or disable authentication for

the Unica Interact APIs.

Default value

FALSE

Valid values

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 388

TRUE | FALSE

enabledLogging

Description

Use this property to determine whether to enable API logging globally.

Default value

FALSE

Valid values

TRUE | FALSE

Interact | general | centralizedLogger
This configuration property defines centralized logging for Unica Interact.

enabled

Description

Defines if the centralized logger is enabled or disabled in Unica Interact.

Default value

FALSE

Valid values

TRUE | FALSE

maxBatchSize

Description

The maximum number of log entries that will be persisted into the database in

a single batch.

Default value

1000

Valid values

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 389

Non-negative and positive integers

maxDelayInSec

Description

The maximum times a log entry will wait before getting persisted into the

database.

Default Value

15

Valid Values

Non-negative and positive integers

Even in cases when the centralizedLogger feature is enabled for the entire server group,

it can be disabled on a single server by commenting the following line in that server's

interact_log4j2.xml:

<AppenderRef ref="db"/>

Interact | general | learningTablesDataSource
These configuration properties define the data source settings for the built-in learning

tables. You must define this data source if you are using Unica Interact built-in learning.

If you create your own learning implementation using the Learning API, you can configure

your custom learning implementation to read these values using the ILearningConfig

interface.

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the learning tables accessed by Unica Interact

runtime servers.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 390

The learning tables are created by the aci_lrntab ddl file and contain

the following tables (among others): UACI_AttributeValue and

UACI_OfferStats.

Default value

No default value defined.

type

Description

The database type for the data source used by the learning tables accessed by

the Unica Interact runtime servers.

The learning tables are created by the aci_lrntab ddl file and contain

the following tables (among others): UACI_AttributeValue and

UACI_OfferStats.

Default value

SQLServer

Valid Values

SQLServer | DB2® | ORACLE | MARIADB

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection

request on failure for the learning tables. Unica Interact automatically tries to

reconnect to the database for this length of time before reporting a database

error or failure. If the value is set to 0, Unica Interact will retry indefinitely; if the

value is set to -1, no retry will be attempted.

The learning tables are created by the aci_lrntab ddl file and contain

the following tables (among others): UACI_AttributeValue and

UACI_OfferStats.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 391

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure

for the learning tables. If the value is set to -1, no retry will be attempted.

The learning tables are created by the aci_lrntab ddl file and contain

the following tables (among others): UACI_AttributeValue and

UACI_OfferStats.

Default value

-1

schema

Description

The name of the schema containing the tables for the built-in learning module.

Unica Interact inserts the value of this property before all table names, for

example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | prodUserDataSource
These configuration properties define the data source settings for the production profile

tables. You must define this data source. This is the data source the runtime environment

references when running interactive flowcharts after deployment.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 392

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the customer tables accessed by Unica Interact

runtime servers.

Default value

No default value defined.

type

Description

The database type for the customer tables accessed by Unica Interact runtime

servers.

Default value

SQLServer

Valid Values

SQLServer | DB2® | ORACLE | MARIADB

aliasPrefix

Description

The AliasPrefix property specifies the way Unica Interact forms the alias

name that Unica Interact creates automatically when using a dimension table

and writing to a new table in the customer tables accessed by Unica Interact

runtime servers..

Note that each database has a maximum identifier length; check the

documentation for the database you are using to be sure that the value you

set does not exceed the maximum identifier length for your database.

Default value

A

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 393

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection request

on failure for the runtime customer tables. Unica Interact automatically tries to

reconnect to the database for this length of time before reporting a database

error or failure. If the value is set to 0, Unica Interact will retry indefinitely; if the

value is set to -1, no retry will be attempted.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure

for the Unica Interact runtime customer tables. If the value is set to -1, no retry

will be attempted.

Default value

-1

schema

Description

The name of the schema containing your profile data tables. Unica Interact

inserts the value of this property before all table names, for example,

UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

When you use a DB2 database, the schema name must be upper case.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 394

Default value

No default value defined.

Interact | general | API | requestThreadPool
This configuration property configures the thread pool that retrieves supplemental

treatments from other audience IDs specified in UACISupplementAudience.

corePoolSize

Description

The minimum number of threads in this pool.

Default value

None

Valid values

Numeric

maxPoolSize

The maximum number of threads in this pool.

Default value

None

Valid values

Numeric

keepAliveTimeSecs

The maximum time in seconds the system waits before removing an idle

thread from this pool.

Default value

None

Valid values

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 395

Numeric

termWaitSecs

The maximum time in seconds the system waits before stopping a thread in

this pool when the system is shutting down.

Default value

None

Valid values

Numeric

Interact | general | systemTablesDataSource
These configuration properties define the data source settings for the system tables for

runtime environment. You must define this data source.

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the runtime environment tables.

The runtime environment database is the database populated with the

aci_runtime and aci_populate_runtime dll scripts and, for example,

contains the following tables (among others): UACI_CHOfferAttrib and

UACI_DefaultedStat.

Default value

No default value defined.

type

Description

The database type for the runtime environment system tables.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 396

The runtime environment database is the database populated with the

aci_runtime and aci_populate_runtime dll scripts and, for example,

contains the following tables (among others): UACI_CHOfferAttrib and

UACI_DefaultedStat.

Default value

SQLServer

Valid Values

SQLServer | DB2® | ORACLE | MARIADB

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection request

on failure for the runtime system tables. Unica Interact automatically tries to

reconnect to the database for this length of time before reporting a database

error or failure. If the value is set to 0, Unica Interact will retry indefinitely; if the

value is set to -1, no retry will be attempted.

The runtime environment database is the database populated with the

aci_runtime and aci_populate_runtime dll scripts and, for example,

contains the following tables (among others): UACI_CHOfferAttrib and

UACI_DefaultedStat.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure

for the Unica Interact runtime system tables. If the value is set to -1, no retry

will be attempted.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 397

The runtime environment database is the database populated with the

aci_runtime and aci_populate_runtime dll scripts and, for example,

contains the following tables (among others): UACI_CHOfferAttrib and

UACI_DefaultedStat.

Default value

-1

schema

Description

The name of the schema containing the tables for the runtime environment.

Unica Interact inserts the value of this property before all table names, for

example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | systemTablesDataSource | loaderProperties
These configuration properties define the settings a database loader utility for the system

tables for runtime environment. You need to define these properties if you are using a

database loader utility only.

databaseName

Description

The name of the database the database loader connects to.

Default value

No default value defined.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 398

LoaderCommandForAppend

Description

The LoaderCommandForAppend parameter specifies the command issued to

invoke your database load utility for appending records to the contact and

response history staging database tables in Unica Interact. You need to set

this parameter to enable the database loader utility for contact and response

history data.

This parameter is specified as a full path name either to the database load

utility executable or to a script that launches the database load utility. Using a

script allows you to perform additional setup before invoking the load utility.

Most database load utilities require several arguments to be successfully

launched. These can include specifying the data file and control file to load

from and the database and table to load into. The tokens are replaced by the

specified elements when the command is run.

Consult your database load utility documentation for the correct syntax to use

when invoking your database load utility.

This parameter is undefined by default.

Tokens available to LoaderCommandForAppend are described in the following

table.

Token Description

<CON

TROLFILE>

This token is replaced with the full path and filename

to the temporary control file that Unica Interact gener

ates according to the template that is specified in the

LoaderControlFileTemplate parameter.

<DATABASE> This token is replaced with the name of the data

source into which Unica Interact is loading data. This

is the same data source name used in the category

name for this data source.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 399

Token Description

<DATAFILE> This token is replaced with the full path and filename

to the temporary data file created by Unica Interact

during the loading process. This file is in the Unica In

teract Temp directory, UNICA_ACTMPDIR.

<DBCOLUMN

NUMBER>

This token is replaced with the column ordinal in the

database.

<FIELDLENGTH> This token is replaced with the length of the field be

ing loaded into the database.

<FIELDNAME> This token is replaced with the name of the field being

loaded into the database.

<FIELDNUM

BER>

This token is replaced with the number of the field be

ing loaded into the database.

<FIELDTYPE> This token is replaced with the literal "CHAR()". The

length of this field is specified between the (). If your

database happens to not understand the field type,

CHAR, you can manually specify the appropriate text

for the field type and use the <FIELDLENGTH> token.

For example, for SQLSVR and SQL2000 you would use

"SQLCHAR(<FIELDLENGTH>)"

<NATIVETYPE> This token is replaced with the type of database into

which this field is loaded.

<NUMFIELDS> This token is replaced with the number of fields in the

table.

<PASSWORD> This token is replaced with the database password

from the current flowchart connection to the data

source.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 400

Token Description

<TABLENAME> This token is replaced with the database table name

into which Unica Interact is loading data.

<USER> This token is replaced with the database user from

the current flowchart connection to the data source.

Default value

No default value defined.

LoaderControlFileTemplateForAppend

Description

The LoaderControlFileTemplateForAppend property specifies the full path

and filename to the control file template that has been previously configured

in Unica Interact. When this parameter is set, Unica Interact dynamically builds

a temporary control file based on the template that is specified here. The path

and name of this temporary control file is available to the <CONTROLFILE>

token that is available to the LoaderCommandForAppend property.

Before you use Unica Interact in the database loader utility mode, you must

configure the control file template that is specified by this parameter. The

control file template supports the following tokens, which are dynamically

replaced when the temporary control file is created by Unica Interact.

See your database loader utility documentation for the correct syntax required

for your control file. Tokens available to your control file template are the same

as those for the LoaderControlFileTemplate property.

This parameter is undefined by default.

Default value

No default value defined.

LoaderDelimiterForAppend

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 401

The LoaderDelimiterForAppend property specifies whether the temporary

Unica Interact data file is a fixed-width or delimited flat file, and, if it is

delimited, the character or set of characters used as delimiters.

If the value is undefined, Unica Interact creates the temporary data file as a

fixed width flat file.

If you specify a value, it is used when the loader is invoked to populate a table

that is not known to be empty. Unica Interact creates the temporary data file

as a delimited flat file, using the value of this property as the delimiter.

This property is undefined by default.

Default value

Valid Values

Characters, which you may enclose in double quotation marks, if desired.

LoaderDelimiterAtEndForAppend

Description

Some external load utilities require that the data file be delimited and that

each line end with the delimiter. To accommodate this requirement, set the

LoaderDelimiterAtEndForAppend value to TRUE, so that when the loader is

invoked to populate a table that is not known to be empty, Unica Interact uses

delimiters at the end of each line.

Default value

FALSE

Valid Values

TRUE | FALSE

LoaderUseLocaleDP

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 402

The LoaderUseLocaleDP property specifies, when Unica Interact writes

numeric values to files to be loaded by a database load utility, whether the

locale-specific symbol is used for the decimal point.

Set this value to FALSE to specify that the period (.) is used as the decimal

point.

Set this value to TRUE to specify that the decimal point symbol appropriate to

the locale is used.

Default value

FALSE

Valid Values

TRUE | FALSE

Interact | general | testRunDataSource
These configuration properties define the data source settings for the test run tables for

the Unica Interact design environment. You must define this data source for at least one of

your runtime environments. These are the tables used when you perform a test run of your

interactive flowchart.

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the customer tables accessed by the design

environment when executing interactive flowcharts test runs.

Default value

No default value defined.

type

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 403

The database type for the customer tables accessed by the design

environment when executing interactive flowcharts test runs.

Default value

SQLServer

Valid Values

SQLServer | DB2® | ORACLE | MARIADB

aliasPrefix

Description

The AliasPrefix property specifies the way Unica Interact forms the alias

name that Unica Interact creates automatically when using a dimension table

and writing to a new table for the customer tables accessed by the design

environment when executing interactive flowcharts test runs.

Note that each database has a maximum identifier length; check the

documentation for the database you are using to be sure that the value you

set does not exceed the maximum identifier length for your database.

Default value

A

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection

request on failure for the test run tables. Unica Interact automatically tries to

reconnect to the database for this length of time before reporting a database

error or failure. If the value is set to 0, Unica Interact will retry indefinitely; if the

value is set to -1, no retry will be attempted.

Default value

-1

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 404

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure

for the test run tables. If the value is set to -1, no retry will be attempted.

Default value

-1

schema

Description

The name of the schema containing the tables for interactive flowchart test

runs. Unica Interact inserts the value of this property before all table names,

for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | contactAndResponseHistoryDataSource
These configuration properties define the connection settings for the contact and response

history data source required for the Unica Interact cross-session response tracking. These

settings are not related to the contact and response history module.

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server

(WebSphere® or WebLogic) for the contact and response history data source

required for the Unica Interact cross-session response tracking.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 405

Default value

type

Description

The database type for the data source used by the contact and response

history data source required for the Unica Interact cross-session response

tracking.

Default value

SQLServer

Valid Values

SQLServer | DB2® | ORACLE | MARIADB

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection request

on failure for the Unica Interact cross-session response tracking. Unica

Interact automatically tries to reconnect to the database for this length of

time before reporting a database error or failure. If the value is set to 0, Unica

Interact will retry indefinitely; if the value is set to -1, no retry will be attempted.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure

for the Unica Interact cross-session response tracking. If the value is set to -1,

no retry will be attempted.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 406

Default value

-1

schema

Description

The name of the schema containing the tables for the Unica Interact

cross-session response tracking. Unica Interact inserts the value of this

property before all table names, for example, UACI_IntChannel becomes

schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | idsByType
These configuration properties define settings for ID numbers used by the contact and

response history module.

initialValue

Description

The initial ID value used when generating IDs using the UACI_IDsByType table.

Default value

1

Valid Values

Any value greater than 0.

retries

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 407

The number of retries before generating an exception when generating IDs

using the UACI_IDsByType table.

Default value

20

Valid Values

Any integer greater than 0.

Interact | flowchart
This section defines configuration settings for interactive flowcharts.

DT_DELIM_XXX formats cannot be used with Interactive Session flowcharts

defaultDateFormat

Description

The default date format used by Unica Interact to convert Date to String and

String to Date.

Default value

MM/dd/yy

idleFlowchartThreadTimeoutInMinutes

Description

The number of minutes Unica Interact allows a thread dedicated to an

interactive flowchart to be idle before releasing the thread.

Default value

5

idleProcessBoxThreadTimeoutInMinutes

Description

The number of minutes Unica Interact allows a thread dedicated to an

interactive flowchart process to be idle before releasing the thread.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 408

Default value

5

maxSizeOfFlowchartEngineInboundQueue

Description

The maximum number of flowchart run requests Unica Interact holds in

queue. If this number of requests is reached, Unica Interact will stop taking

requests.

Default value

1000

maxNumberOfFlowchartThreads

Description

The maximum number of threads dedicated to interactive flowchart requests.

Default value

25

maxNumberOfProcessBoxThreads

Description

The maximum number of threads dedicated to interactive flowchart

processes.

Default value

50

maxNumberOfProcessBoxThreadsPerFlowchart

Description

The maximum number of threads dedicated to interactive flowchart processes

per flowchart instance.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 409

3

minNumberOfFlowchartThreads

Description

The minimum number of threads dedicated to interactive flowchart requests.

Default value

10

minNumberOfProcessBoxThreads

Description

The minimum number of threads dedicated to interactive flowchart

processes.

Default value

20

sessionVarPrefix

Description

The prefix for session variables.

Default value

SessionVar

Interact | flowchart | ExternalCallouts | [ExternalCalloutName]
This section defines the class settings for custom external callouts you have written with

the external callout API.

class

Description

The name of the Java™ class represented by this external callout.

This is the Java™ class that you can access with the Macro EXTERNALCALLOUT.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 410

Default value

No default value defined.

classpath

Description

The classpath for the Java™ class represented by this external callout. The

classpath must reference jar files on the runtime environment server. If you

are using a server group and all runtime servers are using the same Unica

Platform, every server must have a copy of the jar file in the same location.

The classpath must consist of absolute locations of jar files, separated by

the path delimiter of the operating system of the runtime environment server,

for example a semi-colon (;) on Windows™ and a colon (:) on UNIX™ systems.

Directories containing class files are not accepted. For example, on a Unix

system: /path1/file1.jar:/path2/file2.jar.

This classpath must be less than 1024 characters. You can use the manifest

file in a .jar file to specify other .jar files so only one .jar file has to appear in

your class path.

This is the Java™ class that you can access with the Macro EXTERNALCALLOUT.

If multiple JARs are provided in this setting, they must be separated with their

platform's path separator character, example, the semicolon ";" on windows,

and the colon ":" on Linux).

Default value

No default value defined.

Notes on Calling Web Service APIs from Interact External Callouts

• Interact recommends that external callouts modules must not make additional SOAP

calls to complete their processing. While this can work if properly configured, it can

also lead to classloading and internal SOAP configuration errors that are difficult

to resolve. It is recommended that you use REST or alternative web service API

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 411

frameworks if you require to call out to other systems from within their external

callouts.

• If SOAP APIs are to be used within Interact external callouts, they must be compiled

against the version of SOAP / Axis2 included with Interact. As of this publishing the

version is Axis2 version 1.52. The exact version used by Interact can be determined

by searching for the *axis2*.jar files in the InteractRT.war/web-inf/lib directory and

noting the version listed at the end of their filename (example, axis2-kernel-1.5.2.jar).

The version of Axis2 that was used to compile your SOAP stubs is typically listed as a

comment at the top of the SOAP *Stub.java file generated or provided to you.

• If your external callout is encountering SOAP errors, you must enable classloading

logging on your application server to verify that only Interact's provided Axis2 and

Axiom libraries are loaded and used by both Interact and your external callout code.

• External callout processing errors can be found in the interact.log file.

Interact | flowchart | ExternalCallouts | [ExternalCalloutName] |
Parameter Data | [parameterName]
This section defines the parameter settings for a custom external callout you have written

with the external callout API.

value

Description

The value for any parameter required by the class for the external callout.

Default value

No default value defined.

Example

If the external callout requires host name of an external server, create a

parameter category named host and define the value property as the server

name.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 412

Interact | monitoring
This set of configuration properties enables you to define JMX monitoring settings. You

need to configure these properties only if you are using JMX monitoring. There are separate

JMX monitoring properties to define for the contact and response history module in the

configuration properties for Unica Interact design environment.

protocol

Description

Define the protocol for the Unica Interact messaging service.

If you choose JMXMP you must include the following JAR files in your class

path in order:

Interact/lib/InteractJMX.jar;Interact/lib/jmxremote_optional.jar

Default value

JMXMP

Valid Values

JMXMP | RMI

port

Description

The port number for the messaging service.

Default value

9998

enableSecurity

Description

A boolean which enables or disables JMXMP messaging service security

for the Unica Interact runtime server. If set to true, you must supply a user

name and password to access the Unica Interact runtime JMX service. This

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 413

user credential is authenticated by the Unica Platform for the runtime server.

Jconsole does not allow empty password login.

This property has no effect if the protocol is RMI. This property has no effect

on JMX for Unica Campaign (the Unica Interact design time).

Default value

True

Valid Values

True | False

Interact | monitoring | activitySubscribers
This set of configuration properties enables the root node for the settings that are related to

remote subscribers that can receive periodic update on basic performance data in the Unica

Interact runtime environment.

heartbeatPeriodInSecs

Description

The interval in seconds when each runtime instance sends an update to

subscribers.

Default value

60

Interact | monitoring | activitySubscribers | (target)

(target)

Description

The root node for the settings of a subscriber.

URL

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 414

The URL of this subscriber. This endpoint must be able to accept JSON

messages transported through HTTP.

continuousErrorsForAbort

Description

The number of continuous failed updates before the runtime instance stops

sending more updates to this subscriber.

Default value

5

timeoutInMillis

Description

The time-out in milliseconds the send process times out during sending

update to this subscriber.

Default value

1000

Valid Values

Enabled

Description

Whether this subscriber is enabled or disabled.

Default value

True

Valid Values

True or False

type

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 415

The type of this data store. When this option is selected, the parameter

className must be added with the value being the fully qualified name of this

implementation class. classPath needs to be added with the URI of the JAR

file if it is not in the class path of the Interact run time.

Default value

InteractLog

Valid Values

InteractLog, RelationalDB, and Custom

jmxInclusionCycles

Description

The interval in the multiplier of heartbeatPeriodInSecs that detailed JMX

statistics are sent to this subscriber.

Default value

5

Valid Values

Interact | profile
This set of configuration properties control several of the optional offer serving features,

including offer suppression and score override.

enableScoreOverrideLookup

Description

If set to True, Unica Interact loads the score override data from the

scoreOverrideTable when creating a session. If False, Unica Interact does

not load the marketing score override data when creating a session.

If true, you must also configure the Interact | profile | Audience Levels

| (Audience Level) | scoreOverrideTable property. You need to define

the scoreOverrideTable property for the audience levels you require only.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 416

Leaving the scoreOverrideTable blank for an audience level disables the

score override table for the audience level.

Default value

False

Valid Values

True | False

enableOfferSuppressionLookup

Description

If set to True, Unica Interact loads the offer suppression data from the

offerSuppressionTable when creating a session. If False, Unica Interact

does not load the offer suppression data when creating a session.

If true, you must also configure the Interact | profile | Audience Levels

| (Audience Level) | offerSuppressionTable property. You need to define

the enableOfferSuppressionLookup property for the audience levels you

require only.

Default value

False

Valid Values

True | False

enableProfileLookup

Description

In a new installation of Unica Interact, this property is deprecated. In an

upgraded installation of Unica Interact, this property is valid until the first

deployment.

The load behavior for a table used in an interactive flowchart but not mapped

in the interactive channel. If set to True, Unica Interact loads the profile data

from the profileTable when creating a session.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 417

If true, you must also configure the Interact | profile | Audience Levels

| (Audience Level) | profileTable property.

The Load this data in to memory when a visit session starts setting in the

interactive channel table mapping wizard overrides this configuration property.

Default value

False

Valid Values

True | False

defaultOfferUpdatePollPeriod

Description

The number of seconds the system waits before updating the default offers in

the cache from the default offers table. If set to -1, the system doesn't update

the default offers in the cache after the initial list is loaded into the cache

when the runtime server starts.

Default value

-1

Interact | profile | Audience Levels | [AudienceLevelName]
This set of configuration properties enables you to define the table names required for

additional Unica Interact features. You are only required to define the table name if you are

using the associated feature.

New category name

Description

The name of your audience level.

scoreOverrideTable

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 418

The name of the table containing the score override information

for this audience level. This property is applicable if you have set

enableScoreOverrideLookup to true. You have to define this property for the

audience levels for which you want to enable a score override table. If you

have no score override table for this audience level, you can leave this property

undefined, even if enableScoreOverrideLookup is set to true.

Unica Interact looks for this table in the customer tables accessed by Unica

Interact runtime servers, defined by the prodUserDataSource properties.

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_ScoreOverride. If you enter a fully-qualified name, for example,

mySchema.UACI_ScoreOverride, Unica Interact does not prepend the schema

name.

Default value

UACI_ScoreOverride

offerSuppressionTable

Description

The name of the table containing the offer suppression information for

this audience level. You have to define this property for the audience levels

for which you want to enable an offer suppression table. If you have no

offer suppression table for this audience level, you can leave this property

undefined. If enableOfferSuppressionLookup is set to true, this property must

be set to a valid table.

Unica Interact looks for this table in the customer tables accessed by runtime

servers, defined by the prodUserDataSource properties.

Default value

UACI_BlackList

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 419

contactHistoryTable

Description

The name of the staging table for the contact history data for this audience

level.

This table is stored in the runtime environment tables

(systemTablesDataSource).

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_CHStaging. If you enter a fully-qualified name, for example,

mySchema.UACI_CHStaging, Unica Interact does not prepend the schema

name.

If contact history logging is disabled, this property does not need to be set.

Default value

UACI_CHStaging

chOfferAttribTable

Description

The name of the contact history offer attributes table for this audience level.

This table is stored in the runtime environment tables

(systemTablesDataSource).

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_CHOfferAttrib. If you enter a fully-qualified name, for example,

mySchema.UACI_CHOfferAttrib, Unica Interact does not prepend the schema

name.

If contact history logging is disabled, this property does not need to be set.

Default value

UACI_CHOfferAttrib

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 420

responseHistoryTable

Description

The name of the response history staging table for this audience level.

This table is stored in the runtime environment tables

(systemTablesDataSource).

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_RHStaging. If you enter a fully-qualified name, for example,

mySchema.UACI_RHStaging, Unica Interact does not prepend the schema

name.

If response history logging is disabled, this property does not need to be set.

Default value

UACI_RHStaging

crossSessionResponseTable

Description

The name of the table for this audience level required for cross-session

response tracking in the contact and response history tables accessible for

the response tracking feature.

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_XSessResponse. If you enter a fully-qualified name, for example,

mySchema.UACI_XSessResponse, Unica Interact does not prepend the schema

name.

If cross session response logging is disabled, this property does not need to

be set.

Default value

UACI_XSessResponse

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 421

userEventLoggingTable

Description

This is the name of the database table that is used for logging user-defined

event activities. Users defined events on the Events tab of the Interactive

Channel summary pages in the Unica Interact interface. The database table

you specify here stores information such as the event ID, name, how many

times this event occurred for this audience level since the last time the event

activity cache was flushed, and so on.

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_UserEventActivity. If you enter a fully-qualified name, for

example, mySchema.UACI_UserEventActivity, Unica Interact does not

prepend the schema name.

Default value

UACI_UserEventActivity

patternStateTable

Description

This is the name of the database table that is used for logging event pattern

states, such as whether the pattern condition has been met or not, whether the

pattern is expired or disabled, and so on.

If you have defined the schema property for this data source, Unica

Interact prepends this table name with the schema, for example,

schema.UACI_EventPatternState. If you enter a fully-qualified name, for

example, mySchema.UACI_EventPatternState, Unica Interact does not

prepend the schema name.

A patternStateTable is required for each audience level even if you do not

use event patterns. The patternStateTable is based on the ddl of the included

UACI_EventPatternState. The following is an example where the audience ID

has two components; ComponentNum and ComponentStr.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 422

CREATE TABLE UACI_EventPatternState_Composite

(

 UpdateTime bigint NOT NULL,

 State varbinary(4000),

 ComponentNum bigint NOT NULL,

 ComponentStr nvarchar(50) NOT NULL,

 CONSTRAINT PK_CustomerPatternState_Composite PRIMARY KEY

 (ComponentNum,ComponentStr,UpdateTime)

)

Default value

UACI_EventPatternState

requestLogTable

Description

This configuration property enables you to determine the name of table for

recording API requests targeted to this particular audience level. If left blank,

no API logging occurs at this audience level. This feature has to be enabled

globally to log API requests for this audience level.

Default value

empty string

triggeredMessageLogTable

Description

This configuration property enables you to determine the name of the table for

recording triggered messages or actions responses targeted to this audience

level. If left blank, no logging occurs at this audience level. This feature must

be enabled globally to log triggered messages or actions responses for this

audience level.

Default value

empty string

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 423

requestAttrLogTable

Description

The name of the database table used for logging Interact API attributes, in

addition to the information captured by requestLogTable. The attributes

information that is logged to this table is based on the configurations

that are set in Affinium|interact|profile|Audience Levels|

[AudienceLevelName]|Attributes Logging.

Note: For attributes logging, the enabledLogging parameter within

Affinium|interact|general|API must be set to TRUE and

define the requestLogTable for it to be active.

The database table that you specify here stores the following information:

• the attribute category

• attribute name and its value at the time of API processing

Default value

UACI_APIRequestAttr

Interact | profile | Audience Levels | [AudienceLevelName] | Offers
by Raw SQL
This set of configuration properties enables you to define the table names required for

additional Unica Interact features. You are only required to define the table name if you are

using the associated feature.

enableOffersByRawSQL

Description

If set to True, Unica Interact enables the offersBySQL feature for this audience

level that allows you to configure SQL code to be executed to create a desired

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 424

set of candidate offers at runtime.. If False, Unica Interact does not use the

offersBySQL feature.

If you set this property to true, you may also configure the Interact |

profile | Audience Levels | (Audience Level) | Offers by Raw SQL |

SQL Template property to define one or more SQL templates.

Default value

False

Valid Values

True | False

cacheSize

Description

Size of cache used to store results of the OfferBySQL queries. Note that

using a cache may have negative impact if query results are unique for most

sessions.

Default value

-1 (off)

Valid Values

-1 | Value

cacheLifeInMinutes

Description

If the cache is enabled, this indicates the number of minutes before the

system will clear the cache to avoid staleness.

Default value

-1 (off)

Valid Values

-1 | Value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 425

defaultSQLTemplate

Description

The name of the SQL template to use if one is not specified via the API calls.

Default value

None

Valid Values

SQL template name

name

Configuration category

Interact | profile | Audience Levels |

[AudienceLevelName] | Offers by Raw SQL | (SQL Templates)

Description

The name you want to assign to this SQL query template. Enter a descriptive

name that will be meaningful when you use this SQL template in API calls.

Note that if you use a name here that is identical to a name defined in the

Interact List process box for an offerBySQL treatment, the SQL in the process

box will be used rather than the SQL you enter here.

Default value

None

SQL

Configuration category

Interact | profile | Audience Levels |

[AudienceLevelName] | Offers by Raw SQL | (SQL Templates)

Description

Contains the SQL query to be called by this template. The SQL query may

contain references to variable names that are part of the visitor's session

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 426

data (profile). For example, select * from MyOffers where category =

${preferredCategory} would rely on the session containing a variable named

preferredCategory.

You should configure the SQL to query the specific offer tables you created

during design time for use by this feature. Note that stored procedures are not

supported here.

Default value

None

Interact | profile | Audience Levels | [AudienceLevelName] | SQL
Template
These configuration properties let you define one or more SQL query templates used by the

offersBySQL feature of Unica Interact.

name

Description

The name you want to assign to this SQL query template. Enter a descriptive

name that will be meaningful when you use this SQL template in API calls.

Note that if you use a name here that is identical to a name defined in the

Interact List process box for an offerBySQL treatment, the SQL in the process

box will be used rather than the SQL you enter here.

Default value

None

SQL

Description

Contains the SQL query to be called by this template. The SQL query may

contain references to variable names that are part of the visitor's session

data (profile). For example, select * from MyOffers where category =

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 427

${preferredCategory} would rely on the session containing a variable named

preferredCategory.

You should configure the SQL to query the specific offer tables you created

during design time for use by this feature. Note that stored procedures are not

supported here.

Default value

None

Interact | profile | Audience Levels | [AudienceLevelName | Profile
Data Services | [DataSource]
This set of configuration properties enables you to define the table names required for

additional Unica Interact features. You are only required to define the table name if you are

using the associated feature. The Profile Data Services category provides information about

a built-in data source (called Database) that is created for all audience levels, and which

is pre-configured with a priority of 100. However, you can choose to modify or disable it.

This category also contains a template for additional external data sources. When you click

the template called External Data Services you can complete the configuration settings

described here.

New category name

Description

(Not available for the default Database entry.) The name of the data source

you are defining. The name you enter here must be unique among the data

sources for the same audience level.

Default value

None

Valid Values

Any text string is allowed.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 428

enabled

Description

If set to True, this data source is enabled for the audience level to which it

is assigned. If False, Unica Interact does not use this data source for this

audience level.

Default value

True

Valid Values

True | False

className

Description

(Not available for the default Database entry.) The fully-qualified name of the

data source class that implements IInteractProfileDataService.

Default value

None.

Valid Values

A string providing a fully-qualified class name.

classPath

Description

(Not available for the default Database entry.) An optional configuration

setting providing the path to load this data source implementation class. If you

omit it, the class path of the containing application server is used by default.

Default value

Not shown, but the class path of the containing application server is used by

default if no value is provided here.

Valid Values

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 429

A string providing the class path.

priority

Description

The priority of this data source within this audience level. It has to be a

unique value among all of the data sources for each audience level. (That is,

if a priority is set to 100 for a data source, no other data source within the

audience level may have a priority of 100.)

Default value

100 for the default Database, 200 for user-defined data source

Valid Values

Any non-negative integer is allowed.

Interact | profile | Audience Levels | [AudienceLevelName] |
Attributes Logging
Use these configuration properties to define the logging level of attributes for each Interact

API. You can configure logging levels for profile attributes, session attributes, and event

patterns. The following configurations are applicable for startSession, setAudience,

getOffers, getOffersForMultipleInteractionPoints, postEvent, and getProfile

Interact RT APIs:

logProfileAttributes

Description

If set to None, Unica Interact does not log any profile attributes for the

subjected Audience Level and API.

If set to All, Unica Interact saves all profile attributes to the

requestAttrLogTable for the subjected Audience Level and API.

If set to Inclusive, Unica Interact saves the profile attributes mentioned in the

includeExcludeProfileAttributes configuration.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 430

If set to Exclusive, Unica Interact saves all other profile attributes except the

ones mentioned in the includeExcludeProfileAttributes configuration.

Default value

None

Valid values

None | All | Inclusive | Exclusive

includeExcludeProfileAttributes

Description

This configuration is applicable only if logProfileAttributes is set to

Inclusive or Exclusive. If required, provide multiple profile attribute names

separated by pipe (|) that must be Included or Excluded from getting logged

into the requestAttrLogTable table.

Default value

Pipe (|) separated profile attribute names.

logSessionParameters

Description

If set to True, Unica Interact saves the session parameters to the

requestAttrLogTable for the subjected Audience Level and API.

Default value

False

Valid values

True | False

logEventPatternStatus

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 431

If set to True, Unica Interact saves the event pattern status to the

requestAttrLogTable for the subjected Audience Level and API.

Default value

False

Valid values

True | False

Interact | offerserving
These configuration properties define the generic learning configuration properties. If you

are using built-in learning, to tune your learning implementation, use the configuration

properties for the design environment.

offerTieBreakMethod

Description

The offerTieBreakMethod property defines the behavior of offer serving when

two offers have equivalent (tied) scores. If you set this property to its default

value of Random, Unica Interact presents a random choice from among the

offers that have equivalent scores. If you set this configuration to Newer Offer,

Unica Interact serves up the newer offer (based on having a higher offer ID)

ahead of the older offer (lower offer ID) in the case where the scores among

the offers are the same.

Note:

Unica Interact has an optional feature that allows the administrator to

configure the system to return the offers in random order independent

of the score, by setting the percentRandomSelection option

(Campaign | partitions | [partition_number] | Interact |

learning | percentRandomSelection). The offerTieBreakMethod

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 432

property described here is used only when percentRandomSelection

is set to zero (disabled).

Default value

Random

Valid Values

Random | Newer Offer

optimizationType

Description

The optimizationType property defines whether Unica Interact uses a

learning engine to assist with offer assignments. If set to NoLearning,

Unica Interact does not use learning. If set to BuiltInLearning, Unica

Interact uses the Bayesian learning engine built with Unica Interact. If set to

ExternalLearning, Unica Interact uses a learning engine you provide. If you

select ExternalLearning, you must define the externalLearningClass and

externalLearningClassPath properties.

Default value

NoLearning

Valid Values

NoLearning | BuiltInLearning | ExternalLearning

segmentationMaxWaitTimeInMS

Description

The maximum number of milliseconds that the runtime server waits for an

interactive flowchart to complete before getting offers.

Default value

5000

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 433

treatmentCodePrefix

Description

The prefix prepended to treatment codes.

Default value

No default value defined.

effectiveDateBehavior

Description

Determines whether Unica Interact should use an offer's effective date in

filtering out offers that are presented to a visitor. Values include:

• -1 tells Unica Interact to ignore the effective date on the offer.

0 tells Unica Interact to use the effective date to filter the offer, so that

if the offer effective date is earlier than or equal to the current date, the

offer effective date, the offer is served to visitors.

If there is an effectiveDateGracePeriod value set, the grace period is

also applied to determine whether to serve the offer.

• Any positive integer tells Unica Interact to use the current date plus the

value of this property to determine whether to serve the offer to visitors,

so that if the offer effective date is earlier than the current date plus the

value of this property, the offer is served to visitors.

If there is an effectiveDateGracePeriod value set, the grace period is

also applied to determine whether to serve the offer.

Default value

-1

effectiveDateGracePeriodOfferAttr

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 434

Specifies the name of the custom attribute in an offer definition that indicates

the effective date grace period. For example, you might configure this property

with a value of AltGracePeriod. You would then define offers with a custom

attribute called AltGracePeriod that is used to specify the number of days to

use as a grace period with the effectiveDateBehavior property.

Suppose you create a new offer template with an effective date of 10 days

from the current date, and include a custom attribute called AltGracePeriod.

When you create an offer using the template, if you set the value of

AltGracePeriod to 14 days, the offer would be served to visitors, because the

current date is within the grace period of the offer effective date.

Default value

Blank

alwaysLogLearningAttributes

Description

Indicates whether Unica Interact should write information about visitor

attributes used by the learning module to the log files. Note that settings this

value to true may affect learning performance and log file sizes.

Default value

False

Consider the following points:

• If Learning is enabled, for version 2, using SampleMethod1, for version 1,

using SampleMethod1

• During the interact configuration process, system verifies if the settings

are matching.

• During the interact offer treatment optimizer process in learning

version2, the offer learning based on SampleMethod1 and

SampleMethod2 setting are handles. The offer RWA based on

SampleMethod1 and SampleMethod2 setting is also calculated.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 435

includeArbitrationInfo

This configuration property determines whether to include

offer arbitration summary in the response of getOffers and

getOffersForMultipleInteractionPoints requests.

Default value

False

Valid values

True | False

Interact | offerserving | Built-in Learning Config
These configuration properties define the database write settings for built-in learning.

To tune your learning implementation, use the configuration properties for the design

environment.

version

Description

You can select 1 or 2. Version 1 is the basic configuration version that does

not use parameters to set thread and record limits. Version 2 is the enhanced

configuration version that lets you set thread and record parameter to improve

performance. These parameters perform aggregation and deletion when these

parameter limits are reached.

Default value

1

insertRawStatsIntervalInMinutes

Description

The number of minutes the Unica Interact learning module waits before

inserting more rows into the learning staging tables. You may need to modify

this time based on the amount of data the learning module is processing in

your environment.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 436

Default value

5

Valid Values

A positive integer

aggregateStatsIntervalInMinutes

Description

The number of minutes the Unica Interact learning module waits between

aggregating data in the learning stats tables. You may need to modify this

time based on the amount of data the learning module is processing in your

environment.

Default value

15

Valid Values

An integer greater than zero.

autoAdjustPercentage

Description

The value that determines the percentage of data the run of aggregation tries

to process based on the metrics of the previous run. By default, this value is

set to zero, which means the aggregator processes all staging records, and

this auto adjustment functionality is disabled.

Default value

0

Valid Values

A number between 0 and 100.

excludeAbnormalAttribute

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 437

The setting that determines whether to mark those attributes as invalid. If set

to IncludeAttribute, abnormal attributes are included not marked as invalid.

If set to ExcludeAttribute, abnormal attributes are excluded and marked as

invalid.

Default value

IncludeAttribute

Valid Values

IncludeAttribute | ExcludeAttribute

saveOriginalValues

Description

You can set the values as “All Values", “Binned Values", or “None". This will

control what values will be logged in table UACI_LearningAttributeHist.

If “All Values" is selected then all learning attributes will be logged in the

table. If this parameter is set to “Binned Values" then only those attributes

will be logged in the table for which bins are created under “Interact-> Global

Learning".

If set to “None" no values will be logged in UACI_LearningAttributeHist .

By default this is set to “None".

Default value

None

Valid Values

All Values | Binned Values | None

Interact | offerserving | Built-in Learning Config | Parameter Data |
[parameterName]
These configuration properties define any parameters for your external learning module.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 438

numberOfThreads

Description

The maximum number of threads the learning aggregator uses to process

the data. A valid value is a positive integer, and should not be more than the

maximum number of connections that are configured in the learning data

source. This parameter is used only by aggregator version 2.

Default value

10

maxLogTimeSpanInMin

Description

If aggregator version 1 is selected, you can process the staging records in

iterations to avoid overly large database batches. In this case, those staging

records are processed by chunks; iteration by iteration in a single aggregation

cycle. The value of this parameter specifies the maximum time span of

staging records the aggregator tries to process in each iteration. This time

span is based on LogTime field that is associated to each staging record,

and only the records whose LogTime falls into the earliest time window is

processed. A valid value is an integer that is not negative. If the value is 0,

there is no limit, which means all the staging records are processed in a single

iteration.

Default value

0

maxRecords

Description

If aggregator version 2 is selected, you can process the staging records in

iterations to avoid overly large database batches. In this case, those staging

records are processed in chunks; iteration by iteration in a single aggregation

cycle. The value of this parameter specifies the maximum number of staging

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 439

records the aggregator tries to process in each iteration. A valid value is an

integer that is not negative. If the value is 0, there is no limit, which means all

the staging records are processed in a single iteration.

Default value

0

value

Description

The value for any parameter that is required by the class for a built-in learning

module.

Default value

No default value defined.

Interact | offerserving | External Learning Config
These configuration properties define the class settings for an external learning module you

wrote using the learning API.

class

Description

If optimizationType is set to ExternalLearning, set externalLearningClass

to the class name for the external learning engine.

Default value

No default value defined.

Availability

This property is applicable only if optimizationType is set to

ExternalLearning.

classPath

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 440

If optimizationType is set to ExternalLearning, set externalLearningClass

to the classpath for the external learning engine.

The classpath must reference jar files on the runtime environment server. If

you are using a server group and all runtime servers are using the same Unica

Platform, every server must have a copy of the jar file in the same location.

The classpath must consist of absolute locations of jar files, separated by

the path delimiter of the operating system of the runtime environment server,

for example a semi-colon (;) on Windows™ and a colon (:) on UNIX™ systems.

Directories containing class files are not accepted. For example, on a Unix

system: /path1/file1.jar:/path2/file2.jar.

This classpath must be less than 1024 characters. You can use the manifest

file in a .jar file to specify other .jar files so only one .jar file has to appear in

your class path

Default value

No default value defined.

Availability

This property is applicable only if optimizationType is set to

ExternalLearning.

Interact | offerserving | External Learning Config | Parameter Data
| [parameterName]
These configuration properties define any parameters for your external learning module.

value

Description

The value for any parameter required by the class for an external learning

module.

Default value

No default value defined.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 441

Example

If the external learning module requires a path to an algorithm solver

application, you would create a parameter category called solverPath and

define the value property as the path to the application.

Interact | offerserving | Constraints
These configuration properties define the constraints placed upon the offer serving process.

maxOfferAllocationInMemoryPerInstance

Description

The size of a block of offers. Unica Interact keeps a pool of offers in memory

so that the system does not have to query to database each time an offer is

returned. Every time an offer is returned, the pool is adjusted. When the pool is

exhausted, Unica Interact gets another block of offers to fill the pool.

Default value

1000

Valid Values

An integer greater than 0.

maxDistributionPerIntervalPerInstanceFactor

Description

The constraint percentage for a given offer allocation for a runtime server to

support the distribution across runtime servers.

Default value

100

Valid Values

An integer between 0 and 100.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 442

constraintCleanupIntervalInDays

Description

How often the disabled counts from the UACI_OfferCount table are cleaned

up. A value less than 1 disables this feature.

Default value

7

Valid Values

An integer greater than 0.

Interact | offerserving | Tie Breakers

The offer serving Tie Breakers category specifies custom offer tie breaker policies. A

offer tie breaker policy, also called offer selection policy is used to perform offer selection

from an offer list of a treatment rule when eligible offers in the list are more than number

of offers returned from the list specified for the rule. Out of box, Interact provides three

policies, “Most recent updated offers”, “Random”, or “By offer attribute”. But if you prefer

your own logic to perform the selection, you can implement the logic and define the class

information using this setting. Interact Runtime loads and applies it during runtime offer

arbitration.

A sample class SampleOfferTieBreaker.java for Custom Policy is provided at

Interact_Home/samples/optimization, which sorts the offers based on Offer name

or Offer code.

To use this class, use the following configuration details.

class: com.unicacorp.interact.samples.tiebreaker.SampleOfferTieBreaker

classPath: Give path till SampleOfferTieBreaker.java file including name.

After saving the Tie Breaker configuration under Parameter Data node, add the following

configuration details.

New category name: Type

value: OfferName or OfferCode

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 443

Category name

Description

The name of your policy. You must specify an appropriate name.

Class

Description: The name of the Java class of your policy implementation.

Default value: No default value defined.

classPath

Description: The classpath of the Java class for your policy implementation.

The classpath must reference jar files on the runtime environment server. If

you are using a server group and all runtime servers are using the same Unica

Platform, every server must have a copy of the jar file in the same location.

The classpath must consist of absolute locations of jar files, separated by

the path delimiter of the operating system of the runtime environment server,

for example a semi-colon (;) on Windows and a colon (:) on UNIX™ systems.

Directories containing class files are not accepted. For example, on a Unix

system: /path1/file1.jar:/path2/file2.jar. This classpath must

be less than 1024 characters. You can use the manifest file in a .jar file to

specify other .jar files so only one .jar file has to appear in your class path. If

multiple JARs are provided in this setting, they must be separated with their

platform's path separator character, example, the semicolon ";" on Windows,

and the colon ":" on Linux

Default value: No default value defined.

maxDistributionPerIntervalPerInstanceFactor

Description

The constraint percentage for a given offer allocation for a runtime server to

support the distribution across runtime servers.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 444

100

Valid Values

An integer between 0 and 100.

constraintCleanupIntervalInDays

Description

How often the disabled counts from the UACI_OfferCount table are cleaned

up. A value less than 1 disables this feature.

Default value

7

Valid Values

An integer greater than 0.

Interact | services
The configuration properties in this category define settings for all the services which

manage collecting contact and response history data and statistics for reporting and writing

to the runtime environment system tables.

externalLoaderStagingDirectory

Description

This property defines the location of the staging directory for a database load

utility.

Default value

No default value defined.

Valid Values

A path relative to the Unica Interact installation directory or an absolute path

to a staging directory.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 445

If you enable a database load utility, you must set the cacheType property in

the contactHist and responstHist categories to External Loader File.

Affinium|interact|services|contactHist|treatmentStoreReference
This configuration parameter is the root node for the settings related to the data store of

recently served treatments.

daysBackForXSessContact
The number of days a served treatment is kept in the data store for cross session lookup. If

the value is non-positive or zero, the cross session contact tracking feature is disabled.

Default value

0

Valid value

Any positive number

Interact | services | contactHist
The configuration properties in this category define the settings for the service that collects

data for the contact history staging tables.

enableLog

Description

If true, enables the service which collects data for recording the contact

history data. If false, no data is collected.

Default value

True

Valid Values

True | False

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 446

cacheType

Description

Defines whether the data collected for contact history is kept in memory

(Memory Cache) or in a file (External Loader file). You can use External

Loader File only if you have configured Unica Interact to use a database

loader utility.

If you select Memory Cache, use the cache category settings. If you select

External Loader File, use the fileCache category settings.

Default value

Memory Cache

Valid Values

Memory Cache | External Loader File

Interact | services | contactHist | cache
The configuration properties in this category define the cache settings for the service

that collects data for the contact history staging table. Note: When contactHist or

responseHist is configured to use memoryCache, you can optionally create a data source

systemTablesDataSource and configure the settings under Affinium|interact|general|

systemTablesDataSource|loaderProperties. When this is done, the contact/response history

staging records will be persisted into files in directory as set by Affinium|interact|services|

externalLoaderStagingDirectory if the persistence into database fails. Otherwise, an INFO

entries will be logged at initialization saying failover is not enabled.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected contact history data to the database.

Default value

100

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 447

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | contactHist | contactStatusCodes
The configuration properties in this category defines the settings for the custom contact

status type which can be passed into Interact together with contact events..

New category name

Description

This property defines the name of contact status code category.

Code

Description

This property defines the custom code for your contact type. This defined

code must exist in HCL Campaign system table UA_ContactStatus.

action

Description

The action corresponding to the custom contact type code. The action

defined here will override the action defined for in the Campaign System table

UA_ContactStatus..

Default value

None

Valid value

LogContact | None

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 448

Interact | services | contactHist | fileCache
The configuration properties in this category define the cache settings for the service

that collects contact history data if you are using a database loader utility. Prerequisite:

For Configuration Affinium|interact|services|externalLoaderStagingDirectory set

loaderStagingData.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected contact history data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | defaultedStats
The configuration properties in this category define the settings for the service that collects

the statistics regarding the number of times the default string for the interaction point was

used.

enableLog

Description

If true, enables the service that collects the statistics regarding the

number of times the default string for the interaction point was used to the

UACI_DefaultedStat table. If false, no default string statistics are collected.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 449

If you are not using IBM reporting, you can set this property to false since the

data collection is not required.

Default value

True

Valid Values

True | False

Interact | services | defaultedStats | cache
The configuration properties in this category define the cache settings for the service that

collects the statistics regarding the number of times the default string for the interaction

point was used.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected default string statistics to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | eligOpsStats
The configuration properties in this category define the settings for the service that writes

the statistics for eligible offers.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 450

enableLog

Description

If true, enables the service that collects the statistics for eligible offers. If

false, no eligible offer statistics are collected.

If you are not using IBM reporting, you can set this property to false since the

data collection is not required.

Default value

True

Valid Values

True | False

Interact | services | eligOpsStats | cache
The configuration properties in this category define the cache settings for the service that

collects the eligible offer statistics.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected eligible offer statistics to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 451

Interact | services | eventActivity
The configuration properties in this category define the settings for the service that collects

the event activity statistics.

enableLog

Description

If true, enables the service that collects the event activity statistics. If false,

no event statistics are collected.

If you are not using IBM reporting, you can set this property to false since the

data collection is not required.

Default value

True

Valid Values

True | False

Interact | services | eventActivity | cache
The configuration properties in this category define the cache settings for the service that

collects the event activity statistics.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected event activity statistics to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 452

Default value

3600

Interact | services | eventPattern
The configuration properties in the eventPattern category define the settings for the

service that collects the event pattern activity statistics.

persistUnknownUserStates

Description

Determines whether the event pattern states for an unknown audience ID

(visitor) is retained in the database. By default, when a session ends, the

statuses of all the updated event patterns associated with the visitor's

audience ID are stored in the database, provided that the audience ID is known

(that is, the visitor's profile can be found in the profile data source).

The persistUnknownUserStates property determines what happens if the

audience ID is not known. By default, this property is set to False, and for

unknown audience IDs, the event pattern states are discarded at the end of the

session.

If you set this property to True, the event pattern states of unknown users

(whose profile cannot be find in the configured profile data service) will be

persisted.

Default value

False

Valid Values

True | False

mergeUnknowUserInSessionStates

Description

Determines how the event pattern states for unknown audience IDs (visitors)

are retained. If the audience ID switches in the middle of a session, Unica

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 453

Interact tries to load the saved event pattern states for the new audience ID

from the database table. When the audience ID was unknown previously, and

you set the mergeUnknowUserInSessionStates property is to True, the user

event activities belonging to the previous audience ID in the same session will

be merged into the new audience ID.

Default value

False

Valid Values

True | False

enableUserEventLog

Description

Determines whether user event activities are logged in the database.

Default value

False

Valid Values

True | False

Interact | services | eventPattern | userEventCache
The configuration properties in the userEventCache category define the settings that

determine when event activity is moved from the cache to persist in the database.

threshold

Description

Determines the maximum number of event pattern states that can be stored

in the event pattern state cache. When the limit is reached, the least-recently

used states are flushed from the cache.

Default value

100

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 454

Valid Values

The desired number of event pattern states to retain in the cache.

insertPeriodInSecs

Description

Determines the maximum length of time in seconds that user event activities

are queued in memory. When the time limit specified by this property is

reached, those activities are persisted into the database.

Default value

3600 (60 minutes)

Valid Values

The desired number of seconds.

Interact | services | eventPattern | advancedPatterns
The configuration properties in this category control whether integration with Unica Interact

Advanced Patterns is enabled, and they define the timeout intervals for connections with

Unica Interact Advanced Patterns.

enableAdvancedPatterns

Description

If true, enables integration with Unica Interact Advanced Patterns. If false,

integration is not enabled. If integration was previously enabled, Unica Interact

uses the most recent pattern states received from Unica Interact Advanced

Patterns.

Default value

True

Valid Values

True | False

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 455

connectionTimeoutInMilliseconds

Description

Maximum time it can take to make an HTTP connection from the Unica

Interact real time environment to Unica Interact Advanced Patterns. If the

request times out, Unica Interact uses the last saved data from patterns.

Default value

30

readTimeoutInMilliseconds

Description

After an HTTP connection is established between the Unica Interact real time

environment and Unica Interact Advanced Patterns,and a request is sent to

the Unica Interact Advanced Patterns to get the status of an event pattern,

the maximum time it can take to receive data. If the request times out, Unica

Interact uses the last saved data from patterns.

Default value

100

connectionPoolSize

Description

Size of the HTTP connection pool for communication between the Unica

Interact real time environment and Unica Interact Advanced Patterns.

Default value

10

Interact | services | eventPattern | advancedPatterns |
autoReconnect
The configuration properties in this category specify parameters for the automatic

reconnection feature in the integration with Unica Interact Advanced Patterns.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 456

enable

Description

Determines whether the system to reconnects automatically if connection

problems occur between the Unica Interact real time environment and Unica

Interact Advanced Patterns. The default value of True enables this feature.

Default value

True

Valid Values

True | False

durationInMinutes

Description

This property specifies the time interval, in minutes, during which the system

to evaluates repeated connection problems occurring between the Unica

Interact real time environment and Unica Interact Advanced Patterns.

Default value

10

numberOfFailuresBeforeDisconnect

Description

This property specifies the number of connection failures allowed during the

specified time period before the system automatically disconnects from Unica

Interact Advanced Patterns.

Default value

3

consecutiveFailuresBeforeDisconnect

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 457

Determines whether the automatic reconnection feature evaluates only

consecutive failures of the connection between the Unica Interact real time

environment with Unica Interact Advanced Patterns. If you set this value to

False, all failures within the specified time interval are evaluated.

Default value

True

sleepBeforeReconnectDurationInMinutes

Description

The system waits the number of minutes specified in this property before

reconnecting after the system disconnects due to repeated failures as

specified in the other properties in this category.

Default value

5

sendNotificationAfterDisconnect

Description

This property determines whether the system sends an email notification

when a connection failure occurs. The notification message includes

the Unica Interact real time instance name for which failure occurred

and the amount of time before reconnection occurs, as specified in the

sleepBeforeReconnectDurationInMinutes property. The default value of True

means that notifications are sent.

Default value

True

Interact | services | customLogger
The configuration properties in this category define the settings for the service that collects

custom data to write to a table (an event which uses the UACICustomLoggerTableName event

parameter).

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 458

enableLog

Description

If true, enables the custom log to table feature. If false, the

UACICustomLoggerTableName event parameter has no effect.

Default value

True

Valid Values

True | False

Interact | services | customLogger | cache
The configuration properties in this category define the cache settings for the service that

collects custom data to a table (an event which uses the UACICustomLoggerTableName

event parameter).

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected custom data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 459

Interact | services | responseHist
The configuration properties in this category define the settings for the service that writes to

the response history staging tables.

enableLog

Description

If true, enables the service that writes to the response history staging tables.

If false, no data is written to the response history staging tables.

The response history staging table is defined by the responseHistoryTable

property for the audience level. The default is UACI_RHStaging.

Default value

True

Valid Values

True | False

cacheType

Description

Defines whether the cache is kept in memory or in a file. You can use

External Loader File only if you configured Unica Interact to use a database

loader utility.

If you select Memory Cache, use the cache category settings. If you select

External Loader File, use the fileCache category settings.

Default value

Memory Cache

Valid Values

Memory Cache | External Loader File

actionOnOrphan

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 460

This setting determines what to do with response events that do not have

corresponding contact events posted yet. The setting applies to in-session

response events. If set to NoAction, the response event is processed as if the

corresponding contact event was posted. If set to Warning, the response event

is processed as if the corresponding contact event was posted, but a warning

message is written into interact.log. If set to Skip, the response even

is not processed, and an error message is written into interact.log. The

setting that you choose here is effective regardless if response history logging

is enabled.

Default value

NoAction

Valid Values

NoAction | Warning | Skip

suppressionActionOnResponse

Description

This setting handles the suppression of an offer responded by a response

event in a session. It has the following four options.

• NoSuppression. Do not suppress this offer.

• SuppressionTillAudienceChange. This offer is suppressed until the

active audience ID in this session changes.

• SuppressionForAudience. This offer is suppressed as long as the active

audience ID in this session is same as the one when this offer was

returned.

• SuppressionInSession. This offer is suppressed throughout this session

even if the audience ID changes.

The following is an example with an API sequence.

1. startSession (audience 1)

2. getOffers -> return offer A

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 461

3. postEvent (contact of offer A)

4. postEvent (accept or reject offer A)

5. getOffers

6. setAudience (audience 2)

7. getOffers

8. setAudience (audience 1)

9. getOffers

Default value

SuppressionTillAudienceChange

Valid Values

NoSuppression | SuppressionTillAudienceChange| SuppressionForAudience|

SuppressionInSession

The following table shows whether offer A is suppressed in Steps 5, 7, and 9.

Setting Step 5 Step 7 Step 9

NoSuppression N N N

SuppressionTillAu

dienceChange

Y N N

SuppressionForAu

dience

Y N Y

SuppressionInSes

sion

Y Y Y

Interact | services | responseHist | cache
The configuration properties in this category define the cache settings for the service

that collects the response history data. Note: When contactHist or responseHist

is configured to use memoryCache, you can optionally create a data source

systemTablesDataSource and configure the settings under Affinium|interact|general|

systemTablesDataSource|loaderProperties. When this is done, the contact/response history

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 462

staging records will be persisted into files in directory as set by Affinium|interact|services|

externalLoaderStagingDirectory if the persistence into database fails. Otherwise, an INFO

entries will be logged at initialization saying failover is not enabled.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected response history data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | response Hist | responseTypeCodes
The configuration properties in this category define the settings for the response history

service.

New category name

Description

The name of your response type code.

code

Description

The custom code for your response type.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 463

The custom code added in the UA_UsrResponseType table.

action

Description

The action corresponding to the custom response type code.

The action defined for the event this is posted overrides the action defined

here. Therefore, if a logAccept event is posted without responseTypeCode,

this event is treated as an acceptance event. If a logAccept event is posted

with a responseTypeCode that exists in this configuration, the configured

action is used to determine if it is an acceptance event. If a logAccept event

is posted with a responseTypeCode that does not exist in this configuration,

this event is not treated as an acceptance event. When an event is treated as

an acceptance event, the learning statistics are updated accordingly if learning

is enabled. Offer expression rules are evaluated if there is one based on the

acceptance of this offer.

Default value

None

Valid Values

LogAccept | LogReject | None

Interact | services | responseHist | fileCache
The configuration properties in this category define the cache settings for the service that

collects the response history data if you are using a database loader utility.

threshold

Description

The number of records accumulated before Unica Interact writes them to the

database.

responseHist - The table defined by the responseHistoryTable property for

the audience level. The default is UACI_RHStaging.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 464

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | crossSessionResponse
The configuration properties in this category define general settings for the

crossSessionResponse service and the xsession process. You only need to configure these

settings if you are using Unica Interact cross-session response tracking.

enableLog

Description

If true, enables the crossSessionResponse service and Unica Interact writes

data to the cross-session response tracking staging tables. If false, disables

the crossSessionResponse service.

Default value

False

xsessionProcessIntervalInSecs

Description

The number of seconds between runs of the xsession process. This process

moves data from the cross-session response tracking staging tables to the

response history staging table and the built-in learning module.

Default value

180

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 465

Valid Values

An integer greater than zero

purgeOrphanResponseThresholdInMinutes

Description

The number of minutes the crossSessionResponse service waits before

marking any responses that do not match contacts in the contact and

response history tables.

If a response has no match in the contact and response history tables, after

purgeOrphanResponseThresholdInMinutes minutes, Unica Interact marks the

response with a value of -1 in the Mark column of the xSessResponse staging

table. You can then manually match or delete these responses.

Default value

180

xsessionResponseBatchsize

Description

The number of cross-session response records to process at once. Rather

than processing all new or retry records at once, system loops through the

xsessionResponseBatchSize records at a time. This is a performance change,

since processing a large number of records at once can lead to slowness

Default value

10000

Valid values

Any integer greater than zero.

generateOnlyOneResponseRecord

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 466

When a cross session response is processed, Interact must link it to the

available contact history records. Sometimes, multiple matching contact

history records are found based on the given criteria (treatment code or

offer ID). In this case, Interact uses the "generateOnlyOneResponseRecord"

configuration setting to decide the outcome.

Values

• True: Only one response history record is generated using the most

recent contact history record.

• False: One response history record is generated for each matching

contact history record.

Default Value

False

Interact | services | crossSessionResponse | cache
The configuration properties in this category define the cache settings for the service that

collects cross-session response data.

threshold

Description

The number of records accumulated before the flushCacheToDB service

writes the collected cross-session response data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the XSessResponse table.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 467

3600

Interact | services | crossSessionResponse | OverridePerAudience
| [AudienceLevel] | TrackingCodes | byTreatmentCode
The properties in this section define how cross-session response tracking matches

treatment codes to contact and response history.

SQL

Description

This property defines whether Unica Interact uses the System Generated SQL

or custom SQL defined in the OverrideSQL property.

Default value

Use System Generated SQL

Valid Values

Use System Generated SQL | Override SQL

OverrideSQL

Description

If you do not use the default SQL command to match the treatment code to

the contact and response history, enter the SQL or stored procedure here.

This value is ignored if SQL is set to Use System Generated SQL.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored procedure

which matches the treatment code to the contact and response history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 468

false

Valid Values

true | false

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table

in the runtime environment tables. Unless you revise the UACI_TrackingType

table, the Type must be 1.

Default value

1

Valid Values

An integer defined in the UACI_TrackingType table.

Interact | services | crossSessionResponse | OverridePerAudience
| [AudienceLevel] | TrackingCodes | byOfferCode
The properties in this section define how cross-session response tracking matches offer

codes to contact and response history.

SQL

Description

This property defines whether Unica Interact uses the System Generated SQL

or custom SQL defined in the OverrideSQL property.

Default value

Use System Generated SQL

Valid Values

Use System Generated SQL | Override SQL

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 469

OverrideSQL

Description

If you do not use the default SQL command to match the offer code to the

contact and response history, enter the SQL or stored procedure here.

This value is ignored if SQL is set to Use System Generated SQL.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored procedure

which matches the offer code to the contact and response history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

false

Valid Values

true | false

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table

in the runtime environment tables. Unless you revise the UACI_TrackingType

table, the Type must be 2.

Default value

2

Valid Values

An integer defined in the UACI_TrackingType table.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 470

Interact | services | crossSessionResponse | OverridePerAudience
| [AudienceLevel] | TrackingCodes | byAlternateCode
The properties in this section define how cross-session response tracking matches a user-

defined alternate code to contact and response history.

Name

Description

This property defines the name for the alternate code. This must match the

Name value in the UACI_TrackingType table in the runtime environment

tables.

Default value

OverrideSQL

Description

The SQL command or stored procedure to match the alternate code to the

contact and response history by offer code or treatment code.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored procedure

which matches the alternate code to the contact and response history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

false

Valid Values

true | false

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 471

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table in

the runtime environment tables.

Default value

3

Valid Values

An integer defined in the UACI_TrackingType table.

Interact | services | threadManagement |
contactAndResponseHist
The configuration properties in this category define thread management settings for the

services which collect data for the contact and response history staging tables.

corePoolSize

Description

The number of threads to keep in the pool, even if they are idle, for collecting

the contact and response history data.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for collecting the contact

and response history data.

Default value

5

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 472

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum

time that excess idle threads will wait for new tasks before terminating for

collecting the contact and response history data.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for collecting the contact and

response history data.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to wait

for service threads to complete collecting the contact and response history

data.

Default value

5

Interact | services | threadManagement | allOtherServices
The configuration properties in this category define the thread management settings for the

services which collect the offer eligibility statistics, event activity statistics, default string

usage statistics, and the custom log to table data.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 473

corePoolSize

Description

The number of threads to keep in the pool, even if they are idle, for the

services which collect the offer eligibility statistics, event activity statistics,

default string usage statistics, and the custom log to table data.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for the services which

collect the offer eligibility statistics, event activity statistics, default string

usage statistics, and the custom log to table data.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum

time that excess idle threads wait for new tasks before terminating for the

services which collect the offer eligibility statistics, event activity statistics,

default string usage statistics, and the custom log to table data.

Default value

5

queueCapacity

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 474

The size of the queue used by the thread pool for the services which collect

the offer eligibility statistics, event activity statistics, default string usage

statistics, and the custom log to table data.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to

wait for service threads to complete for the services which collect the offer

eligibility statistics, event activity statistics, default string usage statistics, and

the custom log to table data.

Default value

5

Interact | services | threadManagement | flushCacheToDB
The configuration properties in this category define the thread management settings for the

threads that write collected data in cache to the runtime environment database tables.

corePoolSize

Description

The number of threads to keep in the pool for scheduled threads that write

cached data to the data store.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for scheduled threads

that that write cached data to the data store.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 475

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum

time that excess idle threads wait for new tasks before terminating for

scheduled threads that that write cached data to the data store.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for scheduled threads that that

write cached data to the data store.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to wait

for service threads to complete for scheduled threads that that write cached

data to the data store.

Default value

5

Interact | services | threadManagement | eventHandling
The configuration properties in this category define the thread management settings for the

services which collect data for event handling.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 476

corePoolSize

Description

The number of threads to keep in the pool, even if they are idle, for collecting

event handling data.

Default value

1

maxPoolSize

Description

The maximum number of threads to keep in the pool for the services which

collect the event handling data.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum

time that excess idle threads wait for new tasks before terminating for

collecting the event handling data.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for collecting event handling

data.

Default value

1000

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 477

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to

wait for service threads to complete for the services which collect the event

handling data.

Default value

5

Interact | services | configurationMonitor
The configuration properties in this category allow you to enable or disable integration with

Unica Interact Advanced Patterns without having to restart Unica Interact real time, and they

define the interval for polling the property value that enables the integration.

enable

Description

If true, enables the service that refreshes the value of the Interact | services

| eventPattern | advancedPatterns enableAdvancedPatterns property.

If false, you must restart Unica Interact real time when you change

the value of the Interact | services | eventPattern | advancedPatterns

enableAdvancedPatterns property.

Default value

False

Valid Values

True | False

refreshIntervalInMinutes

Description

Defines the time interval for polling the value of the Interact | services |

eventPattern | advancedPatterns enableAdvancedPatterns property.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 478

Default value

5

Interact | services | CampaignSegments

isEnabled

Description

If set to True, this feature is enabled.

The methods (startSession and setAudience) which trigger segmentation

make Campaign API call to get the Campaign Segments for the audience ID.

Default value

False

Valid values

True | False

ServiceURL

Description

The Campaign service URL, such as any of the following.

Default value

http://localhost:7001/Campaign

corePoolSize

Description

The number of threads to keep in the pool, even if they are idle, for getting the

Campaign segments.

Default value

5

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 479

maxPoolSize

Description

The maximum number of threads to keep in the pool for scheduled threads for

getting the Campaign segments.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum

time that excess idle threads wait for new tasks before terminating to get the

Campaign Segments.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for getting the Campaign

segments.

Default value

1000

readTimeoutInMilliseconds

Description

By default, the Campaign Service call is asynchronous. If

UACIWaitForSegmentation parameter with true value is passed through API

call, then this API call is synchronously called and it waits for the duration

specified by this parameter.

Default value

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 480

50

Interact | cacheManagement
This set of configuration properties defines settings for selecting and configuring each

of the supported cache managers that you can use to improve the performance of Unica

Interact, such as EHCache or Ignite, which is built-in to your Unica Interact installation.

Use the Unica Interact | cacheManagement | Cache Managers configuration properties to

configure the cache manager you want to use. Use the Unica Interact | cacheManagement |

caches configuration properties to specify which cache manager Unica Interact should use

to improve performance.

Interact | cacheManagement | Cache Managers
The Cache Managers category specifies the parameters for the cache management

solutions you plan to use with Unica Interact.

Interact | cacheManagement | Cache Managers | EHCache
The EHCache category specifies the parameters for the EHCache cache management

solution, so that you can customize it to improve the performance of Unica Interact.

Interact | Cache Managers | EHCache | Parameter Data
The configuration properties in this category control how the EHCache cache management

system works to improve the performance of Unica Interact.

cacheType

Description

You can configure the Unica Interact runtime servers in a server group to use

a multicast address for sharing cache data. This is referred to as a distributed

cache. The cacheType parameter specifies whether you are using the built-in

EHCache caching mechanism in local (stand-alone) mode or distributed (as

with a runtime server group).

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 481

Note:

If you select Distributed for the cacheType, all of the servers sharing

the cache must be part of the same, single server group. You must

also enable multicast to work between all members of a server group.

From version 12.1.2 onwards, support to ‘Distributed’ EHCache is

stopped. Ignite Distributed is used in place of EHCache Distributed.

If you find ‘Distributed’ EHCache configured while upgrading from

previous versions of Interact to 12.1.2 to higher versions, you are

required to change Cache Manager from ‘Distributed EHCache’

to ‘Distributed Ignite’. Once the cache manager is changed from

‘Distributed EHCache’ to ‘Distributed Ignite’,all the compatible settings

(for example: multicastPort, multicastIPAddress, overflowToDisk,

etc.) are copied from EHCache to Ignite Cache. Distributed option is

removed from EHCache dropdown. So, there would not be ‘Distributed’

option after upgrading to 12.1.2 or higher versions as well as for

clean installatons. For any reason, if Distributed EHCache is used

for caching, it will log an error message stating -"Invalid cache

configuration. Switch to either local EHCache or Distributed Ignite

cache." After logging error message it will shutdown Interact RT.

So, in order to make Interact RT up and running, users must switch

to either ‘local EHCache’ or to ‘Distributed Ignite’ cache. After

logging error message Interact RT initialization status would be

set to ‘INITIALIZATION_FAILED’. So, in order to initialize Interact RT

successfully again, users require to switch to either ‘local EHCache’ or

to ‘Distributed Ignite’ cache.

Default value

Local

Valid Values

Local

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 482

multicastIPAddress

Description

If you specify that the cacheType parameter is "distributed," you are

configuring the cache to operate via multicast between all members of an

Unica Interact runtime server group. The multicastIPAddress value is the

IP address that all the Unica Interact servers for the server group use for

listening.

The IP address must be unique across your server groups.

Default value

230.0.0.1

multicastPort

Description

If you specify that the cacheType parameter is "distributed," the multicastPort

parameter indicates the port that all of the Unica Interact servers for the server

group use for listening.

Default value

6363

overflowToDisk

Description

The EHCache cache manager manages the session information using

available memory. For environments where the session size is large due to a

large profile, the number of sessions to be supported in memory may not be

large enough to support the customer scenario. For situations where this is

the case, EHCache has an optional feature to allow cache information greater

than the amount that can be kept in memory to be written temporarily to the

hard drive instead.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 483

If you set the overflowToDisk property to "yes," each Java™ virtual machine

(JVM) can handle more concurrent sessions than the memory alone would

have allowed.

Default value

No

Valid Values

No | Yes

diskStore

Description

When the configuration property overflowToDisk is set to Yes, this

configuration property specifies the disk directory that will hold the cache

entries that are overflowed from memory. If this configuration property does

not exist or its value is not valid, the disk directory is automatically created in

the operating system's default temporary directory.

Default value

None

Valid Values

A directory to which the web application hosting Unica Interact run time has

write privileges.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with the

cache manager. You can set up any parameter name, and the value it must

have.

To create a custom parameter, click (Parameter) and complete the name and

the value you want to assign to that parameter. When you click Save Changes,

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 484

the parameter you have created is added to the list in the Parameter Data

category.

Default value

None

Interact | caches
Use this set of configuration properties to specify which supported cache manager

you want to use to improve the performance of Unica Interact, such as Ehcache or

Ignite caching, and to configure specific cache properties for the runtime server you are

configuring.

This includes the caches for storing session data, event pattern states, and segmentation

results. By adjusting those settings, you can specify which cache solution to use for each

type of caching, and you can specify individual settings to control how the cache works.

Interact | cacheManagement | caches | InteractCache
The InteractCache category configures the caching for all session objects, including the

profile data, segmentation results, most recently delivered treatments, parameters passed

through API methods, and other objects used by the Unica Interact run time.

The InteractCache category is required for Interact to work properly.

The InteractCache category can also be configured through an external EHCache

configuration for settings that are not supported in Interact | cacheManagement | Caches. If

you use EHCache, you must ensure that InteractCache is configured properly.

CacheManagerName

Description

The name of the cache manager that handles the Unica Interact cache.

The value you enter here must be one of the cache managers defined in the

Interact | cacheManagement | Cache Managers configuration properties, such

as EHCache or Ignite.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 485

Default value

EHCache

Valid Values

Any cache manager defined in the Interact | cacheManagement | Cache

Managers configuration property.

maxEntriesInCache

Description

The maximum number of session data objects to store in this cache. When

the maximum number of session data objects has been reached, and data

for an additional session need to be stored, the least-recently used object is

deleted.

Default value

100000

Valid Values

Integer greater than 0.

timeoutInSecs

Description

The time in seconds that have elapsed since a session data object has been

used or updated that are used to determine when the object is removed from

the cache.

Note: If you upgraded from a version prior to 9.1, then you will need to

reconfigure timeoutInSecs property because the property moved.

Default value

300

Valid Values

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 486

Integer greater than 0.

Interact | Caches | Interact Cache | Ignite
A cache manager "Ignite" is added under Cache Manager node. The cache Unica Interact

Cache and PatternStateCache can use either EHCache or Ignite independently of each

other. The following parameters are available for configuration:

cacheType

Description

When "Local" is selected, each node runs independently of each other. When

"Distributed" is selected, all the nodes form a grid and the data are distributed

across the grid, which is the default.

Default value

When "Distributed" is selected, all the nodes form a grid and the data are

distributed across the grid, which is the default.

discoveryIPAddresses

Description

The comma separated list of nodes' addresses in the format of <IP>:<port>

for the nodes to communicate with each other. If one of these addresses

is a multicast address, multicast discovery is used. Otherwise, the static IP

discovery is used, and in this case, at least one of them has to be active at any

moment. This is required when "Distributed" is selected as the cache type. The

default value 230.0.0.1:6363 is a multicast.

Default value

230.0.0.1:6363

localPort

The port each node will use for communicating with other nodes. If not specified, an open

port in the range between 47500 and 47509 will be used. It is suggested to configure this

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 487

setting if static IP discovery is used. This value can be overridden by using JVM property

-Dinteract.ignitePort=<valid port>.

numberOfBackups

This is the backup copies of data are saved in the grid. Higher value will have better failover

support and better read performance with the cost of lower write performance. When cache

type is Distributed set numberofBackups value to 1.

overflowToDisk

Whether persist data into a temporary file on disk.

Note: Requests for the same session on different instances may fail if an instance stops

and no backup is configured. This implies, API call fails on two different RTs when cache

type is Ignite, in a case.

Interact | Caches | Interact Cache | Parameter Data
The configuration properties in this category control the Interact Cache that is automatically

used by your Unica Interact installation. These settings must be configured individually for

each Unica Interact run time server.

asyncIntervalMillis

Description

The time in millisecond that the cache manager EHCache should wait before it

replicates any changes to other Unica Interact run time instances. If the value

is not positive, those changes will be replicated synchronously.

This configuration property is not created by default. If you create this

property, it is used only when EHCache is the cache manager, and when the

ehCache cacheType property is set to distributed.

Default value

None.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 488

(Parameter)

Description

A template that you can use to create a custom parameter to be used with

the Intearct Cache. You can set up any parameter name, and the value it must

have.

To create a custom parameter, click (Parameter) and complete the name and

the value you want to assign to that parameter. When you click Save Changes,

the parameter you have created is added to the list in the Parameter Data

category.

Default value

None

Interact | cacheManagement | caches | PatternStateCache
The PatternStateCache category is used to host the states of event patterns and real

time offer suppression rules. By default, this cache is configured as a read-through and

write-through cache, so that Unica Interact attempts to use the cache first event pattern

and offer suppression data. If the requested entry does not exist in the cache, the cache

implementation loads it from the data source, through either the JNDI configuration or

directly using a JDBC connection.

To use a JNDI connection, Unica Interact connects to an existing data source provider that

has been defined through the specified server using the JNDI name, URL, and so on. For

a JDBC connection, you must provide a set of JDBC settings that include the JDBC driver

class name, database URL, and authentication information.

Note that if you define multiple JNDI and JDBC sources, the first enabled JNDI source is

used, and if there is no enabled JNDI sources, the first enabled JDBC source is used.

The PatternStateCache category is required for Interact to work properly.

The PatternStateCache category can also be configured through an external EHCache

configuration for settings that are not supported in Interact | cacheManagement | Caches. If

you use EHCache, you must ensure that PatternStateCache is configured properly.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 489

CacheManagerName

Description

The name of the cache manager that handles the Unica Interact pattern

state cache. The value you enter here must be one of the cache managers

defined in the Interact | cacheManagement | Cache Managers configuration

properties, such as EHCache or Ignite.

Default value

EHCache

Valid Values

Any cache manager defined in the Interact | cacheManagement | Cache

Managers configuration property.

maxEntriesInCache

Description

The maximum number of event pattern states to store in this cache. When the

maximum number of event pattern states has been reached, and data for an

additional event pattern state need to be stored, the least-recently used object

is deleted.

Default value

100000

Valid Values

Integer greater than 0.

timeoutInSecs

Description

Specifies the amount of time, in seconds, for an event pattern state object to

time out in the event pattern state cache. When such a state object has been

idling in the cache for timeoutInSecs number of seconds, it may be ejected

from the cache based on the least-recently-used rule. Note that the value of

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 490

this property should be larger than that defined in the sessionTimeoutInSecs

property.

Note: If you upgraded from a version prior to 9.1, then you will need to

reconfigure timeoutInSecs property because the property moved.

Default value

300

Valid Values

Integer greater than 0.

Interact | Caches | PatternStateCache | Parameter Data
The configuration properties in this category control the Pattern State Cache used to host

the states of event patterns and real time offer suppression rules.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with

the Pattern State Cache. You can set up any parameter name, and the value it

must have.

To create a custom parameter, click (Parameter) and complete the name and

the value you want to assign to that parameter. When you click Save Changes,

the parameter you have created is added to the list in the Parameter Data

category.

Default value

None

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 491

Interact | cacheManagement | caches | PatternStateCache |
loaderWriter
The loaderWriter category contains the configuration of the loader that interacts with

external repositories for the retrieval and persistence of event patterns.

className

Description

The fully-qualified class name for this loader. This class must comply with the

chosen cache manager's requirement.

Default value

com.unicacorp.interact.cache.ehcache.loaderwriter.

PatternStateEHCacheLoaderWriter

Valid Values

A fully-qualified class name.

classPath

Description

The path to the loader's class file. If you leave this value blank or the entry is

invalid, the class path used for running Unica Interact is used.

Default value

None

Valid Values

A valid class path.

writeMode

Description

Specifies the mode for the writer to persist the new or updated event pattern

states in the cache. Valid options are:

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 492

• WRITE_THROUGH. Every time there is a new entry or an existing entry is

updated, that entry is written into the repositories immediately.

• WRITE_BEHIND. The cache manager waits for some time to collect a

number of changes, and then persists them into the repositories in a

batch.

Default value

WRITE_THROUGH

Valid Values

WRITE_THROUGH or WRITE_BEHIND.

batchSize

Description

The maximum number of event pattern state objects the writer will persist in a

batch. This property is used only when writeMode is set to WRITE_BEHIND.

Default value

100

Valid Values

Integer value.

maxDelayInSecs

Description

The maximum time in seconds that the cache manager waits before an event

pattern state object is persisted. This property is used only when writeMode is

set to WRITE_BEHIND.

Default value

5

Valid Values

Integer value.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 493

Interact | Caches | PatternStateCache | loaderWriter | Parameter
Data
The configuration properties in this category control the Pattern State Cache loader.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with the

Pattern State Cache loader. You can set up any parameter name, and the value

it must have.

To create a custom parameter, click (Parameter) and complete the name and

the value you want to assign to that parameter. When you click Save Changes,

the parameter you have created is added to the list in the Parameter Data

category.

Default value

None

Interact | cacheManagement | caches | PatternStateCache |
loaderWriter | jndiSettings
The jndiSettings category contains the configuration for the JNDI data source the loader

will use to communicate with the backing database. To create a new set of JNDI settings,

expand the jdniSettings category and click the (jndiSetting) property.

(jndiSettings)

Note: When the WebSphere Application Server is used, the loaderWriter is not get

connected with the jndiSettings.

Description

When you click this category, a form appears. To define a JNDI data source,

complete the following values:

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 494

• New category name is the name you want to use to identify this JNDI

connection.

• enabled lets you indicate whether you want this JNDI connection to be

available for use or not. Set this to True for new connections.

• jdniName is the JNDI name that has already been defined in the data

source when it was set up.

• providerUrl is the URL to find this JNDI data source. If you leave this field

blank, the URL of the web application that hosts the Unica Interact run

time is used.

• Initial context factory is the fully qualified class name of the initial

context factory class for connecting to the JNDI provider. If the

web application hosting the Unica Interact run time is used for the

providerUrl, leave this field blank.

Default value

None.

Interact | cacheManagement | caches | PatternStateCache |
loaderWriter | jdbcSettings
The jdbcSettings category contains the configuration for the JDBC connections the loader

will use to communicate with the backing database. To create a new set of JDBC settings,

expand the jdbcSettings category and click the (jdbcSetting) property.

(jdbcSettings)

Description

When you click this category, a form appears. To define a JDBC data source,

complete the following values:

• New category name is the name you want to use to identify this JDBC

connection.

• enabled lets you indicate whether you want this JDBC connection to be

available for use or not. Set this to True for new connections.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 495

• driverClassName is the fully-qualified class name of the JDBC driver.

This class must exist in the class path configured for starting the

hosting cache server.

• databaseUrl is the URL to find this JDBC data source.

• asmUser is the name of the Unica user that has been configured with

the credentials for connecting to the database in this JDBC connection.

• asmDataSource the name of Unica data source that has been

configured with the credentials for connecting to the database in this

JDBC connection.

• maxConnection is the maximum number of concurrent connections that

are allowed to be made the database in this JDBC connection.

Default value

None.

Interact | triggeredMessage
The configuration properties in this category define settings for all triggered messages and

offer channel delivery.

backendProcessIntervalMin

Description

This property defines the time period in minutes that the backend thread loads

and processes delayed offer deliveries. This value must be an integer. If the

value is zero or negative, the backend process is disabled.

Valid Values

A positive integer

autoLogContactAfterDelivery

Description

If this property is set to true, a contact event is automatically posted as soon

as this offer is dispatched or this offer is queued for delayed delivery If this

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 496

property is set to false, no contact event is automatically posted for the

outbound offers. This is the default behavior.

Valid Values

True | False

waitForFlowchart

Description

This property determines if the flowchart should wait for the currently running

segmentation to finish, and the behavior if that wait times out.

DoNotWait: The processing of a triggered message starts regardless if

segmentation is currently running or not. However, if segments are used in the

eligibility rule and/or NextBestOffer is selected as the offer selection method,

the TM execution still waits.

OptionalWait : The processing of a triggered message waits until the currently

running segmentation finishes or times out. If the wait times out, a warning is

logged, and the processing of this triggered message continues. This is the

default.

MandatoryWait: The processing of a triggered message waits until the

currently running segmentation finishes or times out. If the wait times out, an

error is logged, and the processing of this triggered message aborts.

Valid Values

DoNotWait | OptionalWait | MandatoryWait

loggingMode

Description

This property determines if the logging is enabled or not. If

enabled, the relevant information is logged to the equivalent of

UACI_TriggeredMessageLog table in the runtime database.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 497

• None: No information will be logged in the table.

• All: Information for successful and failed responses will be logged in the

table.

• Error: Information only for failed responses will be logged in the table.

Valid Values

None | All | Error

Interact | triggeredMessage | offerSelection
The configuration properties in this category define settings for offer selection in triggered

messages.

maxCandidateOffers

Description

This property defines the maximum number of eligible offers that the engine

returns to get the best offer for delivery. There is a chance that none of those

returned eligible offers can be sent based on the selected channel. The

more candidate offers there are, the less this case happens. However, more

candidate offers can increase processing time.

Valid Values

A positive integer

defaultCellCode

Description

If the delivered offer is the result of evaluating a strategic rule or a table driven

record, there is a target cell associated to it, and the information of this cell is

used in all the related logging. However, if a list of specific offers are used as

the input to the offer selection, no target cell is available. In this case, the value

of this configuration setting is used. You must make sure this target cell and

its campaign are included in the deployment. The easiest method to achieve

this is to add the cell into a deployed strategy.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 498

Interact | triggeredMessage | dispatchers
The configuration properties in this category define settings for all dispatchers in triggered

messages.

dispatchingThreads

Description

This property defines the number of threads the engine uses to

asynchronously call the dispatchers. If the value is 0 or a negative number, the

invocation of dispatchers is synchronous. The default value is 0.

Valid Values

An integer

Interact | triggeredMessage | dispatchers | <dispatcherName>
The configuration properties in this category define settings for a specific dispatcher in

triggered messages.

category name

Description

This property defines the name of this dispatcher. The name must be unique

among all dispatchers.

type

Description

This property defines the disptacher type.

Valid Values

InMemoryQueue | JMSQueue | Custom | Kafka

Note: For WebSphere and WebLogic, it is recommended to use the

latest supplied JVM fix pack version. If you have used Kafka in the

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 499

previous version, then you can set the type as Kafka in the upgraded

version.

JMSQueue only supports WebLogic. You cannot use JMSQueue if you use

WebSphere Application Server.

className

Description

This property defines the fully qualified class name of this dispatcher

implementation. If the type is InMemoryQueue the value should be

empty. If the type is custom, this setting must have the following value

"com.unicacorp.interact.eventhandler.triggeredmessage.dispatchers.

KafkaDispatcher". If the type is Kafka, then the value must be empty.

classPath

Description

This property defines the URL to the JAR file that includes the implementation

of this dispatcher. If the type is Kafka, then the value must be empty.

Interact | triggeredMessage | dispatchers | <dispatcherName> |
Parameter Data
The configuration properties in this category define parameters for a specific dispatcher in

triggered messages.

You can choose between three types of dispatchers. InMemoryQueue is the internal

dispatcher for Unica Interact. Custom is used for Kafka. JMSQueue is used to connect to

a JMS provider via JNDI. Kafka is distributed as a streaming platform, which is used to

publish and subscribe the streams of records.

category name

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 500

This property defines the name of this parameter. The name must be unique

among all parameters for that dispatcher.

value

Description

This property defines the parameters, in the format of name value pairs,

needed by this dispatcher.

Note: All parameters for trigger messages are case sensitive and

should be entered as shown here.

If the type is InMemoryQueue, the following parameter is supported.

• queueCapacity: Optional. The maximum offers that can be waiting in the

queue to be dispatched. When specified, this property must be a positive

integer. If not specified or invalid, the default value (1000) is used.

If the type is Custom, the following parameters are supported.

• providerUrl: <hostname>:port (case sensitive)

• queueManager: The name of the queue manager that was created on

the Kafka server.

• messageQueueName: The name of the message queue that was

created on the Kafka server.

• enableConsumer: This property must be set to true.

• asmUserforMQAuth: The user name for logging into the server. It is

required when the server enforces authentication. Otherwise, it should

not be specified.

• authDS: The password associated with the user name for logging

into the server. It is required when the server enforces authentication.

Otherwise, it should not be specified.

If the type is JMSQueue, the following parameter is supported.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 501

• providerUrl: The URL to the JNDI provider (case sensitive).

• connectionFactoryJNDI: The JNDI name of the JMS connection factory.

• messageQueueJNDI: The JNDI name of the JMS queue where the

triggered messages are sent to and retrieved from.

• enableConsumer: Theis proprerty specifies whether a consumer of

those triggered messages must be started in Unica Interact. This

property must be set to true. If not specified, the default value (false) is

used.

• initialContextFactory: The fully qualified name of the JNDI initial context

factory class. If you use WebLogic, the value of this parameter must be

weblogic.jndi.WLInitialContextFactory.

If the type is Kafka, the following parameters are supported.

• providerUrl: A list of host/port pairs to be used for establishing the

initial connection to the Kafka cluster. This list must be in the form of

host1:port1,host2:port2,....

• topic: A topic is a category or feed name to which messages are stored

and published. All Kafka messages are organized into topics. If you

require to send a message, you can send it to a specific topic and if

you require to read a message you can read it from a specific topic.

Producer applications write data to topics and consumer applications

read from topics. Topic name must contain a ASCII alphanumeric, '.', '_'

and '-' characters. Due to the limitations in topic names, you can either

use topics with a period ('.') or underscore ('_'). The maximum length of a

topic name can be 255 characters. For example, if you create or provide

a topic name 'InteractTM_1’ and you create a topic like ‘InteractTM.1’,

then the following error is generated. "Topic InteractTM.1 collides with

existing topics: InteractTM _1.”

• group.id: Specifies the name of the consumer group to which a Kafka

consumer belongs.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 502

• zookeeper.connect: Specifies the zookeeper connection string in the

form of hostname:port, where hostname and port are the host and port

of a ZooKeeper server.

• authentication: Users can use Kafka by enabling different authentication

mechanisms.

• throttleProducer: Specifies the flag to start the throttle producer utility

(default value is false). The utility analyzes consumer lag periodically

and adds calculated wait time before producing the next record. Valid

values are true | false).

• analyzeLagIntervalInSec: Specifies interval in seconds to periodically

run analyze consumer lag (default value is 10 seconds). Valid values are

positive integers.

• maxThrottleWaitInSec: Specifies maximum throttle wait time in seconds

(default value is 2 seconds). Valid values are positive integers.

Mandatory parameters for publishing and subscribing messages

By default, the Kafka server does not support any authentication mechanism.

Users can start the Kafka server considering that authentication mechanism is

disabled. In this case, users can set the "authentication" parameter with value

"None".

Table 28. Mandatory parameters for publishing messages

Parameters
Allowed/Sample

Parameter Values

providerUrl <host>:<port> (example: local

host:9092)

topic Any string (example: InteractTM)

authentication none | Plain | SSL | SASL_SSL

zookeeper.connect <host>:<port> (example: local

host:2181)

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 503

Table 29. Mandatory paramaters for subscribing messages

Parameters Allowed/Sample Parameter Value

providerUrl <host>:<port> (example: local

host:9092)

group.id Any string (example: InteractTM

Gateway)

topic Any string (example: InteractTM)

authentication none | Plain | SSL | SASL_SSL

zookeeper.connect <host>:<port> (example: local

host:2181)

Authentication mechanism

You can use Kafka by enabling different authentication mechanisms.

Authentication by SASL_PLAIN mechanism

If you require to use the SASL_PLAIN authentication mechanism, you must

set the parameter "authentication" with value "Plain" along with its supported

parameters.

The following parameters are required if SASL_PLAIN mechanism is

supported.

• asmUserforMQAuth: The user name for logging into the server. It is

required when the server enforces authentication.

• authDS: The password associated with the user name for logging into

the server.

• username/password: The username or password of Kafka server

configured in the JASS configuration file.

The following table provides the parameters required for SASL_PLAIN

mechanism.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 504

Parameters Allowed/Sample parameter values

authentication Plain

asmUserforMQAuth Any string (example: test_user)

authDS Any string (example: authDS)

username Any string (example: test_user)

password Any string (example: test-secret)

If the "authentication" parameter is "Plain", you must either use

asmUserforMQAuth/authDS or username/password parameters for

authentication .

Create the data sources (authDS) in the User section in platform configuration.

See the following example for data sources details.

Datasource Username Password

authDS test_user test-secret

Authentication by SSL mechanism

To use the SSL authentication mechanism, you must set the parameter

"authentication" with value "SSL" along with its supported parameters.

The following parameters are required to support SSL mechanism.

• ssl.keystore.location: The location of the key store file. You can use it for

a two-way authentication for client.

• ssl.truststore.location: The location of the trust store file.

• SSLKeystoreDS: The keystore datasource name, which stores the

password of ssl keystore.

• SSLKeyDS: The key datasource name, which stores the password of ssl

key.

• SSLTruststoreDS: The truststore datasource name, which stores the

password of ssl truststore.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 505

The following table includes the supported parameters for SSL mechanism.

Parameters
Allowed/Sample

Parameter Values

authentication SSL

ssl.keystore.location SSL Keystore location (example:

C:/SSL/kafka.client.key

store.jks)

ssl.truststore.location SSL Keystore location (exam

ple: C:/SSL/kafka.client.

truststore.jks)

asmUserforMQAuth Any string (example: test_user)

SSLKeystoreDS Any string (example: SSLKeystore

DS)

SSLKeyDS Any string (example: SSLKeyDS)

SSLTruststoreDS Any string (example: SSLTrust

storeDS)

Create the data sources (SSLKeystoreDS, SSLKeyDS, and SSLTruststoreDS) in

the User section in platform configuration. See the following example for data

sources details.

Datasource Username Password

SSLKeystoreDS keystore keystore-secret

SSLKeyDS key key-secret

SSLTruststoreDS truststore truststore -secret

Note: Client keystore or truststore is required at Producer or

Consumer side in Unica Interact application (where the Interact

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 506

application is installed). C:/SSL/kafka.client.keystore.jks

and C:/SSL/kafka.client.truststore.jks are the local

locations, where the Interact application is installed.

Authentication by Kerbrose

Kerbrose is used as an authentication method in Kafka receiver and Kafka

outbound gateway.

In order to use Kerbrose, the following parameters with their values must be

set to the activity orchestrator receiver or trigger message outbound gateway,

in addition to the parameters set for "Authentication by SSL mechanism".

• authentication = SASL_SSL

• sasl.mechanism = GSSAPI

In addition, the following JVM parameters must be added to the application

server hosting Interact runtime.

• -Djava.security.auth.login.config=/path/to/jaas.conf

• -Djava.security.krb5.conf=/path/to/krb5.conf

Authentication by SASL_SSL mechanism

If you require to use the SASL_SSL authentication mechanism, then you

must set the parameter "authentication" with value "SASL_SSL" along

with its supported parameters. SASL_SSL mechanism is the combination

of SASL_PLAIN and SSL mechanisms. The following table includes the

supported parameters for SASL_SSL mechanism.

Parameters
Allowed/Sample

Parameter Values

authentication SASL_SSL

asmUserforMQAuth Any string (example: test_user)

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 507

Parameters
Allowed/Sample

Parameter Values

authDS Any string (example: authDS)

username Any string (example: test_user)

password Any string (example: test-secret)

ssl.keystore.location SSL Keystore location (example:

C:/SSL/kafka.client.key

store.jks)

ssl.truststore.location SSL Keystore location (exam

ple: C:/SSL/kafka.client.

truststore.jks)

SSLKeystoreDS Any string (example: SSLKeystore

DS)

SSLKeyDS Any string (example: SSLKeyDS)

SSLTruststoreDS Any string (example: SSLTrust

storeDS)

If the "authentication" parameter is "SASL_SSL", you must either use

asmUserforMQAuth/authDS or username/password.

Create the data sources (authDS, SSLKeystoreDS, SSLKeyDS and

SSLTruststoreDS) in the User section in platform configuration. For data

sources details, see the following example.

Datasource Username Password

authDS admin admin-secret

SSLKeystoreDS keystore test1234

SSLKeyDS key test1234

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 508

Datasource Username Password

SSLTruststoreDS truststore test1234

Note: If you provide any data sources like authDS, SSLKeystoreDS,

SSLKeyDS, or SSLTruststoreDS in the platform configuration

parameter, then you must also provide asmUserforMQAuth parameter.

Client keystore/truststore is required at Producer/Consumer side

in the Interact application (where Unica Interact application is

installed). C:/SSL/kafka.client.keystore.jks and C:/SSL/

kafka.client.truststore.jks are the local locations, where

Interact application is installed.

Optional parameter for publishing messages

The following optional parameters can be used for publishing messages.

• acks: The acks config controls the criteria under which requests are

considered complete. The "all" setting results in blocking the full commit

of the record.

• retries: If the request fails, the producer can retry. Since, the specified

retries are set as 0, retry is not possible. Enabling retries can lead to

duplicates.

• batch.size: The default batch size is in bytes, when multiple records are

batched and sent to a partition.

• linger.ms: The producer waits till the given delay time to allow other

records to be sent so that the sent records can be batched together.

• buffer.memory: The total bytes of memory that the producer can use to

buffer records, which are waiting to be sent to the server.

The following table includes the optional parameters required for publishing

messages.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 509

Parameters Default value
Allowed/Sample

Parameter values

acks 1 0, 1, all

retries 3 Non-negative integer

batch.size 16384 Positive integer

linger.ms 0 Non-negative integer

buffer.memory 33554432 Positive integer

Optional parameters for subscribing messages

enable.auto.commit means that offsets are committed automatically with a

frequency controlled by the config "auto.commit.interval.ms". The value of

auto.commit.interval.ms must not exceed 1000 as the poll interval is set to

1000. The value of auto.commit.interval.ms must not exceed the value of poll

interval.

The following table includes the optional parameters for subscribing

messages.

Parameters Default value
Allowed/Sample

parameter values

enable.auto.commit true True, False

auto.commit.interval

.ms

200 Positive integer

Optional thread management parameters

The following optional parameters can be used for thread management.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 510

• corePoolSize: The number of threads to keep in the pool for monitoring

Kafka service.

• maxPoolSize: The maximum number of threads to keep in the pool for

monitoring Kafka service.

• keepAliveTimeSecs: The maximum time that the excess idle threads

waits for new tasks before terminating to monitor Kafka service, when

the number of threads is greater than the core.

• queueCapacity: The size of the queue used by the thread pool to monitor

Kafka service.

The following table includes the optional parameters for thread management.

Parameters Default value
Allowed/Sample

Parameter Values

corePoolSize 1 Positive integer

maxPoolSize 5 Positive integer

keepAliveTimeSecs 5 Positive integer

queueCapacity 100 Positive integer

Optional zookeeper parameters

The following optional parameters can be used for zookeeper activities.

zookeeper.connection.timeout.ms: The maximum time that the client

waits to establish a connection with zookeeper. If not set, the value in

zookeeper.session.timeout.ms is used.

The following table includes the optional parameters for Zookeeper activities.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 511

Parameters
Default

Value

Al

lowed/Sam

ple Pa

rameter

Value

zookeeper.connection.timeout.ms 6000 Positive

integer

Optional parameters for creating topic

The following optional parameters can be used for creating topic.

• num.partitions: The number of partitions for the offset commit topic.

• replication.factor: The replication factor to change log topics and

repartition topics created by the stream processing application.

The following table includes the optional parameters for creating topic.

Parameters Default value
Allowed/Sample

Parameter Values

num.partitions 1 Positive integer

replication.factor 1 Positive integer

Interact | triggeredMessage | gateways | <gatewayName>
The configuration properties in this category define settings for a specific gateway in

triggered messages.

Unica Interact does not support multiple instances of the same gateway. All of the gateway

configuration files should be accessible from every Unica Interact Runtime node. In the case

of a distributed setup, ensure that the gateway files are kept at a shared location.

Note: The out of the box gateways with names "EMail", "MobilePush", "UBX" are

available under this node along with all required parameters and their respective

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 512

values . You do not require to update any of the values in Platform configuration .

Only change is required in the properties files which are referred in those

configurations. In case you have upgraded from a previous version of Interact , then

any existing configuration using those gateways will continue to work as is.

category name

Description

This proerpty defines the name of this gateway. It must be unique among all

gateways.

className

Description

This property defines the fully qualified class name of this gateway

implementation.

classPath

Description

This property defines the URI of the JAR file that includes the implementation

of this gateway. If left empty, the class path of the hosting Interact application

is used.

For example in a Windows system, if the gateway JAR file is

available in the directory, C:\HCL\Unica\EmailGateway

\IBM_Interact_OMO_OutboundGateway_Silverpop_1.0\lib

\OMO_OutboundGateway_Silverpop.jar, the classPath

should be file:///C:/HCL/Unica/EmailGateway/

IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/lib/

OMO_OutboundGateway_Silverpop.jar. In a Unix system, if the gateway

jar file is available in the directory, /opt/HCL/Unica/EmailGateway/

IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/

lib/OMO_OutboundGateway_Silverpop.jar, the classpath

should be file:///opt/HCL/Unica/EmailGateway/

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 513

IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/lib/

OMO_OutboundGateway_Silverpop.jar.

Interact | triggeredMessage | gateways | <gatewayName> |
Parameter Data
The configuration properties in this category define parameters for a specific gateway in

triggered messages.

cateogry name

Description

This property defines the name of this parameter. The name must be unique

among all parameters for that gateway.

value

Description

This property defines the parameters, in the format of name value pairs,

needed by this gateway. For all gateways, the following parameters are

supported.

Note:

• All parameters for trigger messages are case sensitive and

should be entered as shown here.

◦ validationTimeoutMillis: The duration in milliseconds that

the validation of an offer through this gateway timeouts.

The default value is 500.

◦ deliveryTimeoutMillis: The duration in milliseconds that

the delivery of an offer using this gateway timeouts. The

default value is 1000.

• In order to get gateway related logs in the Interact.log file,

place the old 'interact_log4j2.xml' from versions prior to 11.1 in

'InteractRT.war/WEB-INF/classes' and also put it at any location

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 514

outside the war file . You need to specify the following JVM

parameter in the application server: -Dlog4j.configuration=file:/

opt/any_location/interact_log4j.properties

Interact | triggeredMessage | channels
The configuration properties in this category define settings for all channels in triggered

messages.

type

Description

This property defines the root node for settings related to a specific gateway.

Default uses the built in channel selector, which is based on the list of

channels defined on in the triggered messages UI. If default is selected,

className and classPath values should be left blank. Custom uses the

customer implementation of IChannelSelector.

Valid Values

Default | Custom

className

Description

This property defines the fully qualified class name of the customer

implementation of channel selector. This setting is required if the type is

Custom.

classPath

Description

This property defines the URL to the JAR file that includes the implementation

of the customer implementation of channel selector. If left empty, the class

path of the hosting Interact application is used.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 515

Interact | triggeredMessage | channels | Parameter Data
The configuration properties in this category define parameters for a specific channel in

triggered messages.

category name

Description

This property defines the name of this parameter. The name must be unique

among all parameters for that channel.

value

Description

This property defines the parameters, in the format of name value pairs,

needed by the channel selector.

If you use Customer Preferred Channels for your channel, you must create

Interact | triggeredMessage | channels | <channelName>
The configuration properties in this category define settings for a specific channel in

triggered messages.

category name

Description

This property defines the name of the channel through which offers are sent.

It should match those defined in the design time under Campaign | partitions |

<partition[N]> | Interact | outboundChannels.

Interact | triggeredMessage | channels | <channelName> |
<handlerName>
The configuration properties in this category define settings for a specific handler in

triggered messages that is used to sent offers.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 516

category name

Description

This property defines the name of the handler which the channel will use to

send offers.

dispatcher

Description

This property defines the name of the dispatcher through which this handler

uses send offers to the gateway. It must be one of those defined under

interact | triggeredMessage | dispatchers.

gateway

Description

This property defines the name of the gateway to which this handler

send offers ultimately. It must be one of those defined under interact |

triggeredMessage | gateways.

mode

Description

This property defines the usage mode of this handler. If Failover is selected,

this handler is used only when all the handlers with higher priorities defined

within this channel failed to send offers. If Addon is selected, this handler is

used no matter if other handlers have successfully sent offers.

priority

Description

This property defines the priority of this handler. The engine first tries to use

the handler with the highest priority for sending offers.

Valid Values

Any integer

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 517

Default

100

Interact | activityOrchestrator
The activity orchestrator category specifies the receivers and gateways for your Unica

Interact inbound gateway activity.

Use the Interact | activityOrchestrator | receivers configuration properties to configure your

Unica Interact receivers. Use the Interact | activityOrchestrator | gateways configuration

properties to configure your gateways to use in Unica Interact.

Interact | activityOrchestrator | receivers
The activity orchestrator receivers category specifies the event receivers for your Unica

Interact inbound gateway activity.

Category name

Description

The name of your receiver.

Type

Description

The type of receiver. You can choose between Kafka, and Custom. Custom

requires you to use an implementation of the iReceiver.

Note: If you have used Kafka in the previous version, then you can set

the value of type as Kafka in the upgraded version.

Enabled

Description

Select True to enable the receiver or false to disable the receiver.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 518

className

Description

This property defines the fully qualified class name of this receiver

implementation. It is used only when the type is Custom. If the type is Kafka,

then the value must be empty.

classPath

Description

This property defines the URI to the JAR file that includes the implementation

of this receiver. If left empty, the class path of the hosting Unica Interact

application is used. It is used only when the type is Custom. If the type is Kafka,

then the value must be empty.

Interact | activityOrchestrator | receivers | Parameter Data

You can add receiver parameters, such as queueManager and

messageQueueName to define your receiver queue.

If the type is Kafka, the following parameters are supported.

• providerUrl: A list of host/port pairs to be used for establishing the

initial connection with the Kafka cluster. This list must be in the form of

host1:port1,host2:port2,....

• topic: A topic is a category or feed name to which messages are stored

and published. All Kafka messages are organized into topics. If you

require to send a message, you can send it to a specific topic and if

you require to read a message you can read it from a specific topic.

Producer applications write data to topics and consumer applications

read from topics. Topic name must contain a ASCII alphanumeric, '.', '_'

and '-' characters. Due to the limitations in topic names, you can either

use topics with a period ('.') or underscore ('_'). The maximum length

of a topic name can be 255 characters. For example, if you create or

provide a topic name 'InteractTM_1’, and you try to create a topic like

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 519

‘InteractTM.1’, then the following error is generated. "Topic InteractTM.1

collides with existing topics: InteractTM _1.”

• group.id: Specifies the name of the consumer group to which a Kafka

consumer belongs.

• zookeeper.connect: Specifies the zookeeper connection string in the

form of hostname:port, where hostname and port are the host and port

of a zookeeper server.

• authentication: Users can use Kafka by enabling different authentication

mechanisms.

• amplifyConsumer: Specifies the flag to start amplifying consumer utility

(default value is false). The utility periodically analyzes consumer

lag and amplifies consumers by adding new consumers if the existing

consumer or consumers are overloaded, and if there is the scope of

adding new consumers within the same consumer group ID. Valid values

are true | false.

• analyzeLagIntervalInSec: Specifies interval in seconds to periodically run

analyze consumer lag (default value is 10 seconds). Valid values are any

positive integers.

• consumerLagThreshold: Specifies the threshold lag value to evaluate

consumer or consumers that are not overloaded (default value is 1000).

Valid values are any positive integers.

• minAmplifyConsumers: Specifies the minimum number of consumers

that were initially added during Interact startup (default value is 1). Valid

values are any positive integers.

• maxAmplifyConsumers: Specifies the maximum number of consumers

that can be added within the same group ID. This number will not be in

effect if the topic has lesser number of partitions (default value is 3).

Valid values are any positive integers.

Mandatory parameters for subscribing messages

By default, the Kafka server does not support any authentication mechanism.

You can start the Kafka server considering that authentication mechanism is

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 520

disabled. In this case, you can set the "authentication" parameter with value

"None". The following table includes the mandatory parameters required to

subscribe messages.

Parameters Allowed/Sample Parameter Value

providerUrl <host>:<port> (example: local

host:9092)

group.id Any string (example: InteractTM

Gateway)

topic Any string (example: InteractTM)

authentication Any string

zookeeper.connect <host>:<port> (example: local

host:2181)

Authentication mechanism

You can use Kafka by enabling different authentication mechanisms.

Authentication by SASL_PLAIN mechanism

If you want to use the SASL_PLAIN authentication mechanism, you must set

the parameter "authentication" with value "Plain" along with its supported

parameters.

The following parameters are required, if SASL_PLAIN mechanism is

supported.

• asmUserforMQAuth: The user name for logging into the server. It is

required when the server enforces authentication.

• authDS: The password associated with the user name for logging into

the server.

• username/password: The username or password of Kafka server

configured in the JASS configuration file.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 521

The following table provides the parameters required for the SASL_PLAIN

mechanism.

Parameters Allowed/Sample parameter values

authentication Plain

asmUserforMQAuth Any string (example: test_user)

authDS Any string (example: authDS)

username Any string (example: test_user)

password Any string (example: test-secret)

If the "authentication" parameter is "Plain", you must either use

asmUserforMQAuth/authDS or username/password parameters for

authentication .

Create the data sources (authDS) in the User section in platform configuration.

See the following example for data sources details.

Datasource Username Password

authDS test_user test-secret

Authentication by SSL mechanism

To use the SSL authentication mechanism, you must set the parameter

‘authentication’ with value ‘SSL’ along with its supported parameters.

The following parameters are required to support SSL mechanism.

• ssl.keystore.location: The location of the key store file. You can use it for

a two-way authentication for client.

• ssl.truststore.location: The location of the trust store file.

• SSLKeystoreDS: The keystore datasource name, which stores the

password of ssl keystore.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 522

• SSLKeyDS: The key datasource name, which stores the password of ssl

key.

• SSLTruststoreDS: The truststore datasource name, which stores the

password of ssl truststore.

The following table includes the supported parameters for SSL mechanism.

Parameters
Allowed/Sample

Parameter Values

authentication SSL

ssl.keystore.location SSL Keystore location (example:

C:/SSL/kafka.client.key

store.jks)

ssl.truststore.location SSL Keystore location (example:

C:/SSL/kafka.client.trust

store.jks)

asmUserforMQAuth Any string (example: test_user)

SSLKeystoreDS Any string (example: SSLKeystore

DS)

SSLKeyDS Any string (example: SSLKeyDS)

SSLTruststoreDS Any string (example: SSLTrust

storeDS)

Create the data sources (SSLKeystoreDS, SSLKeyDS, and SSLTruststoreDS) in

the User section in platform configuration. See the following example for data

sources details.

Datasource Username Password

SSLKeystoreDS keystore keystore-secret

SSLKeyDS key key-secret

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 523

Datasource Username Password

SSLTruststoreDS truststore truststore -secret

Note: Client keystore or truststore is required at Producer or

Consumer side in Interact application (where the Interact application

is installed). C:/SSL/kafka.client.keystore.jks and C:/

SSL/kafka.client.truststore.jks are the local locations,

where the Interact application is installed.

Authentication by SASL_SSL mechanism

If you require to use the SASL_SSL authentication mechanism, then you

must set the parameter "authentication" with value "SASL_SSL" along

with its supported parameters. SASL_SSL mechanism is the combination

of SASL_PLAIN and SSL mechanisms. The following table includes the

supported parameters for SASL_SSL mechanism.

Parameters
Allowed/Sample

Parameter Values

authentication SASL_SSL

asmUserforMQAuth Any string (example: test_user)

authDS Any string (example: authDS)

username Any string (example: test_user)

password Any string (example: test-secret)

ssl.keystore.location SSL Keystore location (example:

C:/SSL/kafka.client.key

store.jks)

ssl.truststore.location SSL Keystore location (example:

C:/SSL/kafka.client.trust

store.jks)

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 524

Parameters
Allowed/Sample

Parameter Values

SSLKeystoreDS Any string (example: SSLKeystore

DS)

SSLKeyDS Any string (example: SSLKeyDS)

SSLTruststoreDS Any string (example: SSLTrust

storeDS)

If the "authentication" parameter is "SASL_SSL", you must either use

asmUserforMQAuth/authDS or username/password.

Create the data sources (authDS, SSLKeystoreDS, SSLKeyDS, and

SSLTruststoreDS) in the User section in platform configuration. For data

sources details, see the following example.

Datasource Username Password

authDS admin admin-secret

SSLKeystoreDS keystore test1234

SSLKeyDS key test1234

SSLTruststoreDS truststore test1234

Note: If you provide any data sources like authDS, SSLKeystoreDS,

SSLKeyDS, or SSLTruststoreDS in the platform configuration

parameter, then you must also provide asmUserforMQAuth parameter.

Client keystore/truststore is required at Producer/Consumer side

in Interact application (where Interact application is installed).

C:/SSL/kafka.client.keystore.jks and C:/SSL/

kafka.client.truststore.jks are the local locations, where

Interact application is installed.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 525

Optional parameters for subscribing messages

enable.auto.commit means that offsets are committed automatically with a

frequency controlled by the config "auto.commit.interval.ms". The value of

auto.commit.interval.ms must not exceed 1000 as the poll interval is set to

1000. The value of auto.commit.interval.ms must not exceed the value of poll

interval.

The following table includes the optional parameters for subscribing

messages.

Parameters Default value
Allowed/Sample

parameter values

enable.auto.commit true True, False

auto.commit.interval

.ms

200 Positive integer

Optional thread management parameters

The following optional parameters can be used for thread management.

• corePoolSize: The number of threads to keep in the pool for monitoring

Kafka service.

• maxPoolSize: The maximum number of threads to keep in the pool for

monitoring Kafka service.

• keepAliveTimeSecs: The maximum time taken by the excess idle

threads to wait for new tasks before terminating to monitor Kafka

service, when the number of threads is greater than the core.

• queueCapacity: The size of the queue used by the thread pool for

monitoring Kafka service.

The following table includes the optional parameters for thread management.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 526

Parameters Default value
Allowed/Sample

Parameter Values

corePoolSize 1 Positive integer

maxPoolSize 5 Positive integer

keepAliveTimeSecs 5 Positive integer

pqueueCapacity 100 Positive integer

Optional zookeeper parameters

The following optional parameter can be used for Zookeeper activities.

zookeeper.connection.timeout.ms: The maximum time that the client

waits to establish a connection with zookeeper. If not set, the value in

"zookeeper.session.timeout.ms" is used.

The following table includes the optional parameters for zookeeper activities.

Parameter
Default

Value

Al

lowed/Sam

ple Pa

rameter

Value

zookeeper.connection.timeout.ms 6000 Positive

integer

Optional parameters for creating topic

The following optional parameters can be used for creating topic.

• num.partitions: The number of partitions for the offset commit topic.

• replication.factor: The replication factor to change log topics and

repartition topics created by the stream processing application.

The following table includes the optional parameters for creating topic.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 527

Parameters Default value
Allowed/Sample

Parameter Values

num.partitions 1 Positive integer

replication.factor 1 Positive integer

Interact | activityOrchestrator | gateways
The activity orchestrator gateway category specifies the gateways for your Unica Interact

inbound gateway activity.

Note: The out of the box inbound gateway with name "UBX" is available under

this node along with all required parameters and their respective values . You are

not required to update any of the values in Platform configuration . Only change

is required in the properties files which are referred in those configurations. In

case you have upgraded from a previous version of Interact, then any existing

configuration using those gateways continue to work as is.

Category name

Description

The name of your gateway.

className

Description

This property defines the fully qualified class name of this gateway

implementation.

classPath

Description

This property defines the URI to the JAR file that includes the implementation

of this gateway. If left empty, the class path of the hosting Unica Interact

application is used. It is used only when the type is Custom.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 528

Interact | activityOrchestrator | gateways | Parameter Data

You can add gateway parameters for your gateway configuration files, such

as OMO-conf_inbound_UBX_interactEventNameMapping and OMO-

conf_inbound_UBX_interactEventPayloadMapping.

Configuration tree paths

Interact|activityOrchestrator|gateways|<gatewayName>|Parameter

Data|<partitionName>|processTimeoutMillis|value=XXX

Interact|activityOrchestrator|gateways|<gatewayName>|Parameter

Data|<partitionName>|OMO-processTimeoutMillis|value=XXX

Interact | ETL | patternStateETL
The configuration properties in this category define the settings for the ETL process.

New category name

Description

Provide a name that uniquely identifies this configuration. Note that you

must provide this exact name when you run the stand-alone ETL process. For

convenience in specifying this name on the command line, you may want to

avoid a name containing spaces or punctuation, such as ETLProfile1.

runOnceADay

Description

Determines whether the stand-alone ETL process in this configuration should

run once each day. Valid answers are Yes or No. If you answer No here, the

processSleepIntervalInMinutes determines the run schedule for the process.

preferredStartTime

Description

The preferred time at which the stand-alone ETL process should start. Specify

the time in the format HH:MM:SS AM/PM, as in 01:00:00 AM.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 529

preferredEndTime

Description

The preferred time at which the stand-alone ETL process should stop. Specify

the time in the format HH:MM:SS AM/PM, as in 08:00:00 AM.

processSleepIntervalInMinutes

Description

If you have not configured the stand-alone ETL process to run once a day (as

specified in the runOnceADay property), this property specifies the interval

between ETL process runs. For example, if you specify 15 here, the stand-

alone ETL process will wait for 15 minutes after it stops running before

starting the process again.

maxJDBCInsertBatchSize

Description

The maximum number of records of a JDBC batch before committing

the query. By default, this is set to 5000. Note that this is not the

maximum number of records that the ETL processes in one iteration.

During each iteration, the ETL processes all available records from the

UACI_EVENTPATTERNSTATE table. However, all those records are broken into

maxJDBCInsertSize chunks.

maxJDBCFetchBatchSize

Description

The maximum number of records of a JDBC batch to fetch from the staging

database.

You may need to increase this value to tune the performance of the ETL.

communicationPort

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 530

The network port on which the standalone ETL process listens for a stop

request. Under normal circumstances, there should be no reason to change

this from the default value.

queueLength

Description

A value used for performance tuning. Collections of pattern state data

are fetched and transformed into objects that are added to a queue to be

processed and written to the database. This property controls the size of the

queue.

completionNotificationScript

Description

Specifies the absolute path to a script to run when the ETL process is

completed. If you specify a script, three arguments are passed to the

completion notification script: start time, end time, and total number of event

pattern records processed. The start time and end time are numeric values

representing number of milliseconds elapsed since 1970.

Interact | ETL | patternStateETL | <patternStateETLName> |
RuntimeDS
The configuration properties in this category define the settings for the ETL Runtime DS.

type

Description

A list of the supported database types for the data source you are defining.

dsname

Description

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 531

The JNDI name of the data source. This name must also be used in the user's

data source configuration to ensure that the user has access to the target and

runtime data sources.

driver

Description

The name of the JDBC driver to us, such as any of the following:

Oracle: oracle.jdbc.OracleDriver

Microsoft SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

IBM DB2: com.ibm.db2.jcc.DB2Driver

MariaDB: org.mariadb.jdbc.Driver

serverURL

Description

The data source URL, such as any of the following:

Oracle: jdbc:oracle:thin:@

<your_db_host>:<your_db_port>:<your_db_service_name>

Microsoft SQL Server: jdbc:sqlserver://

<your_db_host>:<your_db_port> ;databaseName= <your_db_name>

IBM DB2: jdbc:db2:// <your_db_host>:<your_db_port>/<your_db_name>

MariaDB: jdbc:mariadb:// <your_db_host>:<your_db_port>/

<your_db_name>

connectionpoolSize

Description

A value indicating the size of the connection pool, provided for performance

tuning. Pattern state data is read and transformed concurrently depending

upon the available database connections. Increasing the connection pool size

allows for more concurrent database connections, subject to limitations of

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 532

memory and database read/write capabilities. For example, if this value is set

to 4, four jobs will run concurrently. If you have a large amount of data, you

might need to increase this value to a number such as 10 or 20, as long as

sufficient memory and database performance is available.

schema

Description

The name of the database schema to which this configuration is connecting.

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection request

on failure. Unica Interact automatically tries to reconnect to the database for

this length of time before reporting a database error or failure. If the value is

set to 0, Unica Interact retries indefinitely; if the value is set to -1, no retry is

attempted.

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure.

If the value is set to -1, no retry is attempted.

Interact | ETL | patternStateETL | <patternStateETLName> |
TargetDS
The configuration properties in this category define the settings for the ETL Target DS.

type

Description

A list of the supported database types for the data source you are defining.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 533

dsname

Description

The JNDI name of the data source. This name must also be used in the user's

data source configuration to ensure that the user has access to the target and

runtime data sources.

driver

Description

The name of the JDBC driver to us, such as any of the following:

Oracle: oracle.jdbc.OracleDriver

Microsoft SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

IBM DB2: com.ibm.db2.jcc.DB2Driver

MariaDB: org.mariadb.jdbc.Driver

serverURL

Description

The data source URL, such as any of the following:

Oracle: jdbc:oracle:thin:@

<your_db_host>:<your_db_port>:<your_db_service_name>

Microsoft SQL Server: jdbc:sqlserver://

<your_db_host>:<your_db_port> ;databaseName= <your_db_name>

IBM DB2: jdbc:db2:// <your_db_host>:<your_db_port>/<your_db_name>

MariaDB: jdbc:mariadb:// <your_db_host>:<your_db_port>/

<your_db_name>

connectionpoolSize

Description

A value indicating the size of the connection pool, provided for performance

tuning. Pattern state data is read and transformed concurrently depending

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 534

upon the available database connections. Increasing the connection pool size

allows for more concurrent database connections, subject to limitations of

memory and database read/write capabilities. For example, if this value is set

to 4, four jobs will run concurrently. If you have a large amount of data, you

might need to increase this value to a number such as 10 or 20, as long as

sufficient memory and database performance is available.

schema

Description

The name of the database schema to which this configuration is connecting.

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Unica Interact automatically retries the database connection request

on failure. Unica Interact automatically tries to reconnect to the database for

this length of time before reporting a database error or failure. If the value is

set to 0, Unica Interact retries indefinitely; if the value is set to -1, no retry is

attempted.

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Unica Interact waits before it tries to reconnect to the database after a failure.

If the value is set to -1, no retry is attempted.

Interact | ETL | patternStateETL | <patternStateETLName> |
Report
The configuration properties in this category define the settings for the ETL report

aggregation process.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 535

enable

Description

Enable or disable the report integration with ETL. This property is set to

disable by default.

If set to disable, this property disables updates on table

UARI_DELTA_PATTERNS Table . It does not disable reporting completely .

Note: To disable the report integration with ETL, you must also

alter the trigger TR_AGGREGATE_DELTA_PATTERNS to disable on

UACI_ETLPATTERNSTATERUN staging table.

retryAttemptsIfAggregationRunning

Description

The number of times the ETL attempts to check whether the report

aggregation is completed if the lock flag is set. This property is set to 3 by

default.

sleepBeforeRetryDurationInMinutes

Description

Sleep time in minutes between consecutive attempts. This property is set to 5

minutes by default.

aggregationRunningCheckSql

Description

This property lets you define a custom SQL, which can be run to see whether

the report aggregation lock flag is set. By default this property is empty.

When this property is not set, the ETL runs the following SQL to get the lock

flag.

Unica Interact V12.1.3 Administrator's Guide | 14 - Unica Interact runtime environment configuration properties | 536

select count(1) AS ACTIVERUNS from uari_pattern_lock where isloc

k='Y'

=> If ACTIVERUNS is > 0, lock is set

aggregationRunningCheck

Description

Enable or disable the check if the report aggregation is running before the ETL

run is performed. This property is set to enable by default.

Chapter 15. Unica Interact Simulator
This section describes all the configuration properties for the Unica Interact simulator.

It is not recommended to perform other simulation related actions, such as add, copy,

delete, and modify, when a simulation run is in progress.

Interact | simulator
The configuration category defines the parameters to be defined to run the coverage

analysis scenario of Simulator module..

numberOfThreads

Description

The number of threads used to run the simulation

Default Value

1

maxOffersToInclude

Description

The maximum number of offers returned in each getOffers call for each

audience id in the coverage analysis scenario.

Default Value

10

insertBatchSize

Description

Define the size of each batch for persisting the resulting records.

Default Value

1000

Unica Interact V12.1.3 Administrator's Guide | 15 - Unica Interact Simulator | 538

Interact | simulator|scenarioDataSource
These configurations are required to run Simulator Coverage Analysis scenario

jndiName

Description

Use this jndiName property to identify the Java Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the Interact Design Time tables.

Default Value

No default value defined.

Schema

Description

The name of the schema containing the tables for the Interact design time

data source module. Interact inserts the value of this property before all table

names, for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You have to define a schema. If you do not define a schema, Interact assumes

that the owner of the tables is the same as the schema. It is required to

specify schema name to run coverage scenario successfully.

Default Value

No Default value defined.

type

Description

The database type for the data source used by the Interact Design time tables

accessed by the Interact Simulator.

Default Value

sqlserver

Valid Value

Unica Interact V12.1.3 Administrator's Guide | 15 - Unica Interact Simulator | 539

sqlserver | Db2 | Oracle| MariaDB

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in seconds

Interact automatically retries the database connection request on failure for

the learning tables. Interact automatically tries to reconnect to the database

for this length of time before reporting a database error or failure. If the value

is set to 0, Interact will retry indefinitely; if the value is set to -1, no retry will be

attempted.

Default Value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in seconds

Interact waits before it tries to reconnect to the database after a failure for the

learning tables. If the value is set to -1, no retry will be attempted.

Default Value

-1

Error Handling for Simulator

This section lists the status codes the application writes into the table

UACI_SimulationHistory which is present in the Interact Design time database.

In case of an error the application will show the scenario failed message on the

Simulator run page. The detailed status code can be found in the database table

UACI_SimulationHistory.

The following are the list of possible status codes that a scenario run history could have: //

status code 0-99 are for information

Unica Interact V12.1.3 Administrator's Guide | 15 - Unica Interact Simulator | 540

Status Code Severity lev

el

Http Sta

tus

Possible UI message

SUCCESS 0 INFO OK Running simulation succeed

ed

RUNNING 1 INFO OK Running

CANCELING 2 INFO OK Cancelling

CANCELED 3 INFO OK Cancelled

EXPORTING_TO_

CSV

4 INFO OK Exporting to CSV

EXPORTED_TO_

CSV

5 INFO OK Exported to CSV

// status code 101-999 are for errors

Status Code Severi

ty level

Http Status Possible UI message

NOT_ENABLED 101 WARN SERVICE_UN

AVAILABLE

Simulation is not enabled on

this run time server

ERROR_

RETRIEVE_SCE

NARIO

102 ERROR INTERNAL_

SERVER_ER

ROR

Error retrieving the scenario in

formation for simulation

INVALID_SCE

NARIO

103 ERROR BAD_REQUEST Invalid scenario information of

simulation

ERROR_CREATE_

RESULT_TABLE

104 ERROR INTERNAL_

SERVER_ER

ROR

Error creating the table for stor

ing results for simulation

Unica Interact V12.1.3 Administrator's Guide | 15 - Unica Interact Simulator | 541

ERROR_

RETRIEVE_AU

DIENCE

105 ERROR INTERNAL_

SERVER_ER

ROR

Error retrieving audience IDs for

simulation

ERROR_CONNEC

T_DATABASE

106 ERROR INTERNAL_

SERVER_ER

ROR

Error connecting to {0} database

for simulation

ERROR_PERSIST_

RESULT

107 ERROR INTERNAL_

SERVER_ER

ROR

Error persisting results to data

base for simulation

SCENARIO_NOT_

FOUND

108 ERROR NOT_FOUND Cannot find a scenario ready to

run

GENERIC_ERROR 109 ERROR INTERNAL_

SERVER_ER

ROR

Server error running simulation

ERROR_UPDATE_

RESULT

110 ERROR INTERNAL_

SERVER_ER

ROR

Error updating result for simula

tion

ERROR_INVALID_

IC

111 ERROR BAD_REQUEST Interactive channel is not de

ployed

// // status code 1001 and above are for UI only, will not be stored in database

Status Code Severi

ty level

Http Status Possible UI message

SIMULATION_AL

READY_RUNNING

1001 WARN PRE

CONDITION_

FAILED

A simulation is already run

ning for this scenario

SIMULATION_NOT_

FOUND

1002 WARN NO_CONTENT No ongoing simulation found

for this scenario

Unica Interact V12.1.3 Administrator's Guide | 15 - Unica Interact Simulator | 542

SIMULATION_RUN

NING

1003 INFO OK Running

SIMULATION_NOT_

RUNNING

1004 INFO OK Simulation not running

Chapter 16. Unica Interact design
environment configuration properties
This section describes all the configuration properties for Unica Interact design

environment.

Campaign | partitions | partition[n] | reports
The Campaign | partitions | partition[n] | reports property defines the different types of

folders for reports.

offerAnalysisTabCachedFolder

Description

The offerAnalysisTabCachedFolder property specifies the location of the

folder that contains the specification for bursted (expanded) offer reports

listed on the Analysis tab when you reach it by clicking the Analysis link on the

navigation pane. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='offer']/folder[@name='cached']

segmentAnalysisTabOnDemandFolder

Description

The segmentAnalysisTabOnDemandFolder property specifies the location of

the folder that contains the segment reports listed on the Analysis tab of a

segment. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='segment']/folder[@name='cached']

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 544

offerAnalysisTabOnDemandFolder

Description

The offerAnalysisTabOnDemandFolder property specifies the location of the

folder that contains the offer reports listed on the Analysis tab of an offer. The

path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='offer']

segmentAnalysisTabCachedFolder

Description

The segmentAnalysisTabCachedFolder property specifies the location of the

folder that contains the specification for bursted (expanded) segment reports

listed on the Analysis tab when you reach it by clicking the Analysis link on the

navigation pane. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='segment']

analysisSectionFolder

Description

The analysisSectionFolder property specifies the location of the root folder

where report specifications are stored. The path is specified by using the

XPath notation.

Default value

/content/folder[@name='Affinium Campaign']

campaignAnalysisTabOnDemandFolder

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 545

The campaignAnalysisTabOnDemandFolder property specifies the location of

the folder that contains the campaign reports listed on the Analysis tab of a

campaign. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='campaign']

campaignAnalysisTabCachedFolder

Description

The campaignAnalysisTabCachedFolder property specifies the location of

the folder that contains the specification for bursted (expanded) campaign

reports listed on the Analysis tab when you reach it by clicking the Analysis

link on the navigation pane. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific

Reports']/folder[@name='campaign']/folder[@name='cached']

campaignAnalysisTabDeliverOnDemandFolder

Description

The campaignAnalysisTabDeliverOnDemandFolder property specifies the

location of the folder that contains the Unica Deliver reports listed on the

Analysis tab of a campaign. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign']/folder[@name='Deliver

Reports']

campaignAnalysisTabInteractOnDemandFolder

Description

Report server folder string for Unica Interact reports.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 546

/content/folder[@name='Affinium Campaign']/folder[@name='Interact

Reports']

Availability

This property is applicable only if you install Unica Interact.

interactiveChannelAnalysisTabOnDemandFolder

Description

Report server folder string for Interactive Channel analysis tab reports.

Default value

/content/folder[@name='Affinium Campaign - Object Specific Reports']/

folder[@name='interactive channel']

Availability

This property is applicable only if you install Unica Interact.

Campaign | partitions | partition[n] |
UnicaInsightsReports
The Campaign | partitions | partition[n] | UnicaInsightsReports property defines the different

types of folders for reports.

interactAnalysisSectionFolder

Description

Report server folder string for Unica Interact reports.

Default value

/folder[@name='Unica Interact']

Availability

This property is only applicable if you install Unica Interact and enable Unica

Insights.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 547

interactiveChannelAnalysisTabOnDemandFolder

Description

Report server folder string for Unica Interact reports.

Default value

folder[@name='Unica Interact - Object Specific Reports']

Availability

This property is only applicable if you install Unica Interact and enable Unica

Insights.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking
These configuration properties define settings for the Unica Interact contact and response

history module.

isEnabled

Description

If set to yes, enables the Unica Interact contact and response history module

which copies the Unica Interact contact and response history from staging

tables in the Unica Interact runtime to the Unica Campaign contact and

response history tables. The property interactInstalled must also be set to

yes.

Default value

no

Valid Values

yes | no

Availability

This property is applicable only if you have installed Unica Interact.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 548

runOnceADay

Description

Specifies whether to run the Contact and Response History ETL once a day.

If you set this property to Yes, the ETL runs during the scheduled interval

specified by preferredStartTime and preferredEndTime.

If ETL takes more than 24 hours to execute, and thus misses the start time for

the next day, it will skip that day and run at the scheduled time the following

day. For example, if ETL is configured to run between 1AM to 3AM, and the

process starts at 1AM on Monday and completes at 2AM on Tuesday, the next

run, originally scheduled for 1AM on Tuesday, will be skipped, and the next ETL

will start at 1AM on Wednesday.

ETL scheduling does not account for Daylight Savings Time changes. For

example, if ETL scheduled to run between 1AM and 3AM, it could run at 12AM

or 2AM when the DST change occurs.

Default value

No

Availability

This property is applicable only if you have installed Unica Interact.

processSleepIntervalInMinutes

Description

The number of minutes the Unica Interact contact and response history

module waits between copying data from the Unica Interact runtime staging

tables to the Unica Campaign contact and response history tables.

Default value

60

Valid Values

Any integer greater than zero.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 549

Availability

This property is applicable only if you have installed Unica Interact.

preferredStartTime

Description

The preferred time to start the daily ETL process. This property, when used

in conjunction with the preferredEndTime property, sets up the preferred

time interval during which you want the ETL to run. The ETL will start during

the specified time interval and will process at most the number of records

specified using maxJDBCFetchBatchSize. The format is HH:mm:ss AM or PM,

using a 12-hour clock.

Default value

12:00:00 AM

Availability

This property is applicable only if you have installed Unica Interact.

preferredEndTime

Description

The preferred time to complete the daily ETL process. This property, when

used in conjunction with the preferredStartTime property, sets up the preferred

time interval during which you want the ETL to run. The ETL will start during

the specified time interval and will process at most the number of records

specified using maxJDBCFetchBatchSize. The format is HH:mm:ss AM or PM,

using a 12-hour clock.

Default value

2:00:00 AM

Availability

This property is applicable only if you have installed Unica Interact.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 550

purgeOrphanResponseThresholdInMinutes

Description

The number of minutes the Unica Interact contact and response history

module waits before purging responses with no corresponding contact. This

prevents logging responses without logging contacts.

Default value

180

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Unica Interact.

maxJDBCInsertBatchSize

Description

The maximum number of records of a JDBC batch before committing

the query. This is not the max number of records that the Unica Interact

contact and response history module processes in one iteration. During each

iteration, the Unica Interact contact and response history module processes

all available records from the staging tables. However, all those records are

broken into maxJDBCInsertSize chunks.

Default value

1000

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Unica Interact.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 551

maxJDBCFetchBatchSize

Description

The maximum number of records of a JDBC batch to fetch from the staging

database. You may need to increase this value to tune the performance of the

contact and response history module.

For example, to process 2.5 million contact history records a day, you should

set maxJDBCFetchBatchSize to a number greater than 2.5M so that all records

for one day will be processed.

You could then set maxJDBCFetchChunkSize and maxJDBCInsertBatchSize to

smaller values (in this example, perhaps to 50,000 and 10,000, respectively).

Some records from the next day may be processed as well, but would then be

retained until the next day.

Default value

1000

Valid Values

Any integer greater than zero

maxJDBCFetchChunkSize

Description

The maximum number of a JDBC chunk size of data read during ETL (extract,

transform, load). In some cases, a chunk size greater than insert size can

improve the speed of the ETL process.

Default value

1000

Valid Values

Any integer greater than zero

deleteProcessedRecords

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 552

Specifies whether to retain contact history and response history records after

they have been processed.

Default value

Yes

completionNotificationScript

Description

Specifies the absolute path to a script to run when the ETL is completed. If

you specify a script, five arguments are passed to the completion notification

script: start time, end time, total number of CH records processed, total

number of RH records processed and status. The start time and end time are

numeric values representing number of milliseconds elapsed since 1970. The

status argument indicates whether the ETL job was a success or failure. 0

indicates a successful ETL job. 1 indicates a failure and that there are some

errors in the ETL job.

Default value

None

fetchSize

Description

Allow you to set the JDBC fetchSize when retrieving records from staging

tables.

On Oracle databases especially, adjust the setting to the number of records

that the JDBC should retrieve with each network round trip. For large batches

of 100K or more, try 10000. Be careful not to use too large a value here,

because that will have an impact on memory usage and the gains will become

negligible, if not detrimental.

Default value

None

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 553

daysBackInHistoryToLookupContact

Description

Limits the records that are searched during response history queries to those

within the past specified number of days. For databases with a large number

of response history records, this can reduce processing time on queries by

limiting the search period to the number of days specified.

When the value for daysBackInHistoryToLookupContact is greater than

zero, a date constraint is added to the RH join query. This is useful when the

UA_DtlContactHist table is date partitioned. The date constraint limits the

records searched within the date constraint."

The default value of 0 indicates that all records are searched.

Default value

0 (zero)

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | runtimeDataSources |
[runtimeDataSource]
These configuration properties define the data source for the Unica Interact contact and

response history module.

jndiName

Description

Use the systemTablesDataSource property to identify the Java™ Naming and

Directory Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the Unica Interact runtime tables.

The Unica Interact runtime database is the database populated with the

aci_runtime and aci_populate_runtime dll scripts and, for example,

contains the following tables (among others): UACI_CHOfferAttrib and

UACI_DefaultedStat.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 554

No default value defined.

Availability

This property is applicable only if you have installed Unica Interact.

databaseType

Description

Database type for the Unica Interact runtime data source.

Default value

SQLServer

Valid Values

SQLServer | Oracle | DB2® | MariaDB

Availability

This property is applicable only if you have installed Unica Interact.

schemaName

Description

The name of the schema containing the contact and response history module

staging tables. This should be the same as the runtime environment tables.

You do not have to define a schema.

Default value

No default value defined.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | contactTypeMappings
These configuration properties define the contact type from campaign that maps to a

'contact' for reporting or learning purposes.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 555

contacted

Description

The value assigned to the ContactStatusID column of the

UA_DtlContactHist table in the Unica Campaign system tables for an offer

contact. The value must be a valid entry in the UA_ContactStatus table. See

the Unica Campaign Administrator's Guide for details on adding contact types.

Default value

2

Valid Values

An integer greater than zero.

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | responseTypeMappings
These configuration properties define the responses for accept or reject for reporting and

learning.

accept

Description

The value assigned to the ResponseTypeID column of the

UA_ResponseHistory table in the Unica Campaign system tables for an

accepted offer. The value must be a valid entry in the UA_UsrResponseType

table. You should assign the CountsAsResponse column the value 1, a

response.

See the Unica Campaign Administrator's Guide for details on adding response

types.

Default value

3

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 556

Valid Values

An integer greater than zero.

Availability

This property is applicable only if you have installed Unica Interact.

reject

Description

The value assigned to the ResponseTypeID column of the

UA_ResponseHistory table in the Unica Campaign system tables for a rejected

offer. The value must be a valid entry in the UA_UsrResponseType table. You

should assign the CountsAsResponse column the value 2, a reject. See the

Unica Campaign Administrator's Guide for details on adding response types.

Default value

8

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact | report
These configuration properties define the report names when integrating with Cognos®.

interactiveCellPerformanceByOfferReportName

Description

Name for Interactive Cell Performance by Offer report. This name must match

the name of this report on the Cognos® server.

Default value

Interactive Cell Performance by Offer

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 557

treatmentRuleInventoryReportName

Description

Name for Treatment Rule Inventory report. This name must match the name

of this report on the Cognos® server.

Default value

Channel Treatment Rule Inventory

deploymentHistoryReportName

Description

Name for Deployment History Report report. This name must match the name

of this report on the Cognos® server

Default value

Channel Deployment History

Campaign | partitions | partition[n] | Interact | learning
These configuration properties enable you to tune the built-in learning module.

confidenceLevel

Description

A percentage indicating how confident you want the learning utility to be

before switching from exploration to exploitation. A value of 0 effectively

shuts off exploration.

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

95

Valid Values

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 558

An integer between 0 and 95 divisible by 5 or 99.

validateonDeployment

Description

If set to No, Unica Interact does not validate the learning module when you

deploy. If set to yes, Unica Interact validates the learning module when you

deploy.

Default value

No

Valid Values

Yes | No

maxAttributeNames

Description

The maximum number of learning attributes the Unica Interact learning utility

monitors.

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

10

Valid Values

Any integer.

maxAttributeValues

Description

The maximum number of values the Unica Interact learning module tracks for

each learning attribute.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 559

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

5

otherAttributeValue

Description

The default name for the attribute value used to represent all attribute values

beyond the maxAttributeValues.

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

Other

Valid Values

A string or number.

Example

If maxAttributeValues is set to 3 and otherAttributeValue is set to other,

the learning module tracks the first three values. All of the other values are

assigned to the other category. For example, if you are tracking the visitor

attribute hair color, and the first five visitors have the hair colors black, brown,

blond, red, and gray, the learning utility tracks the hair colors black, brown, and

blond. The colors red and gray are grouped under the otherAttributeValue,

other.

percentRandomSelection

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 560

The percent of the time the learning module presents a random offer. For

example, setting percentRandomSelection to 5 means that 5% of the time

(5 out of every 100 recommendations), the learning module presents a

random offer, independent of the score. Enabling percentRandomSelection

overrides the offerTieBreakMethod configuration property. When

percentRandomSelection is enabled, this property is set regardless if learning

is on or off or if built-in or external learning is used.

Default value

5

Valid Values

Any integer from 0 (which disables the percentRandomSelection feature) up

to 100.

recencyWeightingFactor

Description

The decimal representation of a percentage of the set of data defined

by the recencyWeightingPeriod. For example, the default value of .15

means that 15% of the data used by the learning utility comes from the

recencyWeightingPeriod.

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

0.15

Valid Values

A decimal value less than 1.

recencyWeightingPeriod

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 561

The size in hours of data granted the recencyWeightingFactor percentage of

weight by the learning module. For example, the default value of 120 means

that the recencyWeightingFactor of the data used by the learning module

comes from the last 120 hours.

This property is applicable only if optimizationType is set to

builtInLearning.

Default value

120

minPresentCountThreshold

Description

The minimum number of times an offer must be presented before its data is

used in calculations and the learning module enters the exploration mode.

Default value

0

Valid Values

An integer greater than or equal to zero.

enablePruning

Description

If set to Yes, the Unica Interact learning module algorithmically determines

when a learning attribute (standard or dynamic) is not predictive. If a learning

attribute is not predictive, the learning module will not consider that attribute

when determining the weight for an offer. This continues until the learning

module aggregates learning data.

If set to No, the learning module always uses all learning attributes. By not

pruning non-predictive attributes, the learning module may not be as accurate

as it could be.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 562

Yes

Valid Values

Yes | No

Campaign | partitions | partition[n] | Interact | learning |
learningAttributes | [learningAttribute]
These configuration properties define the learning attributes.

attributeName

Description

Each attributeName is the name of a visitor attribute you want the learning

module to monitor. This must match the name of a name-value pair in your

session data.

This property is applicable if the Interact > offerserving >

optimizationType property for Unica Interact runtime is set to

BuiltInLearning only.

Default value

No default value defined.

Campaign | partitions | partition[n] | Interact |
deployment
These configuration properties define deployment settings.

chunkSize

Description

The maximum size of fragmentation in KB for each Unica Interact deployment

package.

Default value

500

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 563

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact |
serverGroups | [serverGroup]
These configuration properties define server group settings.

serverGroupName

Description

The name of the Unica Interact runtime server group. This is the name that

appears on the interactive channel summary tab.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact | serverGroups |
[serverGroup] | prodUserDataSource
This data source contains any customer data, beyond information which is gathered in real

time, required by interactive flowcharts to properly place visitors into smart segments. It is

also used by FlexOffer while deployment.

jndiName

Description

Use this jndiName property to identify the Java™ Naming and Directory

Interface (JNDI) data source that is defined in the application server for

the customer tables accessed by the design environment when executing

interactive flowcharts test runs.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 564

No default value defined.

databaseType

Description

The database type for the customer tables accessed by the design

environment when executing interactive flowcharts test runs.

Default value

SQL Server

Valid values

SQLServer | DB2® | ORACLE | MARIADB| OneDB

schemaName

Description

The name of the schema containing the tables for interactive flowchart test

runs. Unica Interact inserts the value of this property before all table names,

for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema, Unica

Interact assumes that the owner of the tables is the same as the schema. You

should set this value to remove ambiguity.

Default value

No default value defined.

Campaign | partitions | partition[n] | Interact | serverGroups |
[serverGroup] | instanceURLs | [instanceURL]
These configuration properties define the Unica Interact runtime servers.

instanceURL

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 565

The URL of the Unica Interact runtime server. A server group can contain

several Unica Interact runtime servers; however, each server must be created

under a new category.

Default value

No default value defined.

Example

http://server:port/interact

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact |
flowchart
These configuration properties define the Unica Interact runtime environment used for test

runs of interactive flowcharts.

serverGroup

Description

The name of the Unica Interact server group Unica Campaign uses to execute

a test run. This name must match the category name you create under

serverGroups.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Unica Interact.

dataSource

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 566

Use the dataSource property to identify the physical data source for Unica

Campaign to use when performing test runs of interactive flowcharts.

This property should match the data source defined by the Campaign >

partitions > partitionN > dataSources property for the test run data

source defined for Unica Interact design time.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Unica Interact.

eventPatternPrefix

Description

The eventPatternPrefix property is a string value that is prepended to event

pattern names to allow them to be used in expressions in Select or Decision

processes within interactive flowcharts.

Note that if you change this value, you must deploy global changes in the

interactive channel for this updated configuration to take effect.

Default value

EventPattern

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact | whiteList
| [AudienceLevel] | DefaultOffers
These configuration properties define the default cell code for the default offers table. You

need to configure these properties only if you are defining global offer assignments.

DefaultCellCode

Description

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 567

The default cell code Unica Interact uses if you do not define a cell code in the

default offers table.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Unica Campaign

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact | whiteList
| [AudienceLevel] | offersBySQL
These configuration properties define the default cell code for the offersBySQL table. You

need to configure these properties only if you are use SQL queries to get a desired set of

candidate offers.

DefaultCellCode

Description

The default cell code Unica Interact uses for any offer in the OffersBySQL

table(s) that has a null value in the cell code column (or if the cell code column

is missing altogether. This value must be a valid cell code.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Unica Campaign

Availability

This property is applicable only if you have installed Unica Interact.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 568

Campaign | partitions | partition[n] | Interact | whiteList
| [AudienceLevel] | ScoreOverride
These configuration properties define the default cell code for the score override table. You

need to configure these properties only if you are defining individual offer assignments.

DefaultCellCode

Description

The default cell code Unica Interact uses if you do not define a cell code in the

score override table.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Unica Campaign

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | server | internal
Properties in this category specify integration settings and the internalID limits for the

selected Unica Campaign partition. If your Unica Campaign installation has multiple

partitions, set these properties for each partition that you want to affect.

internalIdLowerLimit

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

The internalIdUpperLimit and internalIdLowerLimit properties constrain

the Unica Campaign internal IDs to be within the specified range. Note that

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 569

the values are inclusive: that is, Unica Campaign may use both the lower and

upper limit.

Default value

0 (zero)

internalIdUpperLimit

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

The internalIdUpperLimit and internalIdLowerLimit properties constrain

the Unica Campaign internal IDs to be within the specified range. The values

are inclusive: that is, Unica Campaign may use both the lower and upper limit.

If Unica Collaborate is installed, set the value to 2147483647.

Default value

4294967295

deliverInstalled

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

Indicates that Unica Deliver is installed. When you select Yes, Unica Deliver

features are available in the Unica Campaign interface.

The installer sets this property to Yes for the default partition in your Unica

Deliver installation. For additional partitions where you installed Unica Deliver,

you must configure this property manually.

Default value

No

Valid Values

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 570

Yes | No

interactInstalled

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

After installing the Unica Interact design environment, this configuration

property should be set to Yes to enable the Unica Interact design environment

in Unica Campaign.

If Unica Interact is not installed, set to No. Setting this property to No does not

remove Unica Interact menus and options from the user interface. To remove

menus and options, you must manually unregister Unica Interact using the

configTool utility.

Default value

no

Valid Values

yes | no

Availability

This property is applicable only if you installed Unica Interact.

MO_UC_integration

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

Enables integration with Unica Plan for this partition, if the integration is

enabled in the Platform configuration settings. For more information, see the

Unica Plan and Unica Campaign Integration Guide.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 571

No

Valid Values

Yes | No

MO_UC_BottomUpTargetCells

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

For this partition, allows bottom-up cells for Target Cell Spreadsheets, if

MO_UC_integration is enabled. When set to Yes, both top-down and bottom-

up target cells are visible, but bottom-up target cells are read-only. For more

information, see the Unica Plan and Unica Campaign Integration Guide.

Default value

No

Valid Values

Yes | No

Legacy_campaigns

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

For this partition, enables access to campaigns created before Unica Plan and

Unica Campaign were integrated. Applies only if MO_UC_integration is set to

Yes. Legacy campaigns also include campaigns created in Unica Campaign

7.x and linked to Plan 7.x projects. For more information, see the Unica Plan

and Unica Campaign Integration Guide.

Default value

No

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 572

Valid Values

Yes | No

Unica Plan - Offer integration

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

Enables the ability to use Unica Plan to perform offer lifecycle management

tasks on this partition, if MO_UC_integration is enabled for this partition. Offer

integration must be enabled in your Platform configuration settings. For more

information, see the Unica Plan and Unica Campaign Integration Guide.

Default value

No

Valid Values

Yes | No

UC_CM_integration

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

Enables Digital Analytics online segment integration for a Unica Campaign

partition. If you set this value to Yes, the Select process box in a flowchart

provides the option to select Digital Analytics Segments as input. To

configure the Digital Analytics integration for each partition, choose Settings >

Configuration > Unica Campaign | partitions | partition[n] | Coremetrics.

Default value

No

Valid Values

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 573

Yes | No

linkInstalled

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

Indicates that Link is installed. When you select Yes, Manage Link

Connections feature is available in the Unica Campaign interface.The installer

sets this property to No for the default partition in your Link installation. For

additional partitions where you installed Link, you must configure this property

manually.

Default value

No

Valid Values

Yes | No

numRowsReadToParseDelimitedFile

Configuration category

Campaign|partitions|partition[n]|server|internal

Description

This property is used when mapping a delimited file as a user table. It is

also used by the Score process box when importing a score output file from

IBM SPSS Modeler Advantage Enterprise Marketing Management Edition.

To import or map a delimited file, Unica Campaign needs to parse the file

to identify the columns, data types (field types), and column widths (field

lengths).

The default value of 100 means Unica Campaign examines the first 50 and

the last 50 line entries in the delimited file. Unica Campaign then allocates

the field length based on the largest value it finds within those entries. In

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 574

most cases, the default value is sufficient to determine field lengths. However,

in very large delimited files, a later field might exceed the estimated length

that Unica Campaign computes, which can cause an error during flowchart

runtime. Therefore, if you are mapping a very large file, you can increase this

value to make Unica Campaign examine more line entries. For example, a

value of 200 makes Unica Campaign examine the first 100 line entries and the

last 100 line entries of the file.

A value of 0 examines the entire file. Typically, this is necessary only if you

are importing or mapping files that have variable data widths of fields which

cannot be identified by reading the first and last few lines. Reading the entire

file for extremely large files can increase the required processing time for table

mapping and Score process box runs.

Default value

100

Valid Values

0 (all lines) or any positive integer

contactCentralEnabled

Configuration category

Campaign|Affinium|Campaign|partitions|<partitionName>|

server|internal

Description

This flag control the display of Regional Preference field on Campaign Create/

Edit/Display summary screen.

Default value

NO

Valid Values

Yes - Contact Central Integration is enabled in Campaign

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 575

NO - Contact Central Integration is disabled in Campaign

Campaign | monitoring
Properties in the this category specify whether the Operational Monitoring feature is

enabled, the URL of the Operational Monitoring server, and caching behavior. Operational

Monitoring displays and allows you to control active flowcharts.

cacheCleanupInterval

Description

The cacheCleanupInterval property specifies the interval, in seconds,

between automatic cleanups of the flowchart status cache.

This property is not available in versions of Unica Campaign earlier than 7.0.

Default value

600 (10 minutes)

cacheRunCompleteTime

Description

The cacheRunCompleteTime property specifies the amount of time, in minutes,

that completed runs are cached and display on the Monitoring page.

This property is not available in versions of Unica Campaign earlier than 7.0.

Default value

4320

monitorEnabled

Description

The monitorEnabled property specifies whether the monitor is turned on.

This property is not available in versions of Unica Campaign earlier than 7.0.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 576

FALSE

Valid values

TRUE | FALSE

serverURL

Description

The Campaign > monitoring > serverURL property specifies the URL of the

Operational Monitoring server. This is a mandatory setting; modify the value if

the Operational Monitoring server URL is not the default.

If Unica Campaign is configured to use Secure Sockets Layer (SSL)

communications, set the value of this property to use HTTPS. For example:

serverURL=https://host:SSL_port/Campaign/OperationMonitor where:

• host is the name or IP address of the machine on which the web

application is installed

• SSL_Port is the SSL port of the web application.

Note the https in the URL.

Default value

http://localhost:7001/Campaign/OperationMonitor

monitorEnabledForInteract

Description

If set to TRUE, enables Unica Campaign JMX connector server for Unica

Interact. Unica Campaign has no JMX security.

If set to FALSE, you cannot connect to the Unica Campaign JMX connector

server.

This JMX monitoring is for the Unica Interact contact and response history

module only.

Default value

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 577

FALSE

Valid Values

TRUE | FALSE

Availability

This property is applicable only if you have installed Unica Interact.

protocol

Description

Listening protocol for the Unica Campaign JMX connector server, if

monitorEnabledForInteract is set to yes.

This JMX monitoring is for the Unica Interact contact and response history

module only.

Default value

JMXMP

Valid Values

JMXMP | RMI

Availability

This property is applicable only if you have installed Unica Interact.

port

Description

Listening port for the Unica Campaign JMX connector server, if

monitorEnabledForInteract is set to yes.

This JMX monitoring is for the Unica Interact contact and response history

module only.

Default value

2004

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 578

Valid Values

An integer between 1025 and 65535.

Availability

This property is applicable only if you have installed Unica Interact.

Campaign | partitions | partition[n] | Interact |
outboundChannels
These configuration properties enable you to tune the outbound channels for triggered

messages.

Note: The out of the box gateways with names "EMail", "MobilePush", "UBX" are now

available under this node.

category name

Description

This property defines the name of this outbound channel. The name must be

unique among all outbound channels.

name

Description

The name of your outbound channel.

Note: You must restart your application server for the changes to take effect.

Campaign | partitions | partition[n] | Interact | outboundChannels |
Parameter Data
These configuration properties enable you to tune the outbound channels for triggered

messages.

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 579

cateogry name

Description

This property defines the name of this parameter. The name must be unique

among all parameters for that outbound channnel.

value

Description

This property defines the parameters, in the format of name value pairs,

needed by this outbound gateway.

Campaign | partitions | partition[n] | Interact |
Simulator
These configuration properties define the server group you want to use to run API

simulations.

serverGroup

Description

Specify the runtime server group that is used to run API simulations.

Default value

defaultServerGroup

offerArbitrition

Description

OfferArbitration allows you to make offers-related miscellaneous

configurations for Interact Design time. It allows you make Campaign as an

optional property of Strategy. It also has configuration options to enable use

of Centralized Offers Management APIs if the same is installed

isCampiagnRequiredForStrategy

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 580

This setting can have two values.

• Yes: A campaign must be selected when you create/edit/copy a

strategy.

• No: Campaign is not required.

Default value

No

relyOnOfferManagement

Set this configuration option to “Yes” if Centralized Offers Management is

installed. This enables the use of Centralized Offers Management APIs in

Interact Design time to access Offers related information. This setting can

have two values.

• Yes: Enable the use of Centralized Offers Management APIs.

• No: Do not use Centralized Offers Management APIs.

Default value

No

offerManagementURL

The URL of the Centralized Offers Management server.

Default value

No default value defined

Example

http://server:port/Offer

Availablity

This property is applicable only if you have installed Centralized Offers

Management.

connectionTimeout

Unica Interact V12.1.3 Administrator's Guide | 16 - Unica Interact design environment configuration properties | 581

The API connectio timeout in seconds.

Default value

5 seconds

Chapter 17. Real-time offer personalization
on the client side
There may be situations where you want to provide real-time offer personalization without

implementing low-level Java™ code or SOAP calls to the Unica Interact server. For example,

when a visitor initially loads a web page where Javascript content is your only extended

programming available, or when a visitor opens an email message where only HTML

content is possible. Unica Interact provides several connectors that provide real-time offer

management in situations where you have control only over the web content that is loaded

on the client side, or where you want to simplify your interface to Unica Interact.

Your Unica Interact installation includes two connectors for offer personalization that is

initiated on the client side:

• About the Unica Interact Message Connector (on page 582). Using the Message

Connector, web content in email messages (for example) or other electronic media

can contain image and link tags to make calls to the Unica Interact server for page-

load offer presentation and click-through landing pages.

• About the Unica Interact Web Connector (on page 602). Using the Web Connector

(also called the JS Connector) web pages can use client-side JavaScript™ to manage

offer arbitration, presentation, and contact/response history through page-load offer

presentation and click-through landing pages.

About the Unica Interact Message Connector
The Unica Interact Message Connector allows email messages and other electronic

media to make calls to Unica Interact to allow personalized offers to be presented at

open-time, and when the customer clicks-through the message to the specified site. This

is accomplished through the use of two key tags: The image tag (IMG), which loads the

personalized offers at open-time, and the link tag (A), which captures information about

click-through and redirects the customer to a specific landing page.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 583

Example

The following example shows some HTML code that you might include in a marketing

spot (for example, within an email message) that contains both an IMG tag URL (which

passes information when the document opens to the Unica Interact server and retrieves the

appropriate offer image in response) and an A tag URL (which determines what information

is passed to the Unica Interact server on click-through):

<a href="http://www.example.com/MessageConnector/

offerClickthru.jsp?msgId=1234&linkId=1&userid=1&referral=test"><img

src="http:// www.example.com/MessageConnector/offerImage.jsp?

msgId=1234&linkId=1&userid=1&incomeLevel=5&incomeType=numeric"/>

In the following example, an IMG tag is enclosed in an A tag, causes the following behavior:

1. When the email message is opened, the Message Connector receives a request

containing the information encoded in the IMG tag: the msgID and linkID for this

message, and customer parameters that include userid, income level, and income

type.

2. This information is passed through an API call to the Unica Interact runtime server.

3. The runtime server returns an offer to the Message Connector, which retrieves

the URL of the offer image, and provides that URL (with any additional parameters

included) and redirects the image request to that offer URL.

4. The customer sees the offer as an image.

At that point, the customer may click that image to respond to the offer in some way.

That click-through, using the A tag and its specified HREF attribute (which specifies the

destination URL) sends another request to the Message Connector for a landing page

linked to that offer's URL. The customers browser is then redirected to the landing page as

configured in the offer.

Note that a click-through A tag is not strictly necessary; the offer may consist of an image

only, such as a coupon for the customer to print.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 584

Installing the Message Connector
The files you require to install, deploy, and run the Message Connector have automatically

been included with your Unica Interact runtime server installation. This section summarizes

the steps needed to get the Message Connector ready for use.

Installing and deploying the Message Connector involves the following tasks:

• Optionally, configuring the default settings for the Message Connector as described in

Configuring the Message Connector (on page 584).

• Creating the database tables needed to store the Message Connector transaction

data as described in Creating the Message Connector Tables (on page 593).

• Installing the Message Connector web application as described in Deploying and

running the Message Connector (on page 595).

• Creating the IMG and A tags in your marketing spots (email or web pages, for example)

needed to call Message Connector offers on open and click-through, as described in

Creating the Message Connector links (on page 597).

Configuring the Message Connector
Before you deploy the Message Connector, you must customize the configuration file

included with your installation to match your specific environment. You can modify the

XML file called MessageConnectorConfig.xml found in your Message Connector

directory on the Unica Interact runtime server, similar to <Unica Interact_home>/

msgconnector/config/MessageConnectorConfig.xml.

The MessageConnectorConfig.xml file contains some configuration settings that are

required, and some that are optional. The settings that you use must be customized for your

specific installation. Follow the steps here to modify the configuration.

1. If the Message Connector is deployed and running on your web application server,

undeploy the Message Connector before continuing.

2. On the Unica Interact runtime server, open the MessageConnectorConfig.xml file

in any text or XML editor.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 585

3. Modify the configuration settings as needed, making sure that the following required

settings are correct for your installation.

• <interactUrl>. The URL of the Unica Interact runtime server on which the

Message Connector runs and to which the Message Connector page tags must

connect.

• <interactUsername>. The Unica Interact username authenticates Message

Connector with Unica Interact runtime. It is required when Unica Interact API

authentication (Affinium|interact|general|API) is set to True.

• <interactPassword>. The Unica Interact password authenticates Message

Connector with Unica Interact runtime. It is required when Unica Interact API

authentication (Affinium|interact|general|API) is set to True. Only the

passwords, encrypted using the Platform’s encryptPasswords utility are valid.

Plain text passwords are not allowed.

• <imageErrorLink>, the URL to which the Message Connector will redirect if an

error occurs while processing a request for an offer image.

• <landingPageErrorLink>, the URL to which the Message Connector will

redirect if an error occurs while processing a request for an offer landing page.

• <audienceLevels>, a section of the configuration file that contains one or more

set of audience level settings, and which specifies the default audience level if

none is specified by the Message Connector link. There must be at least one

audience level configured.

All of the configuration settings are described in greater detail in Message Connector

Configuration Settings (on page 585).

4. When you have completed the configuration changes, save and close the

MessageConnectorConfig.xml file.

5. Continue setting up and deploying the Message Connector.

Message Connector Configuration Settings
To configure the Message Connector, you can modify the XML file called

MessageConnectorConfig.xml found in your Message Connector directory on the

Unica Interact runtime server, usually <Unica Interact_home>/msgconnector/

config/MessageConnectorConfig.xml. Each of the configurations in this XML file

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 586

are described here. Be aware that if you modify this file after the Message Connector is

deployed and running, be sure to undeploy and redeploy the Message Connector or restart

the application server to reload these settings after you are done modifying the file.

General Settings

The following table contains a list of the optional and required settings contained in the

generalSettings section of the MessageConnectorConfig.xml file.

Table 30. Message Connector General Settings

A list of the optional and required settings on the generalSettings section of the

Message Connector configuration file

<interactURL> The URL of Unica Interact

runtime server, which han

dle the calls from the Mes

sage Connector page tags,

such as the runtime server

on which the Message Con

nector runs. This element is

required.

http://local

host:7001/interact

<interactUsername> The Unica Interact username

authenticates Message Con

nector with Unica Interact

runtime. It is required when

Unica Interact API authen

tication (Affinium|inter

act|general|API) is set to

True.

<interactPassword> The Unica Interact password

authenticates Message Con

nector with Unica Interact

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 587

Table 30. Message Connector General Settings

A list of the optional and required settings on the generalSettings section of the

Message Connector configuration file

(continued)

runtime. It is required when

Unica Interact API authen

tication (Affinium|inter

act|general|API) is set to

True. Only the passwords,

encrypted using the Plat

form’s encryptPasswords

utility are valid. Plain text

passwords are not allowed.

<defaultDateTimeFormat> The default date format. MM/dd/yyyy

<log4jConfigFileLoca

tion>

The location of the Log4j

property file. It is relative

to $MESSAGE_CONNEC

TOR_HOME environment

variable if it is set; otherwise,

this value is relative to the

root path of Message Con

nector web application.

config/MessageConnec

torLog4j.properties

Default Parameter Values

The following table contains a list of the optional and required settings contained in the

defaultParameterValues section of the MessageConnectorConfig.xml file.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 588

Table 31. Message Connector Default Parameter Settings

Elements contained in the defaultParameterValues section of the

MessageConnectorConfig.xml file.

Element Description Default Value

<interactiveChannel> The name of the default inter

active channel.

<interactionPoint> The name of the default inter

action point.

<debugFlag> Determines whether debugging

is enabled. The allowed values

are true and false.

false

<contactEventName> The default name of the con

tact event that is posted.

<acceptEventName> The default name of the accept

event that is posted.

<imageUrlAttribute> The default offer attribute

name that contains the URL for

the offer image, if none is spec

ified in the Message Connector

link.

<landingPageUrlAt

tribute>

The default URL for the click-

through landing page if none is

specified in the Message Con

nector link.

Behavior Settings
The following table contains a list of the optional and required settings contained in the

behaviorSettings section of the MessageConnectorConfig.xml file.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 589

Table 32. Message Connector Behavior Settings

Elements contained in the behaviorSettings section of the

MessageConnectorConfig.xml file.

Element Description Default Value

<imageErrorLink> The URL to which the connec

tor redirects if an error occurs

while processing a request for

an offer image. This setting is

required.

/images/default.jpg

<landingPageError

Link>

The URL to which the connec

tor redirects if an error occurs

while processing a request for

a click-through landing page.

This setting is required.

/jsp/default.jsp

<alwaysUseExisting

Offer>

Determines whether the

cached offer should be re

turned, even if it already ex

pired. The allowed values are

true and false.

false

<offerExpireAction> The action to take if the original

offer is found, but is already ex

pired. Allowed values are:

• GetNewOffer

• RedirectToErrorPage

• ReturnExpiredOffer

RedirectToErrorPage

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 590

Storage Settings
The following table contains a list of the optional and required settings contained in the

storageSettings section of the MessageConnectorConfig.xml file.

Table 33. MessageConnector Storage Settings

Elements contained in the storageSettings section of the

MessageConnectorConfig.xml file.

Element Description Default Value

<persis

tence

Mode>

When the cache persists new entries into the

database. The allowed values are WRITE-BE

HIND (where data is written to the cache initial

ly, and updated to the database at a later time)

and WRITE-THROUGH (where data is written to

the cache and to the database at the same

time).

WRITE-THROUGH

<max

Cache

Size>

The maximum number of entries in the memo

ry cache.

5000

<max

Persis

tence

Batch

Size>

The maximum batch size while persisting en

tries into the database.

200

<mac

CacheP

ersist

Inter

val>

The maximum time in seconds an entry stays

in the cache before it is persisted into the

database.

3

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 591

Table 33. MessageConnector Storage Settings

Elements contained in the storageSettings section of the

MessageConnectorConfig.xml file.

(continued)

Element Description Default Value

<max

elemen

tondisk>

The maximum number of entries in the disk

cache.

5000

<cache

Entry

TimeTo

Expire

InSe

conds>

The maximum amount of time for the entries

in the disk cache to persist before expiring.

60000

<jd

bcSet

tings>

A section of the XML file containing specific

information if a JDBC connection is used. It is

mutually exclusive with the <dataSourceSet

tings> section.

Configured by default to con

nect to a SQLServer database

configured on the local serv

er, but if you enable this sec

tion you must provide the ac

tual JDBC settings and creden

tials to log in.

<data

Source

Set

tings>

A section of the XML file containing specif

ic information if a data source connection is

used. It is mutually exclusive with the <jdbc

Settings> section.

Configured by default to con

nect to the InteractDS data

source defined on the local

web application server.

Audience Levels

The following table contains a list of the optional and required settings contained in the

audienceLevels section of the MessageConnectorConfig.xml file.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 592

Note that the audienceLevels element is optionally used to specify the default audience

level to use if none is specified in the Message Connector link, as in the following example:

<audienceLevels default="Customer">

In this example, the value for the default attribute matches the name of an audienceLevel

defined in this section. There must be at least one audience level defined in this

configuration file.

Table 34. MessageConnector Audience Level Settings

A list of optional and required settings contained in the audienceLevels section of the

MessageConnectorConfig.xml file.

Element Element Description Default Value

<audienceLevel> The element contain

ing the audience lev

el configuration. Pro

vide a name attribute,

as in <audienceLevel

name="Customer">

<messageLog

Table>

The name of the log

table. This value is re

quired.

UACI_MESSAGE_CONNEC

TOR_LOG

<fields> <field> The definition of one or

more audience ID fields

for this audienceLevel.

<name> The name of the audi

ence ID field, as speci

fied in the Interact run

time.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 593

Table 34. MessageConnector Audience Level Settings

A list of optional and required settings contained in the audienceLevels section of the

MessageConnectorConfig.xml file.

(continued)

Element Element Description Default Value

<httpParame

terName>

The corresponding pa

rameter name for this

audience ID field.

<dbColumn

Name>

The corresponding col

umn name in the data

base for this audience

ID field.

<type> The type of the audi

ence ID field, as speci

fied in the Interact run

time. Values can be

string or numeric.

Creating the Message Connector Tables
Before you can deploy the Unica Interact Message Connector, you must first create the

tables in the database where the Unica Interact runtime data is stored. You'll create one

table for each audience level you have defined. For each audience level, Unica Interact will

use the tables you create to record information about Message Connector transactions.

Use your database client to run the Message Connector SQL script against the appropriate

database or schema to create the necessary tables. The SQL scripts for your supported

database are installed automatically when you install the Unica Interact runtime server. See

the worksheets you completed in the Unica Interact Installation Guide for details about

connecting to the database that contains the Unica Interact runtime tables.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 594

1. Launch your database client and connect to the database in which your Unica Interact

runtime tables are currently stored.

2. Run the appropriate script in the <Unica Interact_home>/msgconnector/scripts/

ddl directory. The following table lists the sample SQL scripts you can use to

manually create the Message Connector tables:

Table 35. Scripts for creating the Message Connector tables

Data source type Script name

IBM® DB2® db_scheme_db2.sql

Microsoft™ SQL

Server

db_scheme_sqlserver.sql

Oracle db_scheme_oracle.sql

MariaDB db_scheme_mariadb.sql

Note that these scripts are provided as samples. You may use a different naming

convention or structure for audience ID values, so you may need to modify the script

before running it. In general, it is a best practice to have one table dedicated to each

audience level.

The tables are created to contain the following information:

Table 36. Information created by the sample SQL scripts

A listing of the columns and descriptions created by the sample SQL scripts.

Column Name Description

LogId The primary key of this entry.

MessageId The unique identifier of each messaging instance.

LinkId The unique identifier of each link in the electronic media

(such as an email message).

OfferImageUrl The URL to the related image of the returned offer.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 595

Column Name Description

OfferLandingPage

Url

The URL to the related landing page of the returned offer.

TreatmentCode The treatment code of the returned offer.

OfferExpiration

Date

The expiration date and time of the returned offer.

OfferContactDate The date and time that the offer was returned to the client.

AudienceId The audience ID of the electronic media.

Note the following about this table:

• Depending on the audience level, there will be one AudienceId column for each

component of the audience key.

• The combination of MessageId, LinkId, and AudienceId(s) forms a unique key of

this table.

When the script has finished running, you have created the necessary tables for the

Message Connector.

You are now ready to deploy the Message Connector web application.

Deploying and running the Message Connector
The Unica Interact Message Connector is deployed as a stand-alone web application on a

supported web application server.

Before you can deploy the Message Connector, be sure that the following tasks have been

complete:

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 596

• You must have installed the Unica Interact runtime server. The deployable Message

Connector application is automatically installed along with the runtime server, and is

ready to deploy from your Unica Interact home directory.

• You must also have run the SQL scripts provided with your installation to create the

necessary tables in the Unica Interact runtime database for use by the Message

Connector as described in Creating the Message Connector Tables (on page 593)

Just as you deploy other applications on a web application server before you can run them,

you must deploy the Message Connector application to make it available for serving offers.

1. Connect to your web application server management interface with the necessary

privileges to deploy an application.

2. Follow the instructions for your web application server to deploy and run the file called

<Unica Interact_home>/msgconnector/MessageConnector.war

Replace <Unica Interact_home> with the actual directory into which the Unica Interact

runtime server is installed.

3. Following steps are needed in case of configuring message connector with JBOSS

a. Add a database module.

b. Note name of Module given at the time of module creation.

c. goto <INSTALL_DIR>/Interact/msgconnector/MessageConnector.war/WEB-

INF/jboss-deployment-structure.xml uncomment section in dependency and

give module name same as given at time of module creation. For example:

- The module created at time JBoss setup for DB2 is ---> com.ibm, then

jboss-depolyment-structure.xml should have entries as shown below: <?xml

version="1.0" encoding="UTF-8"?><deployment><dependencies><module

name="com.ibm" export="true"/></dependencies></deployment></jboss-

deployment-structure>

The Message Connector is now available for use. After you have configured your Unica

Interact installation to create the underlying data that the Message Connector will use to

provide offers, such as interactive channels and strategies, flowcharts, offers, and so on,

you can create the links in your electronic media that the Message Connector will accept.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 597

Creating the Message Connector links
To use the Message Connector to provide custom offer images when an end-user interacts

with your electronic media (such as by opening an email message), and custom landing

pages when the end-user clicks through the offer, you need to create the links to embed in

your message. This section provides a summary of the HTML tagging of those links.

Regardless of the system you use to generate your outgoing messages to end users, you

need to generate the HTML tagging to contain the appropriate fields (provided in the HTML

tags as attributes) containing information you want to pass to the Interact runtime server.

Follow the steps below to configure the minimum information needed for a Message

Connector message.

Note that although the instructions here refer specifically to messages containing Message

Connector links, you can follow the same steps and configuration to add links to web pages

or any other electronic media.

1. Create the IMG link that will appear in your message with, at a minimum, the following

parameters:

• msgID, indicating the unique identifier for this message.

• linkID, indicating the unique identifier for the link in the message.

• audienceID, the identifier of the audience to which the recipient of the message

belongs.

Note that if the audience ID is a composite ID, all of those components must be

included in the link.

You may also include optional parameters that include audience level, interactive

channel name, interaction point name, image location URL, and your own custom

parameters not specifically used by the Message Connector.

2. Optionally, create an A link that encloses the IMG link so that, when the user clicks the

image, the browser loads a page containing the offer for the user.

The A link must also contain the three parameters listed above (msgID, linkID, and

audienceID), plus any optional parameters (audience level, interactive channel name,

and interactive point name) and custom parameters not specifically used by the

Message Connector.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 598

Note that the A link will most likely contain a Message Connector IMG link, but can

also stand alone on the page as needed. If the link does contain an IMG link, the IMG

link should contain the same set of parameters as the enclosing A link (including any

optional or custom parameters).

3. When the links are correctly defined, generate and send the email messages.

For detailed information on the available parameters, and sample links, see "IMG" and "A"

tag HTTP Request parameters (on page 598)

"IMG" and "A" tag HTTP Request parameters
When Message Connector receives a request, either because an end user opened an email

containing a Message Connector-encoded IMG tag or because the end user clicked-through

an A tag, it parses the parameters included with the request to return the appropriate offer

data. This section provides a list of the parameters that can be included in the requesting

URL (either the IMG tag (loaded automatically when a tagged image is displayed when the

email is opened) or the A tag (loaded when the person viewing the email clicks through the

message to the specified site).

Parameters

When Message Connector receives a request, it parses the parameters included with the

request. These parameters include some or all of the following:

Parameter Name Description Required? Default Value

msgId The unique identifier of the

email instance or web page.

Yes None. This is provided by the system creating

the unique instance of the email message or

web page containing the tag.

linkId The unique identifier of the

link in this email or web

page.

Yes None. This is provided by the system creating

the unique instance of the email message or

web page containing the tag.

audienceLevel The audience level to which

the recipient of this commu

nication belongs.

No The audienceLevel specified as the default

in the audienceLevels element found in the

MessageConnectorConfig.xml file.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 599

Parameter Name Description Required? Default Value

ic The name of the target inter

active channel (IC)

No The value of the interactiveChannel ele

ment found in the defaultParameterValues

section of the MessageConnectorConfig.xml

file, which is "interactiveChannel" by default.

ip The name of the applying in

teraction point (IP)

No The value of the interactionPoint element

found in the defaultParameterValues sec

tion of the MessageConnectorConfig.xml file,

which is "headBanner" by default.

offerImageUrl The URL of the target offer

image for the IMG URL in

the message.

No None.

offerImageUrlAttr The name of the offer at

tribute that has the URL of

the target offer image

No The value of the imageUrlAttribute element

found in the defaultParameterValues sec

tion of the MessageConnectorConfig.xml file.

offerLandingPage

Url

The URL of the landing page

corresponding to the target

offer.

No None.

offerLandingPage

UrlAttr

The name of the offer at

tribute that has the URL

of the landing page corre

sponding to the target offer.

No The value of the landingPageUrlAttribute

element found in the defaultParameterVal

ues section of the MessageConnectorCon

fig.xml file.

contactEvent The name of the contact

event.

No The value of the contactEventName element

found in the defaultParameterValues sec

tion of the MessageConnectorConfig.xml file,

which is "contact" by default.

responseEvent The name of the accept

event.

No The value of the acceptEventName element

found in the defaultParameterValues sec

tion of the MessageConnectorConfig.xml file,

which is "accept" by default.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 600

Parameter Name Description Required? Default Value

debug The debug flag. Set this pa

rameter to "true" only for

troubleshooting and at the

instruction of technical sup

port.

No The value of the debugFlag element found in

the defaultParameterValues section of the

MessageConnectorConfig.xml file, which is

"false" by default.

<audience id> The audience ID of this user.

The name of this parameter

is defined in the configura

tion file.

Yes None.

When the Message Connector receives a parameter that is unrecognized (that is, does not

appear in the above list), it is handled in one of two possible ways:

• If an unrecognized parameter is provided (for example, "attribute", as in

attribute="attrValue") and there is a matching parameter of the same name plus

the word "Type" (for example, "attributeType", as in attributeType="string"), this

causes the Message Connector to create a matching Unica Interact parameter and

pass it to the Unica Interact runtime.

The values for the Type parameter can be any of the following:

◦ string

◦ numeric

◦ datetime

For a parameter of type "datetime," the Message Connector also looks

for a parameter of the same name plus the word "Pattern" (for example,

"attributePattern") whose value is a valid date/time format. For example, you

might provide the parameter attributePattern="MM/dd/yyyy".

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 601

Note that if you specify a parameter type of "datetime" but do not provide

a matching date pattern, the value specified in the Message Connector

configuration file (found in <installation_directory>/msgconnector/config/

MessageConnectorConfig.xml) on the Unica Interact server is used.

• If an unrecognized parameter is provided and there is no matching Type value,

Message Connector passes that parameter to the target redirect URL.

For all unrecognized parameters, the Message Connector passes them to the Unica Interact

runtime server without processing or saving them.

Example Message Connector Code

The following A tag contains an example of a set of Message Connector links that might

appear in an email message:

<a

 href="http://www.example.com/MessageConnector/offerClickthru.jsp?msgId=234

 &linkId=1&userid=1&referral=xyz">

 <img

 src="http://www.example.com/MessageConnector/offerImage.jsp?msgId=234&link

Id=1

 &userid=1&incomeCode=3&incomeType=numeric"/>

In this example, the IMG tag loads automatically when the email message is opened. By

retrieving the image from the specified page, the message passes the parameters for the

unique message identifier (msgID), unique link identifier (linkID), and unique user identifier

(userid), along with two additional parameters (incomeCode and incomeType) to be passed

to the Unica Interact runtime.

The A tag provides the HREF (Hypertext Reference) attribute that turns the offer image into

a clickable link in the email message. If the viewer of the message, upon seeing the image,

clicks through to the landing page, the unique message identifier (msgId), link identifier

(linkId), and user identifier (userid) are passed through to the server, as well as one

additional parameter (referral) that is passed to the target redirect URL.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 602

About the Unica Interact Web Connector
The Unica Interact WebConnector (also referred to as the JavaScript™ Connector,

or JSConnector) provides a service on the Unica Interact runtime server that allows

JavaScript™ code to call the Unica Interact Java™ API. This enables web pages to make

calls to Unica Interact for real-time offer personalization using only embedded JavaScript™

code, without having to rely on web development languages (such as Java™, PHP, JSP, and

so on). For example, you might embed a small snippet of JavaScript™ code on each page of

your web site that serve offers recommended by Unica Interact, so that each time the page

loads, calls are made to the Unica Interact API to ensure that the best offers are displayed

on the loading page for the site visitor.

Use the Unica Interact Web Connector in situations where you want to display offers to

visitors on a page where you may not have server-side programmatic control over the page

display (as you would with, for example, PHP or other server-based scripting), but can still

embed JavaScript™ code in your page content that will be executed by the visitor's web

browser.

Tip: The Unica Interact Web Connector files are installed automatically onto

your Unica Interact runtime server, in the directory <Unica Interact_home>/

jsconnector. In the directory <Unica Interact_home>/jsconnector, you'll find

a ReadMe.txt containing important notes and details about the Web Connector

features, as well as sample files and the Web Connector source code to use as the

basis for developing your own solutions. If you do not find information to answer

your questions here, see the jsconnector directory for more information.

Installing the Web Connector on the runtime server
An instance of the Web Connector is installed automatically with your Unica Interact

runtime server, and is enabled by default. However, there are some settings you must

modify before you can configure and use the Web Connector.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 603

The settings you must modify before you can use the Web Connector that is installed on the

runtime server are added to the web application server's configuration. For that reason, you

will need to restart the web application server after completing these steps.

1. For the web application server on which the Unica Interact runtime server is installed,

set the following Java™ properties:

-DUI_JSCONNECTOR_ENABLE_INPROCESS=true

-DUI_JSCONNECTOR_HOME=<jsconnectorHome>

Replace <jsconnectorHome> with the path to the jsconnector directory on the

runtime server, which is <Unica Interact_Home>/jsconnector.

The way in which you set the Java™ properties depends on your web application

server. For example, in WebLogic, you would edit the startWebLogic.sh or

startWebLogic.cmd file to update the JAVA_OPTIONS setting, as in this example:

JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -DUI_JSCONNECTOR_HOME=/UnicaFiles/

jsconnector"

In WebSphere® Application Server, you would set this property in the Java™ virtual

machine panel of the administration console.

See your web application server documentation for specific instructions on setting

Java™ properties.

2. Restart your web application server if it was already running, or start your web

application server now, to make sure that the new Java™ properties are used.

When the web application server has completed its startup process, you have finished

installing the Web Connector on the runtime server. The next step is to connect to its

Configuration web page at http://<host>:<port>/interact/jsp/WebConnector.jsp,

where <host> is the Unica Interact runtime server name, and <port> is the port on which the

Web Connector is listening, as specified by the web application server.

Installing the Web Connector as a separate web application
An instance of the Web Connector is installed automatically with your Unica Interact

runtime server, and is enabled by default. However, you can also deploy the Web Connector

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 604

as its own web application (for example, in a web application server on a separate system)

and configure it to communicate with the remote Unica Interact runtime server.

These instructions describe the process of deploying the Web Connector as a separate web

application with access to a remote Unica Interact runtime server.

Before you can deploy the Web Connector, you must have installed the Unica Interact

runtime server, and you must have a web application server on another system with network

access (not blocked by any firewall) to the Unica Interact runtime server.

1. Copy the jsconnector directory containing the Web Connector files from your Unica

Interact runtime server to the system where the web application server (such as

WebSphere® Application Server) is already configured and running.

You can find the jsconnector directory in your Unica Interact installation director.

2. On the system where you'll be deploying the Web Connector instance, configure

the jsconnector/jsconnector.xml file using any text or XML editor to modify the

interactURL attribute.

This is set by default to http://localhost:7001/interact, but you must modify

it to match the URL of the remote Unica Interact runtime server, such as http://

runtime.example.com:7011/interact.

After you deploy the Web Connector, you can use a web interface to customize the

remaining settings in the jsconnector.xml file. See Configuring the Web Connector

(on page 605) for more information.

3. For the web application server on which you will be deploying the Web Connector, set

the following Java™ property:

-DUI_JSCONNECTOR_HOME=<jsconnectorHome>

Replace <jsconnectorHome> with the actual path to where you copied the

jsconnector directory onto the web application server.

The way in which you set the Java™ properties depends on your web application

server. For example, in WebLogic, you would edit the startWebLogic.sh or

startWebLogic.cmd file to update the JAVA_OPTIONS setting, as in this example:

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 605

JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -DUI_JSCONNECTOR_HOME=/Unica

InteractFiles/jsconnector"

In WebSphere® Application Server, you would set this property in the Java™ virtual

machine panel of the administration console.

See your web application server documentation for specific instructions on setting

Java™ properties.

4. Restart your web application server if it was already running, or start your web

application server in this step, to make sure that the new Java™ property is used.

Wait for the web application server to complete its startup process before continuing.

5. Connect to your web application server management interface with the necessary

privileges to deploy an application.

6. Follow the instructions for your web application server to deploy and run the following

file:

jsConnector/jsConnector.war

The Web Connector is now deployed in the web application. After you have your fully-

configured Unica Interact server up and running, the next step is to connect to the

Web Connector Configuration web page at http:// <host>: <port>/interact/jsp/

WebConnector.jsp, where <host> is the system running the web application server on which

you just deployed the Web Connector, and <port> is the port on which the Web Connector is

listening, as specified by the web application server.

Configuring the Web Connector
Configuration settings for the Unica Interact Web Connector are stored in a file called

jsconnector.xml that is stored on the system where the Web Connector is deployed

(such as the Unica Interact runtime server itself, or a separate system running a web

application server). You can edit the jsconnector.xml file directly using any text editor

or XML editor; however, an easier way to configure almost all of the available configuration

settings is to use the Web Connector Configuration page from your web browser.

Before you can use the web interface to configure the Web Connector, you must install and

deploy the web application that provides the Web Connector. On the Unica Interact runtime

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 606

server, an instance of the Web Connector is installed automatically when you install and

deploy Unica Interact. On any other web application server, you must install and deploy the

Web Connector web application as described in Installing the Web Connector as a separate

web application (on page 603).

1. Open your supported web browser and open a URL similar to the following:

http://<host>:<port>/interact/jsp/WebConnector.jsp

• Replace <host> with the server on which the Web Connector is running, such

as the host name of the runtime server or the name of the server on which you

deployed a separate instance of the Web Connector.

• Replace <port> with the port number on which the Web Connector web

application is listening for connections, which usually matches the web

application server's default port.

2. On the Configurations page that appears, complete the following sections:

Table 37. Web Connector Configuration Settings Summary

For each section of the Web Connector Configuration Settings page, a brief

description is provided of how to use that section. More details are available

elsewhere.

Section Settings

Basic Set

tings

Use the Basic Settings page to configure the overall Web Connec

tor behavior for the site on which you'll be rolling out the tagged

pages. These settings include the base URL for the site, informa

tion that Unica Interact needs to use about the visitors to the site,

and similar settings that apply to all of the pages you plan to tag

with Web Connector code.

See WebConnector Configuration Basic Options (on page 609)

for details.

HTML Dis

play Types

Use the HTML Display Types page to determine the HTML code

that will be provided for each interaction point on the page. You

can choose from the list of default templates (.flt files) that con

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 607

Section Settings

tain some combination of cascading style sheet (CSS) code, HTML

code, and Javascript code to use for each interaction point. You

can use the templates as provided, customize them as needed, or

create your own.

Configuration settings on this page correspond to the interac

tionPoints section of the jsconnector.xml configuration file.

See WebConnector Configuration HTML Display Types (on page

613) for details.

Enhanced

Pages

Use the Enhanced Pages page to map page-specific settings to a

URL pattern. For example, you might set up a page mapping such

that any URL containing the text "index.htm" displays your gener

al welcome page, with specific page load events and interaction

points defined for that mapping.

Configuration settings on this page correspond to the pageMapping

section of the jsconnector.xml configuration file.

See WebConnector Configuration Enhanced Pages (on page

616) for details.

3. On the Basic Settings page, verify that the site-wide settings are valid for your

installation, and optionally specify debug mode (not recommended unless you are

troubleshooting a problem), Digital Analytics for On Premises Page Tag integration,

and the default settings for most Interaction Points, then click the HTML Display

Types link under Configurations.

4. On the HTML Display types page, follow these steps to add or modify display

templates that define the interaction points on the customer web page.

By default, display templates (.flt files) are stored in <jsconnector_home>/conf/

html.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 608

a. Select the .flt file from the list that you want to examine or use as your starting

point, or click Add a Type to create a new, blank Interaction Point template to

use.

Information about the template's contents, if any, appears next to the template

list.

b. Optionally, modify the name of the template in the File name for this display

type field. For a new template, update CHANGE_ME.flt to something more

meaningful.

If you rename the template here, the Web Connector creates a new file with

that name the next time the template is saved. Templates are saved when you

modify the body of the text, and then navigate to any other field.

c. Modify or complete the HTML Snippet information as needed, including any

stylesheet (CSS), JavaScript™, and HTML code you want to include. Note that

you can also include variables that will be replaced by Unica Interact parameters

at runtime. For example, ${offer.HighlightTitle} is automatically replaced

by the offer title in the specified location of the Interaction Point.

Use the examples that appear below the HTML Snippet field for indications of

how to format your CSS, JavaScript™, or HTML code blocks.

5. Use the Enhanced Pages page as needed to set up the page mappings that determine

how specific URL patterns are handled on the pages.

6. When you have finished setting the configuration properties, click Roll Out the

Changes.

Clicking Roll Out the Changes performs the following actions:

• Displays the Unica Interact Web Connector page tag, which contains the

JavaScript™ code that you can copy from the Web Connector page and insert

onto your web pages.

• Backs up the existing Web Connector configuration file on the Unica Interact

server (the jsconnector.xml file on the server where the Web Connector is

installed) and creates a new configuration file with the settings you've defined.

Backup configuration files are stored in <jsconnector_home>/

conf/archive/jsconnector.xml.<date>.<time>, as in

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 609

jsconnector.xml.20111113.214933.750-0500 (where the date string

is 20111113 and the time string, including the time zone indicator, is

214933.750-0500)

You have now completed configuring the Web Connector.

To modify your configuration, you can either return to the beginning of these steps and

perform them again with new values, or you can open the configuration file (<Unica

Interact_home>/jsconnector/conf/jsconnector.xml) in any text or XML editor

and modify it as needed.

WebConnector Configuration Basic Options
Use the Basic Settings page of the Web Connector Configurations page to configure the

overall Web Connector behavior for the site on which you'll be rolling out the tagged pages.

These settings include the base URL for the site, information that Unica Interact needs to

use about the visitors to the site, and similar settings that apply to all of the pages you plan

to tag with Web Connector code.

Site-wide Settings

The Site-wide Settings configuration options are global settings that affect the overall

behavior of the installation of the Web Connector you are configuring. You can specify the

following values:

Table 38. Site-wide settings for the Web Connector installation

Settings that affect the entire Web Connector installation

Setting Description

Equivalent

setting in

jsconnec

tor.xml

Interact API URL The base URL of the Unica Interact runtime server. <interact

URL>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 610

Table 38. Site-wide settings for the Web Connector installation

Settings that affect the entire Web Connector installation

(continued)

Setting Description

Equivalent

setting in

jsconnec

tor.xml

Note: This setting is used only if the Web Con

nector is not running inside of the Interact run

time server (that is, you have deployed it sepa

rately).

Web Connector

URL

The base URL used to generate the click-through URL. <jsConnec

torURL>

Interactive

Channel name

for the target

website

The name of the interactive channel you have defined on

the Unica Interact server that represents this page map

ping.

<interactive

Channel>

Audience Level

of Visitors

The Unica Campaign audience level for the inbound visi

tor; used in the API call to the Unica Interact runtime.

<audience

Level>

Audience ID

Field Name in

the Profile Table

Name of the audienceId field that will be used in the API

call to Unica Interact. Note that there is currently no sup

port for multi-field audience identifiers.

<audienceId

Field>

Data type of

the Audience ID

Field

The data type of the Audience ID field (either "numeric"

or "string") to be used in the API call to Unica Interact.

<audienceId

FieldType>

Cookie Name

that represents

the Session ID

The name of the cookie that will contain the session ID. <sessionId

Cookie>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 611

Table 38. Site-wide settings for the Web Connector installation

Settings that affect the entire Web Connector installation

(continued)

Setting Description

Equivalent

setting in

jsconnec

tor.xml

Cookie Name

that represents

the Visitor ID

The name of the cookie that will contain the visitor ID. <visitorId

Cookie>

Optional Features

The Optional Features configuration options are optional global settings for the installation

of the Web Connector you are configuring. You can specify the following values:

Table 39. Optional site-wide settings for the Web Connector installation

Optional settings that affect the entire Web Connector installation

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

Enable

Debug

Mode

Specifies (with a yes or no answer) whether to use a special debug

mode. If you enable this feature, the content returned from the Web

Connector includes a Javascript call to 'alert', informing the client of

the particular page mapping that just occurred. The client must have

<en

able

Debug

Mode>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 612

Table 39. Optional site-wide settings for the Web Connector installation

Optional settings that affect the entire Web Connector installation

(continued)

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

an entry in the file specified by the <authorizedDebugClients> set

ting in order to get the alert.

Autho

rized De

bugging

Clients

Host File

The path to a file that contains the list of hosts or IP (Internet Proto

col) addresses that qualify for debug mode. A client's host name or

IP address must appear in the specified file for debug information to

be collected.

<autho

rized

Debug

Clients>

Enable

Digital

Analyt

ics for On

Premises

Page Tag

Integra

tion

Specifies (with a yes or no answer) whether the Web Connector

should attach the specified Digital Analytics for On Premises tag at

the end of the page content.

<en

able

NetIn

sight

Tag

ging>

Digital

Analyt

ics for On

Premises

Tag HTML

The HTML/Javascript template used to integrate a call to the Digi

tal Analytics for On Premises tag. In general, you should accept the

default setting unless you are instructed to provide a different tem

plate.

<net

In

sight

Tag>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 613

Table 39. Optional site-wide settings for the Web Connector installation

Optional settings that affect the entire Web Connector installation

(continued)

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

Template

File

WebConnector Configuration HTML Display Types
Use the HTML Display Types page to determine the HTML code that will be provided for

each interaction point on the page. You can choose from the list of default templates (.flt

files) that contain some combination of cascading style sheet (CSS) code, HTML code, and

JavaScript™ code to use for each interaction point. You can use the templates as provided,

customize them as needed, or create your own.

Note: Configuration settings on this page correspond to the interactionPoints

section of the jsconnector.xml configuration file.

The interaction point can also contain placeholders (zones) into which offer attributes can

be dropped automatically. For example, you might include ${offer.TREATMENT_CODE}which

would be replaced with the treatment code assigned to that offer during the interaction.

The templates that appear on this page are loaded automatically from the files stored in

<Unica Interact_home>/jsconnector/conf/html directory of the Web Connector

server. Any new templates you create here are also stored in that directory.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 614

To use the HTML Display Types page to view or modify any of the existing templates, select

the .flt file from the list.

To create a new template on the HTML Display Types page, click Add a Type.

Regardless of the method you choose to create or modify a template, the following

information appears next to the template list:

Set

ting
Description

Equivalent setting

in jsconnector.xml

File

name

for

this

dis

play

type

The name assigned to the template you are editing. This

name must be valid for the operating system on which the

Web Connector is running; for example, you cannot use a

slash (/) in the name if the operating system is Microsoft™

Windows™.

If you are creating a new template, this field is preset to

CHANGE_ME.flt. You must change this to a meaningful val

ue before continuing.

<htmlSnippet>

HTML

Snip

pet

The specific content that Web Connector should insert

into the Interaction Point on the web page. This snippet

can contain HTML code, CSS formatting information, or

JavaScript™ to be executed on the page.

Each of those three types of content must be enclosed by

BEGIN and END codes, as in the following examples:

• ${BEGIN_HTML} <your HTML content> ${END_

HTML}

• ${BEGIN_CSS} <your Interaction Point-specific

stylesheet information> ${END_CSS}

• ${BEGIN_JAVASCRIPT} <your Interaction Point-spe

cific JavaScript code> ${END_JAVASCRIPT}

No equivalent be

cause the HTML snip

pet resides in its own

file separate from js

connector.xml.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 615

Set

ting
Description

Equivalent setting

in jsconnector.xml

You can also enter a number of pre-defined special codes

that are replaced automatically when the page is loaded,

including the following:

• ${logAsAccept} : A macro that takes two parame

ters (a target URL, and the TreatmentCode used to

identify the acceptance of the offer) and replaces it

with the click-through URL.

• ${offer.AbsoluteLandingPageURL}

• ${offer.OFFER_CODE}

• ${offer.TREATMENT_CODE}

• ${offer.TextVersion}

• $offer.AbsoluteBannerURL}

Each of the offer codes listed here represent offer attrib

utes defined in the offer template in Unica Campaign that

was used by the marketer to create the offers that Unica

Interact is returning.

Note that the Web Connector uses a template engine

called FreeMarker that provides many additional options

that you may find useful in setting up codes on your page

templates. See http://freemarker.org/docs/index.html for

more information.

Ex

ample

Spe

cial

Codes

Contains samples of the type of special codes, including

codes that identify blocks as HTML, CSS, or JAVASCRIPT,

and droppable zones you can insert to refer to specific of

fer metadata.

No equivalent.

http://freemarker.org/docs/index.html

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 616

Your changes to this page are saved automatically when you navigate to another Web

Connector configuration page.

WebConnector Configuration Enhanced Pages
Use the Enhanced Pages page to map page-specific settings to a URL pattern. For

example, you might set up a page mapping such that any incoming URL containing the

text "index.htm" displays your general welcome page, with specific page load events and

interaction points defined for that mapping.

Note: Configuration settings on this page correspond to the pageMapping section of

the jsconnector.xml configuration file.

To use the Enhanced Pages page to create a new page mapping, click the Add a Page link

and complete the necessary information for the mapping.

Page Info
The Page Info configuration options for the page mapping define the URL pattern that acts

as the trigger for this mapping, plus some additional settings for the way this page mapping

is handled by Unica Interact.

Setting Description

Equiva

lent set

ting in js

connec

tor.xml

URL contains This is the URL pattern that the Web Connector should watch

for in the incoming page request. For example, if the request

ing URL contains "mortgage.htm" you might match that to your

mortgage information page.

<urlPat

tern>

Friendly name

for this page

A meaningful name for your own reference that describes

what this page mapping is for, such as "Mortgage Information

Page".

<friendly

Name>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 617

Setting Description

Equiva

lent set

ting in js

connec

tor.xml

or set of

pages

Also return

offers as

JSON data

for JavaScript

use

A drop-down list to indicate whether you want the Web Con

nector to include the raw offer data in JavaScript™ Object No

tation (http://www.json.org/) format at the end of the page

content.

<enable

RawData

Return>

Events to fire (onload) when a visit is made to this page or set of pages

These set of configuration options for the page mapping define the URL pattern that acts as

the trigger for this mapping, plus some additional settings for the way this page mapping is

handled by Unica Interact.

Note: Configuration settings in this section correspond to the <pageLoadEvents>

section of the jsconnector.xml.

Set

ting
Description

Equivalent

setting in

jsconnec

tor.xml

Indi

vid

ual

events

A list of events that are available for this page or set of pages. The

events in this list are those that you have defined in Unica Interact,

Select one or more events that you want to occur when the page is

loaded.

The sequence of Unica Interact API calls is the following:

<event>

http://www.json.org/

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 618

Set

ting
Description

Equivalent

setting in

jsconnec

tor.xml

1. startSession

2. postEvent for each individual page load event (provided you

have defined the individual events in Unica Interact)

3. For each Interaction Point:

• getOffers

• postEvent(ContactEvent)

Interaction Points (offer display locations) on this page or set of pages

These set of configuration options for the page mapping allow you to select which

Interaction Points appear on the pageUnica Interact.

Note: Configuration settings in this section correspond to the <pageMapping> |

<page> | <interactionPoints> section of the jsconnector.xml.

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

Interaction

Point name

checkbox

Each Interaction Point that has been defined in the configuration

file appears in this section of the page. Selecting the checkbox next

to the name of the Interaction Point displays a number of options

available for that Interaction Point.

<inter

action

Point>

HTML El

ement ID

The name of the HTML element that should receive the content for

this Interaction Point. For example, if you specified <div id="wel

<htm

lEle

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 619

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

(Unica In

teract will

set the in

nerHTML)

comebanner"> on the page, you would enter welcomebanner (the ID

value) in this field.

ment

Id>

HTML Dis

play Type

A drop-down list that allows you to select the HTML Display Type

(the HTML snippets, or .flt files, defined on a previous Web Connec

tor configuration page) to use for this Interaction Point.

<htm

lSnip

pet>

Maximum

number of

offers to

present (if

this is a

carousel or

flipbook)

The maximum number of offers that the Web Connector should re

trieve from the Unica Interact server for this Interaction Point This

field is optional, and applies only for an Interaction Point that reg

ularly updates the offers presented without reloading the page, as

in the carousel scenario where multiple offers are retrieved so that

they can be made available one at a time.

<max

Num

ber

OfOf

fers>

Event to fire

when the

offer is pre

sented

The name of the contact event to be posted for this Interaction

Point.

<con

tact

Event>

Event to fire

when the

offer is ac

cepted

The name of the accept event to be posted for this Interaction Point

at the time that the offer link is clicked.

<ac

cept

Event>

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 620

Setting Description

Equiv

alent

setting

in js

con

nec

tor.xml

Event to fire

when the

offer is re

jected

The name of the reject event to be posted for this Interaction Point.

Note: At this time, this feature is not yet used

<re

ject

Event>

Web Connector Configuration Options
In general, you can use a graphical Web Connector interface to configure your Web

Connector settings. All of the settings you specify are also stored in a file called

jsconnector.xml, found in your jsconnector/conf directory. Each of the parameters that are

saved in the jsconnector.xml configuration file is described here.

Parameters and their descriptions

The following parameters are stored in the jsconnector.xml file and are used for Web

Connector interactions. There are two ways to modify these settings:

• Using the Web Connector Configuration web page that is automatically available

after you have deployed and started the Web Connector application. To use the

Configuration web page, use your web browser to open a URL similar to the following:

http://<host>:<port>/interact/jsp/WebConnector.jsp.

The changes you make on the Administration web page are stored in the

jsconnector.xml file on the server where the Web Connector is deployed.

• Edit the jsconnector.xml file directly using any text editor or XML editor. Be sure that

you are comfortable editing XML tags and values before using this method.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 621

Note: Any time you edit the jsconnector.xml file manually, you can reload

those settings by opening the Web Connector Administration Page (found

at http://<host>:<port>/interact/jsp/jsconnector.jsp) and clicking

Reload Configuration.

The following table describes the configuration options you can set as they appear in the

jsconnector.xml file.

Table 40. Web Connector configuration options

Parameter Group Parameter Description

defaultPageBe

havior

friendlyName A human-readable identifier for

the URL Pattern for display on the

Web Connector's web configura

tion page.

interactURL The base URL of the Interact run

time server. Note: You need to

set this parameter only if the Web

Connector (jsconnector) service is

running as a deployed web appli

cation. You do not need to set this

parameter if the WebConnector is

running automatically as part of

the Interact runtime server.

jsConnectorURL The base URL used to generate

the click-through URL, such as

http://host:port/jsconnec

tor/clickThru

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 622

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

interactiveChannel Name of the interactive channel

that represents this page map

ping.

sessionIdCookie Name of the cookie that contains

the session ID that is used in the

API calls to Unica Interact.

visitorIdCookie Name of the cookie to contain the

audience ID.

audienceLevel The campaign audience level for

the inbound visitor, used in the API

call to the Unica Interact runtime.

audienceIdField Name of the audienceId field

used in the API call to the Unica In

teract runtime.

Note: Note: There is cur

rently no support for mul

ti-field audience identi

fiers.

audienceIdFieldType The datatype of the audience ID

field [numeric | string] used in

the API call to the Unica Interact

runtime

audienceLevelCookie Name of the cookie that to contain

the audience level. This is option

al. If you do not set this parameter,

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 623

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

the system uses what is defined

for audienceLevel.

relyOnExistingSession Used in the API call to the Unica

Interact runtime. In general, this

parameter is set to "true".

enableInteractAPIDebug Used in the API call to the Unica

Interact runtime to enable debug

ging output to the log files.

pageLoadEvents The event that will be posted once

this particular page is loaded.

Specify one or more events with

in this tag, in the format similar to

<event>event1</event>.

interactionPointValues All items in this category act as

default values for missing values

in the IP specific categories.

interactionPointValuescon

tactEvent

Default name of contact event to

be posted for this particular inter

action point.

interactionPointValuesaccept

Event

Default name of accept event to

be posted for this particular inter

action point.

interactionPointValuesreject

Event

Default name of the reject event

to be posted for this particular in

teraction point. (Note: at this time,

this feature is not used.)

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 624

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

interactionPointValueshtml

Snippet

Default name of HTML template

to be served for this interaction

point.

interactionPointValuesmaxNum

berOfOffers

Default max number of offers to

be retrieved from Unica Interact

for this interaction point.

interactionPointValueshtml

ElementId

Default name of HTML element to

receive the content for this inter

action point.

interactionPoints This category contains the config

uration for each interaction point.

For any missing properties the

system will rely on what's con

figured under the interaction

PointValues category.

interactionPointname Name of the Interaction Point (IP).

interactionPointcontactEvent Name of contact event to be post

ed for this particular IP.

interactionPointacceptEvent Name of accept event to be post

ed for this particular IP.

interactionPointrejectEvent Name of the reject event to be

posted for this particular IP. (Note

that this feature is not yet in use.)

interactionPointhtmlSnippet Name of the HTML template to be

served for this IP.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 625

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

interactionPointmaxNumberOf

Offers

Max number of offers to be re

trieved from Unica Interactfor this

IP

interactionPointhtmlElementId Name of the HTML element to re

ceive the content for this interac

tion point.

enableDebugMode Boolean flag (acceptable values:

true or false) to turn on special

debug mode. If you set this to

true, the content returned from

the Web Connector includes a

JavaScript™ call to 'alert' inform

ing the client of the particular page

mapping that just occurred. The

client must have an entry in the

authorizedDebugClients file

to generate the alert.

authorizedDebugClients A file used by the special debug

mode that contains the list of host

names or Internet Protocol (IP)

addresses that qualify for debug

mode.

enableRawDataReturn A Boolean flag (acceptable val

ues: true or false) to determine

whether the Web Connector at

taches the raw offer data in JSON

format at the tail end of the con

tent.

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 626

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

enableNetInsightTagging A Boolean flag (acceptable val

ues: true or false) to determine

whether the Web Connector at

taches a Digital Analytics for On

Premises tag at the end of the

content.

apiSequence Represents an implementation of

the APISequence interface, which

dictates the sequence of API calls

made by the Web Connector when

a pageTag is called. By default,

the implementation uses a se

quence of StartSession, page

LoadEvents, getOffers, and log

Contact, where the last two are

specific to each Interaction Point.

clickThruApiSequence Represents an implementation of

the APISequence interface, which

dictates the sequence of API calls

made by the Web Connector when

a clickThru is called. By default,

the implementation uses a se

quence of StartSession and log

Accept.

netInsightTag Represents the HTML and

JavaScript™ template used to in

tegrate a call to the Digital Analyt

ics for On Premises tag. In gener

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 627

Table 40. Web Connector configuration options (continued)

Parameter Group Parameter Description

al, you should not need to change

this option.

Using the Web Connector Admin Page
The Web Connector includes an administration page that provides some tools to help

manage and test the configuration as it might be used with specific URL patterns. You can

also use the Admin Page to reload a configuration that you have modified.

About the Admin Page

Using any supported web browser, you can open http://host:port/interact/jsp/

jsconnector.jsp, where host:port is the host name on which the Web Connector is running

and the port on which it is listening for connections, such as runtime.example.com:7001

You can use the Admin Page in any of the following ways:

Table 41. Web Connector Admin Page Options

Options available on the Web Connector Admin Page

Option Purpose

Reload Configura

tion

Click the Reload Configuration link to reload any configuration

changes that have been saved on disk into memory. This is nec

essary when you have made changes directly to the Web Connec

tor jsconnector.xml configuration file rather than using the config

uration web pages.

View Config View the WebConnector configuration based on the URL pattern

you enter into the View Config field. When you enter the URL of

a page and click View Config, the Web Connector returns the

configuration that the system will use based on that that pattern

mapping. If no match is found, the default configuration is re

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 628

Table 41. Web Connector Admin Page Options

Options available on the Web Connector Admin Page

(continued)

Option Purpose

turned. This is useful for testing whether the correct configura

tion is being used for a particular page.

Execute Page Tag Completing the fields on this page and clicking Execute Page Tag

causes the Web Connector to return the pageTag result based on

the URL pattern. This simulates the calling of a page tag.

The difference between calling the pageTag from this tool and us

ing a real web site is that using this Admin Page will cause any er

rors or exceptions to be displayed. For a real website, exceptions

are not returned and are visible only in the Web Connector log file.

Sample Web Connector Page
As an example, a file called WebConnectorTestPageSA.html has been included with the

Unica Interact Web Connector (in the directory <Unica Interact_Home/jsconnector/

webapp/html) that demonstrates how many of the features of the Web Connector would

be tagged in a page. For convenience, that sample page is also shown here.

Sample Web Connector HTML Page

<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />

 <meta http-equiv="CACHE-CONTROL" content="NO-CACHE" />

<script language="javascript" type="text/javascript">

//<![CDATA[

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 629

/* ###

This is a test page that contains the WebConnector pageTag. Because the

name of this file has TestPage embedded, the WebConnector will detect a

 URL

pattern match to the url pattern "testpage" in the default version of the

jsconnector.xml - the configuration definition mapped to that "testpage"

URL pattern will apply here. That means there should this page the

corresponding html element ids that correspond to the IPs for this URL

pattern (ie. 'welcomebanner', 'crosssellcarousel', and

 'textservicemessage')

*/

/* ##

This section sets the cookies for sessionId and visitorId.

Note that in a real production website, this is done most likely by the

 login

component. For the sake of testing, it's done here... the name of the

 cookie

has to match what's configured in the jsconnector xml.

*/

 function setCookie(c_name,value,expiredays)

 {

 var exdate=new Date();

 exdate.setDate(exdate.getDate()+expiredays);

 document.cookie=c_name+ "=" +escape(value)+

 ((expiredays==null) ? "" : ";expires="+exdate.toGMTString());

 }

 setCookie("SessionID","123");

 setCookie("CustomerID","1");

 /* ###

 Now set up the html element IDs that correspond to the IPs

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 630

 ### */

 document.writeln("<div id='welcomebanner'> This should change, "

 + "otherwise something is wrong <\/div>");

 document.writeln("<div id='crosssellcarousel'> This should change, "

 + "otherwise something is wrong <\/div>");

 document.writeln("<div id='textservicemessage'> This should change, "

 + "otherwise something is wrong <\/div>");

 //]]>

</script><!--

###

this is what is pasted from the pageTag.txt file in the conf directory of

the WebConnector installation... the var unicaWebConnectorBaseURL needs to

 be

tweaked to conform to your local WebConnector environment

###

####

-->

<!-- BEGIN: Interact Web Connector Page Tag -->

<script language="javascript" type="text/javascript">

//<![CDATA[

 var unicaWebConnectorBaseURL=

 "[CHANGE ME - http://host:port/<jsconnector>/pageTag]";

 var unicaURLData = "ok=Y";

 try {

 unicaURLData += "&url=" + escape(location.href)

 } catch (err) {}

 try {

 unicaURLData += "&title=" + escape(document.title)

 } catch (err) {}

 try {

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 631

 unicaURLData += "&referrer=" + escape(document.referrer)

 } catch (err) {}

 try {

 unicaURLData += "&cookie=" + escape(document.cookie)

 } catch (err) {}

 try {

 unicaURLData += "&browser=" + escape(navigator.userAgent)

 } catch (err) {}

 try {

 unicaURLData += "&screensize=" +

 escape(screen.width + "x" + screen.height)

 } catch (err) {}

 try {

 if (affiliateSitesForUnicaTag) {

 var unica_asv = "";

 document.write("<style id=\"unica_asht1\" type=\"text/css\"> "

 + "p#unica_ashtp a {border:1px #000000 solid; height:100px "

 + "!important;width:100px "

 + "!important; display:block !important; overflow:hidden "

 + "!important;} p#unica_ashtp a:visited {height:999px !important;"

 + "width:999px !important;} <\/style>");

 var unica_ase = document.getElementById("unica_asht1");

 for (var unica_as in affiliateSitesForUnicaTag) {

 var unica_asArr = affiliateSitesForUnicaTag[unica_as];

 var unica_ashbv = false;

 for (var unica_asIndex = 0; unica_asIndex <

 unica_asArr.length && unica_ashbv == false;

 unica_asIndex++)

 {

 var unica_asURL = unica_asArr[unica_asIndex];

 document.write("<p id=\"unica_ashtp\" style=\"position:absolute;

 "

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 632

 + "top:0;left:-10000px;height:20px;width:20px;overflow:hidden; \

 margin:0;padding:0;visibility:visible;\"> \

 " + unica_as + " <\/a><\/p>");

 var unica_ae =

 document.getElementById("unica_ashtp").childNodes[0];

 if (unica_ae.currentStyle) {

 if (parseFloat(unica_ae.currentStyle["width"]) > 900)

 unica_ashbv = true

 } else if (window.getComputedStyle) {

 if (parseFloat(document.defaultView.getComputedStyle

 (unica_ae, null).getPropertyValue("width")) > 900)

 unica_ashbv = true

 }

 unica_ae.parentNode.parentNode.removeChild(unica_ae.parentNode)

 }

 if (unica_ashbv == true) {

 unica_asv += (unica_asv == "" ? "" : ";") + unica_as

 }

 }

 unica_ase.parentNode.removeChild(unica_ase);

 unicaURLData += "&affiliates=" + escape(unica_asv)

 }

 } catch (err) {}

 document.write("<script language='javascript' "

 + " type='text/javascript' src='" + unicaWebConnectorBaseURL + "?"

 + unicaURLData + "'><\/script>");

 //]]>

</script>

<style type="text/css">

/*<![CDATA[*/

 .unicainteractoffer {display:none !important;}

 /*]]>*/

Unica Interact V12.1.3 Administrator's Guide | 17 - Real-time offer personalization on the client side | 633

</style>

 <title>Sample Interact Web Connector Page</title>

 </head>

 <body>

 <!-- END: Interact Web Connector Page Tag -->

 <!--

###

###

end of pageTag paste

###

###

-->

 </body>

</html>

Chapter 18. JVM parameters
The following section provides the details of the JVM parameters for Interact run time and

design time.

Interact design time
The following are the JVM parameters for Interact design time.

Interact.UsernameToAlwaysDeployFor

This property can be used to specify the username for the authentication of deployment

request in case of issues in Platform authentication.

For example: -DInteract.UsernameToAlwaysDeployFor =<username>

com.unicacorp.interact.deliver.templateTimeout

This property can be used to specify the timeout for the Deliver APIs which are called while

working with Deliver gateway from the Gateway tab. The default value is 15 seconds.

For example: -Dcom.unicacorp.interact.deliver.templateTimeout=<timeout in

milliseconds>

DeploymentServletParameterEncoding

This property can be used to override the default deployment servlet parameter encoding.

The default value is UTF-8.

For example: -DDeploymentServletParameterEncoding=UTF-8

com.unicacorp.interact.flexoffers.defaultDateTimeFormat

This property can be used to provide the datetime format for custom date type columns

in FlexOffers rule table. This parameter can be used if the default format for date type

columns is not working for FlexOffers rules.

For example: -Dcom.unicacorp.interact.flexoffers.defaultDateTimeFormat =”dd-MM-

yyyy HH:mm:ss"

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 635

com.unicacorp.interact.flexoffers.defaultDateFormat

This property can be used to override the default date format while importing FlexOffers

rules from csv file or table. The default value is yyyy-MM-dd.

For example: -Dcom.unicacorp.interact.flexoffers.defaultDateFormat =”yyyy-MM-

dd”

com.unicacorp.Campaign.interact.offermapping.batchsize

This property can be used to specify the number of records to add to FlexOffers rule table at

a time. The default value is 5000.

For example: -Dcom.unicacorp.Campaign.interact.offermapping.batchsize=5000

com.unicacorp.Campaign.interact.offermapping.service.synctimeout

This property can be used to provide the timeout (in seconds) while synchronizing the

FlexOffers rule table in design time and runtime. The default value is 300 seconds.

For example:

-Dcom.unicacorp.Campaign.interact.offermapping.service.synctimeout=<timeout in

milliseconds>

com.unicacorp.interact.cacheTTL

This property can be used to provide the timeout for the Interact Offer cache. The default

value is 1 minute.

For example: -Dcom.unicacorp.interact.cacheTTL=<timeout in minutes>

com.unicacorp.interact.cacheRefreshIntervalInMin

This property can be used to provide the refresh time for Interact Offer cache. The default

value is 10 minutes.

For example -Dcom.unicacorp.interact.cacheRefreshIntervalInMin =<refresh time

in minutes>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 636

com.unicacorp.interact.enableDTPerfLogging

This property can be used to enable the performance metrics logging for Interact design

time.

For example: -Dcom.unicacorp.interact.enableDTPerfLogging =<true | false>

com.unicacorp.interact.compressAPIResponse

This property can be used to compress API responses in ZIP format. This reduces the time

for downloading large data.

For example: -Dcom.unicacorp.interact.compressAPIResponse =<true | false>

ignoreSpecialCharacterValidator

This property can be used to ignore the special character validations while validating names

in Interact design time.

For example: - DignoreSpecialCharacterValidator=<true | false>

Interact.CustomStringDelimiter

This property can be used to provide the custom string delimiter for events and actions.

For example: -DInteract.CustomStringDelimiter=<delimiter>

Interact run time
The following are the JVM parameters for Interact run time.

INTERACT_HOME

This property can be defined to specify the Interact installation directory in the system. The

path must point to the directory of the system where Interact is installed.

For example: -DINTERACT_HOME=” D:\HCL_12.1.1\Interact”

com.unicacorp.interact.deliver.templateTimeout

Mapping for the outbound gateways can be defined in the Gateway tab under Interactive

channel. This property can be used if the user wants to continue using the property files

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 637

based mapping. If there are more than one gateway, user must add comma separated

gateway names.

For example: -DOUTBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES=Email

INBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES

Mapping for the outbound gateways can be defined in the Gateway tab under Interactive

channel. This property can be used if the user wants to continue using the property files

based mapping. f there are more than one gateway, user must add comma separated

gateway names.

For example: -DOUTBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES=Email

com.hcl.interact.http.proxyProtocol

This property can be used to specify the protocol to connect to the proxy server.

For example: -Dcom.hcl.interact.http.proxyProtocol=https

com.hcl.interact.http.proxyHost

This property can be used to specify the IP address of the proxy server.

For example: -Dcom.hcl.interact.http.proxyHost=<IP address of server>

com.hcl.interact.http.proxyPort

This property can be used to specify the listening port of the proxy server.

For example: -Dcom.hcl.interact.http.proxyPort=8080

com.hcl.interact.http.proxyUsername

This property can be used to specify the username to connect to proxy server. It is not used

if no authentication is required.

For example: -Dcom.hcl.interact.http.proxyUsername=<Username of proxy server>

com.hcl.interact.http.proxyPassword

This property can be used to specify the password to connect to proxy server. It is not used

if no authentication is required.

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 638

For example: -Dcom.hcl.interact.http.proxyPassword=<Password of proxy server>

interact.jmx.monitoring.port

This property is used to configure the JMX Monitoring port for Interact. User can also

configure this port in Unica Interact | monitoring | port under configuration.

For example -Dinteract.jmx.monitoring.port=<port number>

interact.runtime.instance.name

This property is used to define the runtime instance directory. It can be added to the web

application server startup script.

For example: -Dinteract.runtime.instance.name=instance2

interact.offerserving.maxOfferAllocationInMemoryPerInstance

This property is used to define the maximum size of the pool of offers that Unica Interact

can keep in memory. This can also be defined from runtime configuration Interact |

offerserving | Constraints | maxOfferAllocationInMemoryPerInstance.

For example: -Dinteract.offerserving.maxOfferAllocationInMemoryPerInstance =

100

interact.offerserving.maxDistributionPerIntervalPerInstanceFactor

This property is used to define the constraint percentage for a given offer

allocation to support the distribution across runtime servers. This can also

be defined from configuration Interact | offerserving | Constraints |

maxDistributionPerIntervalPerInstanceFactor. It can be between 0 and 100.

For example:

-Dinteract.offerserving.maxDistributionPerIntervalPerInstanceFactor=70

interact.ignitePort

This property is used to define the ignite port used for communication.

For example: -Dinteract.ignitePort=<valid Ignite Port>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 639

com.unicacorp.interact.chDupeCheckLimit

This property is used to define the maximum number of records to be held for enabling

duplicate checking of contacts.

For example: -Dcom.unicacorp.interact.chDupeCheckLimit=<max records>

com.unicacorp.interact.rhDupeCheckLimit

This property is used to define the maximum number of records to be held for enabling

duplicate checking of responses and cross-session responses.

For example: -Dcom.unicacorp.interact.rhDupeCheckLimit=<max records>

com.unicacorp.interact.chSuppressDupe

This property is used to enable suppression of duplicate contacts.

For example: -Dcom.unicacorp.interact.chSuppressDupe=<true | false>

com.unicacorp.interact.rhSuppressDupe

This property is used to enable suppression of duplicate responses and cross-session

responses.

For example: -Dcom.unicacorp.interact.rhSuppressDupe=<true | false>

com.unicacorp.interact.testclient.nullValue

The value defined in this property is treated as NULL when it is passed as a parameter in the

Interact API request.

For example: -Dcom.unicacorp.interact.testclient.nullValue=<parameter value>

interact.ehcache.config

This property defines the ehcache configuration file path. The reference is present in the

following location: $INTERACT_HOME/samples.

For example: Dinteract.ehcache.config=<configuration file path>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 640

interact.api.dateFormat

This property is used to specify the date format to be used for date type values. The default

format is “MM/dd/yyyy HH:mm:ss”.

For example: -Dinteract.api.dateFormat=<Date format>

com.hcl.interact.testrun.rowlimit

This property can be used to specify the number of records to perform test run on an

interactive flowchart.

For example: -Dcom.hcl.interact.testrun.rowlimit=<Number of rows>

Interact.DisableExceptionStackTracesInMacros

This property is used to specify whether exception is thrown while evaluating macros.

For example: -DInteract.DisableExceptionStackTraceInMacros=<true | false>

com.unicacorp.interact.enableDetailStats

This property is used to enable the performance and monitoring statistics for specific

beans.

For multiple beans, the names must be separated by commas.

For example: -Dcom.unicacorp.interact.enableDetailStats=<Bean name>

com.unica.interact.deployment.timeoutInSecs

This property is used to specify the deployment timeout in secs. The default value is 180

seconds.

For example: -Dcom.unica.interact.deployment.timeoutInSecs=180

com.ibm.interact.instance.name

This property is used to specify the Interact runtime instance name.

For example: -Dcom.ibm.interact.instance.name=<instance name>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 641

com.unicacorp.interact.invalidPaths

This property can be used to specify the invalid paths to load external files. The files from

these paths are not picked for processing. Multiple paths can be provided separated by

commas.

For example: -Dcom.unicacorp.interact.invalidPaths=<File path>

interact.XSessResponseConsumerManager.generateOnlyOneResponse

This property, when set to true, processes only a single record for xsession data.

For example:

-Dinteract.XSessResponseConsumerManager.generateOnlyOneResponse=<true|false>

tryToPreserveInexactFloatValues

This property can be used for preserving original custom numeric offer attribute value.

This parameter can be enabled if the getOffers call does not accurately display numeric

offer attributes value specified as decimals.

For example: -DtryToPreserveInexactFloatValues=<true | false>

com.unicacorp.interact.propertyRefreshInterval

This property can be used to specify the time (in seconds) for property files refresh.

The default value is 60 seconds.

For example: -Dcom.unicacorp.interact.propertyRefreshInterval=<duration in

seconds>

com.unicacorp.interact.scheduledTasksProcessInterval

This property can be used to specify the sleep time (in milliseconds) for scheduled

processing of event and event pattern actions.

The default value is 60 seconds.

For example: -Dcom.unicacorp.scheduledTasksProcessInterval=<duration in

milliseconds>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 642

com.unicacorp.interact.eventpatterns.parallelism

This property specifies the number of parallel executions for event pattern processing. The

default value is 5

For example: -Dcom.unicacorp.interact.eventpatterns.parallelism=<parallelism>

com.unicacorp.interact.eventpatterns.restartRetries

This property specifies the number of retry attempts made by the job for event pattern

processing.The default value is 5.

For example: -Dcom.unicacorp.interact.eventpatterns.restartRetries=<Number of

retries>

com.unicacorp.interact.eventpatterns.evaluateTimeoutMilli

This property specifies the timeout in milliseconds for event pattern processing. The default

value is 1 second.

For example:

-Dcom.unicacorp.interact.eventpatterns.evaluateTimeoutMilli=<timeout in

millis>

com.unicacorp.interact.eventpatterns.restartRetryDelayInSec

This property specifies the duration (in seconds) between each retry while processing event

patterns. The default value is 5 seconds

For example: -Dcom.unicacorp.interact.eventpatterns.restartRetryDelayInSec

=<delay in sec

Interact.advisoryMessageEncodingOverrides

This property allows the encoding of the given locale in Western instead of Unicode. This

parameter can be used in case message strings of certain locales (like Japanese) are not

properly displayed due to incorrect encoding.

For example: -DInteract.advisoryMessageEncodingOverrides=ja

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 643

com.unica.interact.api.insertSessionIDAsCooki

This property is used to place the sessionID as a cookie for API calls. By default, the

sessionID is placed into the http header.

For example: -Dcom.unica.interact.api.insertSessionIDAsCookie =<true | false>

com.unica.interact.api.SessionIDCookieName

This property is used to provide the name of the cookie which stores the sessionID. This

cookie is sent to all APIs which takes sessionID as argument.

For example: -Dcom.unica.interact.api.SessionIDCookieName =<Name of the cookie>

InteractMsgCode

This property can be used to override the status code returned by the

API for a particular advisory message code. Each value is of the format

"<api_call>,<message_code>,<status_code>" separated by semicolons.

For example: -DInteractMsgCode=postEvent,18,2

com.ibm.interact.triggeredmessage.enableJMSConsumer

This property can be used to enable the JMS consumer for triggered messages.

For example: -Dcom.ibm.interact.triggeredmessage.enableJMSConsumer=<true |

false>

com.unicacorp.interact.maxStringLengthInFormatMacro

This property can be used in FORMAT macro to override the maximum width for Text type

input. Default value of this parameter is 255.

For example: -Dcom.unicacorp.interact.maxStringLengthInFormatMacro=300

ContinueEvaluatingBranchAndAdvOptTreatmentLogicDespiteExMessageList

This allows a user to specify a list of exception messages separated by the caret character

(ˆ) without spaces. If any exception containing part of any of the messages specified is

encountered in the evaluation of a decision process box or treatment advanced options

expression, the exception is not thrown and other branches continue to be processed.

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 644

For example:-

DcontinueEvaluatingBranchAndAdvOptTreatmentLogicDespiteExMessageList

=no˜value˜set˜;index˜out˜of˜bounds;value˜is˜null

Note: Spaces in the message must be specified with tilde characters. Semicolons

separate each message snippet to match.

DisableDecisionProcessBoxAndAdvOptTreatmentLogging

This parameter allows the user to disable all error logging in the DecisionProcessBox class

and the TreatmentManager.filterRecommendList method.

For example: -DDisableDecisionProcessBoxAndAdvOptTreatmentLogging=<true |

false>

TwoDigitYearStartDate

This parameter allows the user to set the range for interpreting two digit years. The default

value is 1/1/1920, which means that dates after 1920 and before 2019 will be interpreted

correctly.

For example: -DTwoDigitYearStartDate=”1/1/1920”

Interact.enableTwoDigitYearFix

This parameter allows the user to enable 4-digit year processing for dates. This can be used

if DATE macro is evaluating year values incorrectly.

For example: -DInteract.enableTwoDigitYearFix =<true | false>

com.ibm.interact.evpatetl.conf

This property defines the path of the configuration file for running Pattern State ETL

For example: -Dcom.ibm.interact.evpatetl.conf=<ETL config file path>

com.unicacorp.interact.minTreatmentsPerThread

This property defines the minimum number of treatment rules to process per thread. The

default value is 10.

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 645

For example: -Dcom.unicacorp.interact.minTreatmentsPerThread=<Number of

treatments>

com.unicacorp.interact.maxTreatmentPoolSize

This property defines the maximum treatment thread pool size.

For example: -Dcom.unicacorp.interact.maxTreatmentPoolSize =<Number of threads>

CircuitBreaker.processTimeoutMillis

This property defines the timeout in milliseconds for communication through gateways.

For example: -DCircuitBreaker.processTimeoutMillis=<timeout in milliseconds>

com.unicacorp.interact.event.asyncTimeoutMSec

This property defines the timeout in milliseconds for asynchronous handling of events. The

default value is 1 second.

For example: -Dcom.unicacorp.interact.event.asyncTimeoutMSec=<timeout in

milliseconds>

com.unicacorp.interact.eventActionTimeout

This property defines the timeout in milliseconds for processing event actions. The default

value is 10 seconds.

For example: -Dcom.unicacorp.interact.eventActionTimeout=<timeout in

milliseconds>

Interact.HTMI.Enabled

This property helps the user to enable performance APIs for monitoring each client API

thread. This helps to find the root cause in case of unusual transaction times.

For example: -DInteract.HTMI.Enabled=<true | false>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 646

Interact.HTMI.MaxRequestDurationInMs

This property can be defined by the user to set the time (in milliseconds) exceeding which

the request timestamp and information is logged to LOG4J by the Performance API. The

default value is 1.5 seconds.

For example: -DInteract.HTMI.MaxRequestDurationInMs =<time in milliseconds>

Interact.HTMI.RecordIndividualAPIs

This property, when enabled logs individual APIs (within batch requests) that take longer

than the specified duration of time. The default value is false.

For example: -DInteract.HTMI.RecordIndividualAPIs=<true | false>

Interact.HTMI.MaxStartSessionDurationInMs

This property defines the maximum duration (in milliseconds) exceeding which the

StartSession API information is logged by the Performance API. The default value is 300

milliseconds.

For example: -DInteract.HTMI.MaxStartSessionDurationInMs=<time in milliseconds>

Interact.HTMI.MaxGetOffersDurationInMs

This property defines the maximum duration (in milliseconds) exceeding which the

GetOffers API information is logged by the Performance API. The default value is 750

milliseconds.

For example: -DInteract.HTMI.MaxGetOffersDurationInMs=<time in milliseconds>

Interact.HTMI.MaxPostEventDurationInMs

This property defines the maximum duration (in milliseconds) exceeding which the

PostEvent API information is logged by the Performance API. The default value is 750

milliseconds.

For example: -DInteract.HTMI.MaxPostEventDurationInMs=<time in milliseconds>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 647

Interact.HTMI.MaxGetProfileDurationInMs

This property defines the maximum duration (in milliseconds) exceeding which the

GetProfile API information is logged by the Performance API. The default value is 300

milliseconds.

For example: -DInteract.HTMI.MaxGetProfileDurationInMs=<time in milliseconds>

Interact.HTMI.LogErrorsEveryNthTime

This property can be used to define N after which the errors or exceptions generated by

performance API are logged.

For example: -DInteract.HTMI.LogErrorsEveryNthTime =<N>

Interact.HTMI.UseMillisecondTimers

This property can be set to enable timer in milliseconds internally for performance API.

This can be used for some Windows servers, where timer in milliseconds is faster than

nanoseconds.

For example: -DInteract.HTMI.UseMillisecondTimers =<true | false>

Interact.HTMI.Debug

This property can be set to enable maximum debugging for internal HTMI issues.

For example: -DInteract.HTMI.Debug =<true | false>

com.unicacorp.interact.suppressWarningOnAnonymousUser

This property can be used to suppress the warnings when audience ID is not found in profile

table.

For example: -Dcom.unicacorp.interact.suppressWarningOnAnonymousUser=<true |

false>

com.hcl.interact.eventpatterns.printPatternAction

This property can be set to enable logging when the pattern states for an audience ID are

written to Interact cache.

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 648

For example: -Dcom.hcl.interact.eventpatterns.printPatternAction =<true |

false>

com.hcl.interact.eventpatterns.eagerPersist

This property, when enabled, eagerly writes the changed event pattern details to Interact

cache.

For example: -Dcom.hcl.interact.eventpatterns.eagerPersist =<true | false>

com.ibm.interact.triggeredmessage.addPerfData

This property is used to enable the performance metrics for triggered messages.

For example: -Dcom.ibm.interact.triggeredmessage.addPerfData=<true | false>

com.unicacorp.interact.learning.disableAggregator

This property is used to disable the learning aggregation of offer stats.

For example: -Dcom.unicacorp.interact.learning.disableAggregator =<true |

false>

com.unicacorp.interact.learning.disableDeletion

This property is used to enable or disable the cleanup for learning tables.

For example: -Dcom.unicacorp.interact.learning.disableDeletion=<true | false>

com.unicacorp.interact.learning.ignoreInterval

This property when set is used to force the aggregation of learning data.

For example: -Dcom.unicacorp.interact.learning.ignoreInterval=<true | false>

interact.services.loader.saveLoaderFiles

This property is used to save the loader files after loading the data using external loader.

The default value is false

For example: -Dinteract.services.loader.saveLoaderFiles=<true | false>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 649

ConvertEveryNULLAttributeValueToAJEPNullConstant

This property is used to specify whether to use a special value when the variable value is

null while evaluating an expression. The default value is false.

For example: -DConvertEveryNULLAttributeToAJEPNullConstant=<true | false>

includeJoinInfo

This parameter is used to specify whether to keep the relationship between the join key and

the values in the dimensional tables while loading profile data. The default value is true.

For example: -DincludeJoinInfo=<true | false>

com.unicacorp.interact.deployment.reloadTimeout

The maximum time Interact waits for a new deployment to be reloaded. It is used only when

automatic deployment reload notification is used. The default value is 5000.

For example: -Dcom.unicacorp.interact.deployment.reloadTimeou=<timeout in

milliseconds>

com.ibm.interact.lockTimeWarningThreshold

This property is used to log a warning if the processing of a session took more than this

value. The default value is 5000.

For example: -Dcom.ibm.interact.lockTimeWarningThreshold =<time in

milliseconds>

com.unicacorp.interact.cache.maxWaitTime

This property is used to specify the maximum time process waits to get a lock. The default

value is 2000 milliseconds.

For example: -Dcom.unicacorp.interact.cache.maxWaitTime =<time in milliseconds>

DEFAULT_PERSISTENCE_PROVIDER

This property is used to override the PersistenceProvider for WAS 8.5.5.x. The default value

is true which uses AppServer specified provider.

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 650

If IBM WebSphere is used as the application server hosting Interact run time instance,

ensure that you set this parameter to false.

For example: -DDEFAULT_PERSISTENCE_PROVIDER =<true | false>

com.unicacorp.interact.triggeredMessage.logging.maxDelayInMin

Thread interval for persisting log data into the database table.

Default value: 15 minutes

For example:

-Dcom.unicacorp.interact.triggeredMessage.logging.maxDelayInMin=<time-in-min>

com.unicacorp.interact.triggeredMessage.logging.maxBatchSize

Maximum batch size to maintain in queue.

Default value: 1000

For example: -Dcom.unicacorp.interact.triggeredMessage.logging.maxBatchSize

=<positive-number>

com.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures

Maximum retries if operation fails

Default value: 3

For example:

-Dcom.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures

=<positive-number>

com.unicacorp.interact.triggeredMessage.logging.maxDelayInMin

Thread interval for persisting log data into the database table.

Default value: 15 minutes

For example:

-Dcom.unicacorp.interact.triggeredMessage.logging.maxDelayInMin=<time-in-min>

Unica Interact V12.1.3 Administrator's Guide | 18 - JVM parameters | 651

com.unicacorp.interact.triggeredMessage.logging.maxBatchSize

Maximum batch size to maintain in queue.

Default value: 1000

For example: -Dcom.unicacorp.interact.triggeredMessage.logging.maxBatchSize

=<positive-number>

com.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures

Maximum retries if operation fails.

Default value: 3

For example:

-Dcom.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures

=<positive-number>

Chapter 19. Unica Interact and Digital
Recommendations integration
Unica Interact can integrate with IBM Digital Recommendations to provide Unica Interact-

driven product recommendations. Both products can provide product recommendations

for offers, but using different methods. Digital Recommendations uses a visitor's web

behavior (collaborative filter) to build correlations between visitors and recommended

offers. Unica Interact is based on customer's past behavior, attributes, history, and less on

view-level offers, learning which offers best match a customer's behavior profile (based

on demographics and other information about the customer). Offer acceptance rates help

to build a predictive model through self-learning. Using the best of both products, Unica

Interact can use a personal profile to define offers that will pass a category ID to Digital

Recommendations and retrieve recommended products based on popularity (the "wisdom

of the crowds") for display to the visitor as part of the selected offers. This can provide

better recommendations for customers that will result in more click-throughs and better

outcomes than either product acting alone.

The following sections describe how this integration works, and how to use the sample

application provided to create your own custom offer integration.

Overview of Unica Interact integration with Digital
Recommendations
This section describes how Unica Interact can integrate with IBM Digital Recommendations

to provide Unica Interact-driven product recommendations, including a description of the

process, and the mechanisms by which the integration takes place.

Unica Interact integrates with IBM Digital Recommendations via a Representational

state transfer (REST) application programming interface (API), made available from the

Digital Recommendations installation. By making the REST API calls with the appropriate

category ID, Unica Interact can retrieve recommended products and include them in the

offer information displayed on the customized page that the visitor is viewing.

When a visitor views the URL of the web page (such as the sample JSP page included with

your Unica Interact installation), the page calls Unica Interact to fetch an offer. Assuming

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 653

the offer has been configured within Unica Interact with the correct parameters, the

following steps occur, in the simplest case:

1. The page logic identifies the Customer ID of the visitor.

2. An API call to Unica Interact is made, passing in the required information to generate

an offer for that customer.

3. The returned offer provides the web page with at least three attributes: the URL for the

offer image, the URL of the landing page when the customer clicks through, and the

category ID to use for determining which products to recommend.

4. The category ID is then used to call Digital Recommendations to retrieve the

recommended products. This set of products is in JSON (JavaScript Object Notation)

format in order by top-selling products in that category.

5. The offer and products are then displayed in the visitor's browser.

This integration is useful for combining offer recommendation and product

recommendations together. For example, on one web page you might have two interaction

points: one for an offer, and one for recommendations matching that offer. To accomplish

this, the web page makes a call to Unica Interact to make a real-time segmentation to

determine best offer (say, for 10% off all small appliances). When the page receives the

offer from Unica Interact, that offer would contain the category ID (in this example, for

small appliances). The page would then pass the category ID for small appliances to

Digital Recommendations using an API call, and receive in response the best product

recommendations for that category based on popularity.

A simpler example might be where a web page makes a call to Unica Interact from only

to find out a category (say, high-end cutlery) that matches the customer profile. It would

then pass the received category ID to Digital Recommendations, and get cutlery product

recommendations.

Integration Prerequisites
Before you can use the Digital Recommendations - Unica Interact integration, you must

make sure that you meet the prerequisites described in this section.

Be sure that the following prerequisites are true:

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 654

• You are familiar with the use of the Unica Interact API as documented elsewhere in

Administrator's Guide and online help.

• You are familiar with the Digital Recommendations REST API as described in your

Digital Recommendations developer documentation.

• You have a basic understanding of HTML, JavaScript™, CSS, and JSON (JavaScript™

Object Notation).

JSON is important because the Digital Recommendations REST API returns the

product information you request in as JSON-formatted data.

• You are familiar with server-side coding of web pages, because the demonstration

application provided with Unica Interact uses JSP (although JSP is not required).

• You have a valid Digital Recommendations account and the list of category IDs you

plan to have Unica Interact to retrieve product recommendations (the top-selling or

most popular products in the category you specify).

• You have the Digital Recommendations REST API link (a URL for your Digital

Recommendations environment).

See the sample application included with yourUnica Interact installation for an

example, or see the sample code in Using the Integration Sample Project (on page

656) for more information.

Configuring an offer for Digital Recommendations
integration
Before your web page can call Digital Analytics Digital Recommendations to retrieve a

recommended product, you must first configure the Unica Interact offer with the necessary

information to pass to Digital Recommendations.

To set up an offer to link to Digital Recommendations, make sure the following conditions

are in place first:

• Make sure that your Unica Interact runtime server is set up and running correctly.

• Ensure that the runtime server can establish a connection with the Digital

Recommendations server, including making sure that your firewall does not prevent

the outgoing establishment of a standard web connection (port 80).

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 655

To set up an offer for integration with Digital Recommendations, perform the following

steps.

1. Create or edit an offer for Unica Interact.

For information on creating and modifying offers, see the Unica Interact User's Guide,

and the Unica Campaign documentation.

2. In addition to the other settings in the offer, make sure that the offer includes the

following offer attributes:

• The URL (uniform resource locator) that links to the image for the offer.

• The URL that links to the landing page for the offer.

• An Digital Recommendations category ID associated with this offer.

You can retrieve the category ID manually from your Digital Recommendations

configuration. Unica Interact cannot retrieve category ID values directly.

In the demonstration web application included with your Unica Interact installation,

these offer attributes are called ImageURL, ClickThruURL, and CategoryID. The names

can be any that are meaningful to you, as long as your web application matches the

values that the offer is expecting.

For example, you might define an offer called "10PercentOff" that contains these

attributes, where the Category ID (as retrieved from your Digital Recommendations

configuration) is PROD1161127, the URL of the offer click-through is http://

www.example.com/success, and the URL of the image to display for the offer is

http://localhost:7001/sampleIO/img/10PercentOffer.jpg (a URL that

is, in this case, local to the Unica Interact runtime server).

3. Define the treatment rules for an interactive channel to include this offer, and deploy

the interactive channel as usual.

The offer is now defined with the information required for Digital Recommendations

integration. The remaining work to allow Digital Recommendations to provide product

recommendations to Unica Interact is accomplished by configuring your web pages to make

the appropriate API calls.

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 656

When you configure your web application to serve the integrated page to visitors, make sure

that the following files are included in the WEB-INF/lib directory:

• Interact_Home/lib/interact_client.jar, required to handle calls from your

web page to the Unica Interact API.

• Interact_Home/lib/JSON4J_Apache.jar, required to handle the data returned

from the call to the Digital Recommendations REST API, which returns JSON-

formatted data.

See Using the Integration Sample Project (on page 656) for more information on how to

serve the offers to your customers.

Using the Integration Sample Project
Every Unica Interact run time installation includes a sample project that demonstrates

the Digital Recommendations - Unica Interact integration process. The sample project

provides a complete, end-to-end demonstration of creating a web page that calls an offer

that contains a category ID, which is then passed to Digital Recommendations to retrieve a

recommended product list for presentation in the interaction points of the page.

Overview

You can use the included sample project as it is provided, if you want to test the integration

process, or you can use it as a starting point to develop your own custom pages. The

sample project is found in the following file:

Interact_home/samples/IntelligentOfferIntegration/MySampleStore.jsp

This file, in addition to containing a full, working example of the integration process,

also contains extensive comments that explain what to set up in Unica Interact, what to

customize in the .jsp file, and how to deploy the page properly to run with your installation.

MySampleStore.jsp
For convenience, the MySampleStore.jsp file is shown here. This sample may be updated

with subsequent releases of Unica Interact, so use the file included with your installation as

a starting point for any examples you need.

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 657

<%@ page contentType="text/html; charset=UTF-8" language="java" %>

<%@ page import="java.net.URL,

 java.net.URLConnection,

 java.io.InputStreamReader,

 java.io.BufferedReader,

 com.unicacorp.interact.api.*,

 com.unicacorp.interact.api.jsoverhttp.*,

 org.apache.commons.json.JSONObject,

 org.apache.commons.json.JSONArray" %>

<%

 /

 * This sample jsp program demonstrates integration of Interact and Digital

 Recommendations.

 *

 * When the URL for this jsp is accessed via a browser. the logic will call

 Interact

 * to fetch an Offer. Based on the categoryID associated to the offer, the

 logic

 * will call Digital Recommendations to fetch recommended products. The

 offer and products

 * will be displayed.

 * To toggle the customerId in order to demonstrate different offers, one

 can simply

 * append cid=<id> to the URL of this JSP.

 *

 * Prerequisites to understand this demo:

 * 1) familiarity of Interact and its java API

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 658

 * 2) familiarity of IntelligentOffer and its RestAPI

 * 3) some basic web background (html, css, javascript) to mark up a web

 page

 * 4) Technology used to generate a web page (for this demo, we use JSP

 executed on the server side)

 *

 *

 * Steps to get this demo to work:

 * 1) set up an Interact runtime environment that can serve up offers with

 the following

 * offer attributes:

 * ImageURL : url that links to the image of the offer

 * ClickThruURL : url that links to the landing page of the offer

 * CategoryID : Digital Recommendations category id associated to the

 offer

 * NOTE: alternate names for the attributes may be used as long as the

 references to those

 * attributes in this jsp are modified to match.

 * 2) Obtain a valid REST API URL to the Intelligent Offer environment

 * 3) Embed this JSP within a Java web application

 * 4) Make sure interact_client.jar is in the WEB-INF/lib directory

 (communication with Interact)

 * 5) Make sure JSON4J_Apache.jar (from interact install) is in the

 * WEB-INF/lib directory (communication with IO)

 * 6) set the environment specific properties in the next two sections

 **

********/

 /

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 659

 * *****************CHANGE THESE SETTINGS TO REFLECT YOUR

 ENV********************

 * Set your Interact environment specific properties here...

 **

********/

 final String sessionId="123";

 final String interactiveChannel = "SampleIO";

 final String audienceLevel = "Customer";

 final String audienceColumnName="CustomerID";

 final String ip="ip1";

 int customerId=1;

 final String

 interactURL="http://localhost:7011/interact/servlet/InteractJSService";

 final boolean debug=true;

 final boolean relyOnExistingSession=true;

 /

 *****************CHANGE THESE SETTINGS TO REFLECT YOUR

 ENV********************

 * Set your Digital Recommendations environment specific properties here...

 **

********/

 final String ioURL="http://recs.coremetrics.com/iorequest/restapi";

 final String zoneID="ProdRZ1";

 final String cID="90007517";

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 660

 /

 **

******/

 StringBuilder interactErrorMsg = new StringBuilder();

 StringBuilder intelligentOfferErrorMsg = new StringBuilder();

 // get the customerID if passed in as a parameter

 String cid = request.getParameter("cid");

 if(cid != null)

 {

 customerId = Integer.parseInt(cid);

 }

 // call Interact to get offer

 Offer

 offer=getInteractOffer(interactURL,sessionId,interactiveChannel,audienceLe

vel,

 audienceColumnName,ip,customerId,debug,relyOnExistingSession,interactError

Msg);

 // get specific attributes from the offer (img url, clickthru url, &

 category id)

 String offerImgURL=null;

 String offerClickThru=null;

 String categoryId="";

 if(offer != null)

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 661

 {

 for(NameValuePair offerAttribute : offer.getAdditionalAttributes())

 {

 if(offerAttribute.getName().equalsIgnoreCase("ImageURL"))

 {

 offerImgURL=offerAttribute.getValueAsString();

 }

 else if(offerAttribute.getName().equalsIgnoreCase("ClickThruURL"))

 {

 offerClickThru=offerAttribute.getValueAsString();

 }

 else if(offerAttribute.getName().equalsIgnoreCase("CategoryID"))

 {

 categoryId=offerAttribute.getValueAsString();

 }

 }

 }

 // call Digital Recommendations to get products

 JSONObject products=getProductsFromIntelligentOffer(ioURL, cID, zoneID,

 categoryId,

 intelligentOfferErrorMsg);

%>

<html>

 <head>

 <title>My Favorite Store</title>

 <script language="javascript" type="text/javascript">

 var unicacarousel=(function(){var g=false;var h;var j=0;var k=0;var

 l=0;var m=40;

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 662

 var n=new Array(0,2,6,20,40,60,80,88,94,97,99,100);var

 o=function(a){var b=a.parentNode;

 h=b.getElementsByTagName("UL")[0];var

 c=h.getElementsByTagName("LI");j=c[0].offsetWidth;

 k=c.length;l=Math.round((b.offsetWidth/j));unicacarousel.recenter()};var

 p=function(a)

 {var b=parseFloat(h.style.left);if(isNaN(b))b=0;for(var

 i=0;i<n.length;i++)

 {setTimeout("unicacarousel.updateposition("+(b+(a*(n[i]/100)))+");",((i*m)

+50))}

 setTimeout("unicacarousel.recenter();",((i*m)+50))};return{gotonext:functi

on(a,b)

 {if(!g){o(a);g=true;p((-1*b*j))}},gotoprev:function(a,b){if(!g){o(a);g=tru

e;p((b*j))}},

 updateposition:function(a){h.style.left=a+"px"},recenter:function(){var

 a=parseFloat(h.style.left);

 if(isNaN(a))a=0;var b=j*Math.round(((l-k)/2));var

 c=Math.abs(Math.round((b-a)/j));

 if(a<b){var d=h.getElementsByTagName("LI");var e=new Array();

 for(var i=0;i<c;i++){e[e.length]=d[i]}for(var i=0;i<e.length;i++)

 {h.insertBefore(e[i],null)}unicacarousel.updateposition(b)}else

 if(a>b){var d=h.getElementsByTagName("LI");var e=new Array();

 for(var i=0;i<c;i++){e[e.length]=d[d.length-c+i]}var f=d[0];

 for(var

 i=0;i<e.length;i+

+){h.insertBefore(e[i],f)}unicacarousel.updateposition(b)}g=false}}})();

 </script>

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 663

 <style type="text/css">

 .unicaofferblock_container {width:250px; position:relative;

 display:block;

 text-decoration:none; color:#000000; cursor:

 pointer;}

 .unicaofferblock_container .unicateaserimage {margin:0px 0.5em 0.25em 0px;

 float:left;}

 .unicaofferblock_container .unicabackgroundimage {position:absolute;

 top:0px; left:0px;}

 .unicaofferblock_container .unicabackgroundimagecontent {width:360px;

 height:108px;

 padding:58px 4px 4px 20px; position:relative;

 top:0px;}

 .unicaofferblock_container h4 {margin:0px; padding:0px; font-size:14px;}

 .unicacarousel {width:588px; position:relative; top:0px;}

 .unicacarousel_sizer {width:522px; height:349px; margin:0px 33px;

 padding:0;

 overflow:hidden; position:relative;}

 .unicacarousel_rotater {height:348px; width:1000px; margin:0 !important;

 padding:0; list-style:none; position:absolute;

 top:0px;

 left:0px;}

 .unicacarousel li {width:167px; height:349px; float:left; padding:0 4px;

 margin:0px !important; list-style:none !important;

 text-indent:0px !important;}

 .unicacarousel_gotoprev, .unicacarousel_gotonext {width:18px;

 height:61px;

 top:43px; background:url(../img/carouselarrows.png)

 no-repeat;

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 664

 position:absolute; z-index:2; text-align:center;

 cursor:pointer;

 display:block; overflow:hidden; text-indent:-9999px;

 font-size:0px; margin:0px !important;}

 .unicacarousel_gotoprev {background-position:0px 0; left:0;}

 .unicacarousel_gotonext {background-position:-18px 0; right:0;}

 </style>

 </head>

 <body>

 Welcome To My Store Mr/Mrs. <%=customerId %>

<% if(offer != null) { %>

 <!-- Interact Offer HTML -->

 <div onclick="location.href='<%=offerClickThru %>'"

 class="unicaofferblock_container">

 <div class="unicabackgroundimage">

 <a href="<%=offerClickThru %>"><img src="<%=offerImgURL %>"

 height="170"

 width="695" border="0">

 </div>

 </div>

<% } else { %>

 No offer available..

 <%=interactErrorMsg.toString() %>

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 665

<% } %>

<% if(products != null) { %>

 <!-- IntelligentOffer Products HTML -->

 <div class="unicacarousel">

 <div class="unicacarousel_sizer">

 <ul class="unicacarousel_rotater">

 <% JSONArray recs = products.getJSONObject("io").getJSONArray("recs");

 if(recs != null)

 {

 for(int x=0;x< recs.length();x++)

 {

 JSONObject rec = recs.getJSONObject(x);

 if(rec.getString("Product Page") != null &&

 rec.getString("Product Page").trim().length()>0) {

 %>

 <a href="<%=rec.getString("Product Page") %>"

 title="<%=rec.getString("Product Name") %>">

 <img src="<%=rec.getString("Image") %>" width="166"

 height="148" border="0" />

 <%=rec.getString("Product Name") %>

 <% }

 }

 }

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 666

 %>

 </div>

 <p class="unicacarousel_gotoprev"

 onclick="unicacarousel.gotoprev(this,1);"></p>

 <p class="unicacarousel_gotonext"

 onclick="unicacarousel.gotonext(this,1);"></p>

</div>

<% } else { %>

 <div>

 No products available...

 <%=intelligentOfferErrorMsg.toString() %>

 </div>

<% } %>

 </body>

</html>

<%!

 /

 * The following are convenience functions that will fetch from Interact

 and

 * Digital Recommendations

 **

********/

 /

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 667

 * Call Digital Recommendations to retrieve recommended products

 **

********/

 private JSONObject getProductsFromIntelligentOffer(String ioURL, String

 cID,

 String zoneID, String categoryID, StringBuilder

 intelligentOfferErrorMsg)

 {

 try

 {

 ioURL += "?cm_cid="+cID+"&cm_zoneid="+zoneID+"&cm_targetid="+categoryID;

 System.out.println("CoreMetrics URL:"+ioURL);

 URL url = new java.net.URL(ioURL);

 URLConnection conn = url.openConnection();

 InputStreamReader inReader = new

 InputStreamReader(conn.getInputStream());

 BufferedReader in = new BufferedReader(inReader);

 StringBuilder response = new StringBuilder();

 while(in.ready())

 {

 response.append(in.readLine());

 }

 in.close();

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 668

 intelligentOfferErrorMsg.append(response.toString());

 System.out.println("CoreMetrics:"+response.toString());

 if(response.length()==0)

 return null;

 return new JSONObject(response.toString());

 }

 catch(Exception e)

 {

 intelligentOfferErrorMsg.append(e.getMessage());

 e.printStackTrace();

 }

 return null;

 }

 /

 * Call Interact to retrieve offer

 **

********/

 private Offer getInteractOffer(String interactURL,String sessionId,String

 interactiveChannel,

 String audienceLevel,

 String audienceColumnName,String ip, int customerId,boolean debug,

 boolean relyOnExistingSession, StringBuilder

 interactErrorMsg)

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 669

 {

 try

 {

 InteractAPI api = InteractAPI.getInstance(interactURL);

 NameValuePairImpl custId = new NameValuePairImpl();

 custId.setName(audienceColumnName);

 custId.setValueAsNumeric(Double.valueOf(customerId));

 custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

 NameValuePairImpl[] audienceId = { custId };

 // call startSession

 Response response = api.startSession(sessionId,

 relyOnExistingSession,

 debug, interactiveChannel, audienceId, audienceLevel, null);

 if(response.getStatusCode() == Response.STATUS_ERROR)

 {

 printDetailMessageOfWarningOrError("startSession",response,

 interactErrorMsg);

 }

 // call getOffers

 response = api.getOffers(sessionId, ip, 1);

 if(response == null || response.getStatusCode() ==

 Response.STATUS_ERROR)

 {

 printDetailMessageOfWarningOrError("getOffers",response,

 interactErrorMsg);

 }

 OfferList offerList=response.getOfferList();

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 670

 if(offerList != null && offerList.getRecommendedOffers() !=

 null)

 {

 return offerList.getRecommendedOffers()[0];

 }

 }

 catch(Exception e)

 {

 interactErrorMsg.append(e.getMessage());

 e.printStackTrace();

 }

 return null;

 }

 private void printDetailMessageOfWarningOrError(String command,

 Response response,

 StringBuilder interactErrorMsg)

 {

 StringBuilder sb = new StringBuilder();

 sb.append("Calling "+command).append("
");

 AdvisoryMessage[] messages = response.getAdvisoryMessages();

 for(AdvisoryMessage msg : messages)

 {

 sb.append(msg.getMessage()).append(":");

 sb.append(msg.getDetailMessage());

 sb.append("
");

 }

 interactErrorMsg.append(sb.toString());

 }

%>

Unica Interact V12.1.3 Administrator's Guide | 19 - Unica Interact and Digital Recommendations integration | 671

Chapter 20. Unica Interact and Digital Data
Exchange integration
With Digital Data Exchange, your website can link to Unica Interact to provide a powerful

omni-channel execution engine that delivers the best offers to the optimum channels and

evolves (learns) from the offer feedback to continuously increase marketing effectiveness.

You can use this tool if your marketing team uses Unica Interact for omni-channel offer

management and wants to extend these personalized intelligent offers to your websites.

IBM Digital Data Exchange integrates and third party marketing solutions with digital

customer insights through a real-time data syndication API and an enterprise-grade tag

management solution.

Without IBM Digital Data Exchange, marketers depend on IT to link Unica Interact to their

website and call theUnica Interact API from various webpages. With IBM Digital Data

Exchange, marketers can bypass IT and go directly to IBM Digital Data Exchange to include

IBM Digital Data Exchange tags on various webpages.

Prerequisites
Before you can use the Unica Interact and Digital Data Exchange integration, you must make

sure that you meet the prerequisites described in this section.

Be sure that the following prerequisites are true.

• You are familiar with the Unica Interact JavaScript API as documented elsewhere in

Administrator's Guide and online help.

• You are familiar with the Digital Data Exchange tagging and page groups.

• You have a valid Digital Data Exchange account.

• Your interactapi.js file is publicly hosted so it can be accessed in Vendor

settings.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 673

Integrating Unica Interact with your website through
IBM Digital Data Exchange
Use these steps to integrate Unica Interact with your website through Digital Data Exchange.

1. Specify the location of the Interactapi.js file.

a. Navigate to Vendors > Vendor Settings in Digital Data Exchange.

b. Select Unica Interact from the Vendor drop-down.

c. In Library Path, enter the URL where you hosted the Interactapi.js. Do not

include the protocol (http or https) in this URL.

d. In Path To Public Rest Servlet, add the path to the Rest Servlet.

2. Navigate to Manage > Global Settings in Digital Data Exchange to specify the object

name to use as the page identifier in Unique Page Identifier. For example, you can set

the object name to digitalData.pageInstanceID.

3. Include the eluminate.js file and an identifier on the web page where you want

Digital Data Exchange to insert the tags. You should give each web page a unique

identifier so Digital Data Exchange can distinguish between various pages.

For example, you can add the following script to your home page.

<!-- Setting Page Identifier -->

 <script>

 digitalData={pageInstanceID:"INTERACT_HomePage"};

 </script>

<!-- Including eluminate script -->

 <script type="text/javascript" src="http://libs.

 coremetrics.com/eluminate.js">

 </script>

 <script type="text/javascript">

 cmSetClientID("51310000|INTERACTTEST",false,"data.

 coremetrics.com",document.domain);

 </script>

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 674

4. In Digital Data Exchange create tags, code segments, functions, and other items you

want to add to your web page.

5. Create page groups to define what you want filed on each page.

Unica Interact tags in Digital Data Exchange
Use the default Digital Data Exchange tags to define variations of the tags that are

appropriate to web pages where data is represented from different locations. Once defined,

these tags are added to the Unica Interact tag list. Tags may not have fields to define or may

not have required tag fields and can be used directly.

The following Unica Interact tags are available in Digital Data Exchange under Tags.

• End Session

• Get Offers

• Load Library

• Post Event

• Set Audience

• Start Session

To use the Unica Interact tags, edit the tags to define the Tag Field, Method, Object Name,

Data Type, and Modifier for each Unica Interact tag.

The Post Event, Set Audience, and Start Sessions tags accept custom tag fields. Use the

Tag Field Add icon, the click the Edit icon to define the custom parameter. The process is

the same as any parameter definition with the exception that the name of the parameter

can be edited and must include the parameter name, a colon, and the parameter data type.

Custom parameter order in the tag can be modified with the up and down arrows.

Tags can also be bound to JavaScript functions or HTML objects so that they fire after the

function fires or on an HTML object event.

End Session
The End Session tag marks the end of a web session.

The following tag fields are available for the End Session tag.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 675

Table 42. End Session tags

End Session tags

Tag Field Description

*Session ID Identifies the Session ID.

On Success Callback Function

Name

Defines the name of the function to be called

when the end session method is successful.

On Failure Callback Function

Name

Defines the name of the function to be called

when the end session method fails.

Any Tag Field marked with an * is required.

Get Offers
Use the Get Offers tag to request offers from the runtime server.

The following tag fields are available for the Get Offers tag.

Table 43. Get Offers tags

Get Offers tags

Tag Field Description

*Session ID Identifies the Session ID.

*Interact Point Name Identifies the name of the interaction point this

method references. This name must match the

name of the interaction point defined in interactive

channel exactly.

*Number Requested Identifies the number of offers requested.

On Success Callback Function

Name

Defines the name of the function to be called

when the get offers method is successful.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 676

Table 43. Get Offers tags

Get Offers tags

(continued)

Tag Field Description

On Failure Callback Function

Name

Defines the name of the function to be called

when the get offers method fails.

Any Tag Field marked with an * is required.

The Get Offers tag should be assigned to a page group whose container is set to Default.

Load Library
The Load Library tag loads the Unica Interact JavaScript library in the head section of the

page.

The Load Library tag has no parameters. It takes the library location from the Library Path

in Vendor Settings. It should be included in a page group using a container set to Head and

should run on every page that has Unica Interact tagging.

Important: None of the other tags will work if the load library tag is not included.

The interact.js is not loaded if this tag is not included.

Post Event
Use the Post Event tag to execute any event defined in the interactive channel.

The following tag fields are available for the Post Event tag.

Table 44. Post Event tags

Post Event tags

Tag Field Description

*Session ID Identifies the Session ID.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 677

Table 44. Post Event tags

Post Event tags

(continued)

Tag Field Description

*Event Name Identifies the name of the event. The name of the

event must match the name of the event as de

fined in the interactive channel. This name is case-

insensitive.

On Success Callback Function

Name

Defines the name of the function to be called

when the post event method is successful.

On Failure Callback Function

Name

Defines the name of the function to be called

when the post event method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag names

must consist of the parameter name, a colon, and the data type.

Set Audience
Use the Set Audience tag to set the audience ID and level for a visitor.

The following tag fields are available for the Set Audience tag.

Table 45. Set Audience tags

Set Audience tags

Tag Field Description

*Session ID Identifies the Session ID.

*Audience ID Identifies the Audience ID. The names must match

the physical column names of any table contain

ing the Audience ID. The Audience ID cannot con

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 678

Table 45. Set Audience tags

Set Audience tags

(continued)

Tag Field Description

tain more that 17 significant digits. If an Audience

ID is more than 17 significant digits must be par

titioned or the Audience ID must be changed to a

string.

*Audience Level Defines the Audience Level.

On Success Callback Function

Name

Defines the name of the function to be called

when the set audience method is successful.

On Failure Callback Function

Name

Defines the name of the function to be called

when the set audience method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag names

must consist of the parameter name, a colon, and the data type.

Start Session
The Start Session tag creates and defines a web session.

The following tag fields are available for the Start Session tag.

Table 46. Start Session tags

Start Session tags

Tag Field Description

*Session ID Identifies the Session ID.

*Interact Channel Defines the name of the interactive channel this

session refers to. This name must match the

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 679

Table 46. Start Session tags

Start Session tags

(continued)

Tag Field Description

name of the interactive channel defined in Cam

paign exactly.

*Audience ID Identifies the Audience ID. The names must match

the physical column names of any table contain

ing the Audience ID.

*Audience Level Defines the Audience Level.

*Rely on Existing Session Defines whether this session uses a new or an ex

isting session

*Debug Enables or disables debug information.

On Success Callback Function

Name

Defines the name of the function to be called

when the start session method is successful.

On Failure Callback Function

Name

Defines the name of the function to be called

when the start session method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag names

must consist of the parameter name, a colon, and the data type.

The Start Session tag should be assigned to a page group whose container is set to

Default.

Example tag settings
This example shows a simple configuration of the Start Session, Post Event, Get Offers, and

End Session tag settings.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 680

For any tag, you can get the tag field values from the cookie with the cookie method or from

the JavaScript object with the javascriptobject method.

These tags support additional parameters that this simple example does not show.

Example Start Session tag settings

Click Tags > IBM Tags > Interact > Type: Start Session to create a Start Session tag. Edit the

tag with the following settings.

Session ID settings

• Method: Constant

• Constant: 5555

• Data Type: String

• Modifier: <null>

Interactive Channel settings

• Method: Constant

• Constant: WSCDemo

• Data Type: String

• Modifier: <null>

Audience ID settings

• Method: Constant

• Constant: USERS_ID,2002,numeric

• Data Type: String

• Modifier: <null>

Audience Level settings

• Method: Constant

• Constant: WSCUserId

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 681

• Data Type: String

• Modifier: <null>

Rely On Existing Session settings

• Method: Constant

• Constant: False

• Data Type: Boolean

• Modifier: <null>

Debug

• Method: Constant

• Constant: True

• Data Type: Boolean

• Modifier: <null>

On Success Callback Function Name settings

• Method: Unassigned

• Value: <null>

On Failure Callback Function Name settings

• Method: Unassigned

• Value:<null>

Example Get Offers tag settings

Click Tags > IBM Tags > Interact > Type: Get Offers to create a Get Offers tag. Edit the tag

with the following settings.

Session ID settings

• Method: Constant

• Constant: 5555

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 682

• Data Type: String

• Modifier: <null>

Interact Point Name settings

• Method: Constant

• Constant: AuroraHomepageHeaderBannerLeft

• Data Type: String

• Modifier: <null>

Number Requested settings

• Method: Constant

• Constant: 1

• Data Type: integer

• Modifier: <null>

On Success Callback Function Name settings

• Method: Constant

• Constant: onOfferReturnSuccess

• Data Type: string

• Modifier: <null>

On Failure Callback Function Name settings

• Method: Constant

• Constant: onOfferReturnError

• Data Type: string

• Modifier: <null>

Example Post Event tag settings

Click Tags > IBM Tags > Interact > Type: Post Event to create a Post Event tag. Edit the tag

with the following settings.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 683

Session ID settings

• Method: Constant

• Constant: 5555

• Data Type: String

• Modifier: <null>

Event Name settings

• Method: Constant

• Constant: ACCEPTOFFER

• Data Type: String

• Modifier: <null>

On Success Callback Function Name settings

• Method: Constant

• Constant: onSuccessTestFunction

• Data Type: String

• Modifier: <null>

On Failure Callback Function Name settings

• Method: Constant

• Constant: onErrorTestFunction

• Data Type: String

• Modifier: <null>

Additional parameter field settings

• Tag Field: UACIOfferTrackingCode:string

• Method: JavaScriptObject

• Object Name: oa.treatmentCode

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 684

• Data Type: String

• Modifier: <null>

Example End Session tag settings

Click Tags > IBM Tags > Interact > Type: End Session to create an End Session tag. Edit the

tag with the following settings.

Session ID settings

• Method: Constant

• Constant: 5555

• Data Type: String

• Modifier: <null>

On Success Callback Function Name settings

• Method: Unassigned

• Value: <null>

On Failure Callback Function Name settings

• Method: Unassigned

• Value: <null>

Example functions

For the functions used for the On Success Callback Function Name and On Failure Callback

Function Name settings, you only have to specify the function name when you create a new

tag if the function is already present on your webpage.

You can also use the Digital Data Exchange Utilities to create functions and add them to

your webpages.

The following example shows how to display an offer returned from Unica Interact on your

webpage. You must include this script on the page or use the Digital Data Exchange code

snippet to inject it.

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 685

<script>

oa = {treatmentCode: ""};

function acceptOffer(treatmentCode) {

oa.treatmentCode = treatmentCode;

}

function onOfferReturnSuccess(response) {

var offer = response.offerList[0].offers[0];

var attributes = offer.attributes;

var offerText = "";

var offerLinkURL = "#";

for(var i = 0; i<attributes.length; i++)

{

if(attributes[i].n == "OfferTerms")

{

offerText = attributes[i].v;

}

else if(attributes[i].n == "OfferLinkURL")

{

offerLinkURL = attributes[i].v;

}

}

var link = "<a href=\"'+offerLinkURL+"\" onclick=\"acceptOffer

('"+offer.treatmentCode+"')\">"+offerText+"";

document.getElementById("offerContainer").innerHTML="

<div style=\"text-align:center;padding:

10px 0;background-color:#f5f5f5;\">"+link+"</div>";

}

function onOfferReturnError(response) {

(JSON.stringify(response));

}

</script>

Unica Interact V12.1.3 Administrator's Guide | 20 - Unica Interact and Digital Data Exchange integration | 686

Verify your integration configuration
Use the Digital Data Exchange test tool and the Interact.log file to troubleshoot any

configuration problems.

You can use the Digital Data Exchange test tool to check the encyclopedia to see if your

configuration works as expected. To open the test tool, click Deployment > Test Tool in

Digital Data Exchange.

You can view the Interact.log file to see details about the various Unica Interact

API calls that are made. Add the On Success Callback Function and On Failure Callback

Function to each tag to debug the various calls.

Chapter 21. Unica Interact and Unica Journey
integration
Unica Interact can integrate with Journey so that a continuous communication can be

established with users based on the inputs from Interact. The Interact segments or

audience information can be pushed to Journey, thereby enabling a continuous customer

dialog. In Interact application, the new capability is added to publish the audience

information to Journey. This is enabled through a Journey configuration at triggered

messages outbound channel level by providing an ability to map Interact fields with Journey

fields and a new outbound Kafka channel with Journey.

The following sections describe how this integration works.

Overview
Interact can utilize the Journey capabilities for continuous communication with users in

case of triggered messages. Triggered messages allows the administrators to define event/

event patterns along with other conditions after an offer is made to the users. Interact can

facilitate the Journey fields mapping with audience fields and the Offer attributes. The

Interact Runtime can trigger communication journey with users by passing the audience

details to Journey system through the outbound Kafka channel selected in Triggered

Messages screen.

• The Interact-Journey field mapping can be defined under Gateway tab in Interactive

channel, when a gateway of type Journey Outbound is selected. Configuration based

mapping is removed and is no longer supported.

• The outbound channel configured by users is available for selection in the Triggered

Messages Channel list.

• Interact-Journey fields mapping details for all channels is transferred to Interact

Runtime through the deployment of interactive channel.

• The Kafka connection details are required to be configured through the gateway

configuration parameters in Interact runtime.

Unica Interact V12.1.3 Administrator's Guide | 21 - Unica Interact and Unica Journey integration | 688

• If the event or event pattern matches for postEvent Interact API and other conditions

of the triggered messages are also met, the system triggers the outbound message

with the audience fields as per the Interact-Journey fields mapping through the

Journey-Kafka channel.

Interact-Journey fields mapping
Interact provides a mechanism to map the Interact and Journey fields and identify the

information to be sent. This Journey fields mappings can be defined on Gateway tab of

an interactive channel, when Journey Outbound option is selected. These Journey fields

mappings can be defined on Gateway tab of an interactive channel, when Journey Outbound

option is selected. Configuration based mapping is removed and is no longer supported.

Journey details (Prior to version 12.1.0.3)

A category called “Journey” is available under outboundChannels, which defines the Interact

Journey mapping information.

Journey category has the following parameters:

• New Category Name: The configuration name.

• Name: The outbound channel name that appears in the Triggered Messages list.

• EntrySourceCode: This is a Journey specific mandatory field that identifies the source

of the incoming data and triggers one or more journeys. EntrySourceCode is a part of

the outbound message from Interact to Journey.

• DataDefinition: The data definition name for this mapping. This field is only for

information purposes in Interact so that the users can identify the fieldMappings. The

field is not used in Interact for message processing.

Field mapping

Once the Journey basic details are saved, a new category named “FieldMapping” is

displayed under Journey.

The FieldMapping category replicates the data definition in Journey. The category allows to

define a Journey field similar to data definition field in Journey.

Unica Interact V12.1.3 Administrator's Guide | 21 - Unica Interact and Unica Journey integration | 689

New Category Name: The Interact field name which is mapped against this Journey

field. The format of the Interact field name is “Prefix.fieldname” and it is case insensitive

for Interact. The field names on Journey side are case sensitive, hence ensure that the

matching case is used for field mapping. The prefix can have two possible values.

• OFFER – If the Journey field is mapped against an Offer attribute, the fieldname/

attribute name must be prefixed with “OFFER”.

• PROFILE – If the Journey field is mapped against a profile attribute, the Interact field

name must be prefixed with “PROFILE”.

Note: Real-time attributes and session parameters must also be considered profile

attributes and must be prefixed with “PROFILE”

The Interact fields/parameters/attributes which are not offer specific must be prefixed with

“PROFILE”.

FieldName:The Journey field name to which the value of the above-mentioned Interact field

is mapped to and sent to Journey through an outbound message. The Journey field name

mentioned here is part of the outbound messages.

DataType: There are three data types to select from, similar to Journey Data definition.

• String

• Numeric

• Datetime

The data type is used to validate and format the Interact field value before sending it to

Journey.

DefaultValue: If the Interact field value is not available, the system assigns the default value

to the Journey field.

Mandatory: Interact runtime validates if the Journey field is defined as mandatory. If the

field is defined as mandatory, and the corresponding Interact field value is not available, an

error is logged and the message is discarded.

Unica Interact V12.1.3 Administrator's Guide | 21 - Unica Interact and Unica Journey integration | 690

Note: If defaultValue is defined for such field, system uses the default value rather

than discarding the outbound message.

DatetimeFormat: This property is only applicable for datetime data type. This is the

datetime format, which formats the Interact field value.

MaxLength: This property is only applicable to string data type. This provides an additional

validation to the field value. If MaxLength is defined and the corresponding Interact field

value exceeds MaxLength, an error is logged and the message is discarded.

Users must configure a field mapping for each Journey field, which is a part of the outbound

message to Journey.

You can define the Interact-Journey field mappings using the Journey Outbound options

available under Gateway tab in Interactive Channel.

• It allows the marketers to select the existing data definition from Journey.

• It enables the users to select the entry sources which exists in Journeys of type Unica

Interact.

• After Entry Source and data definition is selected, on clicking the Retrieve button,

the details of the selected data definition populated under the Journey fields are

displayed. This provides details of Journey fields like name, data type, mandatory /

significant field on Journeys.

• For the Journey field, users can map the Interact fields. These can either be the Profile

field, RTA or the Offer attribute from Interact.

• If the Journey field is mandatory, then the default value is required. In case, the value

cannot be retrieved from Interact fields on Runtime side, the default value is used and

sent to Journey.

Triggered messages

The Triggered messages screen lists the available outbound channels to select. The

Journey outbound channels are also visible in the Triggered Messages Channels list.

Unica Interact V12.1.3 Administrator's Guide | 21 - Unica Interact and Unica Journey integration | 691

Interact runtime configurations
Gateway
All Journey specific configurations for the Kafka connection details are configured under

Affinium|interact|triggeredMessage|gateways. A new template named “Journey” is

available under gateways which must be used if the outbound channel information is to be

sent to the Journey system. The following are the mandatory configurations required for the

Journey outbound gateway to work.

• Kafka Connection Details: Kafka connection details must be configured as parameters

to the Journey gateway. The parameters must include all required details like

Kafka Broker URL, Kafka Topic, authentication parameters, etc. to enable Interact

runtime to successfully send outbound messages to Journey. To find the Kafka

parameters required for configuration, see the Unica Interact runtime environment

configuration properties (on page 386) section which includes details about creating

Kafka Producer. Here are the sample parameters which you require to set in case of

'authentication= none' .

◦ providerURL: Kafka_server_ip:port

◦ topic: Kafka_topicname

◦ authentication: kafka authentication mode.

◦ validationTimeoutMillis: This is used at the time of validation of the outgoing

message. You can set any suitable value in mili seconds as per your

requirement.

◦ deliveryTimeoutMillis: This is used at the time of sending out the message. You

can set any suitable value in mili seconds as per your requirement.

Deployment
The Journey configuration for the Interact-Journey fields mapping information is part of

the IC deployment package and is transferred to Interact Runtime when the "Interactive

Channel” is deployed.

Chapter 22. Unica Interact and Unica Deliver
integration
Unica Deliver is a web-based, enterprise scale marketing message solution that you can

use to conduct outbound bulk messaging like email, SMS, Push, and WhatsApp, and

transactional messaging campaigns.

Interact has rich capabilities to come up with the best offers possible in real-time for the

users. Unica Interact can integrate with Deliver so that a continuous communication can be

established with users based on the inputs from Interact. The Interact audience information

can be pushed to Deliver, thereby enabling a continuous customer dialog. Interact-Deliver

integration aims to leverage Deliver’s outbound capabilities to configure and contact a user

with the appropriate offers based on their events and activities.

Deliver-Interact integration is enabled through the Gateway tab under the Interactive channel

user interface. This enables the capability to select the type of Deliver communication along

with the relevant Deliver templates and map Interact fields with Deliver fields.

Overview
Interact can utilize the Deliver capabilities to continuously communicate with users through

triggered messages. Triggered messages allows the administrators to define event or event

patterns along with other conditions for an offer to be made to the users.

Interact allows the administrators to select the type of message and the required Deliver

template under the Source tab. Currently, email, SMS, MobileApp, and WhatsApp messages

are supported. The Deliver fields present in the template can be mapped to the Interact

audience fields and Offer attributes.

The Interact runtime can trigger communication message for the users with the

personalized field values to Deliver system through the outbound channel selected in the

Triggered Messages screen.

Unica Interact V12.1.3 Administrator's Guide | 22 - Unica Interact and Unica Deliver integration | 693

• The Interact-Deliver field mapping can be defined under Gateway tab in Interactive

channel, when a gateway of type Deliver Outbound is selected.

• The Deliver fields present for mapping are based on the source type and the

associated Deliver document selected. Users can create the template from Deliver

Messaging Editor and Quick Builder tabs.

• The outbound channel configured by users is available for selection in the Triggered

Messages Channel list.

• Interact-Deliver fields mapping details for all channels is transferred to Interact

Runtime through the deployment of interactive channel.

• The Deliver TMS API connection details are required to be configured through the

Deliver template in Interact runtime.

If the event or event pattern matches the postEvent Interact API and other conditions of

the triggered messages are also met, the system triggers the outbound message with the

personalized audience fields and offer attributes as per the Interact-Deliver fields mapping

through the Deliver channel.

Interact-Deliver mapping
Interact provides a mechanism to map the Interact and Deliver fields and identify the

information to be sent. This Deliver fields mappings can be defined on Gateway tab of

an interactive channel, when Deliver Outbound option is selected. The Deliver fields to be

mapped are retrieved based on the source type and the template selected.

Deliver field mapping

Once the basic gateway details are saved in the ‘General’ tab, the administrators can

proceed to the "Source" tab.

Here administrators can select the source type for the type of message through which users

are contacted. Currently, email, SMS, MobileApp, and WhatsApp are supported.

After the source type is selected, users can select from the list of the templates available.

These templates are created from the “Messaging Editor” or Quick Builder (email templates)

Unica Interact V12.1.3 Administrator's Guide | 22 - Unica Interact and Unica Deliver integration | 694

in Deliver. Selection of a particular Deliver template lists all the fields associated with the

template.

Triggered messages

The Triggered messages screen lists the available outbound channels to select. The Deliver

outbound channels created in configuration are also visible in the Triggered Messages

Channels list.

Interact runtime configurations

Gateway

All Deliver specific configurations for the Deliver TMS API details are configured under

Affinium|interact|triggeredMessage|gateways. A new template named “Deliver” is

available under Gateway tab which must be used if the outbound channel information is to

be sent to the system. The following are the mandatory parameters required in the Deliver

template.

• deliverURL: Deliver Transactional API URL.

• username: User name for the Deliver hosted account.

• dataSourceName: Data Source for the Deliver hosted account.

Deployment
The Deliver configuration for the Interact-Deliver fields mapping information is part of the

Interactive Channel deployment package and is transferred to Interact Runtime when the

"Interactive Channel” is deployed.

Chapter 23. Configure gateways
Use triggered message gateways to send offer information from outbound channels.

You can use the following outbound gateways with triggered messages. These gateways

are available under "Affinium|interact|triggeredMessage|gateways".

You can receive information in Interact using Inbound gateways ,which are available

under "Affinium|interact|activityOrchestrator|". The gateway files are available under

INTERACT_HOME/conf/gateways/. Also, the related configurations are available out

of the box under "Affinium|Campaign|partitions|partition1|Interact|outboundChannels"

for design time and under the "Affinium|interact|triggeredMessage|gateways" , "Affinium|

interact|activityOrchestrator|gateways" nodes.

• Unica Interact Inbound Gateway for IBM Universal Behavior Exchange

• Unica Interact Outbound Gateway for IBM Universal Behavior Exchange

• Unica Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud

• Unica Interact Outbound Gateway for IBM Mobile Push Notification

Mapping for these gateways can be defined under Gateway tab under Interactive channel.

If you want to continue using the property files based mapping, you must set the following

JVM parameters.

For Outbound Gateways

OUTBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES. For example:

DOUTBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES=EMail

For Inbound Gateways

INBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES. For example:

DOUTBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES=UBX

If there are more than one Gateway, add the comma separated gateway names.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 696

Using the Unica Interact Inbound Gateway for IBM
Universal Behavior Exchange
To use the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange, you

must create an endpoint and event in UBX system, configure Interact, and configure a UBX

subscriber endpoint.

Use the following configurations as an example for your configuration.

A. Creating an endpoint and event in UBX

This is a sample endpoint and event that you can use as an example.

Use the following steps to create an endpoint and event in UBX.

1. Use the REST API client to post the requests to UBX.

2. Register an endpoint in UBX with JSON. See the following example.

Method Call: PUT

URL: https://ubx-qa1-api.adm01.com/v1/endpoint

Headers: Content-Type: application/json

Accept-Charset: UTF-8

Authorization: Bearer 912586bf-190d-48f9-8488-26f1bf532ef3

(Note: This is the Auth Key generated from the UBX UI.)

Body

{

"name":"Interactubxdk1",

"description":"Interactubxdk1",

"providerName":"IBM", "

"url":"http://Host:port/ubxEndPoint/UBXEndPoint",

"endpointTypes":{

"event":{

"source":{

"enabled":true

},

"destination":{

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 697

"enabled":true,

"url":"http://Host:port/ubxEndPoint/UBXEndPoint",

"destinationType":"push"

}

}

},

"marketingDatabasesDefinition":{

"marketingDatabases":[

{

"name":"IDSync",

"identifiers":[

{

"name":"interactprofileid",

"type":"INTERACTID"

}

]

}

]

}}

3. Register an eventtype in UBX with JSON. See the following example.

Event Registration for Interact Event in UBX

Method Call: POST

URL: https://ubx-qa1-api.adm01.com/v1/eventtype

Headers:

Content-Type: application/json

Accept-Charset: UTF-8

Authorization: Bearer 912586bf-190d-48f9-8488-26f1bf532ef3

Note: This is the Auth Key generated from the UBX UI.)

Bearer 912586bf-190d-48f9-8488-26f1bf532ef3

Body

{

"name": "recommendedOffers",

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 698

"description": "recommended offers by OMO",

"code": "recommendedOffers"

}

4. Post an event to UBX with JSON. See the following example.

{

"channel" : "mobile",

"identifiers" : [

{

"name" : "interactprofileid",

"value" : "55"

}

],

"events" : [

{

"code" : "recommendedOffers",

"timestamp" : "2015-12-28T20:16:12Z"

}

]

}

B. Configuring Unica Interact for the Unica Interact Inbound Gateway for IBM
Universal Behavior Exchange

Use the following steps to configure Unica Interact.

1. In the Interact | activityOrceshtrator | receivers configuration property, add a new

receiver. Set Type to Kafka or Custom. If you choose Custom, enter ClassName and

ClassPath. If you choose Kafka, leave ClassPath and ClassName blank.

2. Add providerUrl, topic, authentication, group.id, and zookeeper.connect

parameters for your receiver.

3. In the Interact | activityOrceshtrator | gateways configuration property, UBX category

is available by default.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 699

4. • Using properties files based mappings.

◦ Create a new folder, example, Interactubx12 folder under the

<Interact_Home>\conf\inbound\UBX directory and copy the properties

files to this new folder. The folder name much match the name of the

subscriber endpoint that you created in UBX.

◦ Configure the interactEventNameMapping.properties file.

Use this file to map the value of the payload event field that is defined

in the interactEventPayloadMapping.properties file as [EventName] to

the Interact event name. The interactEventNameMapping.properties

file is in the <Install dir>\conf\inbound\UBX directory.{UBX

event name}={Interact event name} Example:

recommendedOffers=recommendedOffers

If support for payload data from specific source is necessary, this file may

also be placed in the <Install dir>\conf\inbound\UBX\{source}

directory. The value for source should match the value of source field in

the UniversalBehavior Exchange event payload, typically the Universal

Behavior Exchange endpoint name. If support fordata using specific

versions is necessary, this file may also be placed in the <Install dir>

\conf\inbound\UBX\{source}\version-{version} directory. The

value for version must match the value of version field in the Universal

Behavior Exchange event payload.

To support multiple Universal Behavior Exchange instance data, this

file may also be placed in the <Install dir>\conf\inbound\UBX

\{source}\version-{version}\account-{clientID} directory.

The value for clientID must match the value of clientID in the Universal

Behavior Exchange event payload

◦ Configure the interactEventPayloadMapping.properties file, add your field

definitions.

Use the interactEventPayloadMapping.properties file to

map the inbound field to the Interact API parameters. The

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 700

interactEventPayloadMapping.properties file is in the <Install dir>

\conf\inbound\UBX directory.

Interact API parameters: The value must start with a field type definition,

followed by either a static value when the value is in double quotes, or

a field name from the payload data. (FIELD_TYPE)"STATIC_VALUE" or

(FIELD_TYPE)PAYLOAD_FIELD_NAME. FIELD_TYPE can be either String,

Numeric, or DateTime.

For example:

[SessionID]=(String)interactprofileid

[EventName]=(String)code

[AudienceIDFieldNames]=(String)"change_me"

[AudienceIDFieldValues]=(String)interactprofileid

[AudienceLevel]=(String)"change_me"

[InteractChannel]=(String)"change_me"

Event data: These properties are used to map the event attributes

that can be used in your outbound channel communications. The left

side contains the variable names you use in your outbound channel

communication. The value must start with a field type definition,

followed by either a static value when the value is in double quotes, or

a field name from the payload data. (FIELD_TYPE)"STATIC_VALUE" or

(FIELD_TYPE)PAYLOAD_FIELD_NAME. FIELD_TYPE can be either String,

Numeric, or DateTime.

If support for payload data from specific source is necessary, this file

may also be placed in the <Install dir>\conf\inbound\UBX

\{source} directory. The value for source should match the value of

source field in the Universal Behavior Exchange event payload, typically

the Universal Behavior Exchange endpoint name. If support for data using

specific versions is required, this file may also be placed in the <Install

dir>\conf\inbound\UBX\{source}\version-{version}

directory. The value for version must match the value of version field

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 701

in the Universal Behavior Exchange event payload. To support multiple

Universal Behavior Exchange instance data, this file may also be placed

in the <Install dir>\conf\inbound\UBX\{source}\version-

{version}\account-{clientID} directory. The value for clientID

should match the value of clientID in the Universal Behavior Exchange

event payload.

◦ Restart the Interact server.

◦ Create an interactive channel and add an event to it.

• Using UI based mappings:

Use Generic Inbound option available under the Gateway tab on Interactive

channel. Create gateway with the name 'UBX' and define the event mappings.

It is required that the incoming request coming from UBX must contain the

ICName header parameter. The mappings from the specific Interactive channel

will be initialized based on this header value.

5. Perform the steps mentioned in sections C and D below.

6. Deploy the interactive channel.

7. Post an event to UBX from any publisher or to test with a REST API client.

Example event body:

{

 "channel" : "mobile",

 "identifiers" : [

 {

 "name" : "interactprofileid",

 "value" : "55"

 }

],

"events" : [

 {

 "code" : "recommendedOffers",

 "timestamp" : "2015-12-28T20:16:12Z"

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 702

 }

]

}

8. Check the Unica Interact log to see if the triggered messages event is triggered. You

can use this event for further processing in patterns/triggered messaged as per your

specific use case

You can also refer the endpoint logs for more information

C. Configuring the Unica Interact Inbound Gateway for IBM Universal
Behavior Exchange endpoint
You must also use the instructions to complete the following configurations.

• UBX endpoint with Kafka

• Endpoint ubxInboundEndpoint.properties file

• Endpoint inboundTopicNameConfig.properties file

• Endpoint log4j2.xml file

ubxInboundEndpoint.properties file

Use the ubxInboundEndpoint.properties file to configure where to send Universal Behavior

Exchange event payload to Unica Interact Inbound Gateway for IBM Universal Behavior

Exchange. The ubxInboundEndpoint.properties file is in the <gateway endpoint

install dir on the application server> directory.

• providerURL Required: A list of host or port pairs to be used for establishing the initial

connection with the Kafka cluster. This list must be in the form of host1:port1

• authentication defaults to none – For different authentication modes and its related

properties, see the Interact | activityOrchestrator | receivers section.

• group.id Required - Any string (example: InteractTMGateway)

• zookeeper.connect Optional - <host>:<port> (example: localhost:2181)

A restart of the gateway endpoint webapp (ubxInboundEndpoint.war) is required in web

server or application server

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 703

• UBX endpoint with Kafka

• Endpoint ubxInboundEndpoint.properties file

• Endpoint inboundTopicNameConfig.properties file

• Endpoint log4j.properties file

inboundTopicNameConfig.properties file

The Unica Interact Inbound Gateway for IBM Universal Behavior Exchange

endpoint sends the event to Interact by writing to a Kafka Topic. Use the

inboundTopicNameConfig.properties file to specify the topic name on which data is

published.

Example:

topic=UBXTopic

A restart of gateway endpoint webapp (ubxInboundEndpoint.war) is required in web server

or application server for any changes in this file to take effect.

log4j2.xml file

Use the log4j2.xml file to configure different log level for the endpoint. The log4j2.xml file is

in the <gateway endpoint install dir on the application server> directory.

Description

Set the log level for com.ibm.web.offerorchestration.inbound.common and

com.ibm.web.offerorchestration.inbound.ubx accordingly

D. Deploying the Unica Interact Inbound Gateway for IBM Universal Behavior
Exchange and endpoint

• The Unica Interact inbound gateway war is present at location <Interact_Home>

\UBXInboundEndpoint\ubxInboundEndpoint.war.

• Copy this war file along with conf folder on Unica supported App servers. This server

posts data to the Interact inbound Kafka topic to be later consumed by the Unica

Interact Inbound Gateway for IBM Universal Behavior Exchange.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 704

The Unica Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint is

configured to accept requests from Universal Behavior Exchange and send it to the Unica

Interact Inbound Gateway for IBM Universal Behavior Exchange.

You must complete the following tasks to configure the Universal Behavior Exchange

Subscriber Gateway endpoint

1. Configure a new Java system property (-DubxInboundEndpointConfigPath) by editing

the configuration file in the web server or in the administrative console of application

server.

The -DubxInboundEndpointConfigPath property must point to the endpoint install

directory in the server (i.e conf folder which is copied in the above section).

This directory contains configuration files for the target Kafka

environment and various logging levels for the endpoint. For example

-DubxInboundEndpointConfigPath=c: \ubxInboundEndpoint.

2. Deploy the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange

endpoint web archive file (ubxInboundEndpoint.war) from the install directory as

described in the web server or application server documentation.

To verify that the endpoint was installed correctly, enter the following address into any

browser and look for message

UBX End Point is UP.

http://[Server]:[Port]/[ContextRoot]/UBXEndPoint

Note: You must protect the publicly accessible Unica Interact Inbound Gateway for

IBM Universal Behavior Exchange endpoint by adding the required firewall rules to

accept http request from IBM Universal Behavior Exchange Server only.

For example, you can use the following instructions to configure and deploy Unica Interact

Inbound Gateway for IBM Universal Behavior Exchange endpoint on WebSphere Application

Server.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 705

1. Open the administrative console.

2. Select Servers > (Expand Server Types) > server_name > (Expand Java™ and Process

Management) > Process Definition > Java Virtual Machine.

3. In the generic JVM arguments, add the property-

DubxInboundEndpointConfigPath=<Universal Behavior Exchange Subscriber

Gateway endpoint install dir on the application server>. For example, add

the property -DubxInboundEndpointConfigPath=C:\ubxInboundEndpoint.

4. Click OK to save the changes to the master configuration.

5. Restart the application server.

Deploy the endpoint in WebSphere Application Server

1. Log in to the administrative console.

2. Navigate to Applications > Application Types > Websphere enterprise applications.

Click Install.

3. Use the Preparing for the application installation option to locate the endpoint war

file (ubxInboundEndpoint.war) to be installed and then click Next.

4. Click Next in subsequent pages to reach Map context roots for Web modules.

5. Use the Map context roots for Web modules to locate the Context Root and change

value to /UBXEndPoint, this becomes the context root. Click next.

6. Click Finish.

7. Once the application finished installing, click Save to keep the changes on the master

configuration.

8. Back in the listed and installed applications, mark the checkbox for

ubxInboundEndpoint_war and click Start to load.

Note:

UBXInboundEndpoint is updated to support Kafka by default. UBXInboundEndpoint

will be shipped out of the box with Interact.

If you are already using UBXInboundEndpoint with JMS Queue, you can continue

using the existing UBXInboundEndpoint war.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 706

Using the Unica Interact Outbound Gateway for IBM
Universal Behavior Exchange
To use the Unica Interact Outbound Gateway for IBM Universal Behavior Exchange, you

must configure Unica Interact, UBX, and the gateway.

Use the following configurations as an example for your configuration.

If you use UBX as an outbound channel, Unica Interact acts as publisher type of endpoint,

which publish events to UBX. From UBX these events can be sent to subscriber.

Before you begin the configuration, request for outbound access to host machine. You need

net access to be enabled for the host machine.

Registering endpoints and events in UBX

An appropriate endpoint is required to be registered with UBX as a prerequisite. Contact

Acoustic for creating endpoints and events in UBX.

Configuring Unica Interact and the gateway

1. Under the Interact folder, in the httpConnectionConfig.properties file, specify

the timeout.

For example:

connectTimeoutMs=180000

When OMO is configured to use a HTTP connection, a HTTP proxy can be configured

optionally with authentication between Interact and the endpoint. To enable the proxy

for outbound gateways, update the values of following properties.

• proxyHost=<IP address of the proxy server>

• proxyPort=<Listening port of the proxy server>

• targetUsername=<username for connecting to the proxy server. leave

blank if no authentication required>

• targetPassword=<password for connecting to the proxy server. leave

blank if no authentication required>

For example:

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 707

authKey=912586bf-190d-48f9-8488-26f1bf532ef3

[Auth Key used to register publisher endpoint and event in UBX]

interactProfileIdFieldName=interactprofileid

[Field name from the ubxContentMapping.properties file]

2. Using properties files based mappings

• Update the values for interactprofileid and eventName in the

ubxContentMapping.properties file.

You can pass Event Name in three formats: when the value is in double quotes,

it is a static value; when the value is in the offer.offerAttributeName format,

it maps to the offer attribute offerAttributeName; and when the value is in

the profile.profileAttributeName format, it maps to the profile attribute

profileAttributeName. The Event Name value should match the code used to

register the event in UBX . This is case sensitive. Restart the application server.

For example:

eventName="abandoned_shopping_carts"

eventName=offer.Card

eventName=profile.EMAIL

• Using UI based mappings.

◦ Create a gateway with the name 'UBX' of type Generic Outbound in an

Interactive Channel.

◦ Create a channel property with the property name as

interactProfileIdFieldName and interact field as the endpoint required field

name. For example: interactProfileIdFieldName=interactprofileid .

◦ In the Mapping section, you can define the eventName in the following

three formats:

eventName=abandoned_shopping_carts (default value can be assigned to

get the static eventName)

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 708

eventName=offer.Card (value is retrived from Offer attributes)

eventName=profile.EMAIL (value is retrived from Profile attributes)

3. Add a channel under the Interact | triggeredMessage | channel configuration property.

4. Define the same channel in design time under Campaign | partitions | partition [n] |

Interact | outboundChannels

5. Create a triggered messages rule with an event name and that uses the channel you

added in the previous steps.

6. Deploy the interactive channel.

7. From the API Test client, start the session for interactive channel where triggered

message rule is configured and the post event which triggers the offer to UBX.

Using Unica Interact Outbound Gateway for IBM
Mobile Push Notification
To use this mobile push outbound or publisher gateway, you must configure Unica Interact,

IBM Marketing Cloud, and the gateway.

Use the following configurations as an example for your configuration.

Configuring IBM Marketing Cloud

1. Ensure that you have an IBM Marketing Cloud account with push access. Also make

note of your Client ID, Client Secret, and Refresh Token.

2. On the Data tab, create a new database. Add a new Mobile User ID to the database

along with the default fields.

3. On the Search tab, search by the Mobile User ID field. Hover the mouse key on first

No email field. You will see the recipient ID at the bottom of browser window. Add

this recipient ID to the Unica Interact profile table.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 709

Configuring the Unica Interact Outbound Gateway for IBM Mobile Push
Notification

1. Configure the silverpopEngagePushConfig.properties file.

For example:

OauthServiceURL=<protocol>://<hostname>/<other_information>

pushServiceURL=<protocol>://<hostname>/<other_information>

2. Configure the silverpopEngagePushContentMapping.properties file.

Note:

If you are using UI based mappings, perform the following actions.

a. Create a gateway with the name 'MobilePush' of type Generic Outbound

in an Interactive Channel.

b. Create the following mappings in the Mapping section.

For example:

Interact Profile table attributes:

appKey=appKey

engageRecipientId=recipientId

mobileUserId=mobileUserId

deviceType=deviceType

Interact Offer attributes:

simpleSubject=simpleSubjectAttr

simpleMessage=simpleMessageAttr

simpleActionData=simpleActionDataAttr

simpleActionType=simpleActionTypeAttr

simpleActionLabel=simpleActionLabelAttr

personalizeAttributeList=personalizeAttributeList

contentId=ContentID

campaignId=campaignId

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 710

Configuring Unica Interact

1. Create the following offer attributes.

simpleActionDataAttr: string

simpleActionLabelAttr: String

simpleActionTypeAttr: string

simpleMessageAttr: string

simpleSubjectAttr: string

contentID: string

campaignId=string

personalizeAttributeList=string

2. Create an offer template with the offer attributes and the following offer values.

simpleActionDataAttr: www.ibm.com

simpleActionLabelAttr: Open URL

simpleActionTypeAttr: url

simpleMessageAttr: <Enter your message text here>

simpleSubjectAttr: <Enter subject here>

contentID: ID of the push message template that is created in Engage.

PersonalizeAttributeList: A comma separated list of attribute name

value pairs that you want to put in the personalizationDefaults

section of the payload to be sent to Engage.

When you use the contentID attribute, the other simple.. attributes are ignored as

the complete details are picked up from the Engage template.

Example personalizedAttributeList

personalizeAttributeList=discount=10,Offercost=20

campaignId=campaignname that you want to use for this campaign.

3. Your profile table has the following columns and values.

appKey: gcsTQo6v79

recipientId: 13472242

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 711

deviceType: android or ios

4. Navigate to INTERACT_HOME/conf/gateways/outbound/common. Under the

Interact folder, in the httpConnectionConfig.properties file, specify the

timeout.

For example:

connectTimeoutMs=6000

When OMO is configured to use a HTTP connection, a HTTP proxy can be configured

optionally with authentication between Interact and the endpoint. To enable the proxy

for outbound gateways, update the values of following properties.

• proxyHost=<IP address of the proxy server>

• proxyPort=<Listening port of the proxy server>

• targetUsername=<username for connecting to the proxy server. leave

blank if no authentication required>

• targetPassword=<password for connecting to the proxy server. leave

blank if no authentication required>

5. Create a channel and a handler under Interact | triggeredMessage and use the

[Mobile_Push] gateway that you created above in that channel. This channel is used in

the triggred message to send push messages.

6. Create an interactive channel and add a triggered message that uses the offer you

created previously to the trigger rule.

7. Deploy the interactive channel.

8. From the API Test client, perform a startSession for interactive channel where

triggered message rule is configured and the postEvent which triggers the offer to

Mobile Push.

9. Check the Unica Interact logs to make sure the push was sent successfully. The

status code 202 means successful delivery.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 712

Using the Unica Interact Email (Transact) Outbound
Gateway for IBM Marketing Cloud
You can use this integration with Silverpop, Unica Interact and Unica Interact Email

(Transact) Outbound Gateway for IBM Marketing Cloud to send triggered email offers to

your customers.

Ensure that the following prerequisites are fulfilled.

• Create a customer audience profile table with an email column. Use this profile table

for your interactive channel.

• Request that net access to the host machine is enabled for your outbound channel.

Adding a dispatcher for the gateway integration
The dispatcher adds your offer into a queue for the Unica Interact Email (Transact)

Outbound Gateway for IBM Marketing Cloud so that your offer email can be sent.

You must add a dispatcher to use the HCL Email (Transact) Outbound Gateway for IBM

Marketing Cloud.

1. Navigate to Interact | triggeredMessage | dispatchers | <dispatcherName> in

configuration properties.

2. Add a New category name for your dispatcher.

3. Select a type. You can choose from InMemoryQueue, Kafka, JMSQueue, and Custom.

4. Enter the className.

5. Enter the classPath.

Configuring the OMO-
conf_outbound_common_httpConnectionConfig parameter

Navigate to INTERACT_HOME/conf/gateways/outbound/common. Under the Interact

folder, in the httpConnectionConfig.properties file, specify the timeout.

For example: connectTimeoutMs=60000 When OMO is configured to use a HTTP connection,

a HTTP proxy can be configured optionally with authentication between Interact and the

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 713

endpoint. To enable the proxy for outbound gateways, update the values of following

properties.

• proxyHost=<IP address of the proxy server>

• proxyPort=<Listening port of the proxy server>

• targetUsername=<username for connecting to the proxy server. leave blank

if no authentication required>

• targetPassword=<password for connecting to the proxy server. leave blank

if no authentication required>

Configuring the OMO-conf_outbound_silverpop_silverpopConfig
parameter
In the silverpopConfig.properties file, set the values for OauthServiceURL,

xmlAPIServiceURL, clientID, clientSecret, and refreshToken. Consult your Marketing

Cloud administrator to get customer specific values from the transact.xml file.

Configuring the OMO-conf_outbound_silverpop_silverpop
ContentMapping parameter
You must configure the OMO-conf_outbound_silverpop_silverpopContentMapping

parameter for your gateway.

In case, the properties file based mapping is used, update the properties file with the

following mappings.

• In case UI based mapping is used, create a Gateway with the name 'EMail'.

• On the Mapping sections, create mappings for the following properties.

In the silverpopContentMapping.properties file, set the values for your content

mapping.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 714

a. Set the campaignId property. The value for this property is an offer attribute name that

is specified in your offer templates.

b. Set the email property. The value for this property is the column name in your profile

table. Add an emailcolumn in your profile table and specify the email IDs. These are

the email IDs of the recipients.

c. Define your offer attributes in additionalOfferPfAttributesUsedInEmail. This

property sets the attributes from your offer template that are needed for the mailing

template. You can use additionalProfilePfAttributesUsedInEmail to define fields

from your profile table. You can use * to consider all offer attributes and column

values.

Configuring the deliveryTimeoutMillis parameter
To increase the Unica Interact server timeout to connect with Marketing Cloud server, set

the deliveryTimeoutMills parameter.

1. Navigate to Interact | triggeredMessage | gateways | <SilverpopGatewayName> |

deliveryTimeoutMillis in configuration properties.

2. Set the value. For example, you could set value to 60000. This would increase the

server timeout to 60000 milliseconds.

Add a channel handler for the Unica Interact Email (Transact)
Outbound Gateway for IBM Marketing Cloud
Add a channel handler in the Unica Interact runtime environment.

1. Navigate to Interact | triggeredMessage | channels | <SilverpopChannelName> |

<handlerName> in configuration properties.

2. Add a New category name for your channel handler.

3. Set the name of the dispatcher you previously added.

4. Set the name of the gateway.

5. Set the mode. If Failover is selected, this handler is used only when all the handlers

with higher priorities defined within this channel failed to send offers. If Addon is

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 715

selected, this handler is used no matter if other handlers have successfully sent

offers.

6. Set the priority for this handler.

Adding an outbound channel for the Unica Interact Email
(Transact) Outbound Gateway for IBM Marketing Cloud
Add an outbound channel in the Unica Interact design environment.

1. Navigate to Campaign | partitions | partition[n] | Interact | outboundChannels in

configuration properties.

2. Add a New category name for your outbound channel.

3. Add a name for your outbound channel. Make sure the channel name is the same

as the channel name you added in the Interact | triggeredMessage | channels |

<SilverpopChannelName> configuration property.

Configuring the transactional mailing with the Unica Interact
Email (Transact) Outbound Gateway for IBM Marketing Cloud
You must configure your transactional mailing to send your email offer.

1. In the Marketing Cloud (Transact), click Data > Create Database. Then click Create to

create a profile table. You can also import the profile table where you added the email

column.

2. Click Automation > Transactional messages > Create Group. Select Transact for the

Event Trigger. You also need to select the datasource you previously created. Click

Save & Activate.

The offer that is sent through The Marketing Cloud should have the same attribute

you set for the campaignId in the silverpopContentMapping.properties file.

The value for this offer attribute is the campaignId that is generated for the automated

message group.

3. Click Content > Create Mailings and select the content source from the previous step.

Enter the mailing body. Click Automate. Select Assign Mailing to Existing Group of

Automated Messages. Click Submit & Activate.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 716

The mailing subject line and body can be personalized using offer attributes and

profile attributes. Use the %%Attribute_Name%% syntax to define attributes.

4. The Marketing Cloud server only accepts outbound gateways submissions from IP

addresses set up in advance. To add an IP address, navigate to Settings > Org Admin

> Security Settings > Access Restrictions.

5. If you use the WebSphere Application Server, you need to import the Marketing Cloud

SSL certificate. This is not required for WebLogic users.

a. In the WebSphere Application Server console, navigate to SSL certificate and

key managemen > Key stores and certificate > NodeDefaultTrustStore > Signer

certificates > Retrieve from port.

b. Set the host and port.

c. Restart the WebSphere Application Server.

Contact Central integration configurations

InteractDT

The following are the settings for Contact Central

Affinium|Campaign|partitions|partition1|Interact|Contact Central

• URL: The Contact Central provider URL. If you have configured ISAM login method,

use the Contact Central Interact URL. For example, http://<hostname:port>/

ContactCentral or https://<hostname:port>/ContactCentral.

• connectionTimeoutInMS: The connection to Contact Central timeout in milliseconds.

Unica Interact V12.1.3 Administrator's Guide | 23 - Configure gateways | 717

Interact runtime

The following are the settings for Contact Central

(Affinium|Interact|triggeredMessage|Contact Central

• Enabled: true: enable, false: disabled.

• providerURL: The Contact Central provider URL. If you have configured ISAM

login method, use the Contact Central Interact URL. For example, http://

<hostname:port>/ContactCentral or https://<hostname:port>/

ContactCentral.

• connectionTimeoutInMS: The connection to Contact Central timeout in milliseconds.

• validatePeriodInSecs: Interact runtime update or sync with Contact Central pre

validate period.

• capacityBufferSize: Specifies whether offer sent to the end user is based on gateway

associated preference (or timezone) and selected contact channel capacity. In order

to allocate extra capacity in Interact runtime, set capacityBufferSize.

• Username and datasourceName: Used for authentication to call Contact Central

service.

	Unica Interact V12.1.3 Administrator's Guide
	Contents
	Chapter 1. Administer Unica Interact
	Unica Interact key concepts
	Audience levels
	Design Time environment
	Event and event patterns
	Event
	Event Patterns
	Event Category
	Actions

	Interactive channels
	Interactive flowcharts
	Interaction points
	Offers
	Target cell
	Profiles
	Runtime environment
	Runtime sessions
	Touchpoints
	Strategy and treatment rules
	FlexOffers
	Gateways
	Implementation of Generic Inbound or Generic Outbound Gateway
	Generic Inbound Gateway implementation
	Inbound Gateway configuration
	startSession properties
	postEvent properties
	endSession properties

	Inbound gateway reserved field names
	Runtime configuration

	Generic outbound gateway implementation
	Default fields
	Offer and profile attributes
	Runtime configuration

	Contact Central integration with Gateway

	Unica Interact architecture
	Unica Interact network considerations
	Unica Interact server ports and network security
	Unica Interact runtime ports
	Unica Interact design ports

	Logging in Interact
	Design time
	Run time

	Chapter 2. Security management
	Authenticate the Unica Interact JSP pages

	Chapter 3. Configuring users
	Configuring the runtime environment user
	Configuring design environment users
	Example design environment permissions
	Interactive flowchart role
	Interaction strategy role

	Chapter 4. Managing Unica Interact data sources
	Unica Interact data sources
	Databases and the applications
	Unica Campaign system tables
	Runtime tables
	Test run tables
	Overriding the default data types used for dynamically created tables
	Overriding the default data types
	Default data types for dynamically created tables

	Profile database
	Learning tables
	Contact history for cross-session response tracking
	Running database scripts to enable Unica Interact features
	About Cross Session Contact Tracking
	How does Cross Session Contact works?
	Database and schema change

	About contact and response history tracking
	Contact and response types
	contactAndResponseHistTracking table properties
	UA_UsrResponseType table properties

	Additional Contact types
	Additional response types
	Runtime environment staging tables to Unica Campaign history tables mapping
	UACI_CHStaging contact history staging table mapping
	UACI_CHOfferAttrib contact history staging table mapping
	UACI_RHStaging contact response history staging table mapping
	Additional columns in staging tables
	Additional columns in Unica Campaign contact and response history tables
	Use tables to include a score for an offer
	Create new history tables in the Unica Campaign and staging tables in the Unica Interact

	Configuring JMX monitoring for the contact and response history module

	About cross-session response tracking
	Enable duplicate detection and suppression
	Cross-session response process
	Cross-session response tracking data source configuration
	Configuring contact and response history tables for cross-session response tracking
	UACI_TrackingType table
	UACI_XSessResponse

	Enabling cross-session response tracking
	Cross-session response offer matching
	Matching by treatment code
	Matching by offer code
	Matching by alternate code

	Using a database load utility with the runtime environment
	Enabling a database load utility with runtime environment

	Event pattern ETL process
	Running the stand-alone ETL process
	Stopping the stand-alone ETL process

	Chapter 5. Offer serving
	Offer eligibility
	Generating a list of candidate offers
	Calculate the marketing score
	Influencing learning

	Suppress offers
	Enabling offer suppression
	Offer suppression table

	Ignore Offer Suppression
	Global offers and individual assignments
	Defining the default cell codes
	Defining offers not used in a treatment rule
	About the global offers table
	Assigning global offers
	Global offer table
	About the score override table
	Configuring score overrides
	Score override table

	Unica Interact built-in learning overview
	Unica Interact learning module
	Learning module modes
	Confidence level property
	Random selection property
	How the learning module determines offers
	Weight factor properties
	Staging table data written

	Enabling the learning module
	Learning attributes
	Defining a learning attribute
	Define dynamic learning attributes
	Unica Interact AutoBinning
	Configuring the runtime environment to recognize external learning modules

	Chapter 6. Understanding the Unica Interact API
	Unica Interact API dataflow
	Starting the session
	Navigating to a page
	Selecting an offer
	Closing the session

	Simple interaction planning example
	Design process
	Identify requirements for the cell phone plan summary page
	Create Interaction points
	Configure logging
	Create treatment codes
	Link images to offers

	Designing the Unica Interact API integration
	Points to consider
	API Authentication

	Chapter 7. Managing the Unica Interact API
	Locale and the Unica Interact API
	About JMX monitoring
	Configuring Unica Interact to use JMX monitoring with the RMI protocol
	Configuring Unica Interact to use JMX monitoring with the JMXMP protocol
	Configuring Unica Interact to use the jconsole scripts for JMX monitoring
	JMX attributes
	Contact Response History ETL Monitor attributes
	Exception attributes
	Flowchart Engine Statistics attributes
	Specific flowcharts by interactive channel attributes
	Locale attributes
	Logger Configuration attributes
	Services Thread Pool Statistics attributes
	Service Statistics attributes
	Service Statistics - Database Load Utility attributes
	API Statistics attributes
	Learning Optimizer Statistics attributes
	Default Offer Statistics attributes
	Triggered Message Dispatchers attributes
	Triggered Message Gateways attributes
	Triggered Message Messages attributes

	JMX operations

	Thread monitoring

	Chapter 8. Classes and methods for the Unica Interact Java, SOAP, and REST API
	Unica Interact API Classes
	Methods to pass the authentication parameters if API Authentication enabled before API calls
	Java™ serialization over HTTP prerequisites
	SOAP prerequisites
	REST prerequisites
	API JavaDoc
	API examples

	Working with session data
	About the InteractAPI class
	endSession
	Return value
	Example

	executeBatch
	Return value
	Example
	Writing executeBatch() XML requests for the Interact SOAP API

	getInstance
	Return value
	Example

	getOffers
	Return value
	Example

	getOffersForMultipleInteractionPoints
	Return value
	Example

	getProfile
	Return value
	Example

	getVersion
	Return value
	Example

	postEvent
	Return value
	Example

	setAudience
	Return value
	Example

	setDebug
	Return value
	Example

	startSession
	Return value
	Example
	Offer deduplication across offer attributes

	Reserved parameters
	API parameters
	Runtime environment reserved parameters

	About the AdvisoryMessage class
	getDetailMessage
	Return value
	Example

	getMessage
	Return value
	Example

	getMessageCode
	Return value
	Example

	getStatusLevel
	Return value
	Example

	About the AdvisoryMessageCode class
	Advisory message codes

	About the BatchResponse class
	getBatchStatusCode
	Return value
	Example

	getResponses
	Return value
	Example

	About the Command interface
	setAudienceID
	Return value
	Example

	setAudienceLevel
	Return value
	Example

	setDebug
	Return value
	Example

	setEvent
	Return value
	Example

	setEventParameters
	Return value
	Example

	setGetOfferRequests
	Return value
	Example

	setInteractiveChannel
	Return value
	Example

	setInteractionPoint
	Return value
	Example

	setMethodIdentifier
	Return value
	Example

	setNumberRequested
	Return value
	Example

	setRelyOnExistingSession
	Return value
	Example

	About the NameValuePair interface
	getName
	Return value
	Example

	getValueAsDate
	Return value
	Example

	getValueAsNumeric
	Return value
	Example

	getValueAsString
	Return value
	Example

	getValueDataType
	Return value
	Example

	setName
	Return value
	Example

	setValueAsDate
	Return value
	Example

	setValueAsNumeric
	Return value
	Example

	setValueAsString
	Return value
	Example

	setValueDataType
	Return value
	Example

	setScope(scope)
	Return value

	getScope()
	Return value

	About the Offer class
	getAdditionalAttributes
	Return value
	Example

	getDescription
	Return value
	Example

	getOfferCode
	Return value
	Example

	getOfferName
	Return value
	Example

	getScore
	Return value
	Example

	getTreatmentCode
	Return value
	Example

	About the OfferList class
	getDefaultString
	Return value
	Example

	getRecommendedOffers
	Return value
	Example

	About the Response class
	getAdvisoryMessages
	Return value
	Example

	getApiVersion
	Return value
	Example

	getOfferList
	Return value
	Example

	getAllOfferLists
	Return value
	Example

	getProfileRecord
	Return value
	Example

	getSessionID
	Return value
	Example

	getStatusCode
	Return value
	Example

	Chapter 9. Classes and methods for the Unica Interact JavaScript API
	JavaScript prerequisites
	Working with session data
	Working with the callback parameter
	About the InteractAPI class
	startSession
	Return value
	Offer deduplication across offer attributes
	postEvent
	Return value

	getOffers
	Return value

	getOffersForMultipleInteractionPoints
	Return value

	setAudience
	Return value

	getProfile
	Return value

	endSession
	Return value

	setDebug
	Return value

	getVersion
	Return value

	executeBatch
	Return value

	JavaScript API example
	Example response JavaScript object onSuccesss

	Chapter 10. About the ExternalCallout API
	IAffiniumExternalCallout interface
	Adding a web service for use with the EXTERNALCALLOUT macro
	getNumberOfArguments
	Return value
	Example

	getValue
	Return value
	Example

	UACITimeout parameter
	initialize
	Return value
	Example

	shutdown
	Return value
	Example

	ExternalCallout API example
	IInteractProfileDataService interface
	Adding a data source for use with Profile Data Services

	IParameterizableCallout interface
	initialize
	Throws

	shutdown
	Throws

	ITriggeredMessageAction interface
	getName
	setName

	IChannelSelector interface
	selectChannels

	IDispatcher interface
	dispatch
	Return value
	Throws

	IGateway interface
	deliver
	validate

	Chapter 11. Unica Interact utilities
	Run Deployment Utility (runDeployment.sh/.bat)
	Description
	Using the runDeployment utility in a secure (SSL) environment
	Running the utility
	Sample deployment.properties file

	Cleanup Expired Token Utility
	Configuration Changes
	Optional JVM Parameters

	Chapter 12. About the Learning API
	Configuring the runtime environment to recognize external learning modules
	ILearning interface
	initialize
	Return value

	logEvent
	Return value

	optimizeRecommendList
	Return value

	reinitialize
	Return value

	shutdown
	Return value

	IAudienceID interface
	getAudienceLevel
	Return value

	getComponentNames
	Return value

	getComponentValue
	Return value

	IClientArgs
	getValue
	Return value

	IInteractSession
	getAudienceId
	Return value

	getSessionData
	Return value

	IInteractSessionData interface
	getDataType
	Return value

	getParameterNames
	Return value

	getValue
	Return value

	setValue
	Return value

	ILearningAttribute
	getName
	Return value

	ILearningConfig
	ILearningContext
	getLearningContext
	Return value

	getResponseCode
	Return value

	IOffer
	getCreateDate
	Return value

	getEffectiveDateFlag
	Return value

	getExpirationDateFlag
	Return value

	getOfferAttributes
	Return value

	getOfferCode
	Return value

	getOfferDescription
	Return value

	getOfferID
	Return value

	getOfferName
	Return value

	getUpdateDate
	Return value

	IOfferAttributes
	getParameterNames
	Return value

	getValue
	Return value

	IOfferCode interface
	getPartCount
	Return value

	getParts
	Return value

	LearningException
	IScoreOverride
	getOfferCode
	Return value

	getParameterNames
	Return value

	getValue
	Return value

	ISelectionMethod
	ITreatment interface
	getCellCode
	Return value

	getCellId
	Return value

	getCellName
	Return value

	getLearningScore
	Return value

	getMarketerScore
	Return value

	getOffer
	Return value

	getOverrideValues
	Return value

	getPredicate
	Return value

	getPredicateScore
	Return value

	getScore
	Return value

	getTreatmentCode
	Return value

	setActualValueUsed
	Return value

	Learning API example

	Chapter 13. Unica Interact WSDL
	Chapter 14. Unica Interact runtime environment configuration properties
	Interact | general
	log4jConfig
	asmUserForDefaultLocale
	configurationRefreshInMins
	Interact | general | API
	tokenAuthentication
	enabledLogging

	Interact | general | centralizedLogger
	enabled
	maxBatchSize
	maxDelayInSec

	Interact | general | learningTablesDataSource
	jndiName
	type
	connectionRetryPeriod
	connectionRetryDelay
	schema

	Interact | general | prodUserDataSource
	jndiName
	type
	aliasPrefix
	connectionRetryPeriod
	connectionRetryDelay
	schema

	Interact | general | API | requestThreadPool
	Interact | general | systemTablesDataSource
	jndiName
	type
	connectionRetryPeriod
	connectionRetryDelay
	schema
	Interact | general | systemTablesDataSource | loaderProperties
	databaseName
	LoaderCommandForAppend
	LoaderControlFileTemplateForAppend
	LoaderDelimiterForAppend
	LoaderDelimiterAtEndForAppend
	LoaderUseLocaleDP

	Interact | general | testRunDataSource
	jndiName
	type
	aliasPrefix
	connectionRetryPeriod
	connectionRetryDelay
	schema

	Interact | general | contactAndResponseHistoryDataSource
	jndiName
	type
	connectionRetryPeriod
	connectionRetryDelay
	schema

	Interact | general | idsByType
	initialValue
	retries

	Interact | flowchart
	idleFlowchartThreadTimeoutInMinutes
	idleProcessBoxThreadTimeoutInMinutes
	maxSizeOfFlowchartEngineInboundQueue
	maxNumberOfFlowchartThreads
	maxNumberOfProcessBoxThreads
	maxNumberOfProcessBoxThreadsPerFlowchart
	minNumberOfFlowchartThreads
	minNumberOfProcessBoxThreads
	sessionVarPrefix
	Interact | flowchart | ExternalCallouts | [ExternalCalloutName]
	class
	classpath
	Notes on Calling Web Service APIs from Interact External Callouts

	Interact | flowchart | ExternalCallouts | [ExternalCalloutName] | Parameter Data | [parameterName]
	value

	Interact | monitoring
	protocol
	port
	enableSecurity
	Interact | monitoring | activitySubscribers
	heartbeatPeriodInSecs
	Interact | monitoring | activitySubscribers | (target)
	(target)
	URL
	continuousErrorsForAbort
	timeoutInMillis
	Enabled
	type
	jmxInclusionCycles

	Interact | profile
	enableScoreOverrideLookup
	enableOfferSuppressionLookup
	enableProfileLookup
	defaultOfferUpdatePollPeriod
	Interact | profile | Audience Levels | [AudienceLevelName]
	New category name
	scoreOverrideTable
	offerSuppressionTable
	contactHistoryTable
	chOfferAttribTable
	responseHistoryTable
	crossSessionResponseTable
	userEventLoggingTable
	patternStateTable
	requestLogTable
	triggeredMessageLogTable
	requestAttrLogTable

	Interact | profile | Audience Levels | [AudienceLevelName] | Offers by Raw SQL
	enableOffersByRawSQL
	cacheSize
	cacheLifeInMinutes
	defaultSQLTemplate
	name
	SQL
	Interact | profile | Audience Levels | [AudienceLevelName] | SQL Template
	name
	SQL

	Interact | profile | Audience Levels | [AudienceLevelName | Profile Data Services | [DataSource]
	New category name
	enabled
	className
	classPath
	priority

	Interact | profile | Audience Levels | [AudienceLevelName] | Attributes Logging
	logProfileAttributes
	includeExcludeProfileAttributes
	logSessionParameters
	logEventPatternStatus

	Interact | offerserving
	offerTieBreakMethod
	optimizationType
	segmentationMaxWaitTimeInMS
	treatmentCodePrefix
	effectiveDateBehavior
	effectiveDateGracePeriodOfferAttr
	alwaysLogLearningAttributes
	Interact | offerserving | Built-in Learning Config
	version
	insertRawStatsIntervalInMinutes
	aggregateStatsIntervalInMinutes
	autoAdjustPercentage
	excludeAbnormalAttribute
	saveOriginalValues

	Interact | offerserving | Built-in Learning Config | Parameter Data | [parameterName]
	numberOfThreads
	maxLogTimeSpanInMin
	maxRecords
	value

	Interact | offerserving | External Learning Config
	class
	classPath

	Interact | offerserving | External Learning Config | Parameter Data | [parameterName]
	value

	Interact | offerserving | Constraints
	maxOfferAllocationInMemoryPerInstance
	maxDistributionPerIntervalPerInstanceFactor
	constraintCleanupIntervalInDays

	Interact | offerserving | Tie Breakers
	Category name
	maxDistributionPerIntervalPerInstanceFactor
	constraintCleanupIntervalInDays

	Interact | services
	externalLoaderStagingDirectory
	Affinium|interact|services|contactHist|treatmentStoreReference
	daysBackForXSessContact
	Default value
	Valid value

	Interact | services | contactHist
	enableLog
	cacheType

	Interact | services | contactHist | cache
	threshold
	insertPeriodInSecs

	Interact | services | contactHist | contactStatusCodes
	New category name
	Code
	action

	Interact | services | contactHist | fileCache
	threshold
	insertPeriodInSecs

	Interact | services | defaultedStats
	enableLog

	Interact | services | defaultedStats | cache
	threshold
	insertPeriodInSecs

	Interact | services | eligOpsStats
	enableLog

	Interact | services | eligOpsStats | cache
	threshold
	insertPeriodInSecs

	Interact | services | eventActivity
	enableLog

	Interact | services | eventActivity | cache
	threshold
	insertPeriodInSecs

	Interact | services | eventPattern
	persistUnknownUserStates
	mergeUnknowUserInSessionStates
	enableUserEventLog

	Interact | services | eventPattern | userEventCache
	threshold
	insertPeriodInSecs

	Interact | services | eventPattern | advancedPatterns
	enableAdvancedPatterns
	connectionTimeoutInMilliseconds
	readTimeoutInMilliseconds
	connectionPoolSize
	Interact | services | eventPattern | advancedPatterns | autoReconnect
	enable
	durationInMinutes
	numberOfFailuresBeforeDisconnect
	consecutiveFailuresBeforeDisconnect
	sleepBeforeReconnectDurationInMinutes
	sendNotificationAfterDisconnect

	Interact | services | customLogger
	enableLog

	Interact | services | customLogger | cache
	threshold
	insertPeriodInSecs

	Interact | services | responseHist
	enableLog
	cacheType
	actionOnOrphan
	suppressionActionOnResponse

	Interact | services | responseHist | cache
	threshold
	insertPeriodInSecs

	Interact | services | response Hist | responseTypeCodes
	New category name
	code
	action

	Interact | services | responseHist | fileCache
	threshold
	insertPeriodInSecs

	Interact | services | crossSessionResponse
	enableLog
	xsessionProcessIntervalInSecs
	purgeOrphanResponseThresholdInMinutes
	xsessionResponseBatchsize
	generateOnlyOneResponseRecord

	Interact | services | crossSessionResponse | cache
	threshold
	insertPeriodInSecs

	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byTreatmentCode
	SQL
	OverrideSQL
	useStoredProcedure
	Type

	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byOfferCode
	SQL
	OverrideSQL
	useStoredProcedure
	Type

	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byAlternateCode
	Name
	OverrideSQL
	useStoredProcedure
	Type

	Interact | services | threadManagement | contactAndResponseHist
	corePoolSize
	maxPoolSize
	keepAliveTimeSecs
	queueCapacity
	termWaitSecs

	Interact | services | threadManagement | allOtherServices
	corePoolSize
	maxPoolSize
	keepAliveTimeSecs
	queueCapacity
	termWaitSecs

	Interact | services | threadManagement | flushCacheToDB
	corePoolSize
	maxPoolSize
	keepAliveTimeSecs
	queueCapacity
	termWaitSecs

	Interact | services | threadManagement | eventHandling
	corePoolSize
	maxPoolSize
	keepAliveTimeSecs
	queueCapacity
	termWaitSecs

	Interact | services | configurationMonitor
	enable
	refreshIntervalInMinutes

	Interact | services | CampaignSegments
	isEnabled
	ServiceURL
	corePoolSize
	maxPoolSize
	keepAliveTimeSecs
	queueCapacity
	readTimeoutInMilliseconds

	Interact | cacheManagement
	Interact | cacheManagement | Cache Managers
	Interact | cacheManagement | Cache Managers | EHCache
	Interact | Cache Managers | EHCache | Parameter Data
	cacheType
	multicastIPAddress
	multicastPort
	overflowToDisk
	diskStore
	(Parameter)

	Interact | caches
	Interact | cacheManagement | caches | InteractCache
	CacheManagerName
	maxEntriesInCache
	timeoutInSecs

	Interact | Caches | Interact Cache | Ignite
	cacheType
	discoveryIPAddresses
	localPort
	numberOfBackups
	overflowToDisk

	Interact | Caches | Interact Cache | Parameter Data
	asyncIntervalMillis
	(Parameter)

	Interact | cacheManagement | caches | PatternStateCache
	CacheManagerName
	maxEntriesInCache
	timeoutInSecs
	Interact | Caches | PatternStateCache | Parameter Data
	(Parameter)

	Interact | cacheManagement | caches | PatternStateCache | loaderWriter
	className
	classPath
	writeMode
	batchSize
	maxDelayInSecs
	Interact | Caches | PatternStateCache | loaderWriter | Parameter Data
	(Parameter)

	Interact | cacheManagement | caches | PatternStateCache | loaderWriter | jndiSettings
	(jndiSettings)

	Interact | cacheManagement | caches | PatternStateCache | loaderWriter | jdbcSettings
	(jdbcSettings)

	Interact | triggeredMessage
	backendProcessIntervalMin
	autoLogContactAfterDelivery
	waitForFlowchart
	loggingMode
	Interact | triggeredMessage | offerSelection
	maxCandidateOffers
	defaultCellCode

	Interact | triggeredMessage | dispatchers
	dispatchingThreads
	Interact | triggeredMessage | dispatchers | <dispatcherName>
	category name
	type
	className
	classPath

	Interact | triggeredMessage | dispatchers | <dispatcherName> | Parameter Data
	category name
	value

	Interact | triggeredMessage | gateways | <gatewayName>
	category name
	className
	classPath
	Interact | triggeredMessage | gateways | <gatewayName> | Parameter Data
	cateogry name
	value

	Interact | triggeredMessage | channels
	type
	className
	classPath
	Interact | triggeredMessage | channels | Parameter Data
	category name
	value

	Interact | triggeredMessage | channels | <channelName>
	category name

	Interact | triggeredMessage | channels | <channelName> | <handlerName>
	category name
	dispatcher
	gateway
	mode
	priority

	Interact | activityOrchestrator
	Interact | activityOrchestrator | receivers
	Category name
	Type
	Enabled
	className
	classPath

	Interact | activityOrchestrator | gateways
	Category name
	className
	classPath

	Interact | ETL | patternStateETL
	New category name
	runOnceADay
	preferredStartTime
	preferredEndTime
	processSleepIntervalInMinutes
	maxJDBCInsertBatchSize
	maxJDBCFetchBatchSize
	communicationPort
	queueLength
	completionNotificationScript
	Interact | ETL | patternStateETL | <patternStateETLName> | RuntimeDS
	type
	dsname
	driver
	serverURL
	connectionpoolSize
	schema
	connectionRetryPeriod
	connectionRetryDelay

	Interact | ETL | patternStateETL | <patternStateETLName> | TargetDS
	type
	dsname
	driver
	serverURL
	connectionpoolSize
	schema
	connectionRetryPeriod
	connectionRetryDelay

	Interact | ETL | patternStateETL | <patternStateETLName> | Report
	enable
	retryAttemptsIfAggregationRunning
	sleepBeforeRetryDurationInMinutes
	aggregationRunningCheckSql
	aggregationRunningCheck

	Chapter 15. Unica Interact Simulator
	Interact | simulator
	numberOfThreads
	maxOffersToInclude
	insertBatchSize

	Interact | simulator|scenarioDataSource
	jndiName
	Schema
	type
	connectionRetryPeriod
	connectionRetryDelay
	Error Handling for Simulator

	Chapter 16. Unica Interact design environment configuration properties
	Campaign | partitions | partition[n] | reports
	offerAnalysisTabCachedFolder
	segmentAnalysisTabOnDemandFolder
	offerAnalysisTabOnDemandFolder
	segmentAnalysisTabCachedFolder
	analysisSectionFolder
	campaignAnalysisTabOnDemandFolder
	campaignAnalysisTabCachedFolder
	campaignAnalysisTabDeliverOnDemandFolder
	campaignAnalysisTabInteractOnDemandFolder
	interactiveChannelAnalysisTabOnDemandFolder

	Campaign | partitions | partition[n] | UnicaInsightsReports
	interactAnalysisSectionFolder
	interactiveChannelAnalysisTabOnDemandFolder

	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking
	isEnabled
	runOnceADay
	processSleepIntervalInMinutes
	preferredStartTime
	preferredEndTime
	purgeOrphanResponseThresholdInMinutes
	maxJDBCInsertBatchSize
	maxJDBCFetchBatchSize
	maxJDBCFetchChunkSize
	deleteProcessedRecords
	completionNotificationScript
	fetchSize
	daysBackInHistoryToLookupContact
	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | runtimeDataSources | [runtimeDataSource]
	jndiName
	databaseType
	schemaName

	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | contactTypeMappings
	contacted

	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | responseTypeMappings
	accept
	reject

	Campaign | partitions | partition[n] | Interact | report
	interactiveCellPerformanceByOfferReportName
	treatmentRuleInventoryReportName
	deploymentHistoryReportName

	Campaign | partitions | partition[n] | Interact | learning
	confidenceLevel
	validateonDeployment
	maxAttributeNames
	maxAttributeValues
	otherAttributeValue
	percentRandomSelection
	recencyWeightingFactor
	recencyWeightingPeriod
	minPresentCountThreshold
	enablePruning
	Campaign | partitions | partition[n] | Interact | learning | learningAttributes | [learningAttribute]
	attributeName

	Campaign | partitions | partition[n] | Interact | deployment
	chunkSize

	Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup]
	serverGroupName
	Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup] | prodUserDataSource
	jndiName
	databaseType
	schemaName

	Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup] | instanceURLs | [instanceURL]
	instanceURL

	Campaign | partitions | partition[n] | Interact | flowchart
	serverGroup
	dataSource
	eventPatternPrefix

	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | DefaultOffers
	DefaultCellCode

	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | offersBySQL
	DefaultCellCode

	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | ScoreOverride
	DefaultCellCode

	Campaign | partitions | partition[n] | server | internal
	internalIdLowerLimit
	internalIdUpperLimit
	deliverInstalled
	interactInstalled
	MO_UC_integration
	MO_UC_BottomUpTargetCells
	Legacy_campaigns
	Unica Plan - Offer integration
	UC_CM_integration
	linkInstalled
	numRowsReadToParseDelimitedFile
	contactCentralEnabled

	Campaign | monitoring
	cacheCleanupInterval
	cacheRunCompleteTime
	monitorEnabled
	serverURL
	monitorEnabledForInteract
	protocol
	port

	Campaign | partitions | partition[n] | Interact | outboundChannels
	category name
	name
	Campaign | partitions | partition[n] | Interact | outboundChannels | Parameter Data
	cateogry name
	value

	Campaign | partitions | partition[n] | Interact | Simulator
	serverGroup

	offerArbitrition

	Chapter 17. Real-time offer personalization on the client side
	About the Unica Interact Message Connector
	Example
	Installing the Message Connector
	Configuring the Message Connector
	Message Connector Configuration Settings
	General Settings
	Default Parameter Values
	Behavior Settings
	Storage Settings
	Audience Levels

	Creating the Message Connector Tables
	Deploying and running the Message Connector

	Creating the Message Connector links
	"IMG" and "A" tag HTTP Request parameters
	Parameters
	Example Message Connector Code

	About the Unica Interact Web Connector
	Installing the Web Connector on the runtime server
	Installing the Web Connector as a separate web application
	Configuring the Web Connector
	WebConnector Configuration Basic Options
	Site-wide Settings
	Optional Features

	WebConnector Configuration HTML Display Types
	WebConnector Configuration Enhanced Pages
	Page Info
	Events to fire (onload) when a visit is made to this page or set of pages
	Interaction Points (offer display locations) on this page or set of pages

	Web Connector Configuration Options
	Parameters and their descriptions

	Using the Web Connector Admin Page
	About the Admin Page

	Sample Web Connector Page
	Sample Web Connector HTML Page

	Chapter 18. JVM parameters
	Interact design time
	Interact.UsernameToAlwaysDeployFor
	com.unicacorp.interact.deliver.templateTimeout
	DeploymentServletParameterEncoding
	com.unicacorp.interact.flexoffers.defaultDateTimeFormat
	com.unicacorp.interact.flexoffers.defaultDateFormat
	com.unicacorp.Campaign.interact.offermapping.batchsize
	com.unicacorp.Campaign.interact.offermapping.service.synctimeout
	com.unicacorp.interact.cacheTTL
	com.unicacorp.interact.cacheRefreshIntervalInMin
	com.unicacorp.interact.enableDTPerfLogging
	com.unicacorp.interact.compressAPIResponse
	ignoreSpecialCharacterValidator
	Interact.CustomStringDelimiter

	Interact run time
	INTERACT_HOME
	com.unicacorp.interact.deliver.templateTimeout
	INBOUND_GATEWAYS_USING_MAPPING_FROM_PROPERTIES
	com.hcl.interact.http.proxyProtocol
	com.hcl.interact.http.proxyHost
	com.hcl.interact.http.proxyPort
	com.hcl.interact.http.proxyUsername
	com.hcl.interact.http.proxyPassword
	interact.jmx.monitoring.port
	interact.runtime.instance.name
	interact.offerserving.maxOfferAllocationInMemoryPerInstance
	interact.offerserving.maxDistributionPerIntervalPerInstanceFactor
	interact.ignitePort
	com.unicacorp.interact.chDupeCheckLimit
	com.unicacorp.interact.rhDupeCheckLimit
	com.unicacorp.interact.chSuppressDupe
	com.unicacorp.interact.rhSuppressDupe
	com.unicacorp.interact.testclient.nullValue
	interact.ehcache.config
	interact.api.dateFormat
	com.hcl.interact.testrun.rowlimit
	Interact.DisableExceptionStackTracesInMacros
	com.unicacorp.interact.enableDetailStats
	com.unica.interact.deployment.timeoutInSecs
	com.ibm.interact.instance.name
	com.unicacorp.interact.invalidPaths
	interact.XSessResponseConsumerManager.generateOnlyOneResponse
	tryToPreserveInexactFloatValues
	com.unicacorp.interact.propertyRefreshInterval
	com.unicacorp.interact.scheduledTasksProcessInterval
	com.unicacorp.interact.eventpatterns.parallelism
	com.unicacorp.interact.eventpatterns.restartRetries
	com.unicacorp.interact.eventpatterns.evaluateTimeoutMilli
	com.unicacorp.interact.eventpatterns.restartRetryDelayInSec
	Interact.advisoryMessageEncodingOverrides
	com.unica.interact.api.insertSessionIDAsCooki
	com.unica.interact.api.SessionIDCookieName
	InteractMsgCode
	com.ibm.interact.triggeredmessage.enableJMSConsumer
	com.unicacorp.interact.maxStringLengthInFormatMacro
	ContinueEvaluatingBranchAndAdvOptTreatmentLogicDespiteExMessageList
	DisableDecisionProcessBoxAndAdvOptTreatmentLogging
	TwoDigitYearStartDate
	Interact.enableTwoDigitYearFix
	com.ibm.interact.evpatetl.conf
	com.unicacorp.interact.minTreatmentsPerThread
	com.unicacorp.interact.maxTreatmentPoolSize
	CircuitBreaker.processTimeoutMillis
	com.unicacorp.interact.event.asyncTimeoutMSec
	com.unicacorp.interact.eventActionTimeout
	Interact.HTMI.Enabled
	Interact.HTMI.MaxRequestDurationInMs
	Interact.HTMI.RecordIndividualAPIs
	Interact.HTMI.MaxStartSessionDurationInMs
	Interact.HTMI.MaxGetOffersDurationInMs
	Interact.HTMI.MaxPostEventDurationInMs
	Interact.HTMI.MaxGetProfileDurationInMs
	Interact.HTMI.LogErrorsEveryNthTime
	Interact.HTMI.UseMillisecondTimers
	Interact.HTMI.Debug
	com.unicacorp.interact.suppressWarningOnAnonymousUser
	com.hcl.interact.eventpatterns.printPatternAction
	com.hcl.interact.eventpatterns.eagerPersist
	com.ibm.interact.triggeredmessage.addPerfData
	com.unicacorp.interact.learning.disableAggregator
	com.unicacorp.interact.learning.disableDeletion
	com.unicacorp.interact.learning.ignoreInterval
	interact.services.loader.saveLoaderFiles
	ConvertEveryNULLAttributeValueToAJEPNullConstant
	includeJoinInfo
	com.unicacorp.interact.deployment.reloadTimeout
	com.ibm.interact.lockTimeWarningThreshold
	com.unicacorp.interact.cache.maxWaitTime
	DEFAULT_PERSISTENCE_PROVIDER
	com.unicacorp.interact.triggeredMessage.logging.maxDelayInMin
	com.unicacorp.interact.triggeredMessage.logging.maxBatchSize
	com.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures
	com.unicacorp.interact.triggeredMessage.logging.maxDelayInMin
	com.unicacorp.interact.triggeredMessage.logging.maxBatchSize
	com.unicacorp.interact.triggeredMessage.logging.maxNumberOfFailures

	Chapter 19. Unica Interact and Digital Recommendations integration
	Overview of Unica Interact integration with Digital Recommendations
	Integration Prerequisites

	Configuring an offer for Digital Recommendations integration
	Using the Integration Sample Project
	Overview
	MySampleStore.jsp

	Chapter 20. Unica Interact and Digital Data Exchange integration
	Prerequisites
	Integrating Unica Interact with your website through IBM Digital Data Exchange
	Unica Interact tags in Digital Data Exchange
	End Session
	Get Offers
	Load Library
	Post Event
	Set Audience
	Start Session
	Example tag settings
	Example Start Session tag settings
	Example Get Offers tag settings
	Example Post Event tag settings
	Example End Session tag settings
	Example functions

	Verify your integration configuration

	Chapter 21. Unica Interact and Unica Journey integration
	Overview
	Interact-Journey fields mapping
	Journey details (Prior to version 12.1.0.3)
	Field mapping
	Triggered messages

	Interact runtime configurations
	Gateway

	Deployment

	Chapter 22. Unica Interact and Unica Deliver integration
	Overview
	Interact-Deliver mapping
	Deliver field mapping
	Triggered messages

	Interact runtime configurations
	Gateway

	Deployment

	Chapter 23. Configure gateways
	Using the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange
	A. Creating an endpoint and event in UBX
	B. Configuring Unica Interact for the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange
	C. Configuring the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint
	D. Deploying the Unica Interact Inbound Gateway for IBM Universal Behavior Exchange and endpoint

	Using the Unica Interact Outbound Gateway for IBM Universal Behavior Exchange
	Registering endpoints and events in UBX
	Configuring Unica Interact and the gateway

	Using Unica Interact Outbound Gateway for IBM Mobile Push Notification
	Configuring IBM Marketing Cloud
	Configuring the Unica Interact Outbound Gateway for IBM Mobile Push Notification
	Configuring Unica Interact

	Using the Unica Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Adding a dispatcher for the gateway integration
	Configuring the OMO-conf_outbound_common_httpConnectionConfig parameter
	Configuring the OMO-conf_outbound_silverpop_silverpopConfig parameter
	Configuring the OMO-conf_outbound_silverpop_silverpop ContentMapping parameter
	Configuring the deliveryTimeoutMillis parameter
	Add a channel handler for the Unica Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Adding an outbound channel for the Unica Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Configuring the transactional mailing with the Unica Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Contact Central integration configurations
	InteractDT
	Interact runtime

