
Unica Plan V12.1.6 Integration Module

Contents

Chapter 1. What is Unica Plan Integration Services?... 1

What are the requirements for Unica Plan Integration Services?...................................... 3

Unica Plan Integration Services basics... 4

Installing Integration Services...7

Software developer kit contents...7

Hosted JavaDocs.. 9

Unica Plan documentation and help..9

Chapter 2. Unica Plan Integration Webservice...13

Unica Plan Integration Services WSDL..13

executeProcedure..14

Unica Plan Integration Webservice data types... 15

Chapter 3. Unica Plan procedures... 20

Assumptions.. 20

Configuration parameters... 22

Design...23

Procedure lifecycle.. 24

Key Java™ classes.. 26

Data locking... 27

Procedure transactions...28

Procedure communication... 28

Procedure logging... 28

Procedure plug-in definition file... 28

Chapter 4. Unica Plan SOAP API...30

Contents | iii

Contents of the Unica Plan SOAP API...30

SOAP API interfaces..30

SOAP API common exceptions.. 31

SOAP API handles... 32

SOAP API AttributeMap...35

SOAP API enumerated data types..37

Chapter 1. What is Unica Plan Integration
Services?
Unica Plan Integration Services combines the Unica Plan Integration Webservice, SOAP API

procedures, and triggers to extend business capabilities.

Unica Plan Integration Services is a composite of the following.

• Unica Plan Integration Webservice

Integration Services provide a way for Unica Plan customers and Professional

Services to integrate Unica Plan with other applications that run in their environment.

• Unica Plan procedures and SOAP API

Custom procedures can be defined within Unica Plan to extend Unica Plan business

logic in arbitrary ways. After you define procedures, these procedures can be the

targets for the Integration Services webservice calls from other applications.

Procedures also can be defined to send messages to other applications.

• Unica Plan triggers

Triggers can be associated with events and procedures in Unica Plan. When one such

event occurs, the associated trigger is run.

REST APIs do not use Unica Plan integration services. For information about the REST API,

see the Unica Plan Administrator's Guide.

Versions and backwards-compatibility

Future versions of the integration services will be backwardly compatible with all minor and

maintenance releases that share a major version number. However, reserves the right to

break compatibility with an earlier version for dot zero (x.0) major releases if the business or

technical case warrants.

The major version number of this API is incremented if any of the following changes are

made.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 2

• Data interpretation changes

• Business logic changes (for example, service method functions changes)

• Method parameters, return types, or both change

The minor version number of the API is incremented if any of the following changes are

made. These changes are compatible with an earlier version by definition.

• New method added

• New data type is added and its usage is restricted to a new method

• New element added to an enumerated type

• A new version of an interface is defined with a version suffix

Authentication

Authentication is not required; all clients are associated with a known Unica Plan user

named PlanAPIUser. A system administrator configures the security capabilities of this

special user to meet the needs of all webservice clients.

Locale

The only locale that is supported is the locale that is currently configured for the Unica Plan

system instance. All locale-dependent data, such as messages and currency, are assumed

to be in the system locale.

State management

The API and webservice are stateless; no per-client information is saved by the

service implementation across API calls. This feature provides for an efficient service

implementation and simplifies cluster support.

Database transactions

Unica Plan Integration Services does not show database transactions to the client, but uses

such information if it is included in the execution context. If a transaction is started, then

the effect of all API calls within a particular procedure is atomic. In other words, a failed

API call leaves the database in the same state as if the API was never called at all. Other

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 3

users of Unica Plan do not see the changes until the procedure successfully completes the

transaction.

API calls that update the database must first acquire an edit lock to prevent other users

from modifying the underlying data during the API calls. Other users cannot update locked

components until the API call completes. Likewise, the next Unica Plan user or API client

must acquire the lock on the data before another API call is submitted.

Event processing

Operations on Unica Plan components through the API generate the same events as if a

Unica Plan user did the operation. Users that subscribed to certain notifications, such as

project state changes, are notified of state changes that result from API calls and user

actions.

What are the requirements for Unica Plan Integration
Services?
Unica Plan Integration Services has the following requirements.

Unica Plan Integration Services must:

• Loosely couple system integration.

• Provide a mechanism for customer applications to affect Unica Plan through

webservice calls.

• Provide a mechanism for customer applications to be notified of certain events in

Unica Plan.

• Provide a simple programming model that is easy to understand and use.

• Be robust when recovering from failure.

• Guarantee data integrity.

• Integrate with, and minimize the effect on, existing Unica Plan GUI-based customers.

• Provide fine-grained access to Unica Plan components while insulating programmers

from underlying implementation details.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 4

Unica Plan Integration Services basics
You use Unica Plan Integration Services to create custom procedures. You can use these

procedures to trigger external events when certain events occur within Unica Plan. You can

use these procedures to run Unica Plan functions from external systems or programs.

The API interface interacts with Unica Plan at the programmatic level, in the same way the

GUI interfaces with Unica Plan at a user level. Using the API, you construct procedures.

Using these procedures, you communicate between Unica Plan and external systems. The

Unica Plan Webservice is the container object for the procedures, API, and triggers.

The architecture of the Unica Plan Integration Services is shown here.

The following are key components of the Integration Services.

• Unica Plan Procedure Manager: extends the business logic by interacting with Unica

Plan through the API.

• Unica Plan Trigger Manager: associates a condition (for example, the state change

of a marketing object) with an action (a procedure to run when the condition for the

trigger is met).

Methods

You use the components of Unica Plan Integration Services to develop custom procedures,

as shown in the following diagram.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 5

After you install the developer's kit, you follow these basic steps:

1. Code the custom procedure.

2. Update the plug-in definition in the XML definition file.

3. Build the plug-in:

a. Compile the necessary classes.

b. If you are using a third-party library that is not in the Unica Plan archive, bundle

the library inside the plan.war file and redeploy.

4. Restart Unica Plan. Changes to the procedure classes are applied when you restart

the application server.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 6

Note: If you change the plan.war file, you must undeploy and redeploy Unica

Plan with the new plan.war file. Undeploy and redeploy Unica Plan if you

use a third-party library that is not in the Unica Plan archive and you edit the

plan.war file.

Basic Example to communicate between Unica Plan and the API

The following basic example describes establishing communication between the API and

Unica Plan. It does not do any useful work; it performs a round trip between Unica Plan and

the Integration Services.

This example uses portions of the example procedures included with the Unica Plan

Integration Services developer's kit. Specifically, you can find the code that is referenced

here in the following files.

• PlanClientFacade.java

• PlanWSNOOPTestCase.java

The noop method is a webservice call to Unica Plan. It is defined in the PlanClientFacade

class, and passes null values in an array.

public ProcedureResponse noop(String jobId)

 throws RemoteException, ServiceException {

 NameValueArrays parameters =

 new NameValueArrays(null, null, null, null, null, null, null, null);

 return _serviceBinding.executeProcedure("uapNOOPProcedure", jobId,

 parameters);

}

The procedure testExecuteProcedure calls the noop method from PlanClientFacade to

establish a round trip with the Unica Plan application.

public void testExecuteProcedure() throws Exception {

 // Time out after a minute

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 7

 int timeout = 60000;

 PlanClientFacade clientFacade = new PlanClientFacade(urlWebService,

 timeout);

 System.out.println("noop w/no parameters");

 long startTime = new Date().getTime();

 ProcedureResponse response = clientFacade.noop("junit-jobid");

 long duration = new Date().getTime() - startTime;

 // zero or positive status => success

 System.out.println("Status: " + response.getStatus());

 System.out.println("Duration: " + duration + " ms");

 assertTrue(response.getStatus() >= 0);

 System.out.println("Done.");

}

For details of NameValueArrays, ProcedureResponse, and other listed methods and data

types, refer to the Unica Plan Integration Module and the JavaDocs.

Installing Integration Services
The Unica Plan Integration Services module is a separate, paid component. If you purchase

the Integration Services module, you must install it.

1. Download the Unica Plan Integration Services installers.

2. The Unica installers detect the Integration Services module.

3. The installer sets configuration properties at Plan | umoConfiguration |

integrationServices | enableIntegrationServices. You can customize your installation

by changing configuration parameters. For more information, see Configuration

parameters (on page 22).

Software developer kit contents
The software developer kit contains documentation containing all publicapi classes and

interfaces, and example code.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 8

For the SOAP API, all the Unica Plan Integration Services components are installed under a

folder labeled devkits.

Example code is installed in the following folders.

• The build folder contains scripts to build and deploy custom procedures.

• The Classes folder contains the compiled procedure classes.

Users must deploy the compiled classes of their custom procedures at the path that

is specified by the configuration parameter integrationProcedureClasspathURL.

Then, the Unica Plan Procedure Manager loads them as specified in the procedure-

plugins.xml configuration file.

• The lib folder contains the necessary libraries for developing and compiling custom

procedures.

• The src folder contains source files for custom procedures. Users can place custom

procedures to be started as triggers or web-services here. Only the SOAP API

supports custome procedures.

◦ The src/procedure folder contains procedure-plugins.xml configuration file.

Every custom procedure that runs as a trigger based an event or through an

external web-service must have an entry in this file. The entries must contain a

fully qualified class path of procedure and required initialization parameters.

◦ The src/procedure folder also contains some sample procedures that are

included with Unica Plan. These procedures can be used to understand and

develop your custom procedures.

Place custom procedures under the src directory in a new folder structure, such

as com/<mycompany>/<mypackage>. Do not place custom procedures in the

sample procedures folder.

◦ The src/soap folder contains sample web service clients that are developed in

Java. Use these samples as a starting point for developing web service-based

clients for Integration Services. This folder also contains binary scripts to start

sample clients over the command line.

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 9

Hosted JavaDocs
For specific information about the public API methods, refer to the iPlanAPI class in the

JavaDocs API documentation files.

These files are available in the following ways:

• By the files in the <HCL_Unica>/<Plan_Home>/devkits/integration/

javadocs directory for the SOAP API on the server that hosts Unica Plan.

• By logging in to Unica Plan and selecting Help > Product Documentation from any

page, and then downloading the <version>PublicAPI.zip file for the SOAP API.

Unica Plan documentation and help
Different people in your organization use Unica Plan to accomplish different tasks.

Information about Unica Plan is available in a set of guides, each of which is intended for

use by team members with specific objectives and skill sets.

The following table describes the information available in each guide.

Table 1. Guides in the Unica Plan documentation set

The following three-column table describes tasks in one column, guide names in the

second column, and audience in the third column.

If you See Audience

• Plan and manage

projects

• Establish workflow

tasks, milestones, and

personnel

• Track project expens­

es

• Get reviews and ap­

provals for content

Unica Plan User's Guide • Project managers

• Creative designers

• Direct mail marketing

managers

• Marketers

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 10

Table 1. Guides in the Unica Plan documentation set

The following three-column table describes tasks in one column, guide names in the

second column, and audience in the third column.

(continued)

If you See Audience

• Produce reports

• Create to-dos and

checklists

• Design templates,

forms, attributes, and

metrics

• Customize the user in­

terface

• Define user access

levels and security

• Implement optional

features

• Configure and tune

Unica Plan

Unica Plan Administrator's

Guide

• Project managers

• IT administrators

• Implementation con­

sultants

• Create marketing cam­

paigns

• Plan offers

• Implement integration

between Unica Plan

and Unica Campaign

• Implement integration

between Unica Plan

and IBM Digital Rec­

ommendations

Unica Plan and Integration

Guide

• Project managers

• Marketing execution

specialists

• Direct marketing man­

agers

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 11

Table 1. Guides in the Unica Plan documentation set

The following three-column table describes tasks in one column, guide names in the

second column, and audience in the third column.

(continued)

If you See Audience

• Learn about new sys­

tem features

• Research known is­

sues and workarounds

Unica Plan Release Notes® Everyone who uses Unica

Plan

• Install Unica Plan

• Configure Unica Plan

• Upgrade to a new ver­

sion of Unica Plan

Unica Plan Installation Guide • Software implementa­

tion consultants

• IT administrators

• Database administra­

tors

Create custom procedures

to integrate Unica Plan with

other applications

Unica Plan Integration Mod­

ule and the API JavaDocs

available when you click Help

> Product Documentation in

Unica Plan, and then down­

load the UnicaPlan<ver­

sion>PublicAPI.zip file

for the SOAP API and Uni­

caPlan<version>Publi­

cAPI-RestClient.zip for

the REST API.

• IT administrators

• Database administra­

tors

• Implementation con­

sultants

Learn about the structure of

the Unica Plan database

Unica Plan System Schema Database administrators

Need more information

while you work

• Get help and search or

browse the User's, Ad­

ministrator's, or Instal­

Everyone who uses Unica

Plan

Unica Plan V12.1.5 Integration Module | 1 - What is Unica Plan Integration Services? | 12

Table 1. Guides in the Unica Plan documentation set

The following three-column table describes tasks in one column, guide names in the

second column, and audience in the third column.

(continued)

If you See Audience

lation guides: Click Help

> Help for this page

• Access all of the Unica

Plan guides: Click Help

> Product Documenta­

tion

• Access guides for all

Unica products: Click

Help > All Unica Suite

Documentation

Chapter 2. Unica Plan Integration Webservice
The webservice provides a client view of the Unica Plan Integration Services, which is part

of the deployment of the Unica Plan server. The service is used concurrently with Unica Plan

web users.

The webservice supports one API call, executeProcedure.

A client makes this webservice call directly.

Unica Plan Integration Services WSDL
The Web Services Definition Language (WSDL) was defined by hand and is the final word on

the webservice definition.

Axis

This version of the webservice uses Axis2 1.5.2 to generate the server-side classes that

make up the web service implementation from the WSDL file. Users can use any version of

Axis, or a non-Axis technique, to create a client side implementation for integrating with the

API from the supplied WSDL.

Protocol version

The version of the protocol is explicitly bound to the WSDL as follows:

• As part of the WSDL name, for example, PlanIntegrationService1.0.wsdl

• As part of the WSDL targetNamespace, for example, xmlns:tns="http://

webservices.unica.com /MktOps/services/

PlanIntegrationServices1.0?wsdl"

WSDL

One WSDL file is provided with Unica Plan Integration Services:

PlanIntegrationServices1.0.wsdl. The WSDL is delivered in the integration/

examples/soap/plan directory. The example build script uses this file to generate the

appropriate client-side stubs to connect to the webservice.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 14

executeProcedure
executeProcedure is the on API call that is supported by the webservice.

Syntax

executeProcedure(string key, string jobid, NameValueArrays paramArray)

Returns

int: status

Message[]: messages

Description

This method invokes the specified procedure with an optional array of parameters. The call

executes synchronously; that is, it blocks the client and returns the result upon completion.

Parameters

Table 2. executeProcedure parameters

Name Description

key The unique key of the procedure to run. A RemoteException error is

returned if no procedure is bound to key.

jobid Optional string that identifies the job that is associated with this

procedure execution. This string is a pass-through item, but it can

be used to tie client jobs to the execution of a particular procedure.

paramArray An array of parameters to pass to the procedure. An error status

and message is returned if one or more of the parameters is invalid

(such as, the wrong type or an incorrect value). It is up to the client

to determine the parameters, their types, and the number of values

that are required by the procedure.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 15

Return Parameters

Table 3. executeProcedure return parameters

Name Description

status An integer code:

• 0 indicates that the procedure ran successfully

• an integer indicates an error

Procedures can use the status to indicate different levels of errors.

messages An array of zero or more message data structures. If status is 0, this

array does not contain ERROR messages, but might contain INFOR­

MATION and WARNING messages.

If status is non-zero, messages can contain any mix of ERROR, IN­

FORMATION, and WARNING messages.

Unica Plan Integration Webservice data types
The data types that are used by the webservice are independent of any particular service

binding or programming implementation.

The following notation is used.

• <type>: <type definition> defines a simple data type. For example:

Handle: string

• <type>: [<type definition>] defines a complex data type or a data structure.

• <type>: { <type definition> } defines a complex data type or a data structure.

Complex type elements and API parameters can use these types to declare arrays. For

example:

Handle [] handles

The type, handles, is an array of Handle types.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 16

Primitive types

Primitive types are restricted to the types defined in the table that follows to simplify

support for SOAP 1.1 bindings. All types can be declared as arrays, for example, String

[]. Inherently, binary data types, such as long, can be represented as strings by a protocol

binding (for example, SOAP). This representation, however, has no effect on the semantics

of the type, permissible values, and so on, as seen by the client.

Table 4. Primitive types

API Type Description SOAP Type Java™ Type

Boolean Boolean value: true or

false

xsd:Boolean Boolean

dateTime A date time value xsd:datetime Date

decimal An arbitrary-precision,

decimal value

xsd:decimal java.math.BigDeci­

mal

double A double-precision,

signed, decimal value

xsd:double double

int A signed, 32-bit, integer

value

xsd:int int

integer An arbitrary-precision,

signed, integer value

xsd:integer java.math.BigInteger

long A signed, 64-bit, integer

value

xsd:long long

string A string of Unicode

characters

xsd:string java.lang.String

MessageTypeEnum

MessageTypeEnum: { INFORMATION, WARNING, ERROR }

MessageTypeEnum is an enumerated type that defines all possible message types.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 17

• INFORMATION: an informational message

• WARNING: a warning message

• ERROR: an error message

Message

Message: [MessageTypeEnum type, string code, string localizedText, string

 logDetail]

Message is a data structure that defines the result of a webservice API call. It provides

optional fields for a non-localized code, localized text, and log detail. Currently, all localized

text uses the locale that is set for the Unica Plan server instance.

Table 5. Message parameters

Parameter Description

type A MessageTypeEnum, setting the type of the message.

code An optional code, in string format, for the message.

localizedText An optional text string to associate with the message.

logDetail An optional stack trace message.

NameValue

NameValue: [string name, int sequence]

NameValue is a base complex type that defines a name-value pair. It also defines an

optional sequence that the service uses to construct value arrays as needed (the sequences

are zero-based).

All NameValues with the same name, but different sequence numbers, are converted into an

array of values and associated with the common name.

The array size is determined by the maximum sequence number; unspecified array elements

have null values. Array sequence numbers must be unique. The value and its type are

provided by the extended type.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 18

Table 6. NameValue parameters

Parameter Description

name A string that defines the name of a NameValue type.

sequence A zero-based integer that sets the sequence number for the Name­

Value implied value.

Extended NameValue types are defined for each primitive type, as follows:

Table 7. Extended NameValue types

Extended type Description

BigDecimalNameValue: NameValue [dec­

imal value]

A NameValue type whose value is an arbi­

trary-precision, decimal number.

BigIntegerNameValue: NameValue [inte­

ger value]

A NameValue type whose value is an arbi­

trarily sized integer.

BooleanNameValue: NameValue

[Boolean value]

A NameValue type whose value is a

Boolean.

CurrencyNameValue: NameValue [string

locale, decimal value]

A NameValue type suitable for represent­

ing currency in some locale. Locale is

an ISO Language Code, that is, the low­

ercase, two-letter codes as defined by

ISO-639.

Currently, the locale must agree with the

locale set in the Unica Plan server in­

stance.

DateNameValue: NameValue [datetime

value]

A NameValue type whose value is a date.

DecimalNameValue: NameValue [double

value]

A NameValue type whose value is a dou­

ble-precision, decimal number.

Unica Plan V12.1.5 Integration Module | 2 - Unica Plan Integration Webservice | 19

Table 7. Extended NameValue types (continued)

Extended type Description

IntegerNameValue: NameValue [long val­

ue]

A NameValue type whose value is a 64-bit

integer.

String NameValue: NameValue [string

value]

A NameValue type whose value is a

string.

And finally, an array of the extended NameValue types is defined for use when you must

define a set of NameValues of with different types.

 NameValueArrays: [

BooleanNameValue[] booleanValues,

StringNameValue[] stringValues,

IntegerNameValue[] integerValues,

BigIntegerNameValue[] bigIntegooleanNameValue,

DecimalNameValue[] decimalValues,

BigDecimalNameValue[] bigDecimalValues

DateNameValue[] dateNameValues

CurrencyNameValue[] currencyValues

]

Chapter 3. Unica Plan procedures
A "procedure" is a custom or standard Java™ class hosted by Unica Plan that does some

unit of work. Procedures provide a way for customers and Professional Services to extend

business logic in arbitrary ways.

Procedures follow a simple programming model with a well-defined API to affect

components that are managed by Unica Plan. Procedures are "discovered" through a simple

lookup mechanism and XML-based definition file. Unica Plan runs the procedures according

to needs of their "clients." For example, in response to an integration request (incoming) or a

trigger firing (internal or outgoing).

Procedures run synchronously with their client; results are made available directly to the

client, and through a persisted auditing mechanism. The execution of a procedure can also

cause other events and triggers to fire in Unica Plan.

Procedures must be written in Java™.

Assumptions
The procedure implementation classes are packaged into a separate classes tree or JAR file

and made available to Unica Plan through a URL path.

Procedure implementation

The procedure execution manager uses an independent class loader to load these classes

as needed. By default, Unica Plan looks in the following directory.

<Plan_Home>/devkits/integration/examples/classes

To change this default, set the integrationProcedureClasspathURL parameter under

Settings > Configuration > Plan > umoConfiguration > integrationServices.

The procedure implementation class name follows the accepted Java™ naming

conventions, to avoid package collisions with "unica" and classes from other vendors. In

particular, customers must not place procedures under the "com.unica" or "com.unicacorp"

package tree.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 21

The procedure implementation is coded to the Java™ runtime version used by Unica Plan on

the application server (at least JRE 1.8).

The procedure implementation class is loaded by the class loading policy that is

normally used by Unica Plan (typically parent-last). The application server might provide

development tools and options to reload classes that would apply to Unica Plan procedures,

but that is not required.

Libraries

Unica Plan provides some open source and third-party libraries; application servers also use

different versions of these libraries.

Generally, this list changes from release to release. The following third-party libraries are

supported.

• activation.jar

• axiom-api-1.2.15.jar

• axiom-compat-1.2.15.jar

• axiom-dom-1.2.15.jar

• axiom-impl-1.2.15.jar

• axis2-adb-1.5.2.jar

• axis2-adb-codegen-1.5.2.jar

• axis2-codegen-1.5.2.jar

• axis2-kernel-1.5.2.jar

• axis2-transport-http-1.5.2.jar

• axis2-transport-local-1.5.2.jar

• httpcore-4.0.jar

• commons-codec.jar

• commons-httpclient-3.1.jar

• commons-lang.jar

• commons-logging.jar

• disruptor-3.4.2.jar

• geronimo-stax-api_1.0_spec-1.0.1.jar

• httpclient-4.3.6.jar

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 22

• httpcore-4.3.3.jar

• jersey-client-1.17.jar

• jersey-core-1.17.jar

• jersey-json-1.17.jar

• junit-4.4.jar

• log4j.jar

• log4j-api-2.8.2.jar

• log4j-core-2.8.2.jar

• mail.jar

• neethi-2.0.4.jar

• wsdl4j-1.6.2.jar

• xlxpScanner.jar

• xlxpScannerUtils.jar

• xlxpWASParsers.jar

• XmlSchema-1.4.3.jar

• Unica Plan APIs latest version (affinium_plan.jar)

• Unica Platform APIs latest version (unica-common.jar)

If a procedure, or the secondary classes the procedure imports, does use such packages,

their use must agree exactly with the packages provided by Unica Plan or the application

server. In this case, rework of your procedure code is required if a later version of Unica Plan

upgrades or abandons a library.

Procedures and threads

The procedure must be thread-safe concerning its own state; that is, its run method cannot

depend on internal state changes from call to call. A procedure cannot create threads on its

own.

Configuration parameters
When you install the Unica Plan Integration Module, the installer sets three configuration

properties. You can modify the configuration properties to customize the behavior of the

Integration Module.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 23

Configuration properties for the Integration Module are under Plan | umoConfiguration |

integrationServices.

• The enableIntegrationServices configuration property to turns the Integration

Services module on and off.

• The integrationProcedureDefinitionPath parameter contains the full file path to the

custom procedure definition XML file.

The default value is <HCL_Unica_Home><Plan_Home>/devkits/integration/

examples/src/procedure/procedure-plugins.xml/.

• The integrationProcedureClasspathURL parameter contains the URL to the class path

for custom procedures.

The default value is file:///<HCL_Unica_Home><Plan_Home>/devkits/

integration/examples/classes/.

Note: The '/' at the end of the integrationProcedureClasspathURL path is

required for loading procedure classes correctly.

Design
The procedure implementation class uses the Unica Plan API to read and update Unica

Plan components, start services, and so on. Other Java™ packages can be used to do other

tasks.

In your design, focus on producing a single unit of work that operates atomically. Ideally,

a procedure performs some series of tasks that can be scheduled asynchronously to run

at some later time. This "fire and forget" integration model results in the least load on both

systems.

Note: Only the documented classes and methods will be supported in future

releases of Unica Plan. Consider all other classes and methods in Unica Plan to be

off-limits.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 24

After you code and compile the procedure implementation classes, you make them

available to Unica Plan. The build scripts that are supplied with the Unica Plan Integration

Services place the compiled procedures in the default location. The final development

step is to update the custom procedure plug-in definition file that is used by Unica Plan to

discover the custom procedures.

The procedure must implement the com.unica.publicapi.plan.plugin.procedure.IProcedure

interface and have a parameter-less constructor (usual JavaBeans model). Coding and

compilation of each procedure is done in a Java™ IDE of the customer's choice, such as

Eclipse, Borland JBuilder, or Idea. Sample code is provided with Unica Plan as developer

toolkits, in the following location:

<Plan_Home>/devkits/integration/examples/src/procedure

Procedure lifecycle
Each procedure runs through a complete lifecycle.

The runtime lifecycle of a procedure includes the following steps.

1. Discovery and initialization

2. Selection (optional)

3. Execution

4. Destruction

Discovery and initialization

Unica Plan must be made aware of all standard and custom procedures available for a

particular installation instance. This process is called discovery.

Note: Standard procedures (procedures that are defined by the Unica Plan

engineering team) are known implicitly and so do not need any action to be

discovered.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 25

Custom procedures are defined in the procedure plug-in definition file. The Unica Plan

plug-in manager reads this file during initialization. For each procedure found, the plug-in

manager completes the following steps.

1. Instantiate the procedure; transition its state to INSTANTIATED.

2. Create a procedure audit record.

3. If the procedure was instantiated, its initialize() method is called with any

initialization parameters found in its plug-in description file. If this method throws

an exception, the status is logged and the procedure is abandoned. Otherwise, the

procedure state changes to the INITIALIZED state. It is now ready to run.

4. Create a procedure audit record.

5. If the procedure was initialized, its getKey() method is called to determine the key that

is used by clients to reference the procedure. This key is associated with the instance

and saved for later lookup.

Selection

From time to time, Unica Plan might present a list of available procedures to users, for

example to enable administrators to set up a trigger. Unica Plan only presents this list after

the procedure is initialized, using the procedure's getDisplayName() and getDescription()

methods.

Execution

At some point after the procedure is initialized, Unica Plan receives a request to run the

procedure. This request might happen concurrently with other procedures (or the same

procedure) running on other threads.

At run time, the procedure execution manager completes the following steps.

1. Start a database transaction.

2. Set the procedure state to EXECUTING.

3. Create a procedure audit record.

4. Call the procedure's execute() method with an execution context and any run

parameters that are provided by the client. The method implementation uses the

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 26

Unica Plan API as needed, acquiring edit locks, and passing along the execution

context. If the run method throws an exception, the execution manager marks the

transaction for rollback.

5. Commit or rollback the transaction according to the execution results; set procedure

state to EXECUTED.

6. Release any outstanding edit locks.

7. Create a procedure audit record.

Note: The execute() method is not intended to alter the procedure instance data.

Destruction

When Unica Plan shuts down, the procedure plug-in manager walks through all loaded

procedures. For each procedure found, it completes the following steps.

1. Calls the procedure's destroy() method to allow the procedure to clean up before the

instance is destroyed.

2. Changes the state of the procedure to FINALIZED (it cannot be run).

3. Creates a procedure audit record.

4. Destroys the instance of the procedure.

Key Java™ classes
The supplied integration developer's kit contains a set of Javadoc for the public Unica Plan

API and supporting classes.

The most important Java classes are listed here.

• IProcedure (com.unica.publicapi.plan.plugin.procedure.IProcedure): interface that

all procedures must implement. Procedures go through a well-defined lifecycle and

access the Unica Plan API to do work.

• ITriggerProcedure (com.unica.publicapi.plan.plugin.procedure.ITriggerProcedure):

interface that all trigger procedures must implement (marker interface).

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 27

• IExecutionContext (com.unica.publicapi.plan.plugin.procedure.IExecutionContext):

interface of opaque context object that is handed to the procedure by the execution

manager. This object has public methods for logging and edit lock management. The

procedure also passes this object to all PlanAPI calls.

• IPlanAPI (com.unica.publicapi.plan.api.IPlanAPI): interface to the Unica Plan API.

The execution context provides a getPlanAPI() method to retrieve the proper

implementation.

Data locking
Unica Plan uses a pessimistic edit locking scheme; that is, only one user is granted update

access to component instances at a time. For the GUI user, this locking is done at the

visual tab level. In some cases, data is locked for a subset of an instance, for example, a

project summary tab. In other cases, data is locked across many instances, for example, the

workflow tab. After a user acquires a lock, all other users are restricted to read-only access

to the related data.

To ensure that the changes made by a procedure to a component instance or group of

instances are not inadvertently overwritten by another user, a procedure must acquire the

appropriate locks before it updates component data. The execution context object that is

passed to the procedure's execute() method is used to accomplish lock the data.

Before the procedure updates any data, it must call the context's acquireLock() method

for each lock it needs. For example, if a procedure is going to update a project and the

associated workflow, the procedure must acquire locks for both.

If another user already has a lock, the acquireLock() method throws a LockInUseException

immediately. To minimize collisions, the procedure must release the lock as soon as it

updates the object.

The execution manager automatically releases any outstanding locks when the execute

method returns. In any case, locks are only held for the life of the database transaction. That

is, locks expire if the database-specific transaction timeout is exceeded.

Note: Edit locks are not the same as database transactions.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 28

Procedure transactions
The procedure execution manager automatically wraps execution of the procedure with a

database transaction, committing or rolling it back based on the outcome of the procedure

execution.

Wrapping the procedure execution and database transaction ensures that updates to

the Unica Plan database are not visible to other users until committed. It also makes the

updates atomic.

The procedure writer still must acquire the necessary edit locks to ensure that other users

cannot write changes to the database before the procedure execution completes.

Procedure communication
The execute() method of a procedure returns an integer status code to the Unica Plan

procedure audit table. The execute() method of a procedure can also return zero or more

messages to the procedure audit table, which are logged and persisted.

The client might also communicate the status information in some other way.

Procedure logging
Unica Plan has a separate log file for procedures: <Plan_Home>\logs\system.log

The procedure execution manager logs the lifecycle of each procedure and creates audit

records.

• logInfo(): write an informational message to the procedure log.

• logWarning(): write a warning message to the procedure log.

• logError(): write an error message to the procedure log.

• logException(): dump the stack trace for the exception to the procedure log.

Procedure plug-in definition file
The procedure plug-in definition file defines implementation class, metadata, and other

information about the custom procedures to be hosted in Unica Plan.

Unica Plan V12.1.5 Integration Module | 3 - Unica Plan procedures | 29

By default, the procedure plug-in definition is assumed to be in the following path:

<Plan_Home>/devkits/integration/examples/src/procedures/procedure-

plugins.xml

This file is an XML document that contains the following information.

Procedures: a list of zero or more Procedure elements.

Procedure: an element that defines a procedure. Each procedure contains the following

elements.

• key (optional): string that defines the lookup key for the procedure. This key must be

unique among all standard and custom procedures that are hosted by a particular

Unica Plan instance. If not defined, defaults to the fully qualified version of the

className element. Names starting with the string "uap" are reserved for use by

Unica Plan.

• className (required): fully qualified package name of the

procedure class. This class must implement the IProcedure class

(com.unica.public.plan.plugin.procedure.IProcedure).

• initParameters (optional): a list of zero or more initParameter elements.

initParameter(optional): parameter to be passed to the procedure's initialize()

method. This element includes the nested parameter name, type, and value elements.

◦ name: string that defines the parameter name

◦ type: optional class name of the Java™ wrapper class that defines the type of

the parameter value. Must be one of the following types:

▪ java.lang.String (the default)

▪ java.lang.Integer

▪ java.lang.Double

▪ java.lang.Calendar

▪ java.lang.Boolean

◦ value: string form of the attribute value according to its type

Chapter 4. Unica Plan SOAP API
The Unica Plan SOAP API is a façade that provides a client view of a running Unica Plan

instance.

Only a subset of the Unica Plan capabilities is shown to users. The API is used concurrently

by Unica Plan web users and Unica Plan Integration Services WebService SOAP requests

and triggers. The API supports the following types of operations.

• Component creation and deletion

• Discovery (by component type, attribute value, and more values)

• Component inspection (through its attributes, specialized links, and more values)

• Component modification

Note: Unica Plan APIs are intended for Administrator use only.

Contents of the Unica Plan SOAP API
The com.unica.publicapi.plan.api package delivers the Unica Plan SOAP API.

This package offers interfaces and exceptions, and contains the following types of classes:

• Enumerated data types.

• Handles to identify object and component instances.

• A Java™ map, AttributeMap.

Complete documentation of the API, including all methods and possible values, is available

by clicking Help > Product Documentation in an instance of Unica Plan, then downloading

the HCL<version>PublicAPI.zip file.

SOAP API interfaces
The Unica Plan SOAP application programming interface (API) includes IPlanAPI and

IExecutionContext.

The Unica Plan SOAP API includes the following interfaces.

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 31

IPlanAPI

Defines the public API for Unica Plan. Provides methods for creating,

discovering, and modifying objects, including folders, projects, programs,

workflow tasks, and team members.

For systems that have the optional integration with Unica Campaign enabled,

also provides methods for creating, discovering, and modifying offers.

IExecutionContext

Defines the triggers and locks that execute methods in the API.

API methods
For specific information about the public API methods, refer to the iPlanAPI class in the

JavaDocs API documentation files.

These files are available by logging in to Unica Plan and selecting Help > Product

Documentation from any page, and then downloading the <version>PublicAPI.zip file.

SOAP API common exceptions
Common exceptions that are thrown by the SOAP API include NotFoundException,

AuthorizationException, DataException, InvalidExecutionContextException, and

NotLockedException.

The following list explains why these common exceptions might occur.

• <object type>NotFoundException: The system is unable to return the specified item or

object.

• AuthorizationException: The user who is associated with the execution context is

not authorized for the requested operation. This exception can be thrown by any API

method, so is undeclared.

• DataException: An exception occurred in the underlying database layer in Unica Plan.

Check the SQL log for details.

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 32

• InvalidExecutionContextException: There is a problem with an execution context

passed to an API method (for example, the method was not initialized correctly). This

exception can be thrown by any API, so is undeclared.

• NotLockedException: Attempt to update component data without first acquiring the

required lock. See the acquireLock() method of the IExecutionContext interface.

SOAP API handles
A handle is special URL object that references a particular object instance in an Unica Plan

instance. Handles include the component type, internal data identifier, and an instance base

URL.

Handles used or generated by the API can be externalized to a full URL. You can use the

resulting URL in different ways. You can use the URL to open a view of the component in the

Unica Plan GUI, send it in email messages, or use it in another procedure as a parameter.

Handles are valid only for a particular Unica Plan service instance or clustered instance,

but are valid for the lifetime of the deployed service. As a result, handles can be saved in

a file for later reference, but they cannot be used to access components on another Unica

Plan instance. This restriction also applies to instances on the same physical host server.

Unica Plan does provide, however, a mechanism for mapping different base URLs to the

current instance to accommodate relocating an instance to another server (for example, if

the equipment malfunctions).

Handles are client-independent. For example, a trigger can pass a handle to a procedure,

which uses it as a parameter in a SOAP call to a 3rd-party system. The 3rd-party system can

then issue a SOAP request back to Unica Plan to start a procedure that updates an attribute.

Members of the Handle class have factory methods for creating handles from various types

of URLs. Examples follow.

Approval

http://mymachine:7001/plan/affiniumplan.jsp?cat=approvaldetail&

approvalid=101

Asset

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 33

http://mymachine:7001/plan/affiniumplan.jsp?cat=asset&

assetMode=VIEW_ASSET&assetid=101

Asset Folder

http://mymachine:7001/plan/affiniumplan.jsp?cat=folder&id=101

Asset Library

http://mymachine:7001/plan/affiniumplan.jsp?cat=library&id=101

Attachment

http://mymachine:7001/plan/affiniumplan.jsp?cat=attachmentview&

attachid=101&parentObjectId=101&parentObjectType=project

Financial Account

http://mymachine:7001/plan/affiniumplan.jsp?cat=accountdetails&

accountid=101

Folder

http://mymachine:7001/plan/affiniumplan.jsp?cat=grouping_folder&

folderid=1234

Invoice

http://mymachine:7001/plan/affiniumplan.jsp?cat=invoicedetails&

invoiceid=134

Invoice line item

http://mymachine:7001/plan/affiniumplan.jsp?cat=invoicedetails&

invoiceid=134&line_item_id=101

Marketing object

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 34

http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&

componentid=creatives&componentinstid=1234

Marketing object grid

http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&

componentid=creatives&componentinstid=1234&gridid=grid

Marketing object grid row

http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&

componentid=creatives&componentinstid=1234&gridid=grid&gridrowid

=101

Plan team

http://mymachine:7001/plan/affiniumplan.jsp?cat=teamdetails&

func=edit&teamid=100001

Plan user

http://mymachine:7001/plan/affiniumplan.jsp?cat=adminuserpermiss

ions&

func=edit&userId=101

Program

http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&prog

ramid=125

Program grid

http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&

programid=1234&gridid=grid

Program grid row

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 35

http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&

programid=1234&gridid=grid&gridrowid=101

Project

http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&

projectid=1234

Project grid

http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&

projectid=1234&gridid=grid

Project grid row

http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&

projectid=1234&gridid=grid&gridrowid=101

Project line item

http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&

projectid=1234&projectlineitemid=123&projectlineitemisversionfin

al=false

Workflow stage

http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&

projectid=1234&taskid=5678

Workflow task

http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&

projectid=1234&taskid=5678

SOAP API AttributeMap
The AttributeMap class is a Java™ map that contains only attributes. The attribute <Name>

is the map entry key, and the attribute <values> array (note plural) is the map entry value.

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 36

The AttributeMap class includes the following fields.

• <Name>: the programmatic name of the attribute. This name serves as a unique key

for accessing the attribute within the component instance in which it occurs.

Note: <Name> is not necessarily the display name that is presented to a user

in the GUI. For components that are created from templates (such as projects

or workflow tasks), the attribute name is specified by the template element

definition. The attribute name must be unique. For other components, the

attribute name typically is derived programmatically from the server-side

component instance (for example, through Java™ introspection).

Note: By convention, custom attributes include the name of the form in which

the editable version is defined: <form_name>.<attribute_name>.

• Values: a Java™ object array, containing zero or more attribute values. The type of

each value must be the same and agree with the type of the attribute as it is defined in

Unica Plan. Only the following Java™ wrapper and Unica Plan types are supported:

◦ AssetLibraryStateEnum: a AssetLibraryStateEnum enumerated type value.

◦ AssetStateEnum: a AssetStateEnum enumerated type value.

◦ AttachmentTypeEnum: a AttachmentTypeEnum enumerated type value.

◦ AttributeMap: a map that holds attributes.

◦ BudgetPeriodEnum: a BudgetPeriodEnum enumerated type value.

◦ BudgetTypeEnum: a BudgetTypeEnum enumerated type value.

◦ Handle: a reference to a component instance, grid row, attribute, and so on.

◦ InvoiceStateEnum: an InvoiceStateEnum enumerated type value.

◦ java.io.File: representation of a file.

◦ java.lang.Boolean: a Boolean value, either True or False

◦ java.lang.Double: a double-precision decimal number value.

◦ java.lang.Float: a single-precision decimal number value

◦ java.lang.Integer: a 32-bit integer value

◦ java.lang.Long: a 64-bit integer value

◦ java.lang.Object: Generic Java™ object

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 37

◦ java.lang.String: a string of zero or more Unicode characters

◦ java.math.BigDecimal: arbitrary-precision signed decimal number value. Suitable

for currency; the interpretation of the value depends on the currency locale for

the client.

◦ java.math.BigInteger: arbitrary-precision integer value.

◦ java.net.URL: a Universal Resource Locator (URL) object.

◦ java.util.ArrayList: List of objects.

◦ java.util.Calendar: a date-time value for a particular locale.

◦ java.util.Date: a date-time value. This type is deprecated. Use java.util.Calendar

or java.util.GregorianCalendar instead.

Note: To implement date, users can select either java.util.Calendar or

java.util.GregorianCalendar.

◦ java.util.GregorianCalendar: GregorianCalendar is a concrete subclass of

java.util.Calendar and provides the standard calendar system in use by most of

the world.

◦ MonthEnum: a MonthEnum enumerated type value.

◦ ProjectStateEnum: a ProjectStateEnum enumerated type value.

◦ QuarterEnum: a QuarterEnum enumerated type value.

◦ TaskStateEnum: a TaskStateEnum enumerated type value.

◦ WeekEnum: a WeekEnum enumerated type value.

The metadata of an attribute (such as translated display name and description) is defined

by the template that is associated with the attribute and its parent object instance.

Attributes provide a simple yet extensible mechanism for showing both required and

optional object instance attributes, such as project name, code, and start date.

SOAP API enumerated data types
The Unica Plan SOPA API supports the following enumerated data types and values.

ApprovalMethodEnum

ApprovalMethodEnum defines valid approval methods. Possible values are:

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 38

• SEQUENTIAL

• SIMULTANEOUS

ApprovalStateEnum

ApprovalStateEnum defines valid approval states. Possible values are:

• CANCELLED

• COMPLETED

• IN_PROGRESS

• NOT_STATED

• ON_HOLD

AssetLibraryStateEnum

AssetLibraryStateEnum defines valid asset library states. Possible values are:

• DISABLED

• ENABLED

AssetStateEnum

AssetStateEnum defines valid asset states. Possible values are:

• ARCHIVE

• DRAFT

• FINALIZE

• LOCK

AttachmentTypeEnum

AttachmentTypeEnum defines valid attachment types. Possible values are:

• ASSET

• FILE

• URL

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 39

BudgetPeriodEnum

BudgetPeriodEnum defines the possible budget periods. Possible values are:

• ALL

• MONTHLY

• QUARTERLY

• WEEKLY

• YEARLY

BudgetTypeEnum

BudgetTypeEnum defines valid budget types. Possible values are:

• ACTUAL

• ALLOCATED

• COMMITTED

• FORECAST

• TOTAL

ComponentTypeEnum

ComponentTypeEnum identifies the accessible Unica Plan component types.

Possible values are:

• APPROVAL

• ASSET

• ASSET_FOLDER

• ASSET_LIBRARY

• ATTACHMENT

• FINANCIAL_ACCOUNT

• GROUPING_FOLDER

• INVOICE

• MARKETING_OBJECT

• PLAN_TEAM

• PLAN_USER

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 40

• PROGRAM

• PROJECT

• PROJECT_REQUEST

• TASK

•

InvoiceStateEnum

InvoiceStateEnum defines valid invoice states. Possible values are:

• CANCELLED

• DRAFT

• PAID

• PAYABLE

MonthEnum

MonthEnum defines valid values for the month.

OfferStateEnum

OfferStateEnum defines valid offer states. Possible values are:

• STATE_OFFER_DRAFT

• STATE_OFFER_PUBLISHED

• STATE_OFFER_RETIRED

ProjectCopyTypeEnum

ProjectCopyTypeEnum defines valid methods for copying a project. Possible

values are:

• COPY_USING_PROJECT_METRICS

• COPY_USING_TEMMPLATE_METRICS

ProjectParticipantLevelEnum

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 41

ProjectParticipantLevelEnum identifies the roles that users can have in a

project. Possible values are:

• OWNER

• PARTICIPANT

• REQUESTER

ProjectStateEnum

ProjectStateEnum defines valid project and request states. Possible values

are:

• ACCEPTED

• CANCELLED

• COMPLETED

• DRAFT

• IN_PROGRESS

• IN_RECONCILIATION

• LATE: the project did not start by its scheduled begin date.

• NOT_STARTED

• ON_HOLD

• OVERDUE: the project was not completed before its scheduled end date.

• RETURNED

• SUBMITTED

For more information about project and task statuses, see the Unica Plan

User's Guide.

QuarterEnum

QuarterEnum defines the valid values for quarters: Q1, Q2, Q3, and Q4.

TaskStateEnum

TaskStateEnum defines valid workflow task states. Possible values are:

Unica Plan V12.1.5 Integration Module | 4 - Unica Plan SOAP API | 42

• ACTIVE

• DISABLED

• FINISHED

• PENDING

• SKIPPED

WeekEnum

WeekEnum defines valid values for weeks in a year, from WEEK_1 to

WEEK_53.

	Unica Plan V12.1.5 Integration Module
	Contents
	Chapter 1. What is Unica Plan Integration Services?
	Versions and backwards-compatibility
	Authentication
	Locale
	State management
	Database transactions
	Event processing
	What are the requirements for Unica Plan Integration Services?
	Unica Plan Integration Services basics
	Methods
	Basic Example to communicate between Unica Plan and the API
	Installing Integration Services
	Software developer kit contents

	Hosted JavaDocs
	Unica Plan documentation and help

	Chapter 2. Unica Plan Integration Webservice
	Unica Plan Integration Services WSDL
	Axis
	Protocol version
	WSDL

	executeProcedure
	Syntax
	Returns
	Description
	Parameters
	Return Parameters

	Unica Plan Integration Webservice data types
	Primitive types
	MessageTypeEnum
	Message
	NameValue

	Chapter 3. Unica Plan procedures
	Assumptions
	Procedure implementation
	Libraries
	Procedures and threads

	Configuration parameters
	Design
	Procedure lifecycle
	Discovery and initialization
	Selection
	Execution
	Destruction

	Key Java™ classes
	Data locking
	Procedure transactions
	Procedure communication
	Procedure logging
	Procedure plug-in definition file

	Chapter 4. Unica Plan SOAP API
	Contents of the Unica Plan SOAP API
	SOAP API interfaces
	API methods

	SOAP API common exceptions
	SOAP API handles
	SOAP API AttributeMap
	SOAP API enumerated data types

