
Unica Content Integration
V12.1.3 Developer Guide

Contents

Chapter 1. Overview.. 1

Plugins.. 1

Integration support and plugin development approach... 1

RESTful content search flow.. 2

Non-RESTful content search flow...3

Chapter 2. Plugin development overview.. 4

Components of plugin...4

Service declarations...5

Standard services.. 12

Service implementations...25

Chapter 3. Plugin Development SDK... 32

Generic type parameters.. 32

I18n support...36

Service invocation... 37

Execution context..42

User data source... 44

Standard services and specialized types.. 45

Invocation of standard services... 45

Specialized types... 50

Request Validation.. 103

Standard exceptions... 103

RESTful approach.. 104

Functional approach..104

Contents | iii

Loggers...106

Chapter 4. Setting up the development environment... 107

Chapter 5. Verification and troubleshooting.. 119

Overview of loggers.. 120

Useful loggers in log4j2.xml file...120

Other important loggers..122

Chapter 1. Overview
Unica Content Integration facilitates easy integration with Content Management Systems

and enables searching content from them.

The fetched content can be used by the client of Unica Content Integration for various

content-oriented business use cases. A Unica Content Integration client is any product from

Unica Suite which integrates with it to consume the content from the target systems.

Plugins
To integrate with different CMS, Unica Content Integration uses REST APIs. Since each CMS

has a unique programming interface, Unica Content Integration uses custom plugins or

modules written specifically for the target CMS.

You can implement plugins using Java programming language. Unica Content Integration

does not enforce any dependency of any third-party library for developing such plugins. You

can customize plugins to utilize any third-party library for its implementation. Plugins can be

used to fill in the logical gaps related to the target system.

Plugins non-intrusively augment Unica Content Integration to facilitate various content-

oriented use cases.

Integration support and plugin development approach
Unica Content Integration provides out-of-the-box support for easy integration with RESTful

interfaces. It also facilitates alternative approach of plugin development to integrate with

non-RESTful systems such as database, file systems, or any other content repository.

A typical plugin written for REST API integration does not contain any logic to establish

connection with the target system, and to handle protocol level success and failure

conditions. Such responsibilities are handled by the Content Integration Framework. Plugins

provide only system-specific pieces of information, such as:

• absolute location of the target API

• HTTP method to be used

Unica Content Integration V12.1.3 Developer Guide | 1 - Overview | 2

• headers to be supplied

• request body to be sent

• type of the response to be expected

• transformer for the received response

An alternate plugin development approach for non-RESTful integration involves thorough

implementation. For example, a plugin written for fetching content from database needs to

address everything involved in making DB connection, executing SQLs, closing connections,

result set hydration, failure handling etc.

Content Integration Framework follows Inversion of Control (IoC) pattern while working with

plugins. Framework delegates to and/or calls back plugin services whenever respective

user requests or system events occur.

RESTful content search flow
The following figure shows the end-to-end execution flow for RESTful content search:

Figure 1. RESTful content search flow

When Content Integration Framework receives content search request from user for the

target system, it consults with the respective plugin to gather request specific logical

information and makes an API call to the target system. It consults with the plugin once

again to transform the API response into an expected format and responds to the user.

Unica Content Integration V12.1.3 Developer Guide | 1 - Overview | 3

Non-RESTful content search flow
The following figure shows the end-to-end execution flow for Non-RESTful content search:

Figure 2. Non-RESTful content search flow

Non-RESTful plugins interact with the content repository and provides the search results to

Content Integration Framework. Unlike RESTful repositories, Content Integration Framework

will not know the type, architecture, protocol and the authentication mechanism used for

communicating with the target repository.

Chapter 2. Plugin development overview
Unica Content Integration facilitates easy integration with new content repositories without

having to alter the core Content Integration framework.

Unica Content Integration seamlessly integrates with system-specific, independent

plugins. Once the plugin is developed and placed under the <ASSET_PICKER_HOME>/

plugins/custom directory on the application server hosting Content Integration, the

corresponding content repository can be onboarded in the Unica product suite by updating

a few configurations in Unica Platform. For more information, see Unica Content Integration

Administrator's Guide

Note: <ASSET_PICKER_HOME> refers to the base installation directory of

Unica Content Integration placed within Platform home. Hence, any further use

of <ASSET_PICKER_HOME> in this guide should be considered as a path to the

Content Integration directory within Platform home.

Unica Content Integration is shipped with a development kit containing the dependencies,

reference projects, and a starter project to quick start the plugin development. Development

kit is placed within the <ASSET_PICKER_HOME>/dev-kits directory. Four reference

projects, named aem-integration, wcm-integration, dx-integration, and commerce-

integration are available for Adobe Experience Manager (AEM), IBM Web Content

Manager (WCM), HCL Digital Experience and HCL Commerce, respectively.

Components of plugin
A typical plugin contains the following components:

• Service declarations (on page 5)

• Service implementations (on page 25)

• I18n resource bundle (on page)

The term Service represents a Java class, which either indirectly aids in consuming an

external REST service, or directly interacts with external web service(s) or system(s) for a

unique_10
unique_10
unique_10

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 5

designated purpose. External system need not be a standard Content Management System

and external services need not belong to any standard CMS. It can be any system or an API.

Any service implemented by the plugin must be declared in a centrally managed service

declaration file. A service declaration file is an YML configuration file containing the

list of services implemented by all the available plugins. The service declaration file

must be named custom-plugin-services.yml. It should be available within the

<ASSET_PICKER_HOME>/conf directory. Structure of custom-plugin-services.yml

file must be similar to the plugin-services.yml file, which exists in the same directory.

The plugin-services.yml file contains service declarations for out-of-the-box system

integrations. A service can either be a standard service or a custom service.

Standard services carry special semantics and purpose in Unica Content Integration.

Implementation of certain standard services is mandatory for Content Integration

Framework to work with the content repository.

Service declarations
Reference service declarations can be found inside asset-integration-starter

project within dev-kits\asset-integration-starter\src\main\resources

\META-INF directory.

The following are example service declarations from asset-integration-starter

project:

services:

 -

 systemId: Foo

 serviceName: simple-search

 factoryClass: com.example.service.rest.SimpleSearchService

 params:

 supportedContentTypes: # Standard parameter, applicable only for

 simple-search service

 Images: Images

 customParam1: p1Value # String parameter

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 6

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: resource-loader

 factoryClass: com.example.service.rest.ResourceLoaderService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: asset-selection-callback

 factoryClass: com.example.service.rest.ContentSelectionCallbackService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 7

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: custom-service

 factoryClass: com.example.service.rest.ExampleExampleCustomService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

Service declaration file
Service declaration file contains services element, which is an array of individual service

declarations. A service declaration is a dictionary containing three mandatory elements

named systemId, serviceName, and factoryClass, and one optional element named

params. Details of the elements are as follows:

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 8

• systemId

This string value uniquely identifies a target content repository. This identifier should

preferably contain only English alphanumeric characters. Use dots, dashes, and

underscores to enhance readability. Avoid any other special characters and unicode

characters. Identifier once chosen for the target system must remain consistent

across all service declarations for the same system. This identifier is also used in

Unica Platform configuration for onboarding the respective system.

The following are some examples of valid system identifiers:

WCM

AEM

Example

WCM_1.0

AEM_1_1

DX-CORE

DX

You can write different plugins for different versions of the same system. In such

case, different identifiers must be used to identify each version distinctly. Alternatively,

the same plugin may contain different versions of service implementations specific

to the respective versions of the corresponding system. In such case, different

systemIds must be carefully assigned to the respective service declarations. For

example, two different versions of WCM, namely 1.0 and 2.0 may contain different

APIs for content search service, thereby causing following service entries for

respective versions:

 -

 systemId: WCM_1.0

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_1_0.WcmSimpleSearchService

 -

 systemId: WCM_2.0

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 9

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_2_0.WcmSimpleSearchService

The two entries may belong to the same plugin or may be placed in two different

plugins for the sake of implementation clarity. Content Integration Framework does

not impose any restrictions.

• serviceName

This string value uniquely identifies the given service for corresponding system. It can

either be a name of Standard service, or an appropriately chosen name for the custom

service. Standard services are discussed in subsequent sections.

• factoryClass

This is a fully qualified path to the Java class providing service implementation.

• params

Provides a way to supply static parameters to the service to control, or modify, service

behavior according to the parameter values. In short, params can be used to hold

static key-value configuration for service implementations. This can include certain

standard service parameters as well as any custom parameters that a service might

want to use. Parameter values are converted into the objects of closest matching

primitive wrapper classes, such as Integer, Long, Double, String etc. A parameter value

can also be a map, array, or list of other values (plugins must verify the runtime-type of

these values before using them).

Service declaration file also contains certain properties pertaining to the target content

repository. These properties are covered under systems root element. The following is an

example of such entry containing all the supported properties:

systems:

 YOUR_SYSTEM_ID:

 params:

 param1: value1

 param2:

 k1: v1

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 10

 k2: v2

 param3: 100

 additionalFeatures:

 securityPolicy: false

 content:

 paginatedSearch: true

 paginatedList: true

 anonymousContent: true

 categorization: lenient

This example entry shows the default values considered for each property mentioned herein

in case no such entry is present for the given target repository. Thus, this entry is optional

unless one or more of these default considerations do not hold true for the target content

repository. Below section briefs the significance of each property:

params - Provides a way to supply static parameters to the respective plugin to control or

alter plugin behavior according to the parameter values. In short, params can be used to

hold static key-value configuration for plugin implementations. This can include predefined

standard system parameters as well as any custom parameters that a respective plugin

might want to use. Parameter values are converted into the objects of closest matching

primitive wrapper classes, such as Integer, Long, Double, String etc. A parameter value can

also be a map, array, or list of other values (plugins must verify the runtime-type of these

values before using them).

additionalFeatures | securityPolicy - This setting must be set to true when content is

protected inside respective system using Unica's security policies.

additionalFeatures | content | paginatedSearch - This feature flag is used to

convey whether content repository supports paginated content search results or not. User

experience is altered accordingly for showing content search result.

additionalFeatures | content | paginatedList - This feature flag is used to convey

whether content repository supports paginated content listing or not. User experience is

altered accordingly for showing content list.

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 11

additionalFeatures | content | anonymousContent - This feature flag is used to convey

whether publicly accessible content should be expected from the content repository or not.

If it is set to true, plugin must return publicly accessible URL for each content. If contents

cannot be made publicly accessible using HTTP(S) URL, plugin developer must set this flag

to false. In such case, users will not be able to see or download the contents fetched from

the repository. If the target system does not provide anonymously-accessible URL for the

content, you must implement the resource-loader service to allow download of protected

content.

additionalFeatures | content | categorization - This property can be set to either

strict or lenient. If it is left out, it is assumed to be lenient by default. Content is generally

organized in different categories. Value of this property provides a hint about the structural

similarities of contents across categories. Strictly organized contents are assumed to

be heterogeneous. Such contents may not share any attributes across categories. For

example, insurance products can be considered as strictly categorized. Life insurance,

Automobile insurance, Health insurance, Travel insurance etc. have very few attributes

in common. Such products possess exclusive attributes relevant to the category they

belong to. Whereas leniently categorized contents are assumed to be homogeneous by and

large. They share most of their attributes across categories. For example, products in an e-

commerce application can be considered leniently categorized since most of the products

across all categories have similar attributes such as product title, description, SKU, price,

manufacturer, discount, imagery, rating, offers, weight, warranty information etc.

Value of this property helps in deciding whether users should be allowed to pick

contents across categories while using Content Integration feature in Centralized Offers

Management. Strict will restrict users to the contents of relevant category, whereas lenient

will allow users to choose content from any category regardless of the category used for

setting up attribute mapping.

In addition to standard system parameters, any custom parameters can also be declared

similarly. Likewise, the Additional parameters section in Platform configuration can

also be utilized for admin configurable system parameters. Note that the Additional

parameters in Platform configuration does not support nested & collection (array &

dictionary) parameters. It must be a simple key: value pair, wherein key & value is separated

by a colon & a space. Each key/value pair must be on separate line.

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 12

For example,

param1: value1

param2: 2

param3: 1.2

The Additional parameters in Platform configuration as well as system parameters from

YML file can be obtained by invoking getParams() method on standard SystemConfig

object available to each service.

Standard services
The following table introduces the standard services of Unica Content Integration.

Hence, none of the service names listed herein should be used for any custom service

implementation. Content Integration SDK provides standard interfaces and types to

implement these standard services. These interfaces and types are discussed in more

detail in subsequent sections.

Table 1. Standard services and their description

Standard service name Description

simple-search Simple search service responds to the

content search requests received by Con

tent Integration Framework. This service

accepts the search query string along

with required result pagination details.

Based on the success of search opera

tion, it returns the search result for giv

en search query and according to the re

quired pagination. This is a mandatory

service for the plugin.

list-folders This is an optional service. Folder is a

general term used to represent a contain

er object used in target system to hierar

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 13

Table 1. Standard services and their description (continued)

Standard service name Description

chically organize the contents. This ser

vice is invoked to render the list of fold

ers & sub-folders to facilitate navigation

through such hierarchically organized

contents.

Note: list-folders and list-

contents are correlated services.

Implementation for both services

must exist for content navigation

to function properly.

list-contents This is an optional service. This service is

invoked for listing the contents belonging

to a particular folder.

Note: list-folders and list-

contents are correlated services.

Implementation for both services

must exist for content navigation

to function properly.

get-content-details Implementation of this service is useful

for retrieving the details of an individual

content. Contents obtained using sim

ple-search & list-contents services

are referenced further in other Unica prod

ucts. Users might want to see the de

tails of already referenced content at later

point of time. Therefore, we encourage to

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 14

Table 1. Standard services and their description (continued)

Standard service name Description

implement this service to facilitate users

to see the content details on demand.

get-object-schema This is an optional service. Object

schema in simple terms refers to the

meta information about the properties

or attributes present in the given type of

object. Implementation of this service is

useful for -

• allowing Centralized Offer Manage

ment users to map Offer attributes

with content attributes

• creating Custom Actions in Central

ized Offer Management

• letting Journey users create En

try sources by leveraging attribute

mapping between Data Definitions

& Content/Object received from re

spective external system

resource-loader This service is useful when direct down

load of the content from target system is

not feasible. This service is not mandato

ry and should be implemented only when

following challenges are encountered:

• If no direct web link exists to down

load the contents

Contents returned by the sim

ple-search and list-contents

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 15

Table 1. Standard services and their description (continued)

Standard service name Description

services must include an absolute

URL to the respective content so

that Content Integration client can

download it directly over the web. If

no such direct web link to the con

tent is present, then it is necessary

to implement the resource-loader

service by overriding the default im

plementation provided by Content

Integration Framework. For exam

ple, if the contents are maintained

in a database table, then the sim

ple-search and list-contents

services will fetch records from

the database. Since the items are

loaded from the database, there

may not be any URL directly point

ing to each record. In such case, the

resource-loader service can make

use of the content identifier to lo

cate and provide the appropriate

data whenever content download

is requested. All content download

requests will go through the Con

tent Integration Framework, which

will delegate the downloading task

to the resource-loader service by

providing it the content URL and its

identifier.

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 16

Table 1. Standard services and their description (continued)

Standard service name Description

• If web links to the contents are pro

tected

Certain systems may not provide

anonymous access to the contents

despite of the availability of direct

web links. In such cases, access is

generally provided only after sup

plying required authentication de

tails. By default, Content Integra

tion Framework registers an out

of the box implementation of re

source-loader service for each plu

gin. This default implementation

makes use of the real content URL

to download the content from re

mote system by supplying appropri

ate authentication details subject

to the configurations in Unica Plat

form. (For more information on sys

tem onboarding configurations, see

Unica Content Integration Adminis

trator's Guide).

Alternatively, plugins can override

the default resource-loader im

plementation to alter the content

downloading behavior (using con

tent URL or content identifier). If the

resource-loader service is overrid

den using RESTful approach, Con

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 17

Table 1. Standard services and their description (continued)

Standard service name Description

tent Integration Framework will con

tinue to take care of supplying au

thentication details based on the

Platform configuration.

Note: Content must be

made anonymously acces

sible if it is expected to be

seen/accessed by the exter

nal audience. In such case,

usage of resource-loader

service is not encouraged in

production systems. Usage

of resource-loader ser

vice can be turned off any

time by setting the Anony

mous Content property to

Yes in Platform configu

ration. Likewise, it can be

turned on by setting the

same property to No.

list-category-folders This is an optional service. Some systems

might organize contents/entities into dif

ferent folders. Likewise, content cate

gories might also be organized in folders.

Implementation of this service helps to

navigate folders for selecting desired con

tent category. The list-content-categories

service mentioned further in this section

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 18

Table 1. Standard services and their description (continued)

Standard service name Description

receives the ID of desired folder to list the

categories from.

list-content-categories Content can be logically categorized by

its natural classification. For example,

Digital content can be categorized in

to Images, Documents, Multimedia (au

dios and videos), Archives etc. Similar

ly, E-commerce products can be catego

rized into several broad categories, such

as Electronics, Healthcare, Books, Fur

niture etc. Content Integration Frame

work allows following ways of conveying

such content categorization to facilitate

searching contents within specific cate

gory.

• supportedContentTypes service

parameter

A standard service level parame

ter, supportedContentTypes, can

be used to statically supply a dictio

nary of supported content types un

der simple-search service declara

tion.

• getSupportedContentTypes()

method in search service imple

mentation

getSupportedContentTypes()

method can be overridden to dy

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 19

Table 1. Standard services and their description (continued)

Standard service name Description

namically generate a map of sup

ported content types, wherein key

serves as the category identifier

and value serves for the label dis

played on the UI. This method is ex

ecuted during the application start

up, hence no remote API call can

be made using Content Integration

Framework’s capabilities since ap

plication might be in partially initial

ized state when this method is in

voked.

• list-content-categories service

Optionally, list-content-categories

service can be implemented to ad

dress the limitation of getSup

portedContentTypes() method.

It enables remote API calls to be

made for fetching the content cat

egories even more dynamically. If

implemented, this service overrides

the earlier mentioned approaches.

Content Integration Framework in

vokes this service whenever con

tent search popup is rendered.

get-content-category-details This is an optional service. This service

helps to retrieve details of a specific con

tent category using its identifier. It is ad

vised to implement this service if list-con

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 20

Table 1. Standard services and their description (continued)

Standard service name Description

tent-categories is implemented for dy

namically fetching categories from re

mote system or categories are listed us

ing folder hierarchy.

This service need not be implemented

if categories are maintained using sup

portedContentTypes parameter to sim

ple-search service or getSupportedCon

tentTypes() method in simple-search ser

vice.

get-cognitive-analysis This is an optional service. If implement

ed, it is used to fetch cognitive details as

sociated with the given image, subject to

the "Preferred cognitive service provider"

configuration in Unica Platform.

Object extension service This is an optional service. This standard

service does not mandate any standard

service name. There can be more than

one object extension services. The core

purpose of any object extension service

is to enhance the capability of any object

(such as Offer in Centralized Offer Man

agement) by leveraging the attribute map

ping feature. Centralized Offer Manage

ment leverages object extension services

by means of Custom Actions in Offers.

Note: Object extension and

get-object-schema are corre

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 21

Table 1. Standard services and their description (continued)

Standard service name Description

lated services. Implementation

of get-object-schema service is

mandatory for object extension

feature to function properly. get-

object-schema service is expect

ed to support schema generation

for the contents in the context

of Content Integration capabili

ties in Centralized Offer Manage

ment. In case of object extension

capability, get-object-schema

service is additionally expected

to support the schema genera

tion for the object returned by the

respective object extension ser

vice. get-object-schema service

accepts the type/category of the

object/content to generate the

schema for. In case of object ex

tension service, it receives the

type in {service-name}.request &

{service-name}.response format.

For example, if fetch-addition

al-attributes is the name giv

en to the object extension service,

then get-object-schema receives

fetch-additional-attributes.re

quest & fetch-additional-attrib

utes.response as the type of ob

ject whenever schema for fetch-

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 22

Table 1. Standard services and their description (continued)

Standard service name Description

additional-attribute service’s

request & response objects is re

quired.

Object event interpreter service

(Webhook)

This is an optional service. Unlike the ser

vices listed above, this is in fact an in

bound RESTful service. If implemented, it

lets the plugin expose webhooks in Con

tent Integration to be able to receive con

tent lifecycle events from the respective

content repository. The core responsibil

ity of this service is to help Content Inte

gration Framework interpret the seman

tics associated with incoming event so

that Content Integration Framework can

process the event accordingly.

Incoming content events are relayed to

Centralized Offer Management for auto

matically synchronizing Offers using as

sociated content details. It leverages the

attribute mapping feature to synchronize

Offers automatically.

There is no standard name for this ser

vice. Plugin can choose any appropriate

name.

Likewise, Unica Journey can also use

Webhooks for syndicating Entry Sources.

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 23

Table 1. Standard services and their description (continued)

Standard service name Description

Object event interpreter service

(Kafka listener)

This is an optional service. This service

adds listener(s) to the Kafka topic(s) for

handling object events coming via Kafka.

There is no standard name for this ser

vice. Plugin can choose any appropriate

name.

Events received either via Webhook or

Kafka are used for automatically synchro

nizing/update various objects in Unica

products, such as Offers in Centralized

Offer Management, and user Journeys in

Unica Journey. Auto synchronization hap

pens entirely based on the attribute map

pings facilitated by get-object-schema

service.

Kafka message publisher service This is an optional service. There is no

standard name for this service. Plugin

can choose any appropriate name. This

service allows plugins to publish mes

sages (JSON and/or Avro) onto Kafka

topic(s).

Content Integration Framework does not

directly invoke this service. Plugin can

treat it as custom service and invoke it

wherever required. There are no special

semantics associated with any Kafka

publisher service. Single Kafka publish

er service can publish same message in

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 24

Table 1. Standard services and their description (continued)

Standard service name Description

different supported formats onto differ

ent topics. Plugin can have more than one

publisher service if different messages

need to be sent onto different topics.

Standard collaboration services – Collaboration services facilitate integration with external

collaboration systems such as Slack, Microsoft Teams etc. Unica Plan leverages such

services to integrate its Message Board with desired collaboration systems. Content

Integration Framework provides out of the box integration with Slack. Content Integration

Framework allows integrating with any other similar system by means of these service

implementations.

collaboration.create-channel This is a mandatory service. It is used for

creating a communication channel in re

spective collaboration system. All subse

quent collaborative operations happen us

ing the same channel. For example, ad

dition of members/collaborators to the

channel, removal of members from chan

nel, posting messages etc.

collaboration.update-channel This is a mandatory service. It is used for

updating details of existing collaboration

channel. As of current release, it is used

mainly for renaming a channel.

collaboration.get-channel-details This is a mandatory service. It is used for

fetching details of already known channel

using its unique identifier.

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 25

collaboration.add-members-to-chan

nel

This is a mandatory service. It is used for

adding new members/collaborators to an

existing collaboration channel.

collaboration.remove-members-from-

channel

This is a mandatory service. It is used for

removing existing members/collabora

tors from already created channel.

collaboration.post-message-to-chan

nel

This is a mandatory service. It is used for

posting a new message to existing collab

oration channel.

Service implementations
For each service declared in the service declaration file, there must be an implementation

present inside the respective factoryClass.

The Content Integration Framework provides an SDK to streamline the service

implementation and facilitates rapid development of plugins. The Content Integration SDK

allows two different approaches for service implementations: RESTful and Functional.

This section will provide a brief introduction to these approaches. For additional

information, refer the asset-integration-starter project.

This topic also introduces certain types, interfaces, their generic type parameters, and

enums from Content Integration SDK. For additional details, see Plugin Development SDK

(on page 32).

RESTful approach
The com.example.service.rest.ExampleCustomService class helps you understand REST

based service implementation.

This class is an implementation of RestService interface, and thus represents a REST

based service. Since REST is completely based on HTTP standards, the RestService

interface in Content Integration SDK is extended from HttpService interface and is defined

as a marker interface. The RestService interface does not declare any additional method

of its own. Listed below are the methods declared in HttpService interface, which REST

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 26

based service implementation must implement. Not all methods are mandatory. All

methods accept ExecutionContext object, which contains all the contextual information

necessary for every method to perform its designated task. The generic type parameter to

the ExecutionContext class represents the type of input required for the respective service

on its invocation.

• HttpRequest buildRequest(ExecutionContext<RQ> executionContext)

This is a mandatory method. It returns an object of type

com.hcl.unica.system.model.request.HttpRequest. The HttpRequest class

provides builder API to construct the object with applicable details. This object

comprises all the required details for making an HTTP request, such as endpoint URL,

HTTP method, HTTP headers, and HTTP request body. The HttpRequest builder API

accepts the following arguments:

◦ String endpointUrl

An absolute URL to target API.

◦ HttpMethod httpMethod

HTTP method to be used for making API call. Must be one of the values from

com.hcl.unica.system.integration.service.HttpMethod enum.

◦ Optional<Map<String, Object>> headers

An optional Map of HTTP headers. It can include standard as well as custom

HTTP headers. Header names must be specified in terms of Map keys, and

header values must be supplied as corresponding values in the Map. In the

absence of this optional value, no custom headers will be sent along with the

outgoing HTTP request.

Note: Although the header Map accepts values of type Object

(or its subtypes), only String objects are supported as of current

implementation of Content Integration Framework. Any other type of

value will be ignored, and following warning will be logged:

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 27

Header '{HEADER_NAME}' with value

 ‘{TO_STRING_REPRESENTATION}' will not be set since it is

 not a String and no Converter is available.

◦ Optional<?> payload

If the target service expects any request body, then this argument can be

supplied with the desired HTTP request body. It can be any valid object so

long as appropriate Content-Type header is supplied in the headers Map. In

the absence of this argument, empty request body will be sent along with the

outgoing HTTP request.

Note: Jackson and JAXB Support: Object serialization using Jackson

and JAXB is completely supported by the Content Integration

Framework. Thus, appropriately decorated object with Jackson or

JAXB annotations can be set as the request payload. In such case,

appropriate Content-Type header must be specified in headers Map.

Serialization of supplied object into the request body is handled by

the Content Integration Framework, hence no explicit serialization is

required.

• Object transformResponse(HttpResponse<RS> response, ExecutionContext<RQ>

executionContext)

This optional method transforms the HTTP response into a desired format. The first

argument, com.hcl.unica.system.model.response.HttpResponse, to this method,

represents the response received from the target system. The generic type parameter

to the HttpResponse class represents the type of response body, or response payload,

expected from the remote API. Response payload can be of any type, such as a

String containing the entire text as received from the service, a byte array containing

the response body, or a deserialized POJO representing the response JSON/XML.

In addition to the response payload, HttpResponse object can be used to obtain

response headers, status code, and cookies. Note that transformResponse method is

invoked only when successful (2xx) response is received from respective system. For

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 28

error response, HttpServiceExecutionException is thrown by Content Integration

Framework.

Note: Jackson and JAXB Support: Object deserialization using Jackson

and JAXB is completely supported by Content Integration Framework. Thus,

appropriately decorated object with Jackson or JAXB annotations can be

accepted as an argument to this method. Deserialization of response body

into specified type is handled by Content Integration Framework, hence no

explicit deserialization is required during response transformation inside this

method.

In the absence of this implementation, no implicit transformation is performed by the

Content Integration Framework.

In addition to these methods, there is one more method the getServiceInterface

inherited from com.hcl.unica.system.integration.service.AbstractService

interface, that needs to be implemented by the service. But its implementation is

more relevant to the service invocation rather than service implementation.

Content Integration Framework takes care of real HTTP interaction with target system

and simply consults with service object to obtain earlier mentioned details.

Error Handling: Errors or exceptions received during HTTP call are handled by the

Content Integration Framework. Methods listed earlier must not throw any checked

exception. Unchecked exceptions can be thrown if required.

Functional approach
Refer to the com.example.service.functional.ExampleCustomService class to

understand the functional service implementation.

This class is an implementation of FunctionalService interface. Unlike REST based service,

there are no HTTP specific callback methods in this type of service implementation. In

fact, functional service may not necessarily be related to any HTTP invocation. This type

of service can include any operation which has no out of the box support from Content

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 29

Integration Framework. It can talk to the database, invoke third party web service, do the file

system operation etc.

Implement the following method for a functional service. This method also accepts an

argument of type ExecutionContext, containing the contextual information required for

completing the desired task. The generic type parameter to the ExecutionContext class

represents the type of input required for the respective service on its invocation.

• RS execute(ExecutionContext<RQ> executionContext)

This method performs its designated task using the contextual information passed

to it. In return, it gives the desired value after finishing its operation. The return

value shown in this signature is a generic type and is based on the type used while

implementing FunctionalService interface.

Error Handling

Above method must not throw any checked exception. Unchecked exceptions can be

thrown if required.

Common methods

The following are the common methods applicable for RESTful

as well as Functional services. These methods are inherited from

com.hcl.unica.system.integration.service.AbstractService interface.

• Class<? extends ServiceGateway<RQ, ?>> getServiceInterface()

Implementation of this method is more relevant to the service invocation rather than

service implementation. For more information, see Plugin Development SDK (on page

32).

• void init(SystemConfig systemConfig, ServiceConfig serviceConfig)

Override this optional method to perform one-time initialization (after service

object construction), prior to serving any request. Use the SystemConfig object

and the ServiceConfig object, passed to this method, to obtain system and service-

specific details respectively to make necessary initializations, such as obtaining

a DB connection, opening a file handle etc. A separate object of your service

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 30

class is created for each individual system configuration in Unica Platform.

Thus, if the same target system is configured for two different partitions in Unica

Centralized Offer Management, then two different objects of your service class

will be created for each partition. Likewise, if the same target system is configured

for any other Unica product, a separate object for that configuration will exist. The

com.hcl.unica.system.integration.config.SystemConfig object encapsulates

all the system configurations made in Unica Platform Configuration section, whereas

com.hcl.unica.system.integration.config.ServiceConfig object holds all the

configurations made for the corresponding service in <ASSET_PICKER_HOME>/

conf/plugin-services.yml and <ASSET_PICKER_HOME>/conf/custom-

plugin-services.yml files. These objects are also accessible using

ExecutionContext in all the methods discussed earlier.

Note: Content Integration Framework does not provide any special end-of-

lifecycle method for services to clean up the things initialized inside the

init method. We recommend you to use the standard Java approach by

implementing the finalize method, if necessary.

Best approach selection
Although, it is possible to implement a service using either approaches, each approach has

some advantages and limitations when it comes to the capabilities.

1. RESTful approach

a. Advantages

• Less verbose & reads closer to the typical HTTP interaction

• Out of the box transport level error handling

• Out of the box support for retrial in case of temporary outages

• Out of the box support for proxied connectivity

• Out of the box support for future enhancements in Content Integration

Framework

Unica Content Integration V12.1.3 Developer Guide | 2 - Plugin development overview | 31

b. Limitations

• Cannot be used for non-RESTful or non-HTTP integrations, such as

database or file system interactions

2. Functional approach

a. Advantages

• Can be used for non-RESTful or non-HTTP integrations, such as database

or file system interactions

b. Limitations

• No out-of-the-box support available for transport level error handling,

retrials, proxied connectivity, and any future enhancements from Content

Integration Framework.

• If required, the explicit implementation of missing out-of-the-box

capabilities can make service implementations very verbose.

You can see that the Functional approach is well suited for non-RESTful or non-HTTP based

integrations. Any service implemented using RESTful approach can also be implemented

using Functional approach by taking care of all the necessary out-of-the-box capabilities

provided by Content Integration Framework. While Functional approach gives flexibility in

terms of implementation design, it takes away a few useful capabilities.

Chapter 3. Plugin Development SDK
This topic provides information about the various classes, interfaces, and enums from

the Content Integration SDK, with the help of corresponding logical units in asset-

integration-starter, aem-integration, and wcm-integration reference projects that are

included as a part of development kit along with the Content Integration feature.

Content Integration SDK for plugin development can be found under

<ASSET_PICKER_HOME>/dev-kits/sdk/ directory on your application server. The

following jars can be found inside the sdk directory:

• integration-api.jar

• entity-mapper-api.jar

• standard-integrations.jar

These jars contain all the SDK classes, interfaces & enums discussed in this section. Check

out the relevant classes from these jars whenever you come across the respective topic in

this guide.

Generic type parameters
Generic type parameters are used for implementing service interfaces.

A service that resides in a plugin is just a programming unit, which takes some input and

returns the expected output. Similarly, the REST API, wrapped by our service, asks for

the required input (request body, headers, cookies, and query parameters) and produces

the desired response (response body, headers, and cookies). It requires certain generic

notations for the inputs and outputs exchanged during end-to-end logical flow.

Content Integration Framework uses RQ type parameter to denote the type of input supplied

to the service on its invocation. Here, the RS type parameter is used to denote either the

type of object returned by the Functional service or the type of response body returned by

the remote REST API invoked using RESTful approach. The purpose of RS might change

based on where it is used, but it always indicates the return value of something.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 33

RestService<RQ, RS>

Refer the com.example.service.rest.ExampleCustomService class from the asset-

integration-starter project to understand the type parameters used in the

RestService inteface. RestService is just a marker interface extended from HttpService.

The definition of these type parameters is similar for the HttpService too.

• RQ

A service requires an input to perform its operation. RQ corresponds

to the type of input, or request, the service requires when invoked. The

com.example.service.rest.ExampleCustomService takes an input of type

ServiceInput. The same type parameter is used in the ExecutionContext object

passed to all methods in the RestService or the HttpService interface. The input,

or the request, object passed to the service, when invoked, is obtained by calling the

getRequest method in the ExecutionContext object.

@Override

 public HttpRequest buildRequest(ExecutionContext<ServiceInput>

 executionContext) {

 ServiceInput input = executionContext.getRequest();

 // Remaining implementation omitted for brevity

 }

• RS

This parameter type corresponds to the type of response (post deserialization)

received from the remote REST API. Service implementation chooses this

parameter based on the kind of object it wants to work with in transformResponse

method. If you look at the signature of the transformResponse method in the

com.example.service.rest.ExampleCustomService class, you will see that the

ApiResponse is supplied as the type argument to the HttpResponse class, which

corresponds to the RS type parameter of the RestService interface.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 34

Note: Deserialization occurs according to the Content-Type header present

in HTTP response received from REST API. The type used as the second

generic argument to RestService, or the HttpService, must be appropriately

annotated if Jackson or JAXB deserialization is expected.

FunctionalService<RQ, RS>
FunctionalService interface is analogous to the java.util.function.Function interface

from the Standard Java Library. The type parameters of FunctionalService have similar

semantics as the type parameters of java.util.function.Function interface.

• RQ

Represents the type of input given to the service upon invocation.

• RS

Represents the type of value returned by the service upon completion.

ServiceGateway<RQ, RS>

ServiceGateway is used as programmatic interface to services. ServiceGateway

indicates the types of input & output/return values of the given service. Implementation of

getServiceInterface method is mandatory for all services (except inbound HTTP service

& Kafka consumer/listener services) & is supposed to return class object of subtype of

ServiceGateway parameterized with appropriate input & output types. ServiceGateways &

implementation for getServiceInterface already exists for all the standard services. All

custom services implemented by the plugin must adhere to this contract. The definition of

com.hcl.unica.system.integration.service.gateway.ServiceGateway is as follows:

public interface ServiceGateway<RQ, RS> {

 public RS execute(RQ request) throws ServiceExecutionException;

 }

Semantics for the type parameter RQ is the same as mentioned earlier. The other

type parameter, RS represents the output of the service that resides in the plugin. It

does not represent the response received from remote REST API or any other target

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 35

systems. For the com.example.service.rest.ExampleCustomService class, the

CustomServiceGateway is defined as the child interface of ServiceGateway by using

ServiceInput and ServiceOutput type arguments because the service receives an input of

type ServiceInput and returns the value of type ServiceOutput on completion. For RESTful

implementations, execution of transformResponse method marks the service completion in

case of successful response from respective system.

Note:

• getServiceInterface method in

com.example.service.rest.ExampleCustomService class returns the class

object of CustomServiceGateway. ServiceGateway interface (or its child

interface) provides information about the input and the output of service

implementation. ServiceGateway interface is further used to contain the

reference of service instance and invoke its execution.

• By obtaining reference to the ServiceGateway instance of any service

thus implemented, execute(RQ request) method can be invoked to

execute the service. Note that the execute method may throw the

ServiceExcecutionException if anything goes wrong during service

execution. Details on service invocation and exception handling will be

provided in topics that follow.

ObjectEventInterpreterService<T>

ObjectEventInterpreterService is used for implementing Webhooks

to listen to the events coming over HTTP from external systems. The

ObjectEventInterpreterService<T> is subtype of InboundHttpService<RQ,

RS>. The RQ & RS type parameters in InboundHttpService represents the type of

deserialized request expected by the inbound HTTP service & the type of response

(prior to serialization) returned by this service. ObjectEventInterpreterService

is a specialized version of InboundHttpService wherein type parameter T is

analogous to RQ (the type of deserialized request). Services implementing

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 36

ObjectEventInterpreterService can only specify the request type since response

is managed by the Content Integration Framework itself. For example, refer to the

com.example.service.rest.events.ExampleEventInterpreterService service from

asset-integration-starter project.

KafkaConsumerService<K, V, RS>

KafkaConsumerService is used for implementing Kafka event listener/

interpreter services. The type parameters K & V represents the

Key & Value of incoming Kafka message. For example, refer to the

com.example.service.kafka.events.consumer.ExampleKafkaEventInterpreterService

service from asset-integration-starter project.

AbstractKafkaProducerService<K, V>

AbstractKafkaProducerService is used for implementing Kafka

message publisher services. The type parameter K & V represents

the Key & Value of outgoing Kafka message. For example, refer to the

com.example.service.kafka.events.producer.ExampleKafkaProducerService service

from asset-integration-starter project.

I18n support
Content Integration Framework makes use of localized messages wherever applicable &

possible. It implicitly looks for localized strings in certain cases. It expects certain standard

keys to be present inside translation files. Likewise, it provides an API to explicitly obtain

localized messages inside service implementation should there be such need.

I18n support is provided to the plugins by means of translation (properties) files.

Plugins can maintain the translation files inside src/main/resource/i18n directory.

Alternatively, i18n directory containing translation files can be kept under classpath

on the application server. Translation files must be named in the following format –

{SystemId}_Messages_{locale}.properties. For example, for a system with Foo as an

identifier, following sort of translation files can be placed inside i18n directory:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 37

• Foo_Messages.properties (default)

• Foo_Messages_de.properties

• Foo_Messages_en.properties

• Foo_Messages_es.properties

• Foo_Messages_fr.properties

• Foo_Messages_it.properties

• Foo_Messages_ja.properties

• Foo_Messages_ko.properties

• Foo_Messages_pt.properties

• Foo_Messages_ru.properties

• Foo_Messages_zh_CN.properties

• Foo_Messages_zh_TW.properties

Not all translation files are mandatory. Content Integration Framework looks for the

properties file corresponding to the user locale. If it does not find the translation in that file,

or the file itself is not present, then it falls back to the file corresponding to the system’s

locale. If no translation is found in this case as well (or the file itself is not found), then it

falls back to the default translation file, Foo_Messages.properties. If the translation is found

nowhere (either because of missing entry or missing file), then it uses the text appropriate

for the given context. asset-integration-starter project is shipped with these sample

translation files inside src/main/resources/i18n directory.

Service invocation
The asset-integration-starter project contains a

com.example.service.client.ExampleServiceClient class to illustrate the service

invocation.

The ExampleServiceClient class obtains reference to the SystemGateway

object for the system represented by an identifier Foo by calling

SystemGatewayFactory.getSystemGateway method with Foo as an argument.

SystemGatewayFactory.getSystemGateway method thus gives a handle to any target

system by specifying its systemId. Once the handle is obtained in terms of SystemGateway

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 38

object, it can be used to invoke any service on the respective target system. The following is

the corresponding code snippet from ExampleServiceClient class:

private SystemGateway systemGateway =

 SystemGatewayFactory.getSystemGateway("Foo");

Note: System identifier has been hard coded in this example only for the sake of

clarity. For real implementations, avoid hard coding system identifiers for invoking

the services from the same or any other plugin. Content Integration Framework

supports aliased configurations of same system. Aliased configurations are made

by specifying the desired system identifier, followed by a separator (space) and

desired alias for the system. For example, Foo can be configured in Platform

Configuration using any of the following identifiers – Foo, Foo Staging, Foo Prod,

Foo Demo etc. More than one configuration can coexist for the same system

by making use of aliased system identifiers. Aliased identifiers refer the same

plugin at runtime but execute within separate context. Hence, it is important to

invoke services within the right context by using the identifiers used in Platform

configurations. Plugin can use following API to obtain the identifier thus used in

Platform configuration. Using identifiers obtained from this API makes the plugin

compatible for aliased configurations.

String systemId = executionContext.getSystemConfig().getIdentifier();

SystemGateway

The com.hcl.unica.system.integration.service.gateway.SystemGateway provides

an overloaded method executeService, for executing any service on the target system.

One version of this method offers a way to execute any service declared in service

declaration files (<ASSET_PICKER_HOME>/conf/custom-plugin-services.yml and

<ASSET_PICKER_HOME>/conf/plugin-services.yml) for the respective system. And

the other version offers a way to execute an ad hoc HTTP call on the target system without

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 39

declaring any explicit service for it in the service declaration file. The following are the two

versions of the executeService method with their signatures:

• <RQ, RS> RS executeService(String serviceName, RQ serviceInput, Class<? extends

ServiceGateway<RQ, RS>> gatewayClass) throws ServiceExecutionException

This is a generic method and works with the type parameters RQ & RS. The

significance of RQ & RS is same as mentioned earlier. This method helps to execute

an already declared service. The invocationDemo method in ExampleServiceClient

class demonstrates the use of this method. It accepts the following arguments:

◦ String serviceName

This must be the name of service to be executed. Name of the service must

exactly match with its corresponding declaration in service declaration file.

◦ RQ serviceInput

This is an input to the service to be executed. The type parameter RQ represents

the type of input required for the service being invoked.

◦ Class<? extends ServiceGateway<RQ, RS>> gatewayClass

It must be same as the return value of getServiceInterface method in

corresponding service implementation. It helps the Content Integration

Framework to identify the right input for the service being executed and

returns the output of desired type. The RQ and RS type parameters used for

gatewayClass argument represents the type of input supplied on service

invocation and the type of response returned by the service on completion,

respectively.

On successful completion, this method returns the object of type represented by

the type parameter RS. Thus, the third argument to the executeService method,

gatewayClass, governs the type of input that goes into the service and the type of

value that service returns.

• <T> HttpResponse<T> executeService(HttpRequest request, Class<T>

expectedResponse) throws ServiceExecutionException

This is also a generic method, where the type parameter T represents the type

of response expected out of the remote HTTP call. It helps to make an ad-hoc

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 40

HTTP call to the target system without declaring an explicit service for it in service

declaration file. The adHocInvocationDemo method in the ExampleServiceClient

class demonstrates the use of this method. It accepts the following listed arguments:

◦ HttpRequest request

This must be an object of

com.hcl.unica.system.model.request.HttpRequest class. HttpRequest

provides a builder interface for constructing the object with required details.

This object essentially encapsulates the details required for making an HTTP

call, such as absolute URL, HTTP request method, HTTP request headers &

HTTP request body or HTTP request payload.

◦ Class<T> expectedResponse

This must tell the type of response expected from remote URL. Jackson

and JAXB types can also be used. Deserialization of JSON/XML will happen

automatically in such case.

On successful completion, this method returns the object

com.hcl.unica.system.model.response.HttpResponse, encapsulating the response

object from the remote call. The type of response encapsulated by the HttpResponse

will be the same as the expectedResponse argument to the executeService method.

The HttpResponse object gives access to the HTTP response status code, response

headers, and response cookies, in addition to the response payload.

Both versions of the executeService method can throw the

com.hcl.unica.system.integration.exception.ServiceExecutionException or

one of its subtypes if anything goes wrong during service execution. The object of this

exception can be consulted for the immediate cause of service execution failure. Likewise,

if the invoked service represents a REST/HTTP service (ad-hoc service invocations

are always HTTP calls), and the failure occurs out of HTTP interaction, an optional

HttpResponse object can also be obtained from the exception. In such cases, the

HttpServiceExecutionException is thrown by the executeService methods. The

presence of HttpResponse depends on whether the HTTP interaction happened or not. The

HttpServiceExecutionException might be received because of an exception in any logic

executed prior to the actual HTTP call, such as buildRequest method in a declared service.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 41

The executeService method can also throw a SystemNotFoundException if the plugin for

the specified target system is not present, or the corresponding system is not onboarded in

Unica Platform. Similarly, it can throw a ServiceNotFoundException if the specified service

is either not declared in service declaration file or not implemented by the plugin.

Note:

• You will observe that the type of the input to the custom-service

is same as the type used for service implementation in the

com.example.service.rest.ExampleCustomService class or the

com.example.service.functional.CustomService class. The type of output

is same as the one used for defining CustomServiceGateway interface whose

class object is returned from getServiceInterface method in both versions

of CustomService implementations.

• The com.example.service.rest.ExampleCustomServiceclass and the

com.example.service.functional.ExampleCustomService class represents

the same service implemented with two different approaches. The service

declaration files in asset-integration-starter project namely the META-

INF/rest-content-services.yml and the META-INF/functional-

content-services.yml have an entry for custom-service pointing to the

respective versions of the factoryClass. These two versions are provided

only for illustration purpose. For all practical purposes, only one version of the

service implementation is expected by the Content Integration Framework.

Irrespective of the approach used for service implementation, the method for

service invocation remains the same.

Multi-partitioned clients

From the perspective of service implementation, the ExecutionContext and SystemConfig

objects, passed to various callback methods, contain client application and partition

specific information. And from the perspective of service invocation, services executed

using executeService method, from the SystemGateway class, runs against the system

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 42

configured for the right client application and the partition of the user accessing Unica

Content Integration. Hence, neither the implementation nor the invoker need to work with

partitioning and other contextual details, explicitly. Content Integration Framework handles

it automatically.

Execution context
Almost every method in service implementation contract receives an instance of

com.hcl.unica.system.model.request.ExecutionContext class.

This object contains all the contextual information that is necessary for a service to perform

its operation. The following are the methods in ExecutionContext class, which can be used

to obtain various types of information during service execution:

• T getRequest()

This method can be used to obtain the input, or request, object passed to the service

when it is executed using executeService method discussed in Service invocation

(on page 37) (The T return type is the type parameter corresponding to the type

parameter RQ used for defining the service).

• Map<String, Object> getAttributes()

Returns a Map which can be used to store and retrieve custom attributes during

service execution. It is useful for carrying execution specific temporary information

across multiple callbacks. For example, if the implementation of buildRequest

method from the RestService interface or HttpService interface needs to share

some information with transformResponse method, it can share it using this attribute

Map.

It is important to note that Content Integration Framework creates a separate instance

of ExecutionContext for each individual service invocation. Hence, context attributes

cannot be shared across multiple service executions. Their scope is limited to

individual service execution.

• ServiceConfig getServiceConfig()

This method returns an instance of

com.hcl.unica.system.integration.config.ServiceConfig class. ServiceConfig

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 43

object holds the configurations made in service declaration file for the respective

service.

• SystemConfig getSystemConfig()

This method returns an instance of

com.hcl.unica.system.integration.config.SystemConfig class. SystemConfig

object contains all the configurations made in Unica Platform for the target system.

In case of multi-partitioned configurations, this object will be appropriately populated

by Content Integration Framework to hold partition-specific configuration for the

concerned client application. To know the various system configuration settings in

Unica Platform, see Unica Content Integration Administrator's Guide.

• void setAttributes(Map<String, Object>)

This method can be used to set attributes in ExecutionContext, which can be then

be obtained in other areas of the service implementation. This is useful for sharing

custom contextual information during service execution. Scope of the attributes

stored in execution context is limited to the current execution flow only. Attributes

cannot be shared across multiple execution flows of the same service.

• Locale getUserLocale ()

This method can be used to obtain signed in user’s locale.

• String localized(String key, String defaultText)

Returns the localized text for the given key. If translation does not exist for the given

key in plugin’s I18n resource bundles, then returns the default text.

InboundHttpRequestContext<T>

This class inherits from ExecutionContext<T> and holds the context information relevant to

the inbound RESTful service. In addition to the methods inherited from ExecutionContext, it

provides following methods for obtaining HTTP request details:

• Map<String, Object> getPathVariables()

Inbound RESTful services can use path variables while defining the endpoint

signature. Path variables allow designing dynamic URLs, wherein certain portions of

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 44

the URL carry value specific to the given request context. This method can be used to

obtain path variables thus defined & their values.

• Map<String, List<Object>> getRequestParams()

This method can be used to obtain request parameters & their values.

• Map<String, Object> getRequestHeaders()

This method can be used to obtain request headers & their values.

User data source
Unica Platform uses user data sources to store sensitive information, such as API

credentials, security tokens, database user credentials, etc. Plugins often need to store such

configuration details. Content Integration provides the relevant configuration to specify the

name of user data source and the associated Unica user while onboarding systems using

Unica Platform configuration.

Use the ExecutionContext to obtain applicable user data source (credentials) by navigating

through SystemConfig object:

executionContext.getSystemConfig().getDataSourceCredentials()

The DataSourceCredentials object returned by the getDataSourceCredentials method

contains the selected data source based on the strategy set up for User credentials in

Platform configuration. Hence, plugins need not make any logical decision pertaining to the

right selection of the user data source.

Likewise, SystemConfig object also provides an overloaded version of

getDataSourceCredentials, getDataSourceCredentials(String username, String

dataSourceName), which accepts the username & the name of data source to be looked

up in the given user’s account. This method can be used for obtaining user data sources in

other similar logical contexts should there be any need.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 45

Standard services and specialized types
The plugin developer needs to implement one of the following interfaces to

create an individual service - RestService/HttpService, FunctionalService,

KafkaConsumerService, KafkaProducerService.

The Content Integration Framework leverages this design and defines service classes

for all the standard services. The standard-integrations.jar provided as part of Content

Integration SDK provides specialized versions of RestService and FunctionalService for

each standard service to facilitate their implementation using RESTful as well as Functional

approach. These specialized classes are discussed further in this guide under Specialized

types (on page 50) section.

Invocation of standard services
Once implemented & declared in service declaration file, Content Integration Framework

invokes the standard services in following scenarios provided that respective system is

configured appropriately in Unica Platform configuration:

• Simple Search (simple-search)

Whenever Content Integration Framework receives content or asset search request

from its client application against target system, it invokes the simple-search

service implemented for respective system. Content Integration Framework provides

necessary input to the simple-search service upon invocation. Search items received

from simple-search service are then returned to the client application. Identification

of the target system happens based on the systemId property used in the service

declaration file and the corresponding System Identifier setting in Unica Platform that

is populated during the target system onboarding. This service must be implemented

by the plugin, else the content search request ends up in 404 response to the client

application.

The search result produced by this service can be either paginated or unpaginated.

Presence or absence of support for paginated result should be clearly indicated

using paginatedSearch property under systems section in service declaration file as

explained in the Service declaration file (on page 7) topic.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 46

• Resource Loader (resource-loader)

The resource-loader service is executed by the Content Integration Framework

only when indirect (or authenticated) access needs to be made to the search item on

the target system. Configuration can be made in Unica Platform to indicate whether

contents can be accessed directly (anonymously) from the target system or not.

For more information about system configurations, see Unica Content Integration

Administration Guide. Content Integration Framework provides a default resource-

loader service to each system. The default resource-loader service simply loads

the web resources from the target system by supplying necessary authorization

details, if applicable. Plugins may choose to override the default resource-loader

service and include their own implementation by extending the out-of-the-box

implementation. Content download and content rendition might fail if the required

overridden resource-loader implementation is missing

• List Category Folders (list-category-folders)

If this service is implemented, system assumes that content categories are organized

in folders. It is expected to provide top/root level folders as well as sub-folders of

a particular parent folder as and when requested for category navigation. Only one

level of folder list is expected in single execution, entire folder hierarchy need not

be provided. If this service is implemented, it is imperative to implement the list-

content-categories service accordingly so that categories belonging to a specific

folder can be retrieved at a time.

• List Content Categories (list-content-categories)

If implemented, this service is invoked for fetching the list of content categories

supported by the respective system. Content categories are used to narrow down the

content search/selection within a particular category. There may be other use cases

pertaining to these categories in future releases of Unica Content Integration.

If content categories are organized in folders, then it is imperative to implement list-

category-folders service to return the folder hierarchy. In such case, list-content-

categories service receives identifier of the folder for which category list needs to be

returned in single execution.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 47

This is an optional service and absence of its implementation does not impact

content searchability in Content Picker. Other alternatives are used instead to

generate the list of supported content categories in the absence of this service, that

is supportedContentTypes standard parameter for simple-search service in service

declaration file or getSupportedContentTypes() method in simple-search service

implementation. These alternatives provide way for static configuration of categories,

whereas list-content-categories service provides opportunity to fetch categories

dynamically on each user request.

• List Folders (list-folders)

This service is used to facilitate content navigation along with the list-contents

service. In addition to the content search, content can also be located by navigating

through the hierarchy of folders (or any other similar concept in respective system).

If this service is implemented, it is expected to provide top/root level folders as well

as sub-folders of a particular parent folder as and when requested during content

navigation. Only one level of folder list is expected in single execution. Entire folder

hierarchy need not be provided. If this service is implemented, it is imperative to

implement the list-contents service as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact

content searchability in Content Picker. However, content navigation is disabled in

Content Picker UI if this service is not implemented.

• List Contents (list-contents)

This service is used to facilitate content navigation along with the list-folders

service. If implemented, this service is expected to provide the list of contents

belonging to a particular folder. List can be either paginated or unpaginated.

Presence or absence of support for paginated list should be clearly indicated using

paginatedList property under systems section in service declaration file as explained

in the Service declaration file (on page 7) topic.

If this service is implemented, it is imperative to implement the list-folders service

as well to turn the content navigation feature on.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 48

This is an optional service and absence of its implementation does not impact

content searchability in Content Picker. However, content navigation is disabled in

Content Picker UI if this service is not implemented.

• Get Content Details (get-content-details)

Any content searched using simple-search service or listed using list-contents

service can be selected and used for various use cases in Unica applications. Such

use cases might demand the details of already chosen content at later point of time.

One such example is Content Preview feature in Centralized Offer Management,

wherein details of already linked content with offer attribute are shown. Whenever

Unica applications need details of any individual content, the get-content-details

service is invoked by supplying the unique identifier of the required content.

This is an optional service and absence of its implementation does not impact

content searchability in Content Picker. However, subsequent user requests for

fetching details of a content will not be served if this service is not implemented.

• Get Object Schema (get-object-schema)

This service is invoked by Unica applications to fetch the meta information about

various attributes present in the content. Based on the strictness of content

categorization as discussed in Service declaration file (on page 7), this service may

choose to generate individual schema for each category of contents or generate

a master schema comprising the attributes of all category of contents. In case of

strict categorization of content, separate schema is preferable. Whereas for leniently

categorized contents, a master schema is advisable. The meta information about

each content attribute must include the details such as the type and format of the

value it holds and a unique identifier to uniquely identify that attribute in the given

system. Syntax & semantics associated with this service are discussed in detail under

Specialized types (on page 50) section.

The object schema thus generated by this service is used by Unica applications for

mapping individual attributes of contents/domain objects with individual attributes of

Unica objects (for example, Offers in Centralized Offer Management, Data Definitions

in Journey). Such object mappings allow Content Integration Framework to derive

attribute values for one object from the other. Furthermore, Content Integration

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 49

Framework leverages this capability to synchronize objects automatically whenever

object events are received.

• Get Cognitive Analysis (get-cognitive-analysis)

This service is invoked to attempt cognitive analysis of an image and fetch the

cognitive details accordingly. It is invoked only if respective system is configured

as the Preferred cognitive service provider in Platform Configuration. For more

information, see Unica Content Integration Installation and Configuration Guide.

This is an optional service and absence of its implementation does not impact

content searchability or any other feature in Content Picker. However, cognitive

tagging feature is disabled in Centralized Offer Management if this service is not

available.

• Object extension service

Object extension services are presently used by Centralized Offer Management to

add custom actions to the Offers. Content Integration Framework does not mandate

any standard service name for Object extension service. Plugin can choose any

suitable name for it and define more than one such services, if required. The core

responsibility of this service is to accept desired request attributes on invocation and

use those attributes to enhance target object’s capability (Offer in case of Centralized

Offer Management) by either performing some supporting operation or providing

values for other attributes of the target object. As mentioned in Standard services (on

page 12) section, implementation of get-object-schema service must be enhanced to

address the schema generation requirement for the expected request object as well

as for the response object returned by this service. Request object’s schema is used

for mapping source object’s attributes to custom action’s request object attributes.

Whereas response object’s schema is used for mapping its attributes with target

object’s attributes. For more information on setting up custom actions in Centralized

Offer Management, please refer to the Centralized Offer Management Administrator

Guide. Once the custom action is defined, its execution triggers the invocation of

respective extension service. Syntax & semantics of this service are further discussed

in Specialized types section.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 50

This is an optional service and absence of its implementation does not impact

content search ability in Content Picker. However, the Custom Actions feature in

Centralized Offer Management becomes unavailable for the respective system if this

service is not implemented.

• Object event interpreter service (Webhook)

Event interpreter service is invoked whenever there is an incoming HTTP request

on the webhook exposed by the respective event interpreter service. As of release

12.1.2, Unica Centralized Offer Management can listen to the events received via

such webhooks and synchronize Offers using the associated content details. For

more information on auto synchronization of Offers, see Unica Centralized Offer

Management administrator guide. Likewise, Unica Journey can also receive events via

Webhooks using its REST Entry Sources. Events received via Webhooks are processed

based on the object mappings set up using object schemas returned by get-object-

schema service.

This is an optional service and absence of its implementation does not impact

content searchability or any other feature in Content Picker. However, if respective

external system is interested in publishing content lifecycle events to Unica

products and/or Unica features associated with content events are desired, then

implementation of this service is necessary to aid event processing.

• Object event interpreter service (Kafka listener)

Kafka event listeners are another way of receiving & interpreting events from external

systems. All dependencies, characteristics & semantics of Kafka event listeners are

same as Webhooks.

Specialized types
The following are the specialized derivatives of RestService, HttpService,

FunctionalService, InboundHttpService, KafkaConsumerService &

KafkaProducerService interfaces, and their related types for all the standard services.

Use the asset-integration-starter project to implement the details mentioned in the

following topics:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 51

• Derivatives of RestService (on page 51)

• Derivatives of HttpService (on page 72)

• Derivatives of FunctionalService (on page 74)

• AbstractEntity (on page 101)

• Presentable (on page 101)

Derivatives of RestService
Derivatives of RestService interface facilitates creation of RESTful implementation of

standard services.

Simple search (simple-search)
The following are the specialized interfaces and classes available for the simple-search

service:

• com.hcl.unica.system.integration.service.search.RestSearchService

The com.example.service.rest.SimpleSearchService class

in asset-integration-starter project is a quick starter

implementation for RESTful simple-search service. Its parent is

com.hcl.unica.system.integration.service.search.RestSearchService class.

The RestSearchService class has a type parameter RS, which represents the type of

response (post deserialization) received from the remote REST API. In this case it is

SimpleSearchResponse class defined inside the asset-integration-starter project.

RestSearchService class implements RestService interface and defines the

SearchRequest class as the type argument RQ for RestService. Thus, the object of

SearchRequest becomes input to all the simple-search services (same input is used

for Functional counterpart of simple-search as well). SearchRequest class is part of

the Content Integration SDK.

In addition to defining the input type for the simple-search service,

RestSearchService class also overrides the transformResponse method and defines

return value of this method to be of ContentPage type. ContentPage is also part

of the Content Integration SDK and encapsulates the search result and associated

pagination details.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 52

The plugin must extend its simple-search implementation from the service

com.hcl.unica.system.integration.service.search.RestSearchService to

be recognized as a simple-search service by the Content Integration Framework

(Functional counterpart, discussed later, is also a valid choice to extend from, for the

simple-search services implemented using the Functional approach).

RestSearchService extends from

com.hcl.unica.system.integration.service.search .AbstractSearchService

abstract class.

We recommend looking at com.aem.service.AemSimpleSearchService class from

the aem-integration project to know more about how the SearchRequest class and

the ContentPage class are used during service implementation.

Adhering to the contract of Presentable interface while populating list of contents in

ContentPage is a crucial part of this service implementation. Presentable interface is

covered in more detail in subsequent section.

• com.hcl.unica.system.integration.service.search.AbstractSearchService

This is a common base class for RESTful as well as Functional simple-search

implementations. So, the details of this class also apply to the Functional

implementation of simple-search.

This class defines the

com.hcl.unica.system.integration.service.gateway.SimpleSearchServiceGateway

interface as the service gateway for the simple-search service. A closer look at this

interface tells us that the simple-search takes the SearchRequest object and returns

the ContentPage object.

In addition to defining the service interface for simple-search, it introduces one more

method for the simple-search service, named getSupportedContentTypes. Every

simple-search implementation can optionally override and implement this method.

Please note that this method is very simple-search specific and has nothing to do

with other standard and custom services. The signature of this method is as follows:

public Map<String, String> getSupportedContentTypes();

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 53

Implementation of this method returns a Map<String, String> representing the

supported categories of contents that can be searched in the target system. There is

no specific semantic associated with the entries in this Map. It can be any meaningful

key-value pair. It acts as a filter for client application during the search operation. As

of current implementation of Unica Content Integration, this Map is used to populate

entries in a drop down, wherein keys of the Map become values of the options, and

values of the Map become display labels for the options. Thus, keys can carry internal

names, or identifiers, and values should be readable and meaningful texts. If the user

needs to search any specific type of content, he can choose one or more options

from the supported types. In such case, simple-search service receives a set of keys

corresponding to the values chosen by the user. Set of keys received from the client

application can be obtained from ExecutionContext object by navigating through

the getRequest method and then calling getTypes() on it. The simple-search

implementation deals with these set of keys, as per the target system’s programming

interface, and filters the search items accordingly.

Standard service parameter - supportedContentTypes

Overriding getSupportedContentTypes method is recommended only if the Map

needs to be generated dynamically. Content Integration Framework provides an

alternate approach to statically define this Map using a standard service parameter

called supportedContentTypes, configured under params element in the service

declaration file. For example, refer the simple-search service declaration for AEM and

WCM inside <ASSET_PICKER_HOME>/conf/plugin-services.yml file.

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for the list-content-

categories service:

• com.hcl.unica.system.integration.service.content.categories.list.

 RestContentCategoriesListService

The com.example.service.rest. ExampleContentCategoryListingService class

in asset-integration-starter project is a quick starter for RESTful list-content-

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 54

categories service. ExampleContentCategoryListingService class extends from

RestContentCategoriesListService class.

The RestContentCategoriesListService class has a type parameter RS, which

represents the type of response (post deserialization) received from the remote REST

API. In this case it is specified as List<ContentCategoryDetails> for the sake of

example.

RestContentCategoriesListService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.content.categories.ContentCategoryListRequest

class as the type argument RQ for RestService. Thus, the object of

ContentCategoryListRequest becomes input to all the list-content-categories

services (same input is used for Functional counterpart of list-content-categories as

well). ContentCategoryListRequest object should be consulted for parent category

ID as well as for parent folder ID if categories are hierarchical and/or maintained in

folder hierarchy.

In addition to defining the input type for the list-content-categories service,

RestContentCategoriesListService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

List<ContentCategory> type. ContentCategory class is part of Content Integration

SDK.

The plugin must extend the implementation of list-content-categories service

from com.hcl.unica.system.integration.service.content.categories.list.

RestContentCategoriesListService class to be recognized as a valid list-content-

categories service by the Content Integration Framework (Functional counterpart,

discussed later, is also a valid choice to extend from).

RestContentCategoriesListService extends from

com.hcl.unica.system.integration.service.content.categories.list.Abstr

actContentCategoriesListService class

.

• com.hcl.unica.system.integration.service.content.categories.list.AbstractContentCategoriesListService

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 55

This is a common base class for RESTful as well as Functional implementations

of list-content-categories service. So, the details covered herein applies to

Functional version of list-content-categories as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentCategoriesListServiceGateway

interface as the service gateway for the list-content-categories service. This

interface extends from com.hcl.unica.system.integration.service.gateway.

ServiceGateway interface and mandates the ContentCategoryListRequest &

List<ContentCategory> objects to be the input and output types for the list-

content-categories service.

List folders (list-folders)

The following are the specialized interfaces and classes available for the list-folders

service:

• com.hcl.unica.system.integration.service.folder.list.RestFolderListService

The com.aem.service.AemFolderListService class in aem-integration project is

a reference implementation for RESTful list-folders service. AemFolderListService

class extends from RestFolderListService class.

The RestFolderListService class has a type parameter RS, which represents the

type of response (post deserialization) received from the remote REST API. In this

case it is SimpleSearchResponse class defined inside the aem-integration project.

RestFolderListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.folder.list.FolderListRequest class

as the type argument RQ for RestService. Thus, the object of FolderListRequest

becomes input to all the list-folders services (same input is used for Functional

counterpart of list-folders as well).

In addition to defining the input type for the list-folders service,

RestFolderListService class also overrides the transformResponse method and

mandates the return value of this method to be an object of List<Folder> type.

Folder is a standard type defined in Content Integration SDK.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 56

The plugin must extend the implementation of list-folders service from

com.hcl.unica.system.integration.service.folder.list.RestFolderListService

class to be recognized as a valid list-folders service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

RestFolderListService extends from

com.hcl.unica.system.integration.service.folder.list.AbstractFolderListService

class.

• com.hcl.unica.system.integration.service.folder.list.

AbstractFolderListService

This is a common base class for RESTful as well as Functional implementations of

list-folders service. So, the details covered herein applies to Functional version of

list-folders as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.FolderListServiceGateway

interface as the service gateway for the list-folders service. This interface extends

from com.hcl.unica.system.integration.service.gateway.ServiceGateway

interface and mandates the FolderListRequest and List<Folder> objects to be the

input and output types for the list-folders service.

List category folders (list-category-folders)

The specialized types used for implementing list-category-folders are exactly same as the

ones used for list-folders.

List contents (list-contents)

The following are the specialized interfaces and classes available for the list-contents

service:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 57

• com.hcl.unica.system.integration.service.content.list.RestContentListService

The com.aem.service.AemContentListServiceclass in aem-integration

project is a reference implementation for RESTful list-contents service.

AemContentListServiceclass class extends from RestContentListService class.

The RestContentListService class has a type parameter RS, which represents the

type of response (post deserialization) received from the remote REST API. In this

case it is SimpleSearchResponse class defined inside the aem-integration project.

RestContentListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.list.ContentListRequest class

as the type argument RQ for RestService. Thus, the object of ContentListRequest

becomes input to all the list-contents services (same input is used for Functional

counterpart of list-contents as well).

In addition to defining the input type for the list-contents service,

RestContentListService class also overrides the transformResponse method and

mandates the return value of this method to be an object of ContentPage type. This

return type is same as the one used for simple-search service. ContentPage is a

standard type defined in Content Integration SDK.

The plugin must extend the implementation of list-contents service from

com.hcl.unica.system.integration.service.content.list.RestContentListService

class to be recognized as a valid list-contents service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

RestContentListService extends from

com.hcl.unica.system.integration.service.content.list.AbstractContentListService

class.

• com.hcl.unica.system.integration.service.content.list.AbstractContentListService

This is a common base class for RESTful as well as Functional implementations of

list-contents service. So, the details covered herein applies to Functional version of

list-contents as well.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 58

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentListServiceGateway

interface as the service gateway for the list-contents service. This interface

extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface

and mandates the ContentListRequest and ContentPage objects to be the input and

output types for the list-contents service.

Get content details (get-content-details)

The following are the specialized interfaces and classes available for the get-content-details

service:

• com.hcl.unica.system.integration.service.content.details.RestContentDetailsService

The com.aem.service.AemObjectDetailsService class in aem-integration

project is a reference implementation for RESTful get-content-details service.

AemObjectDetailsService class extends from RestContentDetailsService class.

The RestContentDetailsService class has a type parameter RS, which represents

the type of response (post deserialization) received from the remote REST API. In this

case it is SimpleSearchResponse class defined inside the aem-integration project.

RestContentDetailsService class implements RestService interface and defines

the

com.hcl.unica.system.model.request.content.details.ContentDetailsRequest

class as the type argument RQ for RestService. Thus, the object of

ContentDetailsRequest becomes input to all the get-content-details services

(same input is used for Functional counterpart of get-content-details as well).

In addition to defining the input type for the get-content-details service,

RestContentDetailsService class also overrides the transformResponse method

and mandates the return value of this method to be an object of Presentable type.

The plugin must extend the implementation of get-content-details service from

com.hcl.unica.system.integration.service.content.details.RestContentDetailsService

class to be recognized as a valid get-content-details service by the Content

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 59

Integration Framework (Functional counterpart, discussed later, is also a valid choice

to extend from).

RestContentDetailsService extends from the

com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService

class.

• com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService

This is a common base class for RESTful as well as Functional implementations of

get-content-details service. So, the details covered herein applies to Functional

version of get-content-details as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentDetailsServiceGateway

interface as the service gateway for the get-content-details service.

ServiceGateways are the means to programmatically define input and output types of

the service and facilitate invocation of the services. A closer look at this interface tells

us that the get-content-details service accepts the ContentDetailsRequest object

and returns a Presentable object.

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for the get-cognitive-

analysis service:

• com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService

The com.example.service.rest.ExampleCognitiveAnalysisService in asset-

integration-starter project is a quick starter implementation for RESTful get-

cognitive-analysis service. ExampleCognitiveAnalysisService in class extends

from RestCognitiveAnalysisService class.

The RestCognitiveAnalysisService class has a type parameter RS, which

represents the type of response (post deserialization) received from the remote REST

API. In this case it is CognitiveDetails class defined inside the asset-integration-

starter project.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 60

RestCognitiveAnalysisService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.cognitive.analysis.CognitiveAnalysisRequest

class as the type argument RQ for RestService. Thus, the object of

CognitiveAnalysisRequest becomes input to all the get-cognitive-analysis

services (same input is used for Functional counterpart as well).

In addition to defining the input type for the get-cognitive-analysis service,

RestCognitiveAnalysisService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.cognitive.analysis.CognitiveAnalysis

type. CognitiveAnalysis is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of get-cognitive-analysis service from

com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService

class to be recognized as a valid get-cognitive-analysis service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid choice

to extend from).

RestCognitiveAnalysisService extends from

com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService

class.

• com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService

This is a common base class for RESTful as well as Functional implementations of

get-cognitive-analysis service. So, the details covered herein applies to Functional

version of get-cognitive-analysis as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.CognitiveAnalysisServiceGateway

interface as the service gateway for the get-cognitive-analysis service. This

interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface

and mandates the CognitiveAnalysisRequest and CognitiveAnalysis objects to be

the input and output types for the get-cognitive-analysis service.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 61

Object extension service
The following are the specialized interfaces and classes available for the object extension

service:

• com.hcl.unica.system.integration.service.object.extension.RestObjectExtensionService

The com.example.service.rest.ExampleObjectExtensionService in asset-

integration-starter project is a quick starter implementation for RESTful object

extension service. ExampleObjectExtensionService class extends from

RestObjectExtensionService class.

The RestObjectExtensionService class has a type parameter RS, which represents

the type of response (post deserialization) received from the remote REST API. In

this case, it is CognitiveDetails class defined inside the asset-integration-starter

project.

RestObjectExtensionService class implements RestService interface and defines

the

com.hcl.unica.system.model.request.object.extension.ObjectExtensionRequest

class as the type argument RQ for RestService. Thus, the object of

ObjectExtensionRequest becomes input to object extension services (same input

is used for Functional counterpart as well). ObjectExtensionRequest is discussed in

subsequent section.

In addition to defining the input type for object extension service,

RestObjectExtensionService class also overrides the transformResponse method

and allows returning any type of object.

The plugin must extend the implementation of object extension service from com.

hcl.unica.system.integration.service.object.extension.RestObjectExtensionService

class to be recognized as a valid object extension service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

RestObjectExtensionService extends from

com.hcl.unica.system.integration.service.object.extension.AbstractObjectExtensionService

class.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 62

• com.hcl.unica.system.model.request.object.extension.ObjectExtensionRequest

The ObjectExtensionRequest provides and API to retrieve values of request

attributes. The core principle of object extension service is to accept desired request

attributes, perform designated operation and optionally return with a response

object. Request attribute values are obtained from the object whose capabilities

need to be extended by using the object extension service being implemented.

Implementation of object extension service must be request object agnostic. It is the

responsibility of Content Integration Framework to extract request attributes from

the object to be extended and supply it to the object extension service by means of

ObjectExtensionRequest. Thus, object extension service must be able to extend the

capability of any object if the object being extended contains the required request

attributes for the object extension service. ObjectExtensionRequest provides

following methods for obtaining request attribute values –

◦ Collection<AttributeValue> getAttributeValues() – This method returns a

collection of all request attribute values.

Attribute values are wrapped inside AttributeValue object, which provides

API for reading the value of attribute. It provides a convenience method,

as(Class<T> type), for obtaining type cast value of the attribute. Likewise,

getValue() method can be used to read the uncast value.

Furthermore, AttributeValue class provides getAttributeSchema()

method to obtain the meta information about respective attribute.

getAttributeSchema() returns an object of AttributeSchema containing

the required meta information about attribute. The most important methods

in AttributeSchema are getType() & getFormat(). These methods can

be consulted to check if the attribute is of desired type. As of 12.1.1

release of Content Integration Framework, object extension service may

receive values for the attributes which are not of required type. Hence,

extension service must consult the type & format of the attribute before

using its value. Service implementation must filter the required attribute

values by itself. Refer to the buildRequest method implementation in

com.example.service.rest.ExampleObjectExtensionService to learn how

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 63

this can be achieved. This example implementation tries to extract first URL &

first Text attribute from the request.

◦ Map<String, AttributeValue> getAttributes() - From release 12.1.2

onward, request attributes of object extension service can also be mapped

to source object’s attributes. get-object-schema service must be enhanced in

such case to generate schema for request object. Following standard service

parameter must be set to true if request attribute mapping is desired for the

given object extension service. If this parameter is missing, it is assumed to be

false by default. Likewise, requirement of response attribute mapping can also

be indicated using attributeMappingSupport | response parameter. By default,

Content Integration Framework assumes value for response to be true.

 params:

 attributeMappingSupport:

 request: true

 response: true

getAttributes() method returns map of attribute values, wherein values are

organized by respective attribute identifiers. The Map object returned by this

method is useful for retrieving attribute value using its identifier (as used in

object schema).

Object extension service can override void

validateRequest(ExecutionContext<ObjectExtensionRequest>

executionContext) method to probe request attributes before performing core

operation. InvalidServiceRequestException can be raised If desired attributes

are not found in the ObjectExtensionRequest. Refer to the Validation support

(on page 103)

◦ boolean isStronglyBound() – Object extension services written prior

to 12.1.2 may still receive unmapped requests if user hasn’t changed the

request mapping for such services. This method can be consulted to check

if request object attribute mapping exists for the given execution request.

This method returns true if object extension service does have request object

attribute mapping, false otherwise. If this method returns true, service can

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 64

look for its request object attributes by their identifiers in the Map returned by

getAttributes() method. Else, it must find out required type of attributes the

way ExampleObjectExtensionService does in asset-integration-starter

project.

• com.hcl.unica.system.integration.service.object.extension.AbstractObjectExtensionService

This is a common base class for RESTful as well as Functional implementations of

object extension service. So, the details covered herein applies to Functional version

as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ObjectExtensionServiceGateway

interface as the service gateway for object extension service. This interface extends

from com.hcl.unica.system.integration.service.gateway.ServiceGateway

interface and mandates the ObjectExtensionRequest to be the input type for object

extension service. Object extension service can return any type of object.

Service title & summary

Object extension services are listed as Custom actions in Centralized Offer

Management. The title/label for object extension service is derived from I18n

resource bundles using the key same as service name declared for respective

object extension service. Likewise, a brief summary is also shown for the service

to help users working with it. Summary is maintained in I18n resource bundles

using {service-name}.summary key. For example, check example-object-

extension-service & example-object-extension-service.summary keys in asset-

integration-starter\src\main\resources\i18n\Foo_Messages.properties file.

Collaboration services

• Channel creation service (collaboration.create-channel)

- The following are the specialized interfaces and classes available for the

collaboration.create-channel service:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 65

◦ com.hcl.unica.system.integration.service.collab.channel.create.RestChannelCreationService

–

The com.example.service.rest.collaboration.

ExampleChannelCreationService in asset-integration-starter project

is a quick starter implementation for RESTful collaboration.create-

channel service. ExampleChannelCreationService class extends from

RestChannelCreationService class.

The RestChannelCreationService class has a type parameter RS, which

represents the type of response (post deserialization) received from the

remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelCreationService class.

RestChannelCreationService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelCreationRequest

class as the type argument RQ for RestService. Thus, the object of

CollaborationChannelCreationRequest becomes input to all the

collaboration.create-channel services (same input is used for Functional

counterpart as well). CollaborationChannelCreationRequest carries the name

of channel to be created.

In addition to defining the input type for the collaboration.create-

channel service, RestChannelCreationService class

also overrides the transformResponse method and

mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails

type. CollaborationChannelDetails must carry the identifier of the newly

created channel in addition to its name. It can optionally contain URL to the

channel page.

Plugin must extend the implementation of collaboration.create-channel

service from RestChannelCreationService class to be recognized as a valid

collaboration.create-channel service by the Content Integration Framework

(Functional counterpart, discussed later, is also a valid choice to extend from).

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 66

• Channel modification service (collaboration.update-channel)

The following are the specialized interfaces and classes available for the

collaboration.update-channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.update.RestChannelModificationService

–

The com.example.service.rest.collaboration.

ExampleChannelModificationService in asset-integration-starter

project is a quick starter implementation for RESTful collaboration.update-

channel service. ExampleChannelModificationService class extends from

RestChannelModificationService class.

The RestChannelModificationService class has a type parameter RS,

which represents the type of response (post deserialization) received from

the remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelModificationService class.

RestChannelModificationService class

implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelModificationRequest

class as the type argument RQ for RestService. Thus, the object of

CollaborationChannelModificationRequest becomes input to all the

collaboration.update-channel services (same input is used for Functional

counterpart as well). CollaborationChannelModificationRequest carries the

identifier of the channel to be updated along with the new channel name.

In addition to defining the input type for the collaboration.update-

channel service, RestChannelModificationService

class also overrides the transformResponse method and

mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails

type. CollaborationChannelDetails must carry the identifier & name of the

updated channel. It can optionally contain URL to the channel page.

Plugin must extend the implementation of collaboration.update-channel

service from RestChannelModificationService class to be recognized as

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 67

a valid collaboration.update-channel service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

• Channel details service (collaboration.get-channel-details)

The following are the specialized interfaces and classes available for the

collaboration.get-channel-details service:

◦ com.hcl.unica.system.integration.service.collab.channel.details.RestChannelDetailsService

–

The

com.example.service.rest.collaboration.ExampleChannelDetailsService

in asset-integration-starter project is a quick starter

implementation for RESTful collaboration.get-channel-details

service. ExampleChannelDetailsService class extends from

RestChannelDetailsService class.

The RestChannelDetailsService class has a type parameter RS, which

represents the type of response (post deserialization) received from the

remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelDetailsService class.

RestChannelDetailsService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelDetailsRequest

class as the type argument RQ for RestService. Thus, the object of

CollaborationChannelDetailsRequest becomes input to all the

collaboration.get-channel-details services (same input is used for

Functional counterpart as well). CollaborationChannelDetailsRequest carries

the identifier of the channel to be retrieved.

In addition to defining the input type for the collaboration.get-

channel-details service, RestChannelDetailsService class also

overrides the transformResponse method and mandates the return

value of this method to be an object of java.util.Optional of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 68

type. CollaborationChannelDetails must carry the identifier & name of

the requested channel. It can optionally contain URL to the channel page. If

requested channel is not found, this method can return Optional.empty().

Plugin must extend the implementation of collaboration.get-channel-

details service from RestChannelDetailsService class to be recognized as a

valid collaboration.get-channel-details service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

• Member addition service (collaboration.add-members-to-channel)

The following are the specialized interfaces and classes available for the

collaboration.add-members-to-channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.member.RestChannelMemberAdditionService

–

The

com.example.service.rest.collaboration.ExampleMemberAdditionService

in asset-integration-starter project is a quick starter

implementation for RESTful collaboration.add-members-to-

channel service. ExampleMemberAdditionService class extends from

RestChannelMemberAdditionService class.

The RestChannelMemberAdditionService class has a type parameter RS,

which represents the type of response (post deserialization) received from

the remote REST API. In this case it is JsonNode class defined inside the

ExampleMemberAdditionService class.

RestChannelMemberAdditionService class

implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMembers

class as the type argument RQ for RestService. Thus, the object of

CollaborationChannelMembers becomes input to all the collaboration.add-

members-to-channel services (same input is used for Functional counterpart

as well). CollaborationChannelMembers carries the channel identifier & list of

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMember

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 69

objects. Each CollaborationChannelMember object carries identifier of the

user/member to be added to the channel corresponding to the supplied channel

identifier.

In addition to defining the input type for the collaboration.add-

members-to-channel service, RestChannelMemberAdditionService

class also overrides the transformResponse method and

mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.ChannelMembersAdditionStatus

type. ChannelMembersAdditionStatus must carry the list of

com.hcl.unica.system.model.response.collab.channel.ChannelMemberAdditionStatus

objects containing addition status for each supplied member. The memberId

property in ChannelMemberAdditionStatus object should carry the identifier

of member/user the status is being reported for. The error property can

be used to convey error message associated with specified member’s

addition operation. Plugin can choose to send localized error using an

API provided by ExecutionContext. The ok property must be set to true

if member is successfully added to the channel, or to false otherwise.

Reason property should be used to convey appropriate failure reason.

The entire list of member addition status should be set on the status

property of ChannelMembersAdditionStatus object to be returned from

transformResponse method.

Plugin must extend the implementation of collaboration.add-members-

to-channel service from RestChannelMemberAdditionService class to be

recognized as a valid collaboration.add-members-to-channel service by the

Content Integration Framework (Functional counterpart, discussed later, is also

a valid choice to extend from).

• Member removal service (collaboration.remove-members-from-channel)

The following are the specialized interfaces and classes available for the

collaboration.remove-members-from-channel service:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 70

◦ com.hcl.unica.system.integration.service.collab.channel.member.RestChannelMemberRemovalService

–

The

com.example.service.rest.collaboration.ExampleMemberRemovalService

in asset-integration-starter project is a quick starter implementation

for RESTful collaboration.remove-members-from-channel

service. ExampleMemberRemovalService class extends from

RestChannelMemberRemovalService class.

The RestChannelMemberRemovalService class has a type parameter RS,

which represents the type of response (post deserialization) received from

the remote REST API. In this case it is JsonNode class defined inside the

ExampleMemberRemovalService class.

RestChannelMemberRemovalService class

implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMembers

class as the type argument RQ for RestService. Thus, the

object of CollaborationChannelMembers becomes input

to all the collaboration.remove-members-from-channel

services (same input is used for Functional counterpart as well).

CollaborationChannelMembers carries the channel identifier & list of

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMember

objects. Each CollaborationChannelMember object carries identifier of the

user/member to be removed from the channel corresponding to the supplied

channel identifier.

In addition to defining the input type for the collaboration.remove-

members-from-channel service, RestChannelMemberRemovalService

class also overrides the transformResponse method and

mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.ChannelMembersRemovalStatus

type. ChannelMembersRemovalStatus must carry the list of

com.hcl.unica.system.model.response.collab.channel.ChannelMemberRemovalStatus

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 71

objects containing removal status for each supplied member. The memberId

property in ChannelMemberRemovalStatus object should carry the identifier

of member/user the status is being reported for. The error property can

be used to convey error message associated with specified member’s

removal operation. Plugin can choose to send localized error using an

API provided by ExecutionContext. The ok property must be set to true if

member is successfully removed from the channel, or to false otherwise.

reason property should be used to convey appropriate failure reason. The

entire list of member addition status should be set on the status property of

ChannelMembersRemovalStatus object to be returned from transformResponse

method.

Plugin must extend the implementation of collaboration.remove-members-

from-channel service from RestChannelMemberRemovalService class to be

recognized as a valid collaboration.remove-members-from-channel service

by the Content Integration Framework (Functional counterpart, discussed later,

is also a valid choice to extend from).

• Message posting service (collaboration.post-message-to-channel)

The following are the specialized interfaces and classes available for the

collaboration.post-message-to-channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.message.RestMessagePostingService

–

The

com.example.service.rest.collaboration.ExampleMessagePostingService

in asset-integration-starter project is a quick starter

implementation for RESTful collaboration.post-message-to-

channel service. ExampleMessagePostingService class extends from

RestMessagePostingService class.

The RestMessagePostingService class has a type parameter RS, which

represents the type of response (post deserialization) received from the

remote REST API. In this case it is JsonNode class defined inside the

ExampleMessagePostingService class.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 72

RestMessagePostingService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.collab.channel.GroupMessage class

as the type argument RQ for RestService. Thus, the object of GroupMessage

becomes input to all the collaboration.post-message-to-channel services

(same input is used for Functional counterpart as well). GroupMessage carries

the identifier of target channel & the message itself.

In addition to defining the input type for the collaboration.post-message-

to-channel service, RestMessagePostingService class also overrides the

transformResponse method and mandates the return value of this method to

be an object of same GroupMessage type. The response GroupMessage object

should carry the identifier of newly posted message.

Plugin must extend the implementation of collaboration.post-message-to-

channel service from RestMessagePostingService class to be recognized

as a valid collaboration.post-message-to-channel service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid

choice to extend from).

Derivatives of HttpService
Only resource-loader standard service is implemented as an HttpService as it relates

to the standard HTTP GET operation. You can also use RestService without losing any

capability.

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for resource-loader

service:

• com.hcl.unica.system.integration.service.resourceloader.DefaultWebResourceLoaderService

The com.example.service.rest.ExampleResourceLoaderService class in asset-

integration-starter project is a quick starter implementation for the resource-

loader service and extends from the following class:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 73

com.hcl.unica.system.integration.service.resourceloader

.DefaultWebResourceLoaderService

DefaultWebResourceLoaderService class is the default implementation of resource-

loader service provided by the Content Integration SDK. If the plugin does not

implement its own resource-loader service, Content Integration Framework falls

back on this default implementation. Default implementation of resource-loader

provided by Content Integration SDK simply follows the given resource URL and

retrieves the web resource from target system. It encapsulates the standard HTTP

GET operation.

If the plugin needs to have its own resource-loader implementation which

slightly modifies the standard HTTP GET, we recommend extending it from the

DefaultWebResourceLoaderService class. It is not necessary to extend resource-

loader implementation from the DefaultWebResourceLoaderService if the

plugin must use a completely different approach for loading contents, such

as reading from file system, database, FTP server etc. In such a case, it must

extend from either HttpWebResourceLoaderService for HTTP-based approach or

WebResourceLoaderService for functional approach.

• com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService

The DefaultWebResourceLoaderService class discussed earlier extends from the

HttpWebResourceLoaderService abstract class. This class defines the input type and

the type of HTTP response received from target URL for resource-loader service

as com.hcl.unica.system.model.request.resourceloader.ResourceRequest

and byte[] respectively. ResourceRequest class encapsulates the resource URL

and system identifier. Similarly, resource-loader works with a byte array when the

content from remote HTTP URL is successfully read.

If the plugin does not extend its resource-loader implementation from

the DefaultWebResourceLoaderService class, it must at least extend from

com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService

class to be recognized as a resource-loader service by the Content Integration

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 74

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from for the resource-loader services implemented using the Functional approach).

• com.hcl.unica.system.integration.service.resourceloader.AbstractWebResourceLoaderService

The HttpWebResourceLoaderService class discussed in previous point extends from

AbstractWebResourceLoaderService abstract class. This class defines the following

service gateway interface for the resource-loader service:

com.hcl.unica.system.integration.service.gateway

.ResourceLoaderServiceGateway

To know the role of service gateways in service invocation, see Service invocation (on

page 37). ResourceLoaderServiceGateway interface defines ResourceRequest

and HttpResponse<?> as input and output types for the resource-loader service.

HttpResponse is an interface, implemented by the WebResource class. It encapsulates

the HTTP response headers, body, or payload, and cookies received from the remote

URL. Even if the customized resource-loader service does not fetch the content

over web, it must return the object of the WebResource (or any other implementation

of HttpResponse) populated with the appropriate details. Failing to populate the

WebResource appropriately may lead to content loading issues for client applications.

The WebResource provides a builder API to create an object with necessary details.

The most important thing is to populate the Content-Type header so that client

application can deal with the payload accordingly. Similarly, Content-Disposition

header must also be populated appropriately containing the filename associated with

the content.

Derivatives of FunctionalService
Derivatives of FunctionalService interface facilitates creation of functional implementation

of standard services. Functional service is just an object with a public method which takes a

certain input and generates the desired output.

Simple search (simple-search)

The following are the specialized interfaces and classes available for simple-search service:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 75

• com.hcl.unica.system.integration.service.search.SearchService

The com.example.service.functional.ExampleSimpleSearchService

class in the asset-integration-starter project is a quick starter

implementation for the Functional simple-search service. It extends from the

com.hcl.unica.system.integration.service.search.SearchService class.

The SearchService class implements the FunctionalService interface and defines

the SearchRequest class and the ContentPage class to be the type arguments RQ

& RS respectively for the FunctionalService. Thus, the object of the SearchRequest

becomes an input to all the simple-search services and the ContentPage is expected

as an output on completion of the service.

The plugin must extend its simple-search implementation from the

com.hcl.unica.system.integration.service.search.SearchService class to

be recognized as a simple-search service by the Content Integration Framework

(RESTful counterpart discussed in earlier section is also a valid choice to extend from

for the simple-search services implemented using RESTful approach).

The SearchService extends from the

com.hcl.unica.system.integration.service.search.AbstractSearchService

abstract class. It introduces one more method, named getSupportedContentTypes.

For more information on the method, see Derivatives of RestService (on page 51).

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for the resource-loader

service:

• com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

The com.example.service.functional.ExampleResourceLoaderService class

in asset-integration-starter project is a quick starter implementation for

Functional resource-loader service. It extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoa

derService

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 76

The WebResourceLoaderService class implements the FunctionalService interface

and defines the ResourceRequest and the HttpResponse types to be the type

arguments RQ & RS, respectively, for the FunctionalService. Thus, the object of

the ResourceRequest becomes an input to all the resource-loader services and

the HttpResponse is expected as an output on completion of the service (the same

input and output types are used for RESTful counterpart of the resource-loader). For

more information on ResourceRequest & HttpResponse types, see Derivatives of

RestService (on page 51).

The plugin must extend its resource-loader implementation from the

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

service to be recognized as a resource-loader service by the Content Integration

Framework (HTTP counterpart discussed in the earlier section is also a valid choice

to extend from for the resource-loader services implemented using the HTTP

approach).

The WebResourceLoaderService extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.

AbstractWebResourceLoaderService

For more information about this class, see Derivatives of RestService (on page 51).

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for list-content-categories

service:

• com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService

Plugin can alternatively choose Functional approach to implement list-

content-categories service by extending the implementation from

ContentCategoriesListService class. The ContentCategoriesListService

class implements the FunctionalService interface and mandates the

ContentCategoryListRequest and the List<ContentCategory> classes to be

the type arguments RQ and RS respectively for the FunctionalService. Thus, the

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 77

object of the ContentCategoryListRequest becomes an input to the list-content-

categories service and the object of List<ContentCategory> type is expected as

an output on completion of the service. ContentCategoryListRequest should be

consulted for parent category ID & folder ID to fetch categories belonging to specific

parent category and/or to parent folder. As of current implementation of Content

Integration Framework, parent (category) ID is always null since only one level of

category list is supported. However, if categories are organized in folders & list-

content-categories service considers folder ID while listing categories, then Content

Integration Framework can deal with navigable folder list if list-category-folders

service is also implemented.

• The plugin must extend its list-content-categories implementation from the

com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService

class to be recognized as a valid list-content-categories service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

ContentCategoriesListService extends from

AbstractContentCategoriesListService class. Details of

AbstractContentCategoriesListService class are covered in the Derivatives of

RestService (on page 51) topic.

List folders (list-folders)

The following are the specialized interfaces and classes available for list-folders service:

• com.hcl.unica.system.integration.service.folder.list.FolderListService

Plugin can alternatively choose Functional approach to implement list-folders

service by extending the implementation from FolderListService class. The

FolderListService class implements the FunctionalService interface and

mandates the FolderListRequest and the List<Folder> classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

FolderListRequest becomes an input to the list-folders service and the object of

List<Folder> type is expected as an output on completion of the service.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 78

• The plugin must extend its list-folders implementation from the

com.hcl.unica.system.integration.service.folder.list.FolderListService

class to be recognized as a valid list-folders service by the Content Integration

Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

FolderListService extends from AbstractFolderListService class. Details of

AbstractFolderListService class are covered in the Derivatives of RestService (on

page 51) topic.

List category folders (list-category-folders)

The specialized types used for implementing list-category-folders are exactly same as

the ones used for list-folders.

List contents (list-contents)

The following are the specialized interfaces and classes available for list-contents service:

• com.hcl.unica.system.integration.service.content.list.ContentListService

Plugin can alternatively choose Functional approach to implement list-contents

service by extending the implementation from ContentListService class. The

ContentListService class implements the FunctionalService interface and

mandates the ContentListRequest and the ContentPage classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentListRequest becomes an input to the list-contents service and the object

of ContentPage type is expected as an output on completion of the service.

• The plugin must extend its list-contents implementation from the

com.hcl.unica.system.integration.service.content.list.ContentListService

class to be recognized as a valid list-contents service by the Content Integration

Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

ContentListService extends from AbstractContentListService class. Details of

AbstractContentListService class are covered in the Derivatives of RestService (on

page 51) topic.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 79

Get content details (get-content-details)

The following are the specialized interfaces and classes available for get-content-details

service:

• com.hcl.unica.system.integration.service.content.details.ContentDetailsService

Plugin can alternatively choose Functional approach to implement get-content-

details service by extending the implementation from ContentDetailsService

class.

The ContentDetailsService class implements the FunctionalService interface and

mandates the ContentDetailsRequest and the Presentable classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentDetailsRequest becomes an input to the get-content-details service and

the object of Presentable type is expected as an output on completion of the service.

The plugin must extend its get-content-details implementation from the

com.hcl.unica.system.integration.service.content.details.ContentDetailsService

class to be recognized as a valid get-content-details service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

ContentDetailsService extends from AbstractContentDetailsService class.

Details of AbstractContentDetailsService class are covered in the Derivatives of

RestService (on page 51) topic.

Get object schema (get-object-schema)

get-object-schema service is used to generate the schema of domain object or entity used

by the respective system to represent the content. Object schema in simplest form is just

a hierarchical metadata of each mappable content/object attribute. Attribute hierarchy and

metadata is expected to match the JSON representation of the domain object. Attribute

metadata mainly includes the data type of the attribute, format of the value held in the

attribute, unique identifier of the attribute and display title or label for the attribute.

The following are the specialized interfaces and classes available for get-object-schema

service:

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 80

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService

The ObjectSchemaProviderService class implements the FunctionalService

interface and mandates the com.hcl.unica.system.model.ObjectSchemaRequest

and the com.hcl.unica.system.model.json.schema.ObjectSchema classes to

be the type arguments RQ and RS respectively for the FunctionalService. Thus,

the object of the ObjectSchemaRequest becomes an input to the get-object-

schema service and the object of ObjectSchema type is expected as an output

on completion of the service. Plugin however need not build the ObjectSchema

by itself. It should just override and implement following abstract method from

ObjectSchemaProviderService class.

ObjectProfile getObjectProfile(ObjectSchemaRequest objectSchemaRequest)

The getObjectProfile() method accepts ObjectSchemaRequest and returns

ObjectProfile. (These types are discussed in subsequent section.)

The plugin must extend get-object-schema implementation from the

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService

class to be recognized as a valid get-object-schema service by the Content

Integration Framework. There is no RESTful counterpart of this standard super class

since object schema generation does not include any HTTP interaction. Plugins can

implement custom RESTful service and invoke it internally from within get-object-

schema service if required.

• com.hcl.unica.system.model.ObjectSchemaRequest

Object of this class is supplied as an input to the get-object-schema service. The

most important method of this class is getObjectIdentity() which returns an

object of type com.hcl.unica.system.model.ObjectIdentity encapsulating the

details of the content chosen by the user to request the master schema. It includes

applicationId (the system identifier), objectType (content type/category identifier)

and objectId (unique identifier of the selected content).

Content categorization can be strict or lenient. (Refer to additionalFeatures |

content | categorization section in Service declaration file (on page 7) for the

overview of content categorization & the standard system property to declare the

nature of categorization.) If additionalFeatures | content | categorization

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 81

is set to strict, then object schema should be generated strictly specific to the given

content type/category.

If categorization property is set to lenient, then regardless of the category and/or

content chosen by the user at the time of setting up content mapping, the generated

schema must include attributes of all kinds of contents supported by the respective

system. In other words, only one master schema is used for mapping all types of

contents provided by the given system.

Furthermore, get-object-schema service is also used for generating schemas for

request & response objects of Object extension services (known as Custom actions

in Centralized Offer Management). In such case, {object-extension-service-

name}.request & {object-extension-service-name}.response are supplied

in objectType property of ObjectSchemaRequest object. ({object-extension-

service-name} denotes the actual name of service declared in custom-plugin-

services.yml file).

The getEnrichmentObjectJson() method in ObjectSchemaRequest class can be

ignored as of current release.

• com.hcl.unica.system.integration.service.object.schema.ObjectProfile

This is a return type of getObjectProfile() method in get-object-schema service.

It carries the Java type corresponding to the domain entity/object representing

the required type/category of content for which schema needs to be generated..

Content Integration Framework consults this Java type to generate the schema for

public and non-public non static class properties (inclusive of Enums & Optionals).

@MappableAttribute annotation can be used to configure each individual class

property to control the schema generated by Content Integration Framework.

Refer to the com.aem.model.response.simplesearch.SimpleSearchItem

domain object in aem-integration reference project to get an idea about

how this annotation is used. More details are provided on @MappableAttribute

in next section. ObjectProfile can optionally include an instance of

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher

to dynamically add/modify/remove attributes from the schema thus generated. Next

section explains ObjectSchemaEnricher in detail.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 82

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher

ObjectSchemaEnricher is an abstract class. Implementation of

ObjectSchemaEnricher gives an opportunity to generate object schemas dynamically

if the concerned domain object contains some dynamic properties (for example,

dynamically added attributes to Offer Template. Each Offer Template can have

different set of attributes which cannot be statically listed in corresponding Java

class.). The ObjectProfile class discussed in previous section has a property

(schemaEnricher) to hold reference to ObjectSchemaEnricher, if required. If dynamic

enrichment is not desired, then schemaEnricher property of ObjectProfile can

be left out (don’t set it to null though). Plugin should extend it to have desired

implementation. The type parameter to ObjectSchemaEnricher class represents

the Java type containing the additional details required for enriching the statically

generated object schema. These additional details might be provided by the client

applications of Unica Content Integration. As of current release, no additional

details are provided, hence it should be set to Void while implementing the schema

enricher. ObjectSchemaEnricher declares only one abstract method which should be

implemented by the plugin:

abstract public ObjectSchema enrich(

 ObjectSchema objectSchema,

 ObjectSchemaEnrichmentRequest<T> objectSchemaEnrichmentRequest

)

The first argument to this method is an instance of

com.hcl.unica.system.model.json.schema.ObjectSchema class. It contains

the automatically generated domain object schema derived from the Java type

supplied in ObjectProfile. At its core, ObjectSchema is just a Map<String,

AttributeSchema>, wherein class property names forms the keys of this map and

property metadata ends up as an object of AttributeSchema. If the class property in

turn refers to another object, the corresponding AttributeSchema will have another

Map<String, AttributeSchema> containing the attributes of that object type and so

on.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 83

Note: It is important to note that attribute names used as the keys in

attribute map correspond to the JSON properties which ends up in the JSON

representation of the domain object. Hence, if @JsonProperty annotation

is used to override the JSON property name for certain class attribute,

then Content Integration Framework automatically detects it and uses the

overridden property name while generating schema for the supplied Java

type. Likewise, ObjectSchemaEnricher implementation must also ensure that

names of dynamically added attributes must match JSON representation of

concerned domain object.

ObjectSchema as well as AttributeSchema extend from

com.hcl.unica.system.model.json.schema.AttributeContainer abstract

class. AttributeContainer provides convenience methods to ObjectSchema and

AttributeSchema classes for navigating through attribute hierarchy as well as for

adding, modifying and removing attributes at any level in the hierarchy to ease the

schema enrichment. Attributes at any level in the hierarchy can be accessed and

manipulated using their names as appearing in JSON representation.

• com.hcl.unica.system.model.json.schema.generator.annotations.MappableAttribute

@MappableAttribute annotation provides a way to control how Content Integration

Framework generates object schema from the respective Java type. Use of

@MappableAttribute is not mandatory. If it is not used, Content Integration

Framework automatically figures out property metadata. If required, this annotation

should be placed on top of desired class properties. Following annotation attributes

can be used to control the schema generation:

◦ hidden – Set this to true to explicitly exclude certain property from object

schema (@JsonIgnore is presently not considered by Content Integration

Framework. Hence, any property excluded from JSON representation using

@JsonIgnore must be explicitly excluded from schema)

◦ id – Supply unique identifier for the property. Content Integration

Framework needs unique identifier for each mappable class property. If

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 84

@MappableAttribute is not used, or id is not specified, it generates one

automatically based on the location of property inside the class.

Automatic generation of attribute identifier is subject to the name and the

hierarchical location of class property inside the domain object graph. It implies

that if the property name is changed and/or moved up or down the object graph

hierarchy, it will change the identifier associated with it. Such refactoring can

mislead Content Integration Framework while reading the values of refactored

attributes and may lead to undesired data in mapped contents (such as Offers

in COM). Hence, to avoid such inadvertent changes in attribute identifiers, we

recommend you to assign unique attribute identifiers manually, which remain

constant regardless of the name and location of class properties.

◦ title – Display title/label for the property. If omitted, Content Integration

Framework generates one using property name.

◦ type – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeType.

If omitted, Content Integration Framework automatically figures out the

appropriate type. For numeric properties holding dates as Unix timestamp

(seconds since epoch), type must be set to AttributeType.INTEGER, and

format must be set to AttributeFormat.DATETIME.

◦ format – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeFormat.

Content Integration Framework can automatically identify standard java

temporal types (Date, LocalDateTime, Instant) and set the attribute type

to DATETIME. Other formats, such as URL, HTML, EMAIL should be explicitly

declared.

◦ implementation – Should be used for polymorphic references to explicitly

declare the Java type to be considered for automatic schema generation.

◦ hiddenProperties - @MappableAttribute annotation can be used at the class

level to hide multiple properties at single place. hiddenProperties takes an

array of Strings containing the names of properties (direct as well as inherited

ones) to be excluded from automatically generated schema. It is particularly

useful for hiding properties inherited from third party parent class.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 85

◦ pattern – Content Integration Framework supports certain temporal types for

representing date & timestamps, viz. Date, LocalDateTime, Instant. If certain

date properties are maintained in String format, then pattern can be used to

declare the pattern of date strings.type for such attributes can be String, the

format however must be set to AttributeFormat.DATETIME.pattern must

contain valid pattern string supported by Java’s DateTimeFormatter.

◦ maxItems – Content Integration Framework supports schema generation &

related use cases for arrays of scalers & arrays of objects from release 12.1.2.

If certain attribute is an array or collection of scalers (primitives & their wrapper

types, Strings) or other custom Java type, then framework automatically

identifies it and sets the type of such property to AttributeType.ARRAY. By

default, framework considers maximum 1 item in the given array. maxItems can

be used to explicitly override maximum number of items such attribute can

carry. maxItems expects and array of integers. For now, only one -dimensional

arrays are supported by Content Integration Framework. Hence, the maximum

items must be specified as first element of array supplied against maxItems.

For example, maxItems = {5}. This example denotes that specified property

can carry at most 5 items. It may not always carry those many items, but if it

ever does, plugin doesn’t expect more than specified number items in it. The

maxItems value helps to limit the number of individual array element shown on

UI at the time of Content/Object mappings.

◦ serialization – By default, properties declared as Collection<String> (List/

Set) are serialized or resolved as comma separated values (CSV). This default

behavior is intact even after the support for arrays in release 12.1.2. However,

one can switch off this default consideration for List<String> by setting

serialization to AttributeSerialization.AUTO. Thus, serialization property

lets the developer control whether List<String> should be considered as CSV or

as an array of strings. Future releases may use serialization for controlling

other aspects of attributes.

External management of attribute mappability

In addition to controlling mappability of attributes by placing @MappableAttribute

annotation directly on top of class properties, Content Integration Framework

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 86

also allows to control each attribute externally using @MappableObjects &

@MappableObject annotations placed on top of your domain type/class. If

you don’t have access to the source of your domain class or it is an auto

generated class, you can create a subclass extending from it, and place

@MappableObjects annotation on top of your subclass & control each individual

property inherited from parent class. Refer to com.example.model.mapping.SubType

& com.example.model.mapping.SuperType classes from asset-integration-

starter project to learn more about these annotations. If your super class uses some

other nested types/classes, properties of those types can also be controlled using

this approach. @MappableObjects is an array of @MappableObject, which allows to

specify the Java type & associated array of properties (@Property). The @Property

annotation in turn carries name of the property & @MappabileAttribute declaration

for that property. All capabilities of @MappabileAttribute are available using this

approach as well.

• Java Type to AttributeType Mapping

Following table summarizes the mapping between Java type and AttributeType/

AttributeFormat used by the Content Integration Framework for automatic schema

generation:

Java Type AttributeType AttributeFormat

◦ String

◦ Character

◦ Char

◦ CharSequence

◦ LocalDate

◦ LocalTime

◦ ZonedDateTime

◦ OffsetDateTime

◦ OffsetTime

◦ ZoneId

STRING

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 87

Java Type AttributeType AttributeFormat

◦ Calendar

◦ UUID

◦ Boolean

◦ boolean

BOOLEAN

◦ BigInteger

◦ Integer

◦ Int

◦ Long

◦ Long

◦ Short

◦ Short

◦ Byte

◦ byte

INTEGER

◦ BigDecimal

◦ Number

◦ Double

◦ Double

◦ Float

◦ float

NUMBER

◦ Date

◦ LocalDateTime

◦ Instant

Content Integration

Framework expects date

values be expressed in

UTC standard time. Tem

poral values expressed in

any other timezone can

lead to inaccurate tempo

INTEGER DATETIME

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 88

Java Type AttributeType AttributeFormat

ral calculations in further

use cases.

Collection<String> is resolved as comma separated list of strings. If any string

element in the collection contains comma, it is enclosed in double quotes. If the

enclosed string contains any double quote of its own, then its double quote is

escaped by another double quote.

For example, a list of strings like [“string 1”,”string 2”,”string, 3”,”string,\”4”,”string\”5”] is

resolved as follows –

string 1,string 2,”string, 3”,”string,””4”,string”5

Notice that string”5 is not enclosed in double quotes since it does not contain any

comma.

• com.hcl.unica.system.model.Mappable

Contents from content repositories are linked to Unica objects using content URLs.

Once any content URL is referenced inside Unica objects, Content Integration

Framework allows showing preview of already linked content by making use of

get-content-details service. To achieve such content previews at later point of

time, Content Integration Framework & Unica products store the system identifier,

category/type & identifier of the linked content. By default, any attribute declared as

AttributeType.STRING & AttributeFormat.URL using @MappableAttribute annotation

will be considered as an URL belonging to the main content. If such URL attribute

value is referenced in Unica objects, then the preview for such reference will show

the details of content it belongs to. However, the URL attribute may not necessarily

represent the content object it is wrapped in. It may be a separate entity managed

inside target content repository. For example, a Book object may include two different

image URL attributes, called bookCover & authorPhoto. While preview for bookCover

should certainly show the details of the book it represents, authorPhoto however

should show the brief bio about book’s author.

With the default arrangement, Content Integration Framework continues to show

the book details for authorPhoto’s preview unless explicitly overridden by the plugin.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 89

The Mappable interface provides an opportunity to override this default behavior for

desired attribute. To override the content preview for any attribute, domain class must

implement the Mappable interface and override following method –

ObjectIdentity overrideObjectReference(String attributeId, ObjectIdentity

defaultReference)

The overrideObjectReference method accepts the attribute identifier whose real

content identity needs to be established. It also receives the default identity assumed

by Content Integration Framework as second argument. Plugin can conditionally

override the content identity by matching the attributeId with desired attribute’s

identifier. The ObjectIdentity returned from this method essentially tells the real

system (applicationId), category (objectType) & identifier (objectId) of the respective

attribute. Returning null from this method turns the content preview off. In other

circumstances, plugin should respond with defaultReference value to let the Content

Integration Framework function normally.

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for get-cognitive-analysis

service:

• com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService

Plugin can alternatively choose Functional approach to implement get-cognitive-

analysis service by extending the implementation from CognitiveAnalysisService

class. The CognitiveAnalysisService class implements the FunctionalService

interface and mandates the CognitiveAnalysisRequest and the CognitiveAnalysis

classes to be the type arguments RQ and RS respectively for the FunctionalService.

Thus, the object of the CognitiveAnalysisRequest becomes an input to the get-

cognitive-analysis service and the object of CognitiveAnalysis type is expected

as an output on completion of the service.

• The plugin must extend its get-cognitive-analysis implementation from the

com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService

class to be recognized as a valid get-cognitive-analysis service by the Content

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 90

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

CognitiveAnalysisService extends from AbstractCognitiveAnalysisService class.

Details of AbstractCognitiveAnalysisService class are covered in the Derivatives

of RestService (on page 51) topic.

Object extension service

The following are the specialized interfaces and classes available for object extension

service:

• com.hcl.unica.system.integration.service.object.extension.ObjectExtensionService

Plugin can alternatively choose Functional approach to implement object extension

service by extending the implementation from ObjectExtensionService class.

The ObjectExtensionService class implements the FunctionalService interface

and mandates the ObjectExtensionRequest and the Object classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of

the ObjectExtensionRequest becomes an input to the object extension service and

expects any type of as an output on completion of the service.

ObjectExtensionRequest is covered in more detail under RESTful section of object

extension service.

• The plugin must extend its object extension service implementation from the

com.hcl.unica.system.integration.service.object.extension.ObjectExtensionService

class to be recognized as a valid object extension service by the Content Integration

Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

ObjectExtensionService extends from AbstractObjectExtensionService class.

Details of AbstractObjectExtensionService class are covered in the Derivatives of

RestService topic.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 91

Collaboration services

Please refer the example services from com.example.service.functional.collaboration

package in asset-integration-starter project. Like any other Functional counterpart

of RESTful service implementation, the request & response contract for Functional

collaboration services remain same as their RESTful counterparts. Please refer Derivatives

of RestService (on page 51) section for complete list of collaboration services.

Derivatives of InboundHttpService
Derivatives of InboundHttpService facilitates exposing RESTful endpoints coupled with

certain predefined features in Content Integration Framework. As of release 12.1.2, Content

Integration Framework allows exposing RESTful endpoints (webhooks) to receive & process

content lifecycle events.

Object event interpreter service (Webhook)

The following are the specialized interfaces and classes available for the object event

interpreter service:

• com.hcl.unica.system.integration.service.object.event.ObjectEventInterpreterService

The com.example.service.rest.ExampleEventInterpreterService class in

asset-integration-starter project is a quick starter implementation for an object

event interpreter service. It extends from ObjectEventInterpreterService

class. Implementing an object event interpreter service by extending standard

ObjectEventInterpreterService exposes a webhook which can be invoked by the

respective content repository to send content lifecycle event notifications.

The ObjectEventInterpreterService class has a type parameter T, which represents

the type of request (post deserialization) received from the client of webhook. In case

of ExampleEventInterpreterService, request body is expected in String format. The

type parameter T can be any valid Jackson or JAXB annotated class if JSON or XML

is expected in the request body. Deserialization of JSON & JAXB happens based on

the Content-Type request header. Having said that, Content Integration Framework

supports only application/json & text/xml or application/xml type of request body if

automatic deserialization is desired.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 92

Object event interpreter service does not directly respond to the client. Instead, it

helps to interpret the incoming event information and shares the necessary details

with Content Integration Framework for further processing. Content Integration

Framework responds to the client accordingly. It responds with 200 HTTP response if

interpretation succeeds. If event interpreter service cannot understand the event and

fails to figure out necessary details about the event, Content Integration Framework

responds with appropriate 4xx HTTP error response.

ObjectEventInterpreterService class mandates the event interpreter service to

implement following methods:

◦ ObjectEventListenerRequestSpec getRequestSpec(ServiceConfig

serviceConfig)

This method accepts an object of ServiceConfig class and

returns an object of type ObjectEventListenerRequestSpec. The

ObjectEventListenerRequestSpec is essentially the partial specification

of webhook’s signature. The ObjectEventListenerRequestSpec wraps

an object of InboundHttpRequestSpec, which comprises the relative

endpoint URL of the webhook, and the HTTP methods supported by the

webhook being exposed. The relative URL can contain path variables

enclosed in curly braces. Refer to the getRequestSpec implementation

in ExampleEventInterpreterService. Runtime values for these path

variables can be obtained from InboundHttpRequestContext. See

InoundHttpRequestContext<T> (on page 42) section for more details.

Avoiding webhook conflicts

If plugin implements more than one event interpreter services, then it is

important to note that no two interpreter services should expose webhooks

with conflicting signatures. For example, if one interpreter service exposes a

webhook with relative URL as /wh/{contentId}, supporting POST method, then

another interpreter service must use different relative URL and/or different

HTTP method to form a different signature. Thus, another webhook for

supporting PUT method for the same relative URL /wh/{contentId} would be

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 93

completely valid. (Note that single interpreter service can support multiple HTTP

methods for same relative URL.)

◦ Optional<ObjectEventDetails> interpret(InboundHttpRequestContext<T>

executionContext)

This method accepts an object of InboundHttpRequestContext<T>,

wherein T represents the type of request body. As explained in

InoundHttpRequestContext<T> (on page 42) section section,

InboundHttpRequestContext can be used to obtain contextual information,

including request payload, path variables, request parameters & request

headers. In response, it is expected to return an object of ObjectEventDetails

comprising the details of the event received via exposed webhook. Return value

is wrapped in Optional since interpreter may not always be able to interpret the

incoming event because of incorrect invocations. In such case, empty Optional

should be returned. On successful interpretation, this method should return an

Optional containing an instance of ObjectEventDetails comprising following

details –

◦ IdentifiableObject object- The domain object for which event has

been received. The class corresponding to domain object must implement

IdentifiableObject interface and provide object ID & type accordingly.. In case

of deletion events, fully populated object is not desired. Hence, an object of

com.hcl.unica.system.model.DeletedEntity containing the identifier of

deleted object can be returned. Refer to the implementation of interpret

method in ExampleEventInterpreterService.

◦ ObjectEventType eventType – The type of event.

◦ ObjectState transitionedState – Current relevant state of the object. (As

of release 12.1.2, transitionedState is ignored. It may be used in subsequent

releases)

Plugin must extend its event interpreter service from the

com.hcl.unica.system.integration.service.object.event.ObjectEventInterpreterService

class for the successful exposure of webhook by the Content Integration Framework.

On successful creation of event interpreter service, Content Integration Framework

exposes an endpoint URL in following format relative to the application context root.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 94

The HTTP methods supported by this URL are guided by the getRequestSpec method

-

/api/AssetPicker/webhook/{SYSTEM_ID}/events/{eventName}/{contentId}

Wherein,

• {SYSTEM_ID} represents the identifier of the respective system.

• /{eventName}/{contentId} represents the relative URL configured in getRequestSpec

method. eventName & contentId forms the path variables in this example.

Webhook security

All the webhooks exposed in Content Integration Framework are protected by default. See

API Security Filter (link to See API Security Filter configuration in Unica Platform Admin

Guide to learn more about API security. If none of the authentication mechanisms suites

the need of Plugin, then event interpreter service can override validate method to perform

custom authentication & authorization. Refer the implementation of validate method in

ExampleEventInterpreterService class to get a brief idea about custom authentication.

It demonstrates the use of Platform’s user data source for maintaining API credentials. The

USERNAME & PASSWORD constants represent the authentication information received in

webhook request, either by means of request headers or embedded in the request body

itself.

Derivatives of KafkaConsumerService
Derivatives of KafkaConsumerService facilitates receiving messages from Kafka topics.

As of release 12.1.2, Content Integration Framework leverages Kafka consumer service to

receive domain object events & subsequently process those events based on the object

attribute mappings.

Object event interpreter service (Kafka listener)

Just like Webhook support can facilitate event receipt over HTTP, Kafka listeners can help

to receive events via topics. It is important to note that, regardless of event channel (HTTP/

Kafka), the subsequent event processing is always done based on the object attribute

mapping. The following are specialized classes & interfaces available for implementation of

Kafka based event receivers.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 95

• com.hcl.unica.system.integration.service.object.event.AbstractKafkaEventInterpreterService<K,

V extends IdentifiableObject>

The K & V type parameters to AbstractKafkaEventInterpreterService represent

the type of Key & Value components of the message received from Kafka topic. As

of release 12.1.2, only String type of keys are supported, whereas value type must

be subtype of IdentifiableObject. IdentifiableObject’s contract helps Content

Integration Framework identify the type/category & identifier of the domain object

corresponding to the event. If null is returned from getObjectType() implementation,

then Content Integration Framework uses {service-name}.request as the category

of corresponding domain object. Wherein, {service-name} is the actual name of the

service declared in custom-plugin-services.yml file for respective event receiver/

interpreter service. There is no standard service name for Kafka based event receiver/

interpreter services. The service declaration should also include the eventProfile

standard parameter –

{service-name}

 params:

 eventProfile:

 label: Credit Card Transaction

The label parameter works as the title for respective domain object whenever it is shown on

the object mapping screen.

Refer the

com.example.service.kafka.events.consumer.ExampleKafkaEventInterpreterService

class from asset-integration-starter project for additional clarity.

AbstractKafkaEventInterpreterService declares following methods which service

implementation must define –

1. Optional<ObjectEventDetails>

interpret(ExecutionContext<KafkaMessage<String, DomainEntity>>

executionContext)This method should interpret the event received via Kafka and

possibly provide event details by means of ObjectEventDetails. The semantics of

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 96

this method are exactly same as the semantics of interpret method required for

Webhooks.

2. boolean accept(ExecutionContext<KafkaMessage<String, DomainEntity>>

executionContext)This is an optional method. If implemented, this method can

determine the acceptance or rejection of the received event. By default, Content

Integration Framework processes all the events successfully interpreted by interpret

method. accept method is called prior to the interpretation. If certain event is not

suitable for further consideration, this method can return false, thereby skipping its

interpretation as well as processing.

• com.hcl.unica.system.integration.service.kafka.KafkaMessage<K, V>

KafkaMessage is supplied as request object to previously mentioned methods

in AbstractKafkaEventInterpreterService. It encapsulates the key & value

corresponding to the message received via Kafka topic.

• com.hcl.unica.system.integration.service.object.event.GenericKafkaEventInterpreterServiceKafka

based object event receipt & interpretation can also be done without creating

any explicit service using AbstractKafkaEventInterpreterService. Content

Integration Framework provides GenericKafkaEventInterpreterService for

receiving and interpreting object events based on certain default assumptions.

The service declaration in custom-plugin-services.yml file can be pointed to

GenericKafkaEventInterpreterService and fully qualified Java type of associated

event object can be declared as shown below

systemId: Foo

 serviceName: transaction-event-receiver

 factoryClass:

 c.h.u.s.i.s.object.event.GenericKafkaEventInterpreterService

 params:

 eventProfile:

 class: com.example.service.kafka.events.consumer.DomainEntity

 label: Credit Card Transaction

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 97

Wherein, class under the eventProfile service parameter should contain fully qualified name

of the class representing domain object and/or event received via Kafka. The classes

specified herein must implement IdentifiableObject. Presently there is no way to determine

acceptance or rejection of events using this approach though.

Platform configuration

Each Kafka consumer service needs certain additional properties to be set in Platform

configuration of corresponding system. Given below is the list of such additional properties.

These properties must be listed in “Additional properties” section for respective system

configuration. Note that Kafka connectivity details are obtained from Kafka configuration

settings made for the respective system –

Parameter Description

{service-name}.kafka.topics Comma separated list of source topic

names

{service-name}.kafka.topics.{top

ic-name}.value.format

Expected message format. Supported for

mats are Avro & Json.

{service-name}.kafka.max-consumers Number of required concurrent con

sumers for the given service (inclusive of

all the topics service would listen to)

{service-name}.kafka.fetch.max.wait.ms Same as standard fetch.max.wait.ms

property used for Apache Kafka con

sumers

{service-name}.kafka.fetch.min.bytes Same as standard fetch.min.bytes proper

ty used for Apache Kafka consumers

{service-name}.kafka.fetch.max.bytes Same as standard fetch.max.bytes prop

erty used for Apache Kafka consumers

{service-name}.kafka.max.partition.fetch

.bytes

Same as standard max.partition.fetch

.bytes property used for Apache Kafka

consumers

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 98

{service-name}.kafka.max.poll.records Same as standard max.poll.records prop

erty used for Apache Kafka consumers

{service-name}.kafka.max.poll.interval.ms Same as standard max.poll.interval.ms

property used for Apache Kafka con

sumers

{service-name}.kafka.heartbeat.interval

.ms

Same as standard heartbeat.interval

.ms property used for Apache Kafka con

sumers

{service-name}.kafka.session.timeout.ms Same as standard session.timeout.ms

property used for Apache Kafka con

sumers

Note: Refer https://kafka.apache.org/documentation/#consumerconfigs for

standard Kafka consumer configurations.

{service-name} represents the name of service declared in custom-plugin-services.yml file.

For example,

transaction-event-receiver.kafka.topics: topic1, topic2

transaction-event-receiver.kafka.topics.topic1.value.format: Avro

transaction-event-receiver.kafka.topics.topic2.value.format: Json

transaction-event-receiver.kafka.max-consumers: 20

transaction-event-receiver.kafka.fetch.max.wait.ms: 500

transaction-event-receiver.kafka.fetch.min.bytes: 26124

transaction-event-receiver.kafka.fetch.max.bytes: 31240

transaction-event-receiver.kafka.max.partition.fetch.bytes: 51124

transaction-event-receiver.kafka.max.poll.records: 200

transaction-event-receiver.kafka.heartbeat.interval.ms: 2000

https://kafka.apache.org/documentation/#consumerconfigs

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 99

transaction-event-receiver.kafka.session.timeout.ms: 9000

SASL prerequisites

For SASL connectivity with Kafka, provide appropriate authorization to consumer groups.

Content Integration Framework creates consumer group for each configuration of

respective system & assigns identifier to it as per below format -

ci-consumer-{Unica-product-platform-config-node}-{partition-name}-{system-id}-

{service-name}

For example, for the event-receiver service in system Foo, following consumer groups

will be created if Foo is configured in partition1 of Unica Centralized Offer Management

(Offer) as well as in Unica Journey (Journey).

ci-consumer-offer-partition1-foo-event-receiver (for system configured under

Affinium|Offer|partitions|partition1|assetPicker|dataSources|Foo node in Platform

configuration)

ci-consumer-journey-foo-event-receiver (for system configured under

Affinium|Journey|assetPicker|dataSources|Foo node in Platform configuration)

Note: Spaces in system identifier are replaced with dash(-) for composing Kafka

consumer group ID.

Derivatives of KafkaProducerService
KafkaProducerService lets publishing messages/records onto Kafka topics. Following are

the specialized types available for creating Kafka publisher service –

• com.hcl.unica.system.integration.service.kafka.AbstractKafkaProducerService<K,

V>The type parameter K & V represents the key & value of

the message to be sent onto target Kafka topic. Refer the

com.example.service.kafka.events.producer.ExampleKafkaProducerService

from asset-integration-starter project for a typical service definition.

In addition to declaring type arguments, this service must implement the

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 100

getServiceInterface() method to be able to invoke Kafka producer service

programmatically. Apart from these declarations, AbstractKafkaProducerService

requires no other business logic.

Platform configuration

Once Kafka producer service is defined & declared in custom-plugin-services.yml, certain

additional parameters must be set up to be able to publish to any Kafka topic. Note that

Kafka connectivity details are obtained from Kafka configuration settings made for the

respective system. Following additional parameters must be configured in “Additional

parameters” section of respective system configuration –

Parameter Description

{service-name}.kafka.topics Comma separated list of target topic

names.

{service-name}.kafka.topics.{top

ic-name}.value.format

Expected message format. Supported for

mats are Avro & Json.

{service-name}.kafka.batch.size Same as standard batch.size property

used for Apache Kafka producers.

{service-name}. kafka.linger.ms Same as standard linger.ms property

used for Apache Kafka producers.

Note: Refer https://docs.confluent.io/platform/current/installation/configuration/

producer-configs.html for standard Kafka producer configurations.

{service-name} represents the name of service declared in custom-plugin-services.yml file.

For example,

message-publisher-service.kafka.topics: topic1, topic2

message-publisher-service.kafka.topics.topic1.value.format: Json

message-publisher-service.kafka.topics.topic2.value.format: Avro

https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 101

message-publisher-service.kafka.batch.size: 16900

message-publisher-service.kafka.linger.ms: 10

Invocation of KafkaProducerService

Content Integration Framework does not directly invoke any Kafka

producer service. Plugin can define & use such service if required. Refer

com.example.service.client.ExampleKafkaProducerClient from asset-integration-

starter project to get clarity on how already defined Kafka producer service can be

invoked from inside any other service. By default, Content Integration Framework publishes

the message onto the topic configured in Platform configuration. As demonstrated in

ExampleKafkaProducerClient, it is important to note that, caller of the service can

completely override the target topic specifications if required.

AbstractEntity
The com.hcl.unica.system.model.AbstractEntity class represents a general domain

entity. For the current release, this abstract class does not contain any implementation.

However, for the Content Integration Framework, plugins must extend their domain

entities from the com.hcl.unica.system.model.AbstractEntity class. This ensures that

AbstractEntity is the base for dealing with domain entities within Content Integration

Framework.

As for the plugin implementations, the class used to represent an individual content

returned by the simple-search, list-contents, and get-content-details services must

extend from AbstractEntity class.

Presentable
To be able to render an individual content returned by the simple-search, list-contents

& get-content-details services , the domain entity class used by these services

must implement the com.hcl.unica.system.model.presentation.Presentable

interface and override the getPresentationDetails() method. The

com.hcl.unica.system.model.presentation.Presentable$PresentationDetails

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 102

object returned by the getPresentationDetails() method must provide the

TextualPresentation as well as MultimediaPresentation details.

TextualPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide

details, if available.

• heading – Title of the content

• subheadings – List of subheadings for the content

• summary – Summary or description of the content

• name – Should be used for filename associated with the content

• tags – Tags associated with the content (out of the box plugins use this to convey

MIME type or category of the content)

Whereas MultimediaPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide

details, if available.

• id - Unique identifier of the content

• folderId - Unique identifier of the folder respective content belongs to

• mimeType - MIME type of the original content

• size - Size of original content in bytes

• resourceUrl - Absolute URL to the original content

• thumbnailUrl - Absolute URL to the content thumbnail, if available

• fileName - File name associated with the original content

• type – Type/category identifier of the content (must be one of the values from

supported content types set up using any of the applicable alternatives provided by

Content Integration framework)

• list of variants – Each variant supports almost same details as the primary

MultimediaPresentation details except thumbnailUrl (it can only have its own

resourceUrl), folderId and variants (variant cannot have any further variants)

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 103

Builder API
Almost all the standard types discussed in previous sections provide the builder API for the

ease of constructing objects.

For example, TextualPresentation can be built using following syntax instead of splitting it

into constructor and setter operations:

TextualPresentation.builder()

 .heading("Content title")

 .subheadings(Collections.emptyList())

 .name("photo.jpg")

 .tags(Collections.singletonList("Image"))

 .build();

It is not mandatory to use builder API for creating standard objects. However, it certainly

keeps plugin implementations clean while dealing with complex objects.

Request Validation
The AbstractService<RQ, RS> interface declares a method to support request

validation in service implementations. RESTful as well as Functional services implement

AbstractService. Hence, services implemented using either of the approaches

can override void validateRequest(ExecutionContext<RQ> executionContext)

method to perform any validation on incoming request before serving it. Refer to the

com.example.service.rest.ExampleObjectExtensionService class from asset-

integration-starter project to learn how validateRequest method performs basic

checks and throws InvalidServiceRequestException to convey validation failure.

Validation failures can be conveyed using localized error messages. Please refer to the I18n

Support section to learn about localization support.

Standard exceptions
Standard exceptions include exceptions provided by the Content Integration SDK, which can

be used by the plugins to convey different failure conditions during service execution.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 104

RESTful approach
Content Integration Framework handles error conditions, arising from services implemented

using RESTful approach.

Additionally, Content Integration Framework initiates and handles the execution of remote

API call for RESTful integrations, so that it can keep track of the success of all the HTTP

operation. Thus, the plugins do not require any special exception to convey the failure of

the REST call. If something goes wrong inside the service implementation; any appropriate

unchecked exception is sufficient to convey the operation failure. Such exceptions are

further conveyed as 502 HTTP response to the client.

Functional approach
Since Content Integration Framework does not initiate and manage the outgoing

connections in case of Functional services, it cannot keep track of end to end success.

Hence, it provides certain standard exceptions, which the service implementations

can throw to convey relevant failure conditions. These exceptions are

related to communication with the target system and are present within the

com.hcl.unica.system.integration.exception package.

• SystemNotFoundException

This exception must be used when the target system or content repository cannot

be located. Alternatively, java.net.UnknownHostException can also be used. This

exception is conveyed as 404 HTTP response to the client.

• ServiceNotFoundException

This exception must be used when the remote endpoint returns 404, or if

the target service no longer exists. Absence of the target system and the

absence of the required service are considered as different things. Hence, the

ServiceNotFoundException conveys presence of the target system and the absence

of the required service, or feature, on the target system. For example, in case of

content fetched from the database, the absence of the required table (or the absence

of the permission to access it) can be conveyed using this exception. This exception

is conveyed as 404 HTTP response to the client.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 105

• UnreachableSystemException

This exception must be used to convey unreachable or inaccessible target systems,

such as connection timeout. Alternatively, java.net.ConnectException can also be

used. This exception is conveyed as 503 HTTP response to the client.

• SluggishSystemException

When the response from the target system is not received within expected time, this

exception must be used to convey the slowness of the target system. Alternatively,

java.net.SocketTimeoutException can also be used. This exception is conveyed as

504 HTTP response to the client.

• InternalSystemError

This exception must be used if the plugin receives a temporary, or unexpected, error

from the target system to convey the problems in it. This exception is conveyed as

502 HTTP response to the client.

Any other exceptions are conveyed as 502 HTTP response to the client. In any case, the

message in the exception is never returned to the client. Each HTTP response code carries

a fixed, generic, and localized message.

Content Integration Framework wraps the exceptions received from service

implementations into

com.hcl.unica.system.integration.exception.ServiceExecutionException or its

subtype. Exceptions received from REST-based services or HTTP-based services are

wrapped in

com.hcl.unica.system.integration.exception.HttpServiceExecutionException,

whereas the ones received from Functional services are wrapped in

com.hcl.unica.system.integration.exception.ServiceExecutionException.

As explained in Service invocation (on page 37), HttpServiceExecutionException

provides a method to obtain an Optional<HttpResponse> object. If the service execution

fails before initiating an HTTP call, then this Optional object will not contain any

HttpResponse.

Unica Content Integration V12.1.3 Developer Guide | 3 - Plugin Development SDK | 106

Loggers
Content Integration Framework provides logging interface using the slf4j library. By adding

dependency for the slf4j library, the plugins can use its API for adding loggers inside

service implementations.

The starter as well as reference projects included in dev-kits manage their dependencies

using Apache Maven. The following entry is found in the POM file:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.30</version>

 </dependency>

Use 1.7.30 or higher version of slf4j-api to avoid conflict. Once the required dependency is

added, the logger object can be obtained by directly accessing the slf4j API.

Logger log = LoggerFactory.getLogger(YOUR_CLASS.class);

Alternatively, project Lombok can also be used to get the logger object for your class.

Lombok provides @Slf4j annotation, which can be used to inject the earlier mentioned

property inside the annotated class. For more information on project Lombok, please visit

its official web page.

Additionally, the application logs can be found in AssetPicker/logs directory under

platform home. By default, all the loggers from your plugin will reside in the common log

file configured in AssetPicker/conf/logging/log4j2.xml file. You can alter the

log4j2.xml configuration file to route your loggers to a different file, for troubleshooting

during development. Configuration of log4j2 is not part of the scope of this guide. Please

refer to the official documentation of Apache Log4j2 for more information.

Chapter 4. Setting up the development
environment
Set up the development environment in Eclipse IDE for writing your plugins. Use any Java EE

IDE of your choice and make the required configurations mentioned in this topic. You need

certain artifacts from <ASSET_PICKER_HOME> to complete the environment setup. This

topic will provide information about project building and packaging using Apache Maven so

ensure that you have Apache Maven installed.

To set up the development environment, complete the following steps:

1. From the <ASSET_PICKER_HOME>/dev-kits/ location, copy the asset-

integration-starter project and place it in your development workspace.

2. Open the Eclipse IDE.

3. Select File > Import.

The Select dialog appears.

4. Select WAR file and click Next.

The WAR Import dialog appears.

5. Click Browse, navigate to <ASSET_PICKER_HOME>, and select asset-

viewer.war file.

6. Click Finish.

The WAR Import: Web libraries dialog appears.

7. Click Finish.

8. Select Window > Show View > Other.

The Show View dialog appears.

9. Select Servers and click Open.

As an example, we will illustrate the use of Apache Tomcat 9.0 for running Content

Integration. You can use any supported application server and make the required

configurations.

a. Open the conf/server.xml file from your Apache Tomcat 9.0

installation directory and add the following entry, with appropriate database

details, inside the <GlobalNamingResources> element. Please replace

<DRIVER_CLASS_NAME>, <URL_TO_YOUR_PLATFORM_DATABASE>,

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 108

<DATABASE_USERNAME>, and <DATABASE_PASSWORD> with Platform

database details:

<Resource auth="Container" driverClassName="{DRIVER_CLASS_NAME}"

 maxActive="20"

 maxIdle="0"

 maxWait="10000"

 name="UnicaPlatformDS"

 password="{DATABASE_PASSWORD}"

 username="{DATABASE_USERNAME}"

 type="javax.sql.DataSource"

 url="{URL_TO_YOUR_PLATFORM_DATABASE}"/>

b. Open the conf/context.xml file from your Apache Tomcat 9.0 installation

directory and add the following entry inside the <Context> element:

<ResourceLink auth="Container" global="UnicaPlatformDS"

 name="UnicaPlatformDS"

type="javax.sql.DataSource"/>

10. To add Apache Tomcat 9.0 as a new server in Eclipse, complete the following steps:

a. In the Servers tab, click the link to create a new server.

The Define a New Server dialog opens.

b. Select Tomcat v9.0 Server and provide values for Server host name and Server

name.

c. Click Next.

The server is successfully added.

d. In the Servers tab, double-click the newly added server entry.

The Overview dialog appears.

e. Click the link Open launch configuration.

The Edit launch configuration properties dialog appears.

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 109

f. Edit the launch configurations to the add following JVM arguments

-DASSET_PICKER_HOME=<Point this to <ASSET_PICKER_HOME> directory>

-Dspring.profiles.active=platform-disintegrated

g. Click OK.

11. To run the imported asset-viewer.war file on Apache Tomcat 9.0, right click the

asset-viewer.war file and select Run As > Run on Server.

The Run on Server dialog appears.

12. Click Finish.

The asset-viewer.war will start executing on Apache Tomcat. After the setup is

verified, stop the server and import the plugin development starter project.

13. To install Content Integration SDK, complete the following steps:

a. In the following directories, delete the SDKs that are already installed:

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\integration-api

\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\standard-

integrations \0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\asset-integration-

api\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\entity-mapper-api

\0.0.1-SNAPSHOT

On UNIX or Mac OS X, <LOCAL_M2_REPOSITORY> refers to the ~/.m2/

repository directory.

On Microsoft Windows, <LOCAL_M2_REPOSITORY> refers to the C:\Users

\{your-username}\.m2\repository directory.

b. Use the following commands to install Content Integration SDKs into your local

Maven repository. Find asset-integration-api.jar, integration-

api.jar, standard-integrations.jar and entity-mapper-api.jar

inside the <ASSET_PICKER_HOME>/dev-kits/sdk directory.

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 110

mvn install:install-file

 -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/asset-integration-api.ja

r -DgroupId=com.hcl.unica -DartifactId=asset-integration-api

 -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

mvn install:install-file

 -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/integration-api.jar

 -DgroupId=com.hcl.unica -DartifactId=integration-api

 -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

mvn install:install-file

 -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/standard-integrations.ja

r -DgroupId=com.hcl.unica -DartifactId=standard-integrations

 -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

mvn install:install-file

 -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/entity-mapper-api.jar

 -DgroupId=com.hcl.unica -DartifactId=entity-mapper-api

 -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

14. To import the plugin development starter project, select File > Import.

The Select dialog appears.

15. Select Existing Maven Projects and click Next.

The Maven Projects dialog appears.

16. Click Browse to select the project and click Finish.

17. To update Maven dependencies of the asset-integration-starter project,

right-click the asset-integration-starter project and select Maven > Update

Project.

18. Ensure that newly imported project is using Java 8 to compile sources. Open project

properties and complete the following steps to setup the compiler:

a. Select Java Compiler.

b. If Compiler compliance level is non-editable, select Enable project specific

settings.

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 111

c. Change the Compiler compliance level to 1.8.

d. Click Apply and Close.

19. To ensure that the right Java library is set up in the build path, complete the following

steps:

a. Select Java Build Path > Libraries.

b. Select JRE System Library (J2SE-1.5).

c. Click Remove.

d. Click Add Library.

The Add Library dialog opens.

e. Select JRE System Library > Next.

The JRE System Library appears.

f. Select an appropriate library and click Finish.

20. To enable annotation processing, complete the following steps:

a. Select Java Compiler > Annotation Processing.

b. Select Enable project specific settings.

c. Select Apply and Close.

21. To install Lombok, complete the following steps:

a. Double-click the LOCAL_M2_REPOSITORY\org\projectlombok\lombok

\1.18.16\lombok-1.18.16.jar.

The installer dialog appears.

b. To specify the installation location of your IDE, click Specify location.

c. To complete the installation, click Install / Update.

d. Post installation of Lombok, restart the IDE.

22. To change the project name, complete the following steps:

a. Open the file pom.xml and change its Maven project properties.

b. Right-click the asset-integration-starter project and select Refactor > Rename.

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 112

23. In the <ASSET_PICKER_HOME>/conf/custom-plugin-services.yml file,

declare the plugin services. You can access this file later to add declarations when

you introduce services for your plugins.

24. To add plugin project to the deployment assembly of the asset-viewer.war

project, complete the following steps:

a. Right-click the asset-viewer.war project and select Properties.

The Properties for asset-viewer dialog opens.

b. Select Deployment Assembly.

c. Select Add.

The Select Directive Type dialog opens.

d. Select Project and click Next.

e. Select the asset-integration-starter plugin project you imported in previous

steps and click Finish.

25. If necessary, clean the projects.

26. Make the appropriate configuration for your system in <ASSET_PICKER_HOME>/

conf/systems.properties (refer sample-systems.properties file available

in the <ASSET_PICKER_HOME>/dev-kits/asset-integration-starter

project). All the system onboarding configurations mentioned in Unica Content

Integration Administration Guide are supported in systems.properties using relevant

properties.

27. As you develop your plugin, check it by running the asset-viewer.war project on

a previously configured application server. Since the project would already be added

to the Deployment Assembly of asset-viewer.war, changes to your plugin project

will be deployed whenever you run the asset-viewer.war project.

28. As you develop your plugin, by adding services to it, use a tool of your choice to hit the

following REST endpoints (change the context root to match your setup) to verify the

accuracy of your implementation:

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 113

a. Ensure system onboarding

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPicker/in

stances

Request Method GET

b. Verify simple-search service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

er/mysystem/assets?query=moun

tain&page=0&size=10&types=Phto

where,

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• query contains the search

keyword to lookup the content

for.

• page & size contains pagi

nation details, where page is

the serial number of pages to

be retrieved and size is the to

tal search items on a single

page.

• types is one of the support

ed content categories (types)

to filter the search items

against.

Request Method GET

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 114

When you hit the URL, ensure that the response JSON contains the expected

result. Only presentation details are included for every search items. Other

content properties are excluded for the sake of brevity and performance.

c. Verify resource-loader service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

er/mysystem/download?resource=

http://repository_base_

url/contents/sample_im

age.jpg%26resourceId=12345"

where

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• resource contains the ab

solute URL content to be

downloaded.

• resourceId contains the

identifier of the content to be

downloaded.

(Plugin can choose to utilize either

resource or resourceId or both to

load the content.)

Request Method GET

d. Verify list-folders service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 115

er/mysystem/folders?parent

FolderId=1234

where:

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• parentFolderId contains the

identifier of the parent fold

er whose immediate subfold

ers are expected in response.

This query parameter is op

tional & not supplied while

listing the top/root level fold

ers.

Request Method GET

e. Verify list-contents service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

er/mysystem/folders/1234/con

tents

where:

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• 1234 represents the identifier

of the folder whose immedi

ate contents are expected in

response.

Request Method GET

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 116

Only presentation details are included for every content listed by the list-

contents service. Other content properties are excluded for the sake of brevity

and performance.

f. Verify get-content-details service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

er/mysystem/assets/Images/1234

where:

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• Images represents the cate

gory ID of the content whose

details are expected in re

sponse.

• 1234 represents the identifier

of the content whose details

are expected in response.

Request Method GET

The JSON response produced by get-content-details service includes all the

content properties, in addition to the presentation details.

g. Verify get-object-schema service

Endpoint URL http://localhost:8888/as

set-viewer/api/Asset

Picker/object-mapping/ap

plication/mysystem/ob

ject/Images/1234/schema

where:

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 117

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

• Images represents the cate

gory of the reference content

being used for schema gener

ation.

• 1234 represents the identifier

of the reference content being

used for schema generation.

As of 12.1.0.4, content identifier

and category are not much relevant

since the schema is expected to in

clude attributes for all the support

ed content categories.

Request Method GET

The JSON response must contain the flattened list of all mappable attributes

and their metadata.

h. Verify list-content-categories service

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPick

er/mysystem/categories

where:

• mysystem represents the sys

tem identifier chosen by plug

in implementation.

Request Method GET

i. Verify get-cognitive-analysis service

Unica Content Integration V12.1.3 Developer Guide | 4 - Setting up the development environment | 118

Endpoint URL http://localhost:8888/as

set-viewer/api/AssetPicker/ac

tions/cognize?url=absolute_im

age_url

where:

• url contains absolute URL of

the image to fetch the cogni

tive analysis for

Request Method GET

Chapter 5. Verification and troubleshooting
To verify end-to-end integration, place the JAR file, containing the plugin implementation,

in the class path of the application server where the Content Integration is deployed.

Additionally, configure the corresponding content repository in <ASSET_PICKER_HOME>/

conf/systems.properties file (you can refer to the sample-systems.properties

file within the <ASSET_PICKER_HOME>/dev-kits/asset-integration-starter

project).

All the system onboarding configurations, mentioned in Unica Content Integration

Administration Guide, are supported in the systems.properties using relevant properties.

You must provide -Dspring.profiles.active=platform-disintegrated JVM argument

for systems.properties to come into effect (you can always use Platform’s configurations

instead of systems.properties by removing -Dspring.profiles.active=platform-

disintegrated JVM argument).

Note: Currently, only Unica Centralized Offer Management and Unica Plan can

access Content Integration.

After the plugin is deployed, and the system configurations are made, restart the Content

Integration application.

Although, you can verify Content Integration using REST endpoints mentioned in previous

section, we recommend you to check end-to-end integration by running through the relevant

user interface in Unica Centralized Offer Management and Unica Plan. Please refer to the

corresponding user guides to learn how to access Content Integration features in respective

products.

Use developer tools provided by the supported browsers to troubleshoot the API calls, if

required.

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 120

Overview of loggers
As mentioned in Verification of integration (on page), the logging configuration for

Content Integration is available in thelog4j2.xml file, placed in the AssetPicker/conf/

logging folder within Platform home.

Content Integration uses Apache Log4j2 for log management. The

RandomAccessFilePlatform appender along with com.unica logger configured in

log4j2.xml controls the logs produced by Platform's unica-common.jar and unica-

helper.jar used in Content Integration. The remaining settings control logging for other

core activities of Content Integration.

The default log level is set to WARN in both cases, which should be sufficient for the

troubleshooting needs for plugin development. Most of the loggers, produced by

the Content Integration at INFO & DEBUG level, are not extremely relevant for plugin

development & integration. The following topics elaborate only the relevant loggers. These

loggers are already present in log4j2.xml file and need to be uncommented, if required.

Please ensure that log level is never set to DEBUG or TRACE for these loggers in production

since they can generate sensitive information.

The log4j2.xml file also contains necessary configurations to route all the loggers for

a specific user to a dedicated log file. By default, these configurations are commented.

Appropriate description is added in log4j2.xml at the top of each configuration element

to help activate the dedicated log file.

Useful loggers in log4j2.xml file
The following table lists the useful loggers in the log4j2.xml file:

Table 2. Useful loggers in log4j2.xml file

Loggers Information

org.springframework.web Setting this logger to TRACE level pro

duces HTTP request and response de

tails for all the incoming HTTP requests

to Content Integration. This logger can be

unique_42
unique_42
unique_42

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 121

Table 2. Useful loggers in log4j2.xml file (continued)

Loggers Information

useful if you want to see what is being ex

changed between frontend and backend.

com.hcl.unica.cms.integration

.flow.interceptor.logger

This logger is most useful for plugin de

velopment. It logs the HTTP interaction

between Content Integration Framework

and the target repository. For any service

implemented using RESTful approach (by

implementing RestService, HTTPService

or their specialized derivatives), this log

ger will write HTTP request and response

details for all the outbound HTTP interac

tions with target system. To prevent se

curity vulnerability, values of confiden

tial headers are masked before logging.

Only the last four characters are left un

masked for troubleshooting. Such head

ers include standard header Authoriza

tion, or any non-standard custom headers

set in request or received in response.

org.springframework.retry Setting this logger to TRACE level adds in

formation related to retrial attempts while

making HTTP calls to the target reposito

ry. This is useful to verify Retry Policy set

up under QOS section for the respective

system in Platform Configuration.

com.hcl.unica.system.integration

.flow.object.event & com.hcl.unica

.system.integration.service.object

.event

Setting this logger to INFO level pro

duces logs pertaining to the content

event processing. Each content event re

ceived via webhook is assigned a unique

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 122

Table 2. Useful loggers in log4j2.xml file (continued)

Loggers Information

identifier. Every logger thus produced

contains the unique identifier to help

tracing end to end processing of each

event. Every log line begins with “Even

t#aa09af83-0f52-4d0c-82de-370e96a0f4c2”,

wherein the part after hash sign is unique

event identifier. These event process

ing logs are recorded in a separate file

named asset-picker-webhook.log under

<ASSET_PICKER_HOME>/logs directory.

Other important loggers
Other important loggers are useful in troubleshooting Content Integration. Along with

spotting warnings and errors, these loggers provide information that is useful from a

functional point of view.

The following table lists the other important loggers:

• Client applications - If root logger level is set to INFO level, the following lines tells you

the number of client applications, and which client applications Content Integration

can identify:

SupportedClientApplications: Found {1} supported client applications.

SupportedClientApplications: Registered {Offer} as supported client

 application.

• CORS - If root logger is set to INFO level, the following lines can provide information

about Content Integration’s support for Cross Origin Resource Sharing:

RegexCorsConfig: CORS: Enabling CORS for {hcl.com} & its subdomains.

 Allowed HTTP methods - {[GET, POST]}, allowed headers - {[*]}

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 123

RegexCorsConfig: CORS: Allowed origins set to

 {[http(s)?://([^\.]+\.)*hcl.com(:[0-9]+)?]}

• Platform configuration - Content repositories - Setting the root logger level to INFO

tells us about the content repositories that are identified by Content Integration

Framework.

PlatformConfigurationCategoryResolver: Platform

 configuration: Reading list of entries for path

 {Affinium|Offer|partitions|partition1|Content

 Integration|dataSources}...

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {AEM#119[partition1]}

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {WCM#119[partition1]}

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {Bing#119[partition1]}

• Service meta information files - The following lines are also logged at INFO level

to tell how many service meta information files have been identified by Content

Integration Framework:

c.h.u.s.c.s.PluginServicesYamlConfigReader: Scanning & parsing service

 configuration files.

c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at

 {<ASSET_PICKER_HOME>\conf\plugin-services.yml}.

c.h.u.s.c.s.PluginServicesYamlConfigReader: Found service config file

 at {<ASSET_PICKER_HOME>/conf/plugin-services.yml}

c.h.u.s.c.s.PluginServicesYamlConfigReader:

 Parsing service configuration file (YAML):

 {<ASSET_PICKER_HOME>/conf/plugin-services.yml}...

c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at

 {<ASSET_PICKER_HOME>\conf\custom-plugin-services.yml}.

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 124

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {COM} - {[COM:get-object-schema]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {12} service

 declaration(s) found for {WCM} - {[WCM:item-details,

 WCM:simple-search, WCM:content-list, WCM:logon-service,

 WCM:list-contents, WCM:library-list, WCM:get-content-details,

 WCM:folder-list, WCM:get-object-schema, WCM:list-folders,

 WCM:library-by-id, WCM:resource-loader]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {31} service

 declaration(s) found for {Deliver} - {[Deliver:update-folder,

 Deliver:simple-search, Deliver:list-by-ids, Deliver:zip-file-upload,

 Deliver:delete-content, Deliver:move-folder, Deliver:create-content,

 Deliver:list-folders, Deliver:zip-upload-template-unknown,

 Deliver:move-content, Deliver:list-sub-folders,

 Deliver:download-content-variant, Deliver:download-file-attachment,

 Deliver:get-user-entitlements, Deliver:list-top-folders,

 Deliver:update-dynamic-content, Deliver:create-folder,

 Deliver:find-libraries-by-name, Deliver:resource-loader,

 Deliver:zip-upload-content, Deliver:adopt-dynamic-content,

 Deliver:get-folder, Deliver:create-dynamic-content,

 Deliver:list-contents, Deliver:get-content-details,

 Deliver:patch-content, Deliver:delete-folder, Deliver:get-library,

 Deliver:update-content, Deliver:get-library-file,

 Deliver:adopt-content]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {Azure} - {[Azure:get-cognitive-analysis]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {DX-CORE} - {[DX-CORE:logon-service]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s)

 found for {DX} - {[DX:simple-search, DX:list-contents,

 DX:get-content-details, DX:rendition-details, DX:get-object-schema,

 DX:list-folders, DX:resource-loader]}

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 125

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7}

 service declaration(s) found for {Commerce} -

 {[Commerce:simple-search, Commerce:list-contents,

 Commerce:get-content-details, Commerce:get-search-query-suggestions,

 Commerce:list-content-categories, Commerce:get-object-schema,

 Commerce:list-folders]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service

 declaration(s) found for {AEM} - {[AEM:simple-search,

 AEM:list-contents, AEM:get-content-details, AEM:get-object-schema,

 AEM:get-content-fragment-model, AEM:list-folders,

 AEM:sample-inbound-service]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {2} service declaration(s)

 found for {Bing} - {[Bing:simple-search, Bing:get-content-details]}

• Authentication protocols - The following lines, logged at INFO level, confirms the

authentication protocol is identified for the given content repository:

AssetPickerRestTemplate: Setting up {BASIC} authentication for

 {Offer[partition1].WCM:simple-search} service...

• Platform configuration cache invalidation and service re-initializations - All the

Platform configurations for Content Integration are cached during application startup.

These configurations are refreshed after certain interval (every 30 mins by default

unless configured to use some other interval). The following logger is produced at

INFO level, whenever configuration refresh begins:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initializing

 services...

Similarly, the following lines are generated at INFO level whenever it is over:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Finished service

 initializations.

Unica Content Integration V12.1.3 Developer Guide | 5 - Verification and troubleshooting | 126

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper:

 Re-initialization completed in 3692 milliseconds. YAML read time: 15

 milliseconds, DB Read Time: 3608 milliseconds, Service initialization

 time: 68 milliseconds

	Unica Content Integration V12.1.3 Developer Guide
	Contents
	Chapter 1. Overview
	Plugins
	Integration support and plugin development approach
	RESTful content search flow
	Non-RESTful content search flow

	Chapter 2. Plugin development overview
	Components of plugin
	Service declarations
	Service declaration file

	Standard services
	Service implementations
	RESTful approach
	Functional approach
	Common methods

	Best approach selection

	Chapter 3. Plugin Development SDK
	Generic type parameters
	RestService<RQ, RS>
	FunctionalService<RQ, RS>
	ServiceGateway<RQ, RS>
	ObjectEventInterpreterService<T>
	KafkaConsumerService<K, V, RS>
	AbstractKafkaProducerService<K, V>

	I18n support
	Service invocation
	Multi-partitioned clients

	Execution context
	User data source

	Standard services and specialized types
	Invocation of standard services
	Specialized types
	Derivatives of RestService
	Simple search (simple-search)
	List content categories (list-content-categories)
	List folders (list-folders)
	List category folders (list-category-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get cognitive analysis (get-cognitive-analysis)
	Object extension service
	Collaboration services

	Derivatives of HttpService
	Resource loader (resource-loader)

	Derivatives of FunctionalService
	Simple search (simple-search)
	Resource loader (resource-loader)
	List content categories (list-content-categories)
	List folders (list-folders)
	List category folders (list-category-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get object schema (get-object-schema)
	Get cognitive analysis (get-cognitive-analysis)
	Object extension service
	Collaboration services

	Derivatives of InboundHttpService
	Webhook security

	Derivatives of KafkaConsumerService
	SASL prerequisites

	Derivatives of KafkaProducerService
	AbstractEntity
	Presentable
	Builder API

	Request Validation
	Standard exceptions
	RESTful approach
	Functional approach

	Loggers

	Chapter 4. Setting up the development environment
	Chapter 5. Verification and troubleshooting
	Overview of loggers
	Useful loggers in log4j2.xml file
	Other important loggers

