
Version 10 Release 0
June, 2016

IBM Opportunity Detect User's Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 127.

This edition applies to version 10, release 0, modification 0 of IBM Opportunity Detect (product number 5725-D16)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. About IBM Opportunity
Detect 1
Integration with IBM Campaign 1
About trigger systems 1
How processing works in a workspace 2
Ancestor and descendent relationships among
components. 3
Input data in Opportunity Detect 4
Enable cookies 5

Chapter 2. Opportunity Detect roles and
permissions 7
Permissions for Opportunity Detect. 7
Built-in roles in Opportunity Detect. 8

Chapter 3. Creating workspaces 9
Fields and buttons in the Workspace List 9

Chapter 4. Adding and deleting
components 13
Adding components to workspaces from the
Component Palette 13
Adding components within workspaces by saving a
copy. 13
About component references. 13
Sharing components across workspaces using
component references 16
Deleting components 17
Fields and buttons on the Workspace Component
List tab 17
Component list filters 18

Filtering the component list 19
Deleting or modifying component list filters . . 20

Component type details and examples 20

Chapter 5. Deploying and running
workspaces 23
About deployment configurations 23
Creating and deploying a deployment configuration 24

About input mode 25
Fields and buttons on the Deployment tab . . . 26

About data source connectors 29
Data source connector mapping 32
Running workspaces 33

Fields and buttons on the Batch Run tab. . . . 34
The profile data refresh mechanism 36

Fields on the Batch History tab 36
About batch notifications 37

Chapter 6. Outcome data in
Opportunity Detect 39
Outcome format with the Outcome data source
connector 40

Outcome format with the Expanded Outcome data
source connector. 41

Integrating Opportunity Detect with Campaign
in batch mode 44
Integrating Opportunity Detect with Campaign
in interactive mode 45

Outcome format with the Web Service data source
connector 46

Chapter 7. Component types in
Opportunity Detect 49
Component type details and examples 50

Chapter 8. Common features of
components 53
Data Dependencies 53
Dependent Components 55
Effective Window 56
Firing Frequency 56
Properties 56
Incoming Event fields 56
Time Spans 56
Time constants and time units 58
Firing Condition fields. 59
Functions in Opportunity Detect 60

The IsMemberOf function 61

Chapter 9. Building expressions using
the Expression Builder 63
Boolean, comparison, and math operators 63
Value Selector fields 64

Chapter 10. Regular expressions in
Opportunity Detect 67

Chapter 11. Date, Math, and Boolean
expression components 71

Chapter 12. Simple components 73

Chapter 13. Action components 75
Outcome fields 76

Chapter 14. Select components 77

Chapter 15. Container and Container
Manipulator components 79
Container components. 79
Container Manipulator components 83
Inserting data into a Container component with a
Container Manipulator 85

© Copyright IBM Corp. 1996, 2016 iii

Deleting data from a Container component with a
Container Manipulator 86

Chapter 16. Pattern components. . . . 87
Pattern component types 87
Negative event modes in Pattern components . . . 88
Calendar time span in Pattern components 88
Rolling time span in Pattern components 91
Pattern Behavior fields 94
Reset Event fields 95

Chapter 17. Backward Inactivity and
Forward Inactivity components 97
Backward Inactivity components 97

Examples of Backward Inactivity Components. . 98
Forward Inactivity components 98

Rolling time span in Forward Inactivity
components 100
Calendar time span in Forward Inactivity
components 101
Examples of Forward Inactivity components . . 102

Chapter 18. Trend, Spike, and
Exceeded Standard Deviation
components 105
About time boundaries for trends 105

Rolling bounded periods 106
Time boundaries for trend components 106

End of month boundaries 107
Beginning points, ending points, and
end-of-month arithmetic 108

The Trend component 109
Example of a Trend component 109
Specifying a Trend component. 110
Trend component fields 111

The Spike component. 112
Example of a Spike component 112
Specifying a spike component 113
Spike component fields 114

The Exceeded Standard Deviations component . . 115
Example of an Exceeded Standard Deviations
component 116
Specifying an Exceeded Standard Deviations
component 117
ESD component fields 118

Chapter 19. Artificial transactions in
Opportunity Detect 121

Before you contact IBM technical
support 125

Notices 127
Trademarks 129
Privacy Policy and Terms of Use Considerations 129

iv IBM Opportunity Detect User's Guide

Chapter 1. About IBM Opportunity Detect

IBM® Opportunity Detect enables you to look for specified customer behaviors and
patterns in your customer data. You define the transactions and patterns that
Opportunity Detect looks for, and you specify the data that is written to the
database or web servlet when those criteria are met.

You use Opportunity Detect components to build trigger systems in workspaces.
When you run a workspace, its trigger systems apply your business logic to
streams of data from your transaction and profile data feeds.

Opportunity Detect uses IBM InfoSphere® Streams technology for enhanced
performance.

Streams is an advanced analytic platform that allows Opportunity Detect to
quickly ingest, analyze and correlate information as it arrives from batch and real
time sources. The solution can handle very high data throughput rates.

Integration with IBM Campaign
You can integrate Opportunity Detect with IBM Campaign.

You can use the Expanded Outcome data source connector to store the Outcome
data in database tables that Campaign can use. See the section on Expanded
Outcome tables in the IBM Opportunity Detect User's Guide for details about this
integration.

Note: Another product, IBM Interact Advanced Patterns, provides integration with
IBM Interact. With this integration, you can apply Pattern component logic to data
sent from Interact in real time. See the IBM Interact and IBM Interact Advanced
Patterns Integration Guide for details.

About trigger systems
To create your business logic, you configure sets of components called trigger
systems. Some components send events that activate other components, while
others perform operations on data and make the results available to other
components.

A trigger system is a time-sensitive detection algorithm that detects relevant
patterns over time in a customer’s behavior. Each trigger system solves a single
detection problem. Multiple trigger systems can share components that hold saved
data.

A trigger system produces Outcome data that is written to a database, to a web
servlet, or to a queue.

For production, multiple trigger systems are collected into a single workspace,
which you run to process your transaction data.

Trigger systems can be complex and sophisticated, but at a minimum every trigger
system requires the following.

© Copyright IBM Corp. 1996, 2016 1

v A data source
Data sources must include transaction data and can also include static customer
profile data.
Data source setup and requirements are described in the IBM Opportunity Detect
Administrator's Guide.

v A Simple component
Detects discrete events in the stream of input data. A Simple component looks
for specified criteria based on a single audience level in a single transaction data
source.

v An Action component
Writes Outcome data to a destination specified by the data source connector
used for outcomes. This data is available for use by external systems, and can be
used in IBM Campaign.

Trigger system development

A workspace can include multiple trigger systems, but it is a good practice during
the development and test phase to use a different workspace for each trigger
system. This makes it easier to:
v understand each piece of logic as you build it, and
v test and refine the outcomes.

When you have tested all of your trigger systems, you can then use component
references to copy them to one workspace for production runs.
Related concepts:
“About component references” on page 13

How processing works in a workspace
As you learn to work with Opportunity Detect, it is helpful to have a basic
understanding of the way the application processes transactions.

Trigger systems process one transaction record at a time. Transaction records
always include a customer ID, an audience, a timestamp, and data relating to the
customer action that created the record.

Trigger systems turn transaction records into events. Event components perform
their operations when they receive an incoming event, and then they send an event
of their own that activates other event components that are configured to listen for
its event.

Event components can also use data components, which are prompted to perform
their operations when the event component needs them to complete its processing.

At a high level, Opportunity Detect processes transactions as follows.
1. Transaction and profile data is passed into the engine.
2. State History is loaded. State History contains the following:
v Incoming event timestamps for components that use incoming events
v Firing event history for firing frequency evaluation
v Data saved in Container components

2 IBM Opportunity Detect User's Guide

3. Transactions are processed one at a time across all trigger systems in the
workspace.

4. Backward Inactivity, Forward Inactivity, and Pattern components configured to
use negative mode are processed if they have matured.

5. For each transaction record, an outcome is produced for each trigger system in
the workspace, if the criteria in the trigger system are met.
The format of the outcome data is determined by the data source connector
used for outcomes.

6. State History is packed and saved.
7. Inactivity events are processed for customers who have had no transactions.

This applies to Backward Inactivity, Forward Inactivity, and Pattern
components configured to use negative mode.

Ancestor and descendent relationships among components
Components in a trigger system can be said to have ancestor and descendent
relationships with each other. Ancestor and descendent relationships affect many
aspects of component behavior.

Data dependencies, deletion of components, and component references are all
affected by these relationships.

The following diagram shows an example trigger system.

In the diagram above, Event component 1 requires the Select or Container data,
Simple, and Expression data components to perform its operations, which makes
them the ancestors of Event component 1. Event component 1 is the descendent of
the Select or Container data, Simple, and Expression data components.

Another way to state this is to say that components that are upstream of a
component are the ancestors, while downstream components are the descendents.

The following table describes the relationships among the components in the
diagram above.

Chapter 1. About IBM Opportunity Detect 3

Table 1. Ancestor and descendent component relationships

Component Ancestors Descendents

Simple v Expression data v Event 1

v Select or Container data

v Event 2

v Action

Event 1 v Select or Container data

v Simple

v Expression data

v Event 2

v Action

Event 2 v Event 1

v Select or Container data

v Simple

v Expression data

v Action

Expression data None v Simple

v Event 1

v Select or Container data

v Event 2

v Action

Select or Container None v Event 1

v Event 2

v Action

Action v Event 2

v Event 1

v Select or Container data

v Simple

v Expression data

None

Related concepts:
“About component references” on page 13
Related tasks:
“Deleting components” on page 17
Related reference:
“Data Dependencies” on page 53
“Time constants and time units” on page 58

Input data in Opportunity Detect
The transaction and profile data you feed into a trigger system is processed one
record at a time. For batch file processing using the File type of data source
connector, the system requires specific fields, field order, and sort order in your
transaction and profile files.
v One field in all data sources must be an ID field used for an audience level, and

this must be the first field in each record in the file.
v For batch transaction files only, one field must be a timestamp field, expressed in

milliseconds.

4 IBM Opportunity Detect User's Guide

v The records in a batch file must be sorted by audience ID first, then by
transaction timestamp.

Batch transaction and profile file examples

Note: The following examples are formatted with constant widths for readability.
Actual batch transaction and profile files must not use constant widths.

Here is an example of a simple transaction file.
ID |NAME |CALLED_NUMBER|CALL_LENGTH|TRAN_DATE_TIME
001234|David |732-123-4567 |15 |2012-02-10 09:12:33
001234|David |732-111-5555 |48 |2012-02-10 10:11:50
002941|Jeremiah|732-777-8888 |40 |2012-02-10 11:22:44
005555|Anthony |732-333-4444 |27 |2012-02-10 03:01:02
005555|Anthony |732-32-8945 |121 |2012-02-10 10:12:30
005555|Anthony |973-597-0022 |2 |2012-02-10 19:00:21
006789|Tom |732-111-2222 |4 |2012-02-10 06:54:01

Here is an example of a simple profile file.
ID |AGE|ZIP
001234|25 |11111
002941|55 |22222
005555|31 |33333
006789|60 |44444
100382|18 |55555

Enable cookies
Enable cookies in your browser to take advantage of all of the features provided in
the Opportunity Detect user interface.

Chapter 1. About IBM Opportunity Detect 5

6 IBM Opportunity Detect User's Guide

Chapter 2. Opportunity Detect roles and permissions

The permissions assigned to users in Opportunity Detect determine what areas of
the application they can access and the actions they can perform.

You manage user application access by assigning the desired roles and permissions
to individual users, or by assigning users to groups that have the desired roles and
permissions. You can use the default roles, or create custom roles with the
permissions that you specify. You can not create custom permissions, only custom
roles.

You manage roles and permissions from the Users, User Groups, and User Roles &
Permissions pages. All of these pages are available under the Settings menu.

Tip: For help when you work on these pages, click Help > Help for this page, or
see the IBM Marketing Platform Administrator's Guide.

Permissions for Opportunity Detect
The following table describes permissions that you can assign to roles in
Opportunity Detect.

All permissions that have the Not Granted status are treated as Denied.

Table 2. Permissions in Opportunity Detect

Permission Description

View only Can access all of the user interface, in view-only mode.

Design triggers v Can create workspaces and design trigger systems.

v Can create, modify, and delete all trigger related resources.

v Can access Workspace, Component, Audience Level, Data Source,
and Named Value List pages.

v Can not access the Server Groups page or the Deployment tab of
a workspace.

v Can not set off a batch run.

v Can not administer objects that the web service creates when
Opportunity Detect is integrated with Interact.

Run for testing v Deploy deployment configurations and run batch deployment
configurations on server groups not designated for production.

v Can access Server Group page and the Deployment tab of a
workspace, but can not designate a server group for production.

v Can not deploy deployment configurations or run deployment
configurations that use a production server group.

Run for production v Deploy deployment configurations and run batch deployment
configurations on any server group.

v Perform all actions on the Server Group page and the
Deployment and Batch Run tabs of a workspace, including
designating a server group for production.

© Copyright IBM Corp. 1996, 2016 7

Table 2. Permissions in Opportunity Detect (continued)

Permission Description

Administer real time Manage objects that the web service creates when Opportunity
Detect is integrated with Interact to enable real time mode.

Allows the following.

v Delete workspaces and components created by the web service.

v Start and stop real time deployment configurations and update
their log level.

The user with this permission alone can not start runs for real time
deployment configurations.

No one, even with this permission, can do any of the following.

v Delete and update audience levels, data sources, named value
lists, server groups, or deployment configurations created by the
web service.

v Create and deploy deployment configurations created by the web
service.

Built-in roles in Opportunity Detect
Four built-in roles are included with Opportunity Detect.

In addition, you can create roles with permissions that you specify. See the IBM
Marketing Platform Administrator's Guide for details on creating custom roles.

The following table shows the permissions assigned to each built-in role.

Table 3. Built-in roles in Opportunity Detect

Role Permissions

OpDetectViewer v View only

OpDetectTestDesigner v View only

v Design triggers

v Run for testing

OpDetectProductionDesigner v View only

v Design triggers

v Run for production

OpDetectAdmin v View only

v Design triggers

v Run for testing

v Run for production

v Administer real time

8 IBM Opportunity Detect User's Guide

Chapter 3. Creating workspaces

You build trigger systems in workspaces. This procedure provides the basic steps
for setting up workspaces. Details on adding and using components are provided
elsewhere in this guide.

Procedure
1. Navigate to Opportunity Detection > Workspaces and click Add.

The New Workspace window opens.
2. Give the workspace a name and an optional description, and click OK.

Four tabs are displayed: Component List, Deployment, Batch Run, and Batch
History.

3. Add components to configure the logic you want the workspace to execute.

Tip: See the remainder of this guide for detailed information about adding
components.

What to do next

When you have finished creating a workspace, you can add components to the
workspace to build your trigger system. To test your trigger system or to run it for
production, you first create and deploy a deployment configuration on the
Deployment tab. Then you run the workspace on the Batch Run tab.
Related concepts:
Chapter 5, “Deploying and running workspaces,” on page 23
Related tasks:
“Adding components to workspaces from the Component Palette” on page 13
“Sharing components across workspaces using component references” on page 16
“Adding components within workspaces by saving a copy” on page 13

Fields and buttons in the Workspace List
In the Workspace List, you can create, delete, and modify the basic properties of
workspaces.

Workspace validation occurs automatically when a you select a workspace in the
workspace list, when you save, delete, or paste components into a workspace, and
when you deploy a workspace. Only valid workspaces can be deployed.

When you navigate to the Workspace Manager, the last workspace you viewed in a
previous session is automatically selected.

© Copyright IBM Corp. 1996, 2016 9

Table 4. Fields and buttons in the Workspace List

Field or button Description

Favorite workspaces
folder

Lists workspaces you have added using the Add workspace to
favorites button.

Most recent
workspaces folder

When you first open the Workspace Manager, this folder lists the
five most recently viewed workspaces. During a session, all of the
workspaces you view during that session are listed.

Deployed workspaces
folder

Lists workspaces that have been successfully deployed.

All workspaces folder

Lists all workspaces in the system.

Add Workspace

Click to open the New Workspace window, where you can specify
the general properties of a new workspace. Clicking OK in this
window creates the workspace and adds it to the All Workspaces
folder in the Workspace List.

Edit Workspace

Click to open the Edit Workspace window, where you can modify
the general properties of the selected workspace.

Delete Workspace

Click to delete the selected workspace.

Add workspace to
favorites

Click to add a selected workspace to the Favorites folder.

Remove workspace
from favorites

Click to remove a selected workspace from the Favorites folder.

Refresh the
workspace view

Click to update the list of workspaces, including the validation and
deployment status.

10 IBM Opportunity Detect User's Guide

Table 4. Fields and buttons in the Workspace List (continued)

Field or button Description

Workspace status
icons v The workspace is valid.

v The workspace is not valid.

v The workspace was modified after it was deployed.

Workspaces that are modified after they are deployed must be
deployed again for the changes to go into effect when processing
transactions.

For example, if a referenced component is changed, all of the
instances of that component also change, and this could affect a
deployed workspace.

Fields in the New Workspace and Edit Workspace windows

Name The name of the workspace

Description A description of the workspace.

Origin Indicates whether the workspace was created by a user or by the
system. A workspace can be created by the system when
Opportunity Detect is integrated with Interact. Read only.

Date Created Date when the workspace was created. Read only.

Date Modified Date when the workspace was most recently modified. Read only.

Date Deployed Date when the workspace was most recently deployed. Read only.

Status Whether the workspace is valid, not valid, or modified after it was
deployed. Read only.

Related tasks:
“Running workspaces” on page 33

Chapter 3. Creating workspaces 11

12 IBM Opportunity Detect User's Guide

Chapter 4. Adding and deleting components

There are three ways to add components to workspaces: by creating a component
from the Component Palette, by copying a component within a workspace, and by
using a component reference to share a component across workspaces.

Adding components to workspaces from the Component Palette
Use this procedure to add components to workspaces from the Component Palette
in Opportunity Detect.

Procedure
1. Navigate to the Detect > Workspace Manager page and click a workspace to

select it.
2. Click Component Palette to expand the component panel.
3. Click a component to open the component editor, where you can configure the

logic for the component.
4. Click Save and Close to save the component to add it to the selected

workspace.
A component must be correctly configured before you can save it.

Related tasks:
Chapter 3, “Creating workspaces,” on page 9

Adding components within workspaces by saving a copy
Use this procedure to add a component within a workspace by saving a copy of a
component using a new name.

Procedure
1. In a workspace, click a component name on the Component List tab to open

the editor for the component.
2. Click Save As and Close to open a window where you can enter a name for

the copy.
A default name is provided, which you can change. The default name appends
"Copy of" to the start of the existing component name.

3. Click OK to save the copy.
The copied component is added to the workspace.

Related tasks:
Chapter 3, “Creating workspaces,” on page 9

About component references
You can share a component in multiple workspaces by using component
references.

© Copyright IBM Corp. 1996, 2016 13

When you save a component under a new name or add a component from the
Component Palette, you are creating a new object. When you copy and paste a
component reference, you are creating another instance of an existing object.

Uses for component references

There are two common situations where you might want to use component
references.
v It is a good practice to develop and test your business logic in a modular

fashion by building each trigger system in a separate workspace. For production,
you often want to include several trigger systems in a single workspace.
Component references provide an easy way to copy complete trigger systems
from one workspace into another workspace.

v Some components have complex logic that takes some time to configure. When
you want to replicate this logic in a different workspace, you can use a
component reference.

Workspace origin

When you paste a component reference into a workspace, the name of the
workspace from which you copied the component is shown in parentheses after
the component name in the component list. This helps you identify the
components that are shared across workspaces.

The following rules apply.
v When you change the name of a workspace from which component references

are copied, all the component references from that workspace have their
workspace origin name changed to the new workspace name.

v If you delete a workspace that is the origin workspace of shared components,
the shared components with that workspace origin have their workspace origin
name changed to Deleted_N, where a number is added to the name to ensure
the uniqueness of the Workspace Origin name.

v You can change the workspace origin of a shared component by clicking Change

Workspace Origin in the component editor. This is especially useful for
components with a workspace origin name of Deleted_N.

Component reference rules

The following rules apply to operations you perform on referenced components.
v In general, when you paste a component reference into a workspace, all of the

ancestors of that component are also pasted into the workspace.
v There are two exceptions to the rule that ancestors of the referenced component

are copied.
1. When a reference is made to a Container, only the Container and any

components it depends upon to calculate its time span are copied and pasted
into the new workspace.
This is because Container components are a way to create a sophisticated
data structure that you can use within your trigger system. You can
configure field names, apply functions to the fields, and set up a time span
and aggregation rules. You might want to re-use this structure without
including all of the ancestors of the Container.

14 IBM Opportunity Detect User's Guide

– If a container depends on a Select or an Expression component to calculate
its time span, the Select or Expression is copied, and the ancestors of the
Select or Expression are also copied.

– If a container depends on another Container to calculate its time span, the
other Container is also copied, and Container rules regarding the time
span are applied.

2. When a reference is made to a Container Manipulator that writes to a
Container, the Container is the descendent of the Container Manipulator.
However, both the Container Manipulator and the Container it writes to are
copied.
This is because the Container Manipulator is not meaningful without the
Container it writes to.

Note: Container Manipulators that read from a Container follow the rule
that all of its ancestors are copied, including the Container that it reads from.

v When you make a change to a referenced component or any of its ancestors,
your changes are reflected in every workspace in which it is used, including in
the workspace in which it was originally created.
For example, when you add a component that becomes a new ancestor of a
referenced component, this component is added in all of the workspaces that use
the referenced component.

Component reference examples

The following diagram and accompanying table use an example trigger system to
illustrate the rules that apply when you copy and paste a component reference.

Table 5. Examples of components copied with component references

Copied component Components that are also copied

Action All other components in the workspace

Chapter 4. Adding and deleting components 15

Table 5. Examples of components copied with component references (continued)

Copied component Components that are also copied

Math expression v Select

v Container

v Container Manipulator

v Simple 2

Select v Container

v Container Manipulator

v Simple 2

Simple 1 No other components

Container
Manipulator

Writes to Container

v Simple 2

v Container

This is an exception to the rule that only ancestors are copied.
The only ancestor is Simple 2, but the Container is also copied.

Simple 2 No other components

Container No other components

This is an exception to the rule that ancestors are copied. The
ancestors are Container Manipulator and Simple 2, but they are not
copied.

If this Container were to depend on any other components to
calculate its time span, those components would also be copied.

Related concepts:
“Ancestor and descendent relationships among components” on page 3
“About trigger systems” on page 1
Related tasks:
“Sharing components across workspaces using component references”

Sharing components across workspaces using component references
Use this procedure to share a component across workspaces.

Procedure
1. Navigate to the Detect > Workspace Manager page and select the workspace

that contains the component you want to copy.

2. Select the component you want to copy and click

Copy Component
Reference.

3. In the Workspace List, select the workspace to which you want to add the
component reference.

4. Click

Paste Component Reference.
A window opens showing the selected component along with all of the other
components on which it depends, which will be added to the workspace. You
can continue or cancel.

Related concepts:

16 IBM Opportunity Detect User's Guide

“About component references” on page 13
Related tasks:
Chapter 3, “Creating workspaces,” on page 9

Deleting components
Use this procedure to delete components from workspaces in Opportunity Detect.

About this task

When you delete a component, all of its descendents are also deleted.

Component deletions affect only the workspace in which the component is deleted.
When you delete a component that has been added to a workspace using a
component reference, it is deleted within that workspace, but other workspaces
that contain the referenced component are not affected.

Procedure
1. Navigate to the Detect > Workspace Manager page and click a workspace to

select it.

2. Select the component you want to delete and click Delete component,
located at the top left of the component list.
A window opens, listing all of the descendent components that will also be
deleted. You can cancel the action or complete the deletion.

Related concepts:
“Ancestor and descendent relationships among components” on page 3

Fields and buttons on the Workspace Component List tab
On the workspace Component List tab, you can add component references and
manage components in a workspace.

Table 6. Fields and buttons on the workspace Component List tab

Field or button Description

Copy Component
Reference button

Click this button to copy a selected component and all of the other
components on which it depends. You can then paste these
components into another workspace.

Paste Component
Reference button

Click this button to paste a previously copied component and all of
the other components on which it depends into the workspace.

Chapter 4. Adding and deleting components 17

Table 6. Fields and buttons on the workspace Component List tab (continued)

Field or button Description

Delete Component
button

When you click this button, the selected component is permanently
deleted if it is used in only one workspace. If the component is
shared in more than one workspace, it is removed from the current
workspace only. When you delete a component, a message is
displayed listing all of its child components. These child
components are also deleted when you delete the component.

Show Relations
button

Click the arrow next to this icon and select one of the following
options.

v Show Ancestors lists all the components on which this
component depends.

v Show Descendents lists all the components that depend on this
component.

Create filter button

Click to open a window where you can name a new filter and
select the criteria.

You can filter based on the component name or the component
type, or both. You can select multiple component types in one filter.

To make a filter available across workspaces, select the Make this
filter available in all workspaces check box.

Edit filter button

Click to open a window where you can edit the criteria for the
selected filter.

Delete filter button

Click to delete the selected filter. A deleted filter is no longer
available.

Clear all filters button

Click to delete all filters applied to the component list, including
custom filters and Show Relations filters. Deleted filters are no
longer available.

Name Name of the component.

Type Type of the component.

Description Description of the component, if the creator entered one.

Fields in the Select filter criteria and Edit filter windows

Filter name The name you enter appears in the drop-down list of filters.

Name Enter a string to search for components with names that include
this string.

Component types Expand the panels to show the various component types you can
select to include in your filter. You can select multiple types.

Component list filters
You can modify your view of the component list by using filters.

Use the two features described in this section, custom filters and Show Relations,
to create filters.

18 IBM Opportunity Detect User's Guide

Custom filters that you create are saved in a cookie and are available as long as
you do not delete the cookie. Show relations filters are available only while you
are viewing a selected workspace. They are discarded when you open a different
workspace.

Custom filters

A custom filter that you create can apply to a single workspace, or you can make a
filter global so that it is available in all workspaces.

You can create filters based upon the component name and the component type.

Component name filter
This filter searches within the component names for the text you enter. The
search is case-insensitive.

Component type filter
This filter searches based on component type. You can select multiple
component types.

If you create a filter that uses both the name and type criteria, the component must
meet both the name criterion and at least one of the type criteria to be included in
the filtered list.

For example, suppose you create the following filter.
v Component name contains abc
v Component type must be Simple or Action

The query finds all components with abc within the name, and then returns only
the Simple and Action components from this group.

You can edit or delete any custom filter.

Show relations filter

The Show relations filter

allows you to restrict the component list to show
only the ancestors or descendents of a selected component.

When you use this filter to show the ancestors or descendents of a component, a
filter is automatically added to the Filter drop-down list, and it is available for you
to use again for the workspace you are viewing.

Filtering the component list
Use this procedure to filter the component list in Opportunity Detect.

Procedure
1. Select a workspace and select the Component List tab.
2. To filter the component list by component name or type, do the following.

a. Click Create Filter . A window opens where you can specify filter
criteria.

b. Enter a name and specify criteria.
The Make this filter available in all Workspaces checkbox is selected by
default.

Chapter 4. Adding and deleting components 19

c. Click OK.
Your filter is added to the options in the Filter drop-down list, and your
criteria are applied to the component list.

3. To show only the ancestors or descendents of a component, do the following.
a. Select a component.

b. Click the arrow next to the Show relations icon

and select one of the
following options.
v Show Ancestors lists all the components on which this component

depends.
v Show Descendents lists all the components that depend on this

component.

Deleting or modifying component list filters
Use this procedure to remove filters from the component list in Opportunity
Detect.

About this task

You can delete or modify filters as follows.
v A default filter, All Components, is always available. Use the All Components

filter when you want to view the entire list of components after viewing a
filtered list. This filter cannot be edited or deleted.

v You can modify a selected custom filter by clicking the Edit Filter icon

to
open the window where you select filter criteria.

v You can delete a selected custom filter by clicking the Delete Filter icon .
The deleted filter is no longer available.

v Clicking the Clear all filters button

deletes all of the filters you have
created, and restores the list to show all components. The deleted filters are no
longer available.

Component type details and examples
These are the components that you can use to build trigger systems.

Event components

Table 7. Event components

Component Type Description

Backward Inactivity Listens for the occurrence of a specified event and then checks a specified prior time frame
to see whether another specified event has occurred. The Backward Inactivity component
fires if the specified prior event did not occur.

Example: Fire when a customer makes use of the ATM after more than 1 month of not
using any teller services.

Container Manipulator Add and delete data in Container components and perform operations on this data. Can
trigger positive events or negative events.

Example: When the dollar amount of product a customer purchased in one month exceeds
$200 (value in the container), offer a discount.

20 IBM Opportunity Detect User's Guide

Table 7. Event components (continued)

Component Type Description

Forward Inactivity Listens for the occurrence of an event and then waits a specified time to see whether or not
another event occurs. The Forward Inactivity component fires when the time period expires
without the occurrence of the event it for which it was listening.

Example: Fire when a web-trade customer, who usually trades once a month, does not
trade for two consecutive months.

Pattern (Match All,
Counter, Weighted
Counter)

Listens for the occurrence of specified events. Fires if the events occur within a specified
time frame. In addition, you can configure a Pattern component to fire a negative event if
the pattern is no longer matched within the specified time frame.

Example: Fire when customer uses his credit card four times a month during a three month
period.

Simple Fires if specified conditions based on transaction attributes are satisfied.

A Simple is the only component type that is activated by incoming transactions and not by
an event produced by another component. This is why every trigger system requires at
least one Simple component as its starting point.

Example: Fire when a customer makes a credit card purchase over $5000 or an
international phone call to Italy.

Data components

Table 8. Data components

Component Type Description

Boolean Expression Evaluates data and returns True or False.

Container Holds records from transactions or a profile, as specified by a Container Manipulator.
Other components can use this data in calculations and comparisons.

Example: Save the total dollar amount of customer purchases in one month.

Date Returns a date. Specifies date or date range. Often used in Simple components to specify
criteria that incoming transactions must meet.

Example: A transaction that occurred on June 8, 2013.

Math Returns a number. Specifies a mathematical formula that uses numeric data from one or
more data sources. Common usage includes the following.

v In Simple components, to specify criteria that incoming transactions must meet.

v In Pattern components, to set the aging factor.

v In Forward Inactivity and Backward Inactivity components, to set the time span.

v In Action components, to include the results of a numerical calculation in the outcome
message.

Example: In a Math component, calculate 95% of the customer's available account balance,
which is available in a Simple component. In a Boolean component, compare this number
to credit card transactions, and if a credit card purchase is equal to the number produced
by the Math component, fire a positive event that activates a downstream Action
component.

Select A database query that returns a specified set of records drawn from a Container or another
Select component. Other components can use this data in calculations and comparisons.

Chapter 4. Adding and deleting components 21

Table 8. Data components (continued)

Component Type Description

Trend Detects changes in activity measured over defined periods of time. Before you can create a
trend component, your trigger system must include a Container or Select component that
the trend can use as a data source. There are three trend components: Trend, Spike,
Exceeded Standard Deviation (ESD).

Trend components never fire on their own. They are used internally by Action or Container
Manipulator components. You can configure an Action or Container Manipulator
component to fire when a Trend Component evaluates to true.

For example, the average rolling monthly balance has been increasing or decreasing by 10%
over the last three months.

The Action component

The Action component is the only one that writes to the outcome destination.
When you configure an Action component, you define the data that is written to
the outcome destination when all the criteria specified in the components that the
Action component depends upon are met. Outcomes can be written to a database
table or can be sent to a customized program via a Web Service connector.

22 IBM Opportunity Detect User's Guide

Chapter 5. Deploying and running workspaces

You can create and run deployment configurations and view deployment and
batch run history on the Workspaces page.
v On the Deployment tab, you can create deployment configurations for

workspaces, deploy the configurations, stop and restart deployments, and view
deployment history.

v On the Batch Run tab, you can manage run parameters, run deployed
workspaces, see the status of the most recent batch runs, and stop and start
ongoing runs.

v On the Batch History tab, you can see details about past runs, filtered by
deployment and a date range.

Related tasks:
Chapter 3, “Creating workspaces,” on page 9

About deployment configurations
Before you can run a workspace to process data, you create a deployment
configuration for it and then deploy it.

When you deploy a configuration, the workspace is compiled into a Streams
application and sent with all of its component logic to the Streams server.

When a workspace is successfully deployed on the Streams server, you can select
and run a saved deployment configuration to run the workspace.

Each workspace has its own configuration deployment, and multiple configuration
deployments can be running simultaneously.

Server group availability in deployment configurations

Opportunity Detect environments typically include at least one test server group
and one production server group. For any workspace, you can create a deployment
configuration for each server group configured in your system.

The server groups available for selection in a deployment configuration are those
that are not yet mapped in any deployment configuration for the workspace you
are working with. You can use a server group only once for each workspace, but
you can use the same server group in deployment configurations for different
workspaces.

For best performance, you would normally run only a single workspace on a
production server group.

Option to use different configurations for test and production

Using different deployment configurations, you can test components against new
data sources, test new components, and test edits to existing components without
affecting the production environment.

© Copyright IBM Corp. 1996, 2016 23

For example, you can create a deployment configuration that allows you to deploy
a workspace to the test server group to test it, and you can create another
configuration that allows you to deploy the workspace to the production server
group for production runs. By changing data source mappings, you can separate
the test data from the production data in your State History and Outcome tables.

Required permissions

The permissions assigned to a user determine which server groups they can access
when creating a deployment configuration, as follows.
v A user with the Run for testing permission sees only server groups designated

for test usage. The built-in OpDetectTestDesigner role has this permission.
v A user with the Run for production permission sees only server groups

designated for production usage. The built-in OpDetectProductionDesigner role
has this permission.

v To have access to both test and production server groups, a user must have both
of the permissions listed above. The built-in OpDetectAdmin role has both of
these permissions.

In addition, your system administrator may also create custom roles that include
the required permissions.

Creating and deploying a deployment configuration
Use this procedure to create and deploy a deployment configuration.

Procedure
1. Select the valid workspace for which you want to create a deployment

configuration and click

Add a Deployment Configuration on the
Deployment tab.
A panel opens with three tabs: Properties, Data Source Mapping, and History.

2. Complete the fields on the Properties tab and select a server group.
The type of data source connector that you choose for the Input mode field
determines what connector types are valid for the data sources in your
workspace.

3. If you want to override the default data source mapping for the server group,
do the following.
a. On the Data Source Mapping tab, select the data source you want to

change.
b. Clear the Server Group Default checkbox.
c. Select an alternate mapping for the data source and click OK.

Note the following restrictions.
All transaction (input) data sources must be mapped to same connector
type.
The system enforces restrictions on what combinations of data source
connectors you can use for transaction, profile, Outcome, and State History
data sources.

These changes apply only within the deployment configuration; they do not
affect the default mappings for the server group.

4. Click

Save and then click

Deploy.

24 IBM Opportunity Detect User's Guide

What to do next

When the deployment configuration is successfully deployed, you can use it to run
your workspace.
Related tasks:
“Running workspaces” on page 33

About input mode
The input mode that you select determines what data source connectors are
allowed for the data sources used in the workspace. The Input mode field is
located on the Properties tab of a deployment configuration.

The following table shows the allowed data source connectors for each data source
type, by input mode. The system enforces these rules; you cannot select a data
source connector that is not allowed.

Table 9. Allowed data source connectors by input mode

Data source type
File connector
allowed?

Queue
connector
allowed?

Web service
connector
allowed?

Table connector
allowed?

Batch file input mode

Profile Yes (Batch
connector only)

No No Yes

Transaction Yes No No No

Outcome No No No Yes

State No No No Yes

Real time file input mode

Profile No No No Yes

Transaction Yes (Real time
connector only)

No No No

Outcome No No No Yes

State No No No Yes

Queue input mode

Profile No No No Yes

Transaction No Yes No No

Outcome No Yes No Yes

State No No No Yes

Web service input mode

Profile No No No Yes

Transaction No No Yes No

Outcome No No Yes Yes

State No No No Yes

Related reference:
“Fields and buttons on the Deployment tab” on page 26

Chapter 5. Deploying and running workspaces 25

Fields and buttons on the Deployment tab
On the Deployment tab of a workspace, you can create deployment configurations
for workspaces, map data source connectors within the deployment configuration,
deploy the configurations, stop and restart deployments, and view deployment
history.

Table 10. Fields and buttons on the Deployment tab

Field or button Description

Add button

Click to open a panel where you can create a deployment
configuration.

Save button

Click to save a deployment configuration.

Delete button

Click to delete the selected deployment configuration.

Deploy button

Click to deploy the selected deployment configuration.

Start button

Click to re-start a deployment that has been stopped.

Stop button

Click to stop a running deployment.

Update logging level

Click to update the logging level during a run.

Raising the log level can affect performance.

Status Indicates whether all data sources are mapped for the deployment
configuration. You can not deploy an incomplete deployment
configuration.

Deployment
Configuration

Names of the available deployment configurations. Select the radio
button next to a name to select the deployment configuration, after
which you can deploy it, run it, or modify its properties in the
panel that opens.

Server Group Name of the server group the selected deployment uses.

Deployed Indicates whether the selected configuration has been deployed.

Version For batch runs, this number shows the version number of the most
recent successful deployment.

When Opportunity Detect is integrated with Interact, the number
shows the version most recently deployed, re-deployed, or
undeployed from IBM Interact.

Input mode The input mode selected on the Properties tab of the deployment
configuration.

Input version The input version entered on the Properties tab of the deployment
configuration.

26 IBM Opportunity Detect User's Guide

Table 10. Fields and buttons on the Deployment tab (continued)

Field or button Description

Output version The output version entered on the Properties tab of the deployment
configuration.

Workspace modified
on

Timestamp of the most recent workspace modification. By
comparing this timestamp to the timestamp in the Deployed On
column, you can determine whether the latest version of the
workspace is deployed.

Deployed On Timestamp of the most recent successful deployment of the selected
deployment configuration.

Properties tab

Name Enter a name for the deployment configuration. Deployment
configuration names must be unique across all workspaces.

Server Group Select from a list of available server groups.

Usage The usage entered in the definition of the selected server group.

Input mode Select the mode that matches the type of data source connector you
are using for transaction data sources in the deployment.

The option selected in this field governs the validation rules
applied on Deployment tab.

Input file directory Applies only when Input mode is Real time file.

The directory in which real time files are placed for processing. In a
distributed environment, the input and processed directories must
be on the Runtime server and Streamsadmin user Read and Write
permission.

Processed file
directory

Applies only when Input mode is Real time file.

The directory in which real time files are placed after they are
processed.

Input version If this is the first time you are deploying, enter 1. Increment this
number each time you make any changes in the structure of your
transaction data and redeploy.

If you are using queue connectors, this number must also be
updated in the sending program for transaction data.

Output version If this is the first time you are deploying, enter 1. Increment this
number each time you make any changes in the structure of your
Outcome data and redeploy.

Script file name
(Optional)

If you use a notification batch file, enter the file name here.

Data Source Mapping tab

Status Indicates whether a data source is mapped to a connector.

Data Source Data sources used in the workspace are listed here. Click a link to
view the Data Source Connector Mapping dialog box.

You can retain the default mapping used in the server group
selected on the Properties tab, or you can deselect the Server
Group Default check box to change the mapping.

Type Lists the configured data source type: Transaction, State, or
Outcome.

Connector Lists the connector used with the data source for this deployment
configuration.

Chapter 5. Deploying and running workspaces 27

Table 10. Fields and buttons on the Deployment tab (continued)

Field or button Description

Connector Type Lists the connector type of the data source: Table, Batch file, Real
time file, TCP, Web Service Connector, Queue, or Expanded
Outcome.

v The Table connector is used for State History tables, for profile
data stored in database tables, and for Outcome data where the
XML format used by earlier versions of Opportunity Detect is
desired.

v The Batch file connector is used for profile and transaction data
in flat file format.

v The Real time file connector is used for transaction data in fixed
width file format.

v The TCP connector is used only for Interact Advanced Patterns,
which is integrated with Interact.

v The Web Service connector can be used for transaction data and
Outcomes. Special configuration is needed to use the Web Service
connector. For more information, see the IBM Opportunity Detect
Administrator's Guide.

v The Queue connector can be used for transaction data and
Outcomes. Special configuration is needed to use the Queue
connector. For more information, see the IBM Opportunity Detect
Administrator's Guide.

v The Expanded Outcome connector is used for Outcome data
sources when the output needs to be stored in database tables
structured differently from the format used in the Table
connector. Use this connector for integration with IBM
Campaign.

Database Lists the database configured for the data sources that use a Table
connector.

Default Indicates whether the data source uses the default mappings for the
server group selected on the Properties tab.

Data Source Connector Mapping window

Data Source Name Name of the selected data source.

Connector Type Available connector types. The connector types that are available
are determined by the type of the data source and the input mode.

Table Type For Outcome data sources, when the connector type is Table, you
can select either Outcome or Expanded Outcome for the table type.

Connector Data source connectors available for mapping.

Database Connection For Table type connectors, the database connections available for
mapping.

Server Group Default Indicates whether the mapping is the one defined in the server
group. Deselect this box if you want to change the data source
connector mapping.

History tab

From Date, To Date,
Get History button

Select a date range and click Get History to see details for the
successful deployments of the selected deployment configuration.

28 IBM Opportunity Detect User's Guide

Table 10. Fields and buttons on the Deployment tab (continued)

Field or button Description

Status For batch mode, indicates whether the version of the selected
deployment configuration was successfully deployed.

When Opportunity Detect is integrated with Interact, Undeploy
and Redeploy are additional actions for which success or failure
can be indicated.

Version The number of the deployment for which the row provides details.
Includes successful and failed deployments.

Action For stand-alone Opportunity Detect, the only action is Deploy.

When Opportunity Detect is integrated with Interact, Undeploy
and Redeploy are additional actions.

Date Timestamp of completion of the listed action.

Input mode The input mode selected on the Properties tab of the deployment
configuration.

Input version The input version entered on the Properties tab of the deployment
configuration.

Output version The output version entered on the Properties tab of the deployment
configuration.

Message Additional details for the listed action, including the deployment
configuration ID, which is automatically generated when
deployment takes place.

Related concepts:
“About data source connectors”
“Data source connector mapping” on page 32
“About input mode” on page 25
Chapter 19, “Artificial transactions in Opportunity Detect,” on page 121
Related reference:
“Fields and buttons on the Batch Run tab” on page 34
“Fields on the Batch History tab” on page 36

About data source connectors
Data source connectors enable the system to connect to the transaction, profile,
lookup, State History, and Outcome data sources that you have defined. The types
of data source connectors are described in this section.

Note: For Outcomes, the data source connector you use determines the format of
the Outcome data.

Batch file connectors

Use Batch file connectors to connect to transaction and profile data that is in file
format and that is processed in batches.

Chapter 5. Deploying and running workspaces 29

Real time file connectors

Use Real time file connectors to connect to transaction data that is in fixed width
file format and that is updated frequently. This connector is particularly useful for
Call Data Records (CDRs) used by the telco industry. The CDR must first be
transformed from binary to ASCII fixed width format.

Opportunity Detect reads these files in real time. You configure your automation
system to place the properly formatted file in an input directory that you specify
when you create the deployment configuration. After Opportunity Detect
consumes the data, the files are automatically moved to another directory that you
specify for precessed files.

The input and output directories must be on the runtime server, and must have
Streamsadmin permission.

When you create the Real time connector, you enter the start and length of each
field. The values must be a positive integer greater than 0.

You can choose to have the connector use a Bloom filter on the data. The Bloom
filter eliminates duplicate data based upon user-defined filter fields. Data rejected
by Bloom filter is placed under the deployment ID folder: /home/streamsadmin/
OpDetection/deploy/Deployment ID/current/data You should move this rejected
duplicate data on a regular basis, to conserve disk space on the runtime server.

If you have more than one deployment using the Real time file connector, ensure
that a different folder is designated for the transaction files for each deployment, to
prevent an condition where the file is moved before one of the deployments is
finished with it.

Opportunity Detect does not support live updates to files in the input directory
used with the real time file connector. Also, you should not use the same input
directory for multiple workspaces, as this could lead to undesired behavior.

Table connectors

Use table connectors to connect to the following data sources.
v Profile data that is in database table format
v All State History tables
v Outcome data that you want to be written to database tables

There are four types of table data source connectors.

State

Used to connect to your State History tables.

Profile
Used to connect to your profile data that is in database table format.

Outcome
Used when you want Outcome data to be stored in database tables in the
XML format used by previous versions of Opportunity Detect.

Expanded Outcome
Used when you want Outcome data to be stored in database tables in a
form that external systems or IBM Campaign can use more easily than the
format provided by the Outcome connector.

30 IBM Opportunity Detect User's Guide

A table connector can be mapped to only one data source.

Web Service

You can use the Web Service connector to connect to transaction and Outcome data
coming from or being sent to the Opportunity Detect web service.

If you use the web service for transaction data and you also use profile data, the
profile data must be in database table format.

You do not have to create this type of connector. It exists in the system by default.

For details about the Java classes that must be developed to use the Web Service
data source connector, see "Web Service data source connector for input and output
in Opportunity Detect" in the IBM Opportunity Detect Administrator's Guide.

Queue

You can use this connector for real time operation in conjunction with a supported
queue server.

For additional information on setting up Queue data source connectors, see "Real
time processing in Opportunity Detect" in the IBM Opportunity Detect
Administrator's Guide.

Default TCP Connector

Used by the system with IBM Interact Advanced Patterns when integration with
IBM Interact is implemented.

You do not have to create this type of connector. It exists in the system by default.

The sharable option

You have the option to make table and queue connectors sharable. The sharable
feature works as follows.
v A sharable connector can be used in more than one server group.
v Sharable connectors can be mapped on the Data Source Mapping tab of the

Server Groups page and on the Deployment tab of a workspace. Table and
queue connectors that are not sharable can be mapped only on the Deployment
tab of a workspace.

For example, you might want to have connectors for Outcome and State History
tables that are not shared and can be used only by the deployment configuration
used for production. You might also want sharable table connectors so you can
map them to the same Outcome and State History tables for all test workspaces.

Example of data source connector configuration

The following diagram illustrates a possible data source configuration, showing the
relationship between database connections, data source connectors, and the data
sources used in Opportunity Detect.

Chapter 5. Deploying and running workspaces 31

Related concepts:
Chapter 6, “Outcome data in Opportunity Detect,” on page 39
Related reference:
“Fields and buttons on the Deployment tab” on page 26

Data source connector mapping
Data source connectors can be mapped to different data sources in each
deployment configuration, which provides flexibility for testing and ramp-up
operations.

Default mappings between data source connections and database tables are set
when server groups are configured. However, in deployment configurations, you
can change the default mappings for a selected server group. Your changed
mappings apply only within the deployment configuration and do not affect the
global, default mappings for the server group.

Mapping for testing

Suppose you have a server group named Test. You might want to use one set of
State History and Outcome tables with the Test server group in one workspace,
and another set of State History and Outcome tables with the Test server group in
another workspace.

You can do this by changing the mapping of the data source connector on the Data
Source Mapping tab for the deployment configuration.

On the other hand, you might want to use the same State History table for several
different test workspaces, to reduce the number of State History tables and data
source connectors that you need to create.

32 IBM Opportunity Detect User's Guide

Mapping for ramp-up

In Opportunity Detect, ramp-up is the process of accumulating State History data
for Container and Pattern components. This enables the system to produce
meaningful outcomes quickly, rather than waiting for the history to accumulate
over time.

For example, trigger system designers often need to introduce a new trigger
system into a production workspace that already includes multiple trigger systems.
Suppose that the production workspace consists of 10 trigger systems that have
been in production for several months. When a new trigger system is introduced,
its history can be ramped up by running it in its own workspace against historical
transactions, using the same State History table used for the production workspace.

Because the new trigger system is run in isolation, running it against historical
transactions does not affect any of the history of the 10 triggers already in
production. After ramp-up, the new trigger can then be copied to the production
workspace.

To use this technique, you must mark the State History table Sharable in the
server group.

Having multiple workspaces run against the same State History table has this
limitation: the application does nothing to guard against simultaneous access of the
same history record. This means that if two workspaces use the same State History
table and process the same set of customer IDs, it is possible for each workspace to
access the same history record simultaneously. If two workspaces access the same
State History record at the same time, the application does not fail, but some data
may not be saved.

If the risk of losing data is small, then you could run two sets of triggers
simultaneously for the same set of IDs, one with real time feeds and the other with
batch feeds.

The application provides a way to guard against inadvertent access of two
workspaces against the same State History table. If a table is not marked Sharable
in the server group, it can be mapped only on the Deployment tab of a workspace,
and it can be used by only one deployment configuration at a time.
Related reference:
“Fields and buttons on the Deployment tab” on page 26

Running workspaces
Use this procedure to run a workspace for test or production purposes.

Before you begin

Only valid workspaces can be run. To be valid, a workspace must contain at least
one Simple component and one Action component.

If the workspace was modified after it was deployed, indicated by

next to its
name, you must deploy it again for the changes to go into effect when processing
transactions.

Chapter 5. Deploying and running workspaces 33

Procedure
1. Select the workspace you want to run.

The Workspace Manager page opens.
2. On the Batch Run panel, select the deployment configuration you want to run.

Only configurations that have been deployed are available for selection.
3. Complete run parameters as desired.
4. Click Start.
Related concepts:
Chapter 6, “Outcome data in Opportunity Detect,” on page 39
Related tasks:
“Creating and deploying a deployment configuration” on page 24
Related reference:
“Fields and buttons in the Workspace List” on page 9

Fields and buttons on the Batch Run tab
On the Batch Run tab, you can manage run parameters, run deployed workspaces,
see the status of the most recent batch runs, and stop and start ongoing runs.

Table 11. Fields and buttons on the Batch Run tab

Field or button Description

Deployment
Configuration

Select a deployment configuration to run and click Start.

Only deployment configurations that are successfully deployed and
ready to run are listed. If you expect a deployment configuration to
be available and it is not listed, check the Streams server logs and
correct any problems. Then, start the deployment configuration and
try to perform the run again.

If any transaction data source in the deployment configuration has
been mapped to the Web Service connector, the deployment
configuration is not available for batch runs.

Run Parameters

Feed Path Location of the feed files.

Inactivity Mode If your workspace includes any Forward Inactivity components or
Pattern components configured with the negative event mode, to
enable the component to process data as expected you must select
On in this field and also set the date in the Inactivity Date field.

Inactivity Date Specifies the date the system uses to check for inactivity. Applies
only to workspaces that contain Forward Inactivity components or
Pattern components configured with the negative event mode,
when the Inactivity Mode field is set to On.

It is possible that no transactions for a customer whose transaction
has activated the component will be processed when the
component is due to fire. In those cases, the system uses the date
set in the Inactivity Date field to determine whether the component
should fire. Typically, you should set this field to the latest
transaction timestamp in the batch file being processed.

34 IBM Opportunity Detect User's Guide

Table 11. Fields and buttons on the Batch Run tab (continued)

Field or button Description

Artificial Transaction Check this box if your workspace includes any components that
use an artificial transaction.

You can select the following options.

v Off - No artificial transaction is set.

v End of Day - Sends an artificial transaction to indicate the end of
day at the end of each unique transaction date in the feed files.

v End of Run - Sends an artificial transaction after all transactions
are sent for a user, regardless of how many transaction dates are
in the feed files.

System Log Level Set the logging level for a batch run. Optionally, select a system log
level for real time runs. Options are as follows, listed in ascending
order of detail.

v Fatal

v Error

v Warning

v Information

v Trace

v Debug

Raising the log level can affect performance.

You can also update the logging level during runs by selecting a

deployment and clicking

Update Logging level on the
Deployment tab.

Run in Recovery When this box is selected, if a run fails, and you re-start the run
after fixing any problems, the system attempts to resume the run
where it left off. You must wait three minutes for the automatic
save to complete before attempting to re-start the run.

Batch Notification Select this box if you have a batch notification file and you want to
receive notifications.

Most Recent

Stop button

Click to stop a batch run.

Start button

Click to re-start a batch run that has been stopped.

Run id Unique identifier for the most recent run.

Detail id A counter that increments each time a recovery run occurs.

Deployment
Configuration

The name of the deployment configuration used for the run.

Start Time Date and time of the beginning of the run.

End Time Date and time of the end of the run.

Run Time Duration of the run.

Chapter 5. Deploying and running workspaces 35

Table 11. Fields and buttons on the Batch Run tab (continued)

Field or button Description

State During the run, this column may display a variety of interim states.
When a run ends, the state is one of the following.

v Run Success

v Run Failed

Related concepts:
Chapter 19, “Artificial transactions in Opportunity Detect,” on page 121
Related reference:
“Fields and buttons on the Deployment tab” on page 26
“Fields on the Batch History tab”

The profile data refresh mechanism
Opportunity Detect automatically refreshes profile data every six hours. If you
require an immediate refresh of profile data, you can stop and restart your
deployment.

Fields on the Batch History tab
On the Batch History tab, you can see details about past runs, filtered by
deployment and a date range.

Table 12. Fields on the Batch History tab

Field Description

Deployment
Configuration

Select a deployment configuration for which you want to retrieve
run history.

From Date, To Date,
Get Run History
button

Enter or select a date range and then click Get Run History to
retrieve information about past runs.

Result The final status of the run.

v Run Success

v Run Success with Errors

v Run Failed

Run Id Unique identifier for the run.

Detail Id A counter that increments each time a recovery run occurs.

Run Type Indicates whether the run is a normal or recovery run.

Start Time Date and time of the beginning of the run.

End Time Date and time of the end of the run.

Run Time The duration of the run.

Related reference:
“Fields and buttons on the Deployment tab” on page 26
“Fields and buttons on the Batch Run tab” on page 34

36 IBM Opportunity Detect User's Guide

About batch notifications
The Opportunity Detect engine can run batch files when it completes a run. You
can use these files to issue different notifications for each successful and failed
engine run.

An example batch file is shipped with the product; you must edit this file as
needed to perform the appropriate actions for your system when the Opportunity
Detect engine completes a run. If the batch file is empty, no further processing
takes place.

The batch file must be a shell script with the .sh extension. It must have
executable permission (755).

When you run the Opportunity Detect engine from the Batch Run tab in a
workspace, check the Batch Notification check box and specify the file name to
run a batch file when the process completes.

Batch file usage examples
v After an engine process runs successfully, the notification file can call an external

process to act on the reported outcome data.
v After an engine process fails to complete, the notification file can send a

notification of the failure to the appropriate people.

Batch file required location

You must create a scripts directory on the machine where Streams is installed,
under the /home/streamsadmin/OpDetection directory, if it has not been created
previously. Place your batch file in this directory.
Related concepts:
“Outcome format with the Expanded Outcome data source connector” on page 41

Chapter 5. Deploying and running workspaces 37

38 IBM Opportunity Detect User's Guide

Chapter 6. Outcome data in Opportunity Detect

Opportunity Detect generates one outcome record for every set of transactions that
meets the criteria specified in the trigger system.

Outcome data can have different formats, depending on the data source connector
that you use for your Outcomes when you run your trigger systems.

You assign data source connectors to tables, queues, or a web service when you
create server groups. When you deploy a trigger system, you can change this
default mapping in the deployment configuration.

How Outcome data is specified in trigger systems

Outcome data is specified in the Action component, in the Outcome panel. This
panel has two fields:
v Message, which holds a text string that you specify.
v Additional information, which holds data captured using an inline expression.

The inline expression can choose data from any data source or component that is
available to the Action component.
This data can be a single value (scalar), or a row in a data record stored in a
Container or Select component (tabular).

Types of data source connectors for Outcomes

For Outcome data, Opportunity Detect provides four types of data source
connectors.

Outcome table
Used when you want Outcome data to be stored in database tables in the
XML format used by previous versions of Opportunity Detect.

Expanded Outcome tables
Used when you want Outcome data to be stored in database tables in a
form that external systems or IBM Campaign can use more easily than the
format provided by the Outcome connector.

Web Service
Used when your system is configured to use the Opportunity Detect web
servlet for Outcome data, for real time operation. See the IBM Opportunity
Detect Administrator's Guide for details about the Java classes that must be
developed to use the Web Service data source connector.

Queue
Used when your system is configured to use a Queue connector for
Outcome data, for real time operation. See the IBM Opportunity Detect
Administrator's Guide for information on setting up a Queue data source
connector.

Related concepts:
“About data source connectors” on page 29
Related tasks:
“Running workspaces” on page 33

© Copyright IBM Corp. 1996, 2016 39

Outcome format with the Outcome data source connector
When the Outcome data source connector is used for Outcome data, the system
writes the data in the XML format used by previous versions of Opportunity
Detect.

Fields in the Outcome table

The following table describes the fields in the Outcome table when you use the
Outcome data source connector.

Table 13. Fields in the Outcome table

Field Description

AUDIENCEID ID of the audience for which the trigger system fired. Examples of
an audience are account, customer, or household.

RUNID ID of the run. The Run ID helps distinguish between the Outcomes
of one run versus the Outcomes of runs before or after it. Because
of the Run ID, you do not need to truncate the Outcome table after
every run because you can query the table for all of the Outcomes
in a specific run.

COMPONENTID Unique ID of the Action component that fired to generate the
Outcome.

AUDIENCETYPE The single character audience code assigned on the Opportunity
Detect Audience Levels page.

OUTCOMEDATE The timestamp of the final event that caused the Action to fire.

MESSAGE The data that was specified in the Message and Additional
Information fields of the Action component. The data is written in
XML format.

ROW_NUMBER A unique sequence field, generated automatically.

XML format of the message field of the Outcome table

The XML in the message field of the Outcome table contains the data specified in
the Message and Additional Information fields of the Action component.

Here is an example of the XML for a simple Outcome. The Action component in
the example includes the following information in the Outcome.
v Message field: Send printer paper offer.
v Additional Information field:

– The sum of all values in the field named Amount in a Container component
named All Transactions.

– The field named zipcode in the data source named Customer Profile.
<OUTPUT>
<TEXT>
Send printer paper offer.

</TEXT>
<CONTAINER name"All Transactions" field="Amount" function="SUM">
123.45

</CONTAINER>

40 IBM Opportunity Detect User's Guide

<DATASOURCE name="Customer Profile" field="zipcode">
11746

</DATASOURCE>
</OUTPUT>

XML format of Outcome values from Container and Select
components

Select and Container components can hold values that consist of a single value or a
set of fields.

If the value has been aggregated into a single number using a function, it is called
a scalar value. Here is an example of the XML for a scalar value where the
Outcome includes a field named Amount from a Container component named C1.
The Amount field is aggregated using the average function.

<CONTAINER name="C1" field="Amount" function="average">
123.45
</CONTAINER>

If the value is a set of fields, it is called a tabular value. Here is an example of the
XML for a tabular value where the Outcome includes fields named Field_1,
Field_2, and Field_3 from a Select component named S1.

<SELECT name="S1">
<ROW>
<FIELD name="Field_1">abc</FIELD >
<FIELD name="Field_2">123.45</FIELD >
<FIELD name="Field_3">xyz</FIELD >

</ROW >
</SELECT >

Outcome format with the Expanded Outcome data source connector
When the Expanded Outcome data source connector is used for Outcome data, the
system writes the data in a form that can be used by IBM Campaign or an external
system.

The data produced by Opportunity Detect is called Outcome data.

About the Expanded Outcome tables

The Expanded Outcome connector writes the Outcome data to two database tables,
which you must create using scripts provided with Opportunity Detect.

DB2 is the only supported database type for the Expanded Outcome tables.

The tables are:
v A primary table that contains the text string specified in the Message field in the

Action component.
v A secondary table that contains the data specified in the Additional information

field in the Action component.

You provide a base name for the Expanded Outcome tables when you run the
ExpandedTable.sql script to create the tables. The script appends the number 1 to
the name of the primary table, and appends the number 2 to the name of the
secondary table.

Chapter 6. Outcome data in Opportunity Detect 41

For example, if you specify the base name ExpandedOutcome, the script creates two
tables: ExpandedOutcome1 and ExpandedOutcome2.

Fields in the Expanded Outcome tables

These descriptions of the fields in the Expanded Outcome tables refer to scalar and
tabular values, which are defined as follows:

Scalar

A single unit of data.

Tabular

A data set, as in a database row. In Opportunity Detect Outcomes, tabular
data is saved in XML format.

Depending on how you specify the Outcome data, the Outcome can contain either
type of value, or both types. If you include tabular data in a Campaign integration,
additional processing is required before Campaign can consume it.

Table 14. Fields in the Expanded Outcome primary table

Field Description Data type

OUTCOMEID Unique sequence ID. Used as the
primary key to link to the secondary
Expanded Outcome table.

Integer

AUDIENCEID ID of the audience member for which
the trigger system fired. Examples of an
audience are account, customer, or
household. The audience ID is stored as
a string. Multi-column audience IDs are
not supported.

NVARCHAR(60)

If you use Oracle system tables and plan to
integrate with Campaign, you must change the
data type of this field from NVARCHAR(60) to
Varchar2(60) because Campaign does not support
the NVARCHAR(60) data type.

AUDIENCELEVEL The single character audience code
assigned on the Opportunity Detect
Audience Levels page.

NVARCHAR(60)

If you use Oracle system tables and plan to
integrate with Campaign, you must change the
data type of this field from NVARCHAR(60) to
Varchar2(60) because Campaign does not support
the NVARCHAR(60) data type.

COMPONENTID Unique ID of the Action component
that fired to generate the Outcome.

Varchar

OUTCOMEDATE The timestamp of the final event that
caused the Action component to fire.

Timestamp

RUNID ID of the run, for batch mode only. The
Run ID helps distinguish between the
Outcomes of one run versus the
Outcomes of runs before or after it.
Because of the Run ID, you do not need
to truncate the Outcome table after
every run because you can query the
table for all of the Outcomes in a
specific run.

Integer

42 IBM Opportunity Detect User's Guide

Table 14. Fields in the Expanded Outcome primary table (continued)

Field Description Data type

MESSAGE The text string that was specified in the
Message field of the Action component.

NVARCHAR(60)

If you use Oracle system tables and plan to
integrate with Campaign, you must change the
data type of this field from NVARCHAR(60) to
Varchar2(60) because Campaign does not support
the NVARCHAR(60) data type.

PROCESSED A flag that indicates whether the data
has been consumed by Campaign.

Integer

Table 15. Fields in the Expanded Outcome secondary table

Field Description Data type

OUTCOMEID Unique sequence ID. Used as a foreign
key to link the record to the primary
Expanded Outcome table.

Integer

NAME The name assigned in the Additional
Information field of the Action
component.

NVARCHAR(60)

If you use Oracle system tables and plan to
integrate with Campaign, you must change the
data type of this field from NVARCHAR(60) to
Varchar2(60) because Campaign does not support
the NVARCHAR(60) data type.

VALUE The scalar and tabular data that was
specified in the Additional Information
field of the Action component. Tabular
values are saved in XML format.

Clob

DATATYPE For scalar values, the data type can be
one of the following.

v boolean

v currency

v date

v double

v integer

v string

For tabular values, the data type is set
to string, because tabular values are
stored in XML, and the data type for
XML is string.

NVARCHAR(60)

If you use Oracle system tables and plan to
integrate with Campaign, you must change the
data type of this field from NVARCHAR(60) to
Varchar2(60) because Campaign does not support
the NVARCHAR(60) data type.

XML format of tabular values

Here is an example of the XML for a tabular value, where the record includes these
fields:
v Field_1

v Field_2

v Field_3

Example

Chapter 6. Outcome data in Opportunity Detect 43

<SELECT name="S1">
<ROW>
<FIELD name="Field_1">abc</FIELD >
<FIELD name="Field_2">123.45</FIELD >
<FIELD name="Field_3">xyz</FIELD >

</ROW >
</SELECT >

Integrating Opportunity Detect with Campaign in batch mode
The following example illustrates how you might use the Expanded Outcome data
in Campaign, in batch mode.

Before you begin

You must have Campaign and Opportunity Detect installed and running.

About this task

The following diagram illustrates the example described in this procedure.

Procedure
1. Create the Expanded Outcome tables in your database using the script

provided with Opportunity Detect.
2. On the Server Groups page in Opportunity Detect, do the following.
v If a database connection for the database where you created your Expanded

Outcome tables does not exist, create one.
v If an Expanded Outcome data source connector does not exist, create one.

If you make the connector sharable, you can map the connector to your
primary Expanded Outcome table on the Server Groups page or on the
Deployment tab of the workspace. If you do not make the connector
sharable, you can map it only on the Deployment tab.

3. Create the Opportunity Detect workspace and configure it to use the Expanded
Outcome data source connector for Outcome data, either on the Server Groups
page or on the Deployment tab of the workspace.

4. On the Deployment tab of the Opportunity Detect workspace, configure the
deployment to call a batch file at the end of a successful run.
Create the batch script to call the Campaign listener service, unica_aclsnr, to
run a Campaign flowchart that you design.

5. Use the Opportunity Detect command line utility, RemoteControlCLI (CLI), to
run the workspace.
Use your own scheduling utility to run the CLI batch script at the desired
interval; for example, daily.
When the workspace runs, Opportunity Detect inserts Outcome data into the
Expanded Outcome tables.

44 IBM Opportunity Detect User's Guide

6. Configure your Campaign flowchart as follows.
a. In a Select process, create a new table mapping as follows.
v Map your main audience in Campaign to the OUTCOMEID field in the

primary Expanded Outcome table. This is required so that you can select
Outcome records for use in the flowchart. Selection must use the
OUTCOMEID field, as the same AUDIENCEID field can be repeated in
multiple Outcome records.

v Map your alternate audience in Campaign to the AUDIENCEID field in
the primary Expanded Outcome table. This mapping defines the audience
on which rest of the flowchart logic should be performed.

Note: If you plan to use Opportunity Detect Outcome data in multiple
flowcharts, save the mapped table information into a table catalog and load
this catalog in other flowcharts.

b. Select records where the value in the PROCESSED field in the primary
Expanded Outcome table is 0.
This value indicates that the record has not been processed yet.

c. Set the value in the PROCESSED field in the primary Expanded Outcome table
to 1, to indicate that the record has been processed.
You can write SQL in a Select process to set this value.

d. In an Audience process, switch the audience from OUTCOMEID to
AUDIENCEID.

e. Use the Opportunity Detect data as desired in your flowchart.
f. Use a MailList process to assign an offer and update contact history.

Integrating Opportunity Detect with Campaign in interactive
mode

The following example illustrates how you might use the Expanded Outcome data
in Campaign, in interactive mode.

Before you begin

You must have Campaign and Opportunity Detect installed and running.

About this task

The following diagram illustrates the example described in this procedure.

Procedure
1. Create the Expanded Outcome tables in your database using the script

provided with Opportunity Detect.
2. Do one of the following.

Chapter 6. Outcome data in Opportunity Detect 45

v If you plan to use a queue connector, configure a queue for your transaction
data in your queue server.

v If you plan to use the Web Service, develop the required Java classes.
3. On the Server Groups page in Opportunity Detect, do the following.
v If a database connection for the database where you created your Expanded

Outcome tables does not exist, create one.
v If an Expanded Outcome data source connector does not exist, create one.

If you make the connector sharable, you can map the connector to your
primary Expanded Outcome table on the Server Groups page or on the
Deployment tab of the workspace. If you do not make the connector
sharable, you can map it only on the Deployment tab.

4. Configure the Opportunity Detect workspace to use the Web Service or a queue
data source connector for transaction data, and the Expanded Outcome data
source connector for Outcome data.

5. Configure your Campaign flowchart as follows.
a. In a Select process, create a new table mapping as follows.
v Map your main audience in Campaign to the OUTCOMEID field in the

primary Expanded Outcome table. This is required so that you can select
Outcome records for use in the flowchart. Selection must use the
OUTCOMEID field, as the same AUDIENCEID field can be repeated in
multiple Outcome records.

v Map your alternate audience in Campaign to the AUDIENCEID field in
the primary Expanded Outcome table. This mapping defines the audience
on which rest of the flowchart logic should be performed.

Note: If you plan to use Opportunity Detect Outcome data in multiple
flowcharts, save the mapped table information into a table catalog and load
this catalog in other flowcharts.

b. Select records where the value in the PROCESSED field in the primary
Expanded Outcome table is 0.
This value indicates that the record has not been processed yet.

c. Set the value in the PROCESSED field in the primary Expanded Outcome table
to 1, to indicate that the record has been processed.
You could write SQL in a Select process to set this value.

d. In an Audience process, switch the audience from OUTCOMEID to
AUDIENCEID.

e. Use the Opportunity Detect data as desired in your flowchart.
f. Use a MailList process to assign an offer and update contact history.

6. Use your own scheduling utility or the IBM Marketing Software Scheduler to
schedule flowchart runs at the desired interval; for example, every minute.

Outcome format with the Web Service data source connector
You can use a Web Service Connector for incoming transaction data and for
outcome data.

When you use the Web Service connector for outcomes, the data is sent to a web
servlet. This servlet executes a plugin that can write to a file. You can also do
additional programming to enable the plugin to write to a queue or act like a web
service.

46 IBM Opportunity Detect User's Guide

See the IBM Opportunity Detect Administrator's Guide for details about the Web
Service connector.

Chapter 6. Outcome data in Opportunity Detect 47

48 IBM Opportunity Detect User's Guide

Chapter 7. Component types in Opportunity Detect

Components are the basic building blocks for trigger systems in Opportunity
Detect.

Broadly, there are three types of components: those that can send an event to other
components, those that return a value that can be used by other components, and
the Action component, which writes Outcome data that can be used by external
systems.

With these three types of components, you can build logic to suit your business
requirements. A set of components configured to carry out your business logic is
called a trigger system.

Event components

With the exception of the Simple component, an event component is activated
when it receives an event from another component that causes it to evaluate the
data against its criteria. After the logic defined within the component is processed,
it sends an event to other components.

An event component is said to 'fire' when it sends an event to activate a
downstream event component. When you build a trigger system, you specify event
components as the incoming events for other event components, creating an
unbroken series of events.

An event component fires a positive event when its criteria are met. Some
components can also send a negative event when their criteria are not met.

The following event components have additional features.
v The Simple component is the only component that does not require an event to

activate it. Instead, it processes all incoming data against its criteria. The Simple
component requires at least on transaction data source. When it fires, it sends
the first event in the series of events that a trigger system depends upon. This is
why all trigger systems require a Simple component.

v The Action component is the only component that writes to a database table or
to a customized program via a Web Service connector.

Data components

Data components are invoked by being referenced in another component, which
then uses the data returned by the data component in its own evaluation of the
customer data. Data components do not fire an event.

The Math, Date, and Boolean components return a single piece of data. The
Container and Select components hold one or more rows of data, also called
records. Trend components evaluate to true or false.

© Copyright IBM Corp. 1996, 2016 49

Action components

When Action components fire, they write the data that you specify to a destination
that you specify by choosing the desired data source connector. These outcomes
are available for use by external systems.

All trigger systems require an Action component. If a workspace does not contain
an Action component, it does not pass validation and you cannot deploy it.

Component type details and examples
These are the components that you can use to build trigger systems.

Event components

Table 16. Event components

Component Type Description

Backward Inactivity Listens for the occurrence of a specified event and then checks a specified prior time frame
to see whether another specified event has occurred. The Backward Inactivity component
fires if the specified prior event did not occur.

Example: Fire when a customer makes use of the ATM after more than 1 month of not
using any teller services.

Container Manipulator Add and delete data in Container components and perform operations on this data. Can
trigger positive events or negative events.

Example: When the dollar amount of product a customer purchased in one month exceeds
$200 (value in the container), offer a discount.

Forward Inactivity Listens for the occurrence of an event and then waits a specified time to see whether or not
another event occurs. The Forward Inactivity component fires when the time period expires
without the occurrence of the event it for which it was listening.

Example: Fire when a web-trade customer, who usually trades once a month, does not
trade for two consecutive months.

Pattern (Match All,
Counter, Weighted
Counter)

Listens for the occurrence of specified events. Fires if the events occur within a specified
time frame. In addition, you can configure a Pattern component to fire a negative event if
the pattern is no longer matched within the specified time frame.

Example: Fire when customer uses his credit card four times a month during a three month
period.

Simple Fires if specified conditions based on transaction attributes are satisfied.

A Simple is the only component type that is activated by incoming transactions and not by
an event produced by another component. This is why every trigger system requires at
least one Simple component as its starting point.

Example: Fire when a customer makes a credit card purchase over $5000 or an
international phone call to Italy.

Data components

Table 17. Data components

Component Type Description

Boolean Expression Evaluates data and returns True or False.

50 IBM Opportunity Detect User's Guide

Table 17. Data components (continued)

Component Type Description

Container Holds records from transactions or a profile, as specified by a Container Manipulator.
Other components can use this data in calculations and comparisons.

Example: Save the total dollar amount of customer purchases in one month.

Date Returns a date. Specifies date or date range. Often used in Simple components to specify
criteria that incoming transactions must meet.

Example: A transaction that occurred on June 8, 2013.

Math Returns a number. Specifies a mathematical formula that uses numeric data from one or
more data sources. Common usage includes the following.

v In Simple components, to specify criteria that incoming transactions must meet.

v In Pattern components, to set the aging factor.

v In Forward Inactivity and Backward Inactivity components, to set the time span.

v In Action components, to include the results of a numerical calculation in the outcome
message.

Example: In a Math component, calculate 95% of the customer's available account balance,
which is available in a Simple component. In a Boolean component, compare this number
to credit card transactions, and if a credit card purchase is equal to the number produced
by the Math component, fire a positive event that activates a downstream Action
component.

Select A database query that returns a specified set of records drawn from a Container or another
Select component. Other components can use this data in calculations and comparisons.

Trend Detects changes in activity measured over defined periods of time. Before you can create a
trend component, your trigger system must include a Container or Select component that
the trend can use as a data source. There are three trend components: Trend, Spike,
Exceeded Standard Deviation (ESD).

Trend components never fire on their own. They are used internally by Action or Container
Manipulator components. You can configure an Action or Container Manipulator
component to fire when a Trend Component evaluates to true.

For example, the average rolling monthly balance has been increasing or decreasing by 10%
over the last three months.

The Action component

The Action component is the only one that writes to the outcome destination.
When you configure an Action component, you define the data that is written to
the outcome destination when all the criteria specified in the components that the
Action component depends upon are met. Outcomes can be written to a database
table or can be sent to a customized program via a Web Service connector.

Chapter 7. Component types in Opportunity Detect 51

52 IBM Opportunity Detect User's Guide

Chapter 8. Common features of components

You build expressions and configure incoming events and time spans when you
work with several types of components. In addition, all component editors have a
left panel where you configure or view basic attributes. Read this section to
understand these commonly used component attributes.

Data Dependencies
The Data Dependencies panel contains a read-only list of transaction data sources
that are allowed and used in this component and the audience level associated
with these data sources. The fields update as you configure a component.

This panel lists the following information.

Allows Data Source
An attribute of a component that determines which data sources it can use.
Values are Any, None, or a single data source.

Allowed data sources are determined as follows.
v In event components, the data sources allowed in the ancestor

component that sends the incoming event determine the allowed data
sources.

v In Simple components, the data source used in the required Firing
Condition determines the allowed data source.

v In data components, all data sources configured in the system are
allowed. However, after a data source used in configuring the
component, that data source is the only one available in subsequent
configuration steps for that component.

Uses Data Source
All direct or indirect data source usage except for Incoming Events.
Examples of direct usage occur in Time Spans, Firing Conditions, and
values calculated using the Value Selector. An example of indirect usage is
a component that refers to a data component such as a Container or Select.

A component can use only one data source, regardless of the number of
allowed data sources.

Audience Level
The audience level with which the data source is associated. A trigger
system can use data sources from only a single audience.

Opportunity Detect enforces data dependency rules. For example, if you attempt to
remove a data source in a component, and a descendent component uses that data
source, you can not save the changes. You see an error message that informs you
of the reason for the failure and lists the affected descendent components. Before
you can make the change, you must edit the descendent components so that they
no longer use the data source that you want to remove from the ancestor
component.

Example: Changing a data source

© Copyright IBM Corp. 1996, 2016 53

In the case illustrated by the diagram below, you would not be able to save the
change made in the Simple component until you edited the Action component so
that it no longer uses Data source 1.

Special cases in data source availability

Generally, the allowed data sources for a component are the transaction data
sources allowed in ancestor components, but there are cases when this rule does
not apply.
v Pattern components can be activated by events associated with more than one

data source. In such cases, you cannot configure the Pattern component to use
transaction data from an ancestor component, because you cannot predict in
advance which data source will be involved in activating that component. In the
Data Dependencies panel, the Allows Data Source field will have a value of
None.

v Pattern components that use negative events fire only when the aging out of an
event creates a negative condition. Because it is the system's evaluation of this
condition (rather than an incoming transaction) that causes the event to fire, no
descendent components have access to any transaction data sources.

v Forward Inactivity components fire only when the canceling event does not
occur before the time span completes. Because it is the system's evaluation of
this condition (rather than an incoming transaction) that causes the event to fire,
no descendent components have access to any transaction data sources.

In all of these cases, if profile data exists for the audience level associated with the
transaction data source, it is always available for use in configuring a component.

The following examples illustrate data source access in Pattern and Forward
Inactivity components.

Example: Pattern components activated by events associated with more than one
data source

Pattern components such as Match All and Weighted Count have multiple
incoming events. If two of the components sending the incoming events use
different data sources, the pattern can not unambiguously determine its data
source heritage.

54 IBM Opportunity Detect User's Guide

In the diagram below, the Pattern component's allowed data source would be set
to None. If you open the Value Selector in the Pattern editor, you would not have
access to any transaction data sources.

Example: Forward Inactivity components

A Forward Inactivity component uses incoming and canceling events generated by
two Simple components. In the Forward Inactivity's value selector, you can use the
transaction data source made available through the component that supplies the
incoming event. However, components that are downstream from the Forward
Inactivity component have no access to this data source.

This is because it is the system, and not an event generated by a component, that
activates the Forward Inactivity for firing when the time span elapses. At the
moment when the Forward Inactivity component fires, the system has no access to
any data source information.

Related concepts:
“Ancestor and descendent relationships among components” on page 3

Dependent Components
The name and type of any components that use this component. Use this
information when you want to make a change to a component, to see what other
components might be affected by the change. Read only.

Chapter 8. Common features of components 55

Effective Window
Fields where you can set a start and end date during which an event component is
active. Optional.
Related reference:
“Time constants and time units” on page 58

Firing Frequency
Fields where you set a limit on how often an event component produces its event.
Optional.

The set of firing frequency fields can be interpreted as follows.

Fire not more than N times in X time units, where a time unit is a combination of
type and interval.

For the value of X, you use the Expression Builder. You can select a value based on
a constant, a data source field, or a Container, Select, or Math component.
Related reference:
“Time Spans”

Properties
Fields where you can enter a description of the component. Optional.

Incoming Event fields
All event components except the Simple require an incoming event to activate
them. The incoming event signals to the component that there is data for it to
evaluate against its criteria.

Table 18. Incoming Event fields

Field Description

Incoming Event Select a positive or negative event, select the a component type,
and select from the available components of that type. Finally, click
Add to make your choice one of the incoming events for this
component.

If you use more than one incoming event, the component is
activated when any one of the selected components fires and sends
an event.

Time Spans
Time spans are used throughout Opportunity Detect to specify time periods.

Calendar and rolling time spans

There are two types of time span, as follows.

56 IBM Opportunity Detect User's Guide

Calendar
Calendar time spans have fixed start and end points, specified using time
constants that have defined meanings within the system.

Rolling
Rolling time spans have a defined number of time units, but the start and
end points are not fixed.

Time Span fields

Table 19. Time Span fields

Field Description

Quantity You can enter a number directly in this field, or use the Value
Selector to set the quantity of time units for the time span.

Select Value You can use Value Selector to set the quantity of time units for the
time span.

Time unit fields You use the two time unit fields to set the type and unit of the time
span.

The type can be Calendar or Rolling. The behavior of these time
span types varies, depending on the component where they are
used. Calendar time spans work in conjunction with time constants,
which have defined meanings.
Tip: See related topics for details.

The available time units are:

v Second

Applies to calendar time spans only, not to rolling time spans. A
time unit of "second" is not valid for a rolling time period. For
example, a rolling day has an hour, minute, and second starting
point, such as 13:12:44. However, Opportunity Detect does not
track units smaller than seconds on the incoming transaction, so
there is no way to track units smaller than seconds and therefore
no way to track rolling seconds.

v Minute

v Hour

v Day

v Week

v Month

v Quarter

v Year

Related concepts:
“Rolling time span in Forward Inactivity components” on page 100
“Calendar time span in Forward Inactivity components” on page 101
“Calendar time span in Pattern components” on page 88
“Rolling time span in Pattern components” on page 91
Related reference:
“Time constants and time units” on page 58
“Firing Frequency” on page 56

Chapter 8. Common features of components 57

Time constants and time units
When you configure a calendar time span or an effective window, you use time
constants and time units. Time constants, the starting points of time units, and the
end points of irregular time units have specific definitions within Opportunity
Detect.

Time units and time constants are calculated relative to the value of Now within
the component.

The value of the Now date constant

The value of the Now date constant is calculated relative to the timestamp of the
transaction being processed.

When a trigger system starts processing a transaction, the value of the Now time
constant is simply the timestamp of the transaction as received from the
transaction data source. However, as a trigger system moves through its logic, the
value of Now changes as follows.
v Forward Looking components have a time span that determines how long the

component waits after it receives its activating event before it fires its event to
activate a child component. The Forward Looking component adds this time
span to the transaction timestamp it received, and this becomes the timestamp of
the event the Forward Looking component fires.
This event timestamp is passed as the value of the Now time constant for the
immediate child component of the Forward Looking component.

v Pattern components can be configured to send a negative event when the aging
out of an event creates a negative condition. The timestamp of the negative
event becomes the value of the Now time constant for the immediate child
component of the Forward Looking component of the Pattern component.

v For an End of Run artificial transaction, the value of Now is the timestamp of
the last transaction in the set of data being processed.

v For an End of Day artificial transaction, the value of Now is 12 A.M. of the next
day.

Starting points for calendar time units

The starting points for calendar time units are defined as follows.
v A calendar week starts at midnight on Sunday.
v A calendar day starts at midnight.
v A calendar year starts at midnight of January 1.
v Calendar quarters start at midnight on January 1, April 1, July 1, and October 1.
v Beginning of Selected Date is midnight of a day that you select.
v Minimum Date is 1970-01-01 00:00:00
v Maximum Date is 2038-01-19 03:14:07

Date constants that return a date

The following date constants return a date.
v Beginning of current minute
v Beginning of current hour
v Beginning of current day

58 IBM Opportunity Detect User's Guide

v Beginning of current week
v Beginning of current month
v Beginning of current quarter
v Beginning of current year
v Beginning of selected date
v Maximum date
v Minimum date

Date constants that return an integer

You might want to use a date constant that returns an integer to determine when a
transaction took place. For example, you can create a Boolean expression that
returns True when the Current day of the month = 15

The following date constants return an integer.

Table 20. Date constants that return an integer

Date constant Value

Current Second 1 - 60

Current Minute 1 - 60

Current Hour 1 - 24

Current Day of the Month 1 - 31

Current Day of the Week 1 - 7

Sunday = 1

Current Week v January 1 = day 1 of week 1

v In a leap year, December 30 is in week 53

Current Month 1 - 12

Current Quarter 1 - 4

Current Year Four digits

Related concepts:
“Ancestor and descendent relationships among components” on page 3
Chapter 19, “Artificial transactions in Opportunity Detect,” on page 121
“Calendar time span in Pattern components” on page 88
“Rolling time span in Forward Inactivity components” on page 100
Related reference:
“Time Spans” on page 56
“Effective Window” on page 56

Firing Condition fields
A firing condition is required for Simple components and is optional for Action
components. You can define an expression to serve as a firing condition. The
expression can be an existing Boolean expression component, or you can define an
inline expression that is available only within the component where it is defined.

Chapter 8. Common features of components 59

Table 21. Firing Condition fields

Field Description

The firing condition
will be evaluated
using

If you create more than one expression, the expressions are
evaluated using the logical operator you choose here. Options are
And and Or. You can also use And and Or logical operators within
inline expressions to build nested logic.

Type Click the Click to add firing condition link and select Add
existing Boolean expression or Add new inline expression. A
window opens, and you can specify your firing condition.

Functions in Opportunity Detect
Functions perform some additional processing on a record set returned by a
Container or Select component. Functions allow you to apply commonly used
database functions to the records.

Functions are available in the following component types.
v Container
v Select
v In the Value Selector in a component that allows a Container or Select

component as a data source.

Function definitions

The following table describes how functions work.

Function Description

Average Use an average of the values in the field.

Count Counts the number of times this field occurs in the record set.
Returns an integer.

Count Distinct Counts the number of times this field occurs in the record set,
excluding fields with duplicate values. Returns an integer.

First Use the value with the oldest timestamp.

Group By In Select and Container components, groups together all the records
that have identical values in this field. Returns one or more groups
of rows. The Group By function can be applied to only a single
field in a component.

IsMemberOf Compares a single value with a single field in each row contained
in a Select component. See the expanded explanation elsewhere in
this chapter.

Last Use the value with the most recent timestamp.

Maximum Use the highest value in the field. Returns an integer.

Minimum Use the lowest value in the field.

Mode Use the value of the most frequently occurring value in this field.
When a tie situation exists, an age factor is used; the oldest value is
returned in this case.

Sum Use the total of the values in the field.

Standard Deviation Measures how much variation or dispersion from the average exists
in the values of this set of fields, using the STDEVP formula.
Returns an integer.

60 IBM Opportunity Detect User's Guide

Related concepts:
“The IsMemberOf function”
“Container components” on page 79
Chapter 14, “Select components,” on page 77

The IsMemberOf function
The IsMemberOf (IMO) function provides an efficient method for identifying and
acting on large quantities of lookup table data to determine which records contain
a specified value.

Any component where you can build a Boolean expression can use the IMO
operator. That is, it can be used in Simple, Container Manipulator, Action, and
Boolean expression components.

The IMO compares a single value with a single field in each row contained in a
Select component. The field used for comparison in the Select component cannot
use a function. A function reduces the data returned by a Select component to a
scalar value, and the IMO requires a set of values.

Most often the Select is obtains its data from a lookup table, but it can also be
obtain its data from a Container component, or another Select component.

The data type of the single value and the data type of the field in the Select must
be the same. The value used for comparison is any value that can be created in the
Value Selector (for example, integer, double, or string).

Usage

IMO is the most efficient way to check whether a value is equal to any value in a
large group of values.

Suppose your organization offers 1000 products for sale. Of the 1000 products,
there are 300 for which you send a rebate coupon. On first thought, you might
create a Simple component that recognizes each one of the 300 product numbers.
However, this method has some drawbacks.
v A Simple Event that identifies 300 product numbers is cumbersome to create.
v A Simple Event that identifies 300 products is difficult to maintain should you

need to change the products included in the promotion.
v There is a limit to the number of characters that can be included in every

component. The 300 product codes that need to be identified may exceed the
length boundary of the Simple component.

Opportunity Detect provides the IMO function to effectively address these issues.

Usage example

The following steps describe an efficient method for identifying the 300 products in
the example above.
1. Create a lookup table listing all 1000 product codes with a flag that indicates

whether the product offers a rebate.

Chapter 8. Common features of components 61

Product codes can easily be added to or removed from this table, and the
associated flag can be changed as products are included or removed from the
promotion.

2. Create a Select component, named Select_1 in this example. This component
queries the lookup table for records that have a flag indicating that the product
is included in the promotion. Include the product code in the Output panel.
This step efficiently identifies only the products that are included in the
promotion.

3. Create a Simple component that processes transaction records and uses an
inline Boolean expression in its Firing Condition.
The Boolean expression uses IMO to compare a product code in a transaction
record to the data returned by the Select component.
If the Boolean expression is true, the Simple component fires its event.
In this example, if the transaction data source is named StorePurchases, and it
contains a field named ProductCode, the expression would look like this:
StorePurchases.ProductCode IsMemberOf Select_1

4. Create an Action component that includes any data from the transaction data
source that is needed to process the rebate offer.

The following diagram illustrates this usage example.

Related concepts:
“Functions in Opportunity Detect” on page 60

62 IBM Opportunity Detect User's Guide

Chapter 9. Building expressions using the Expression Builder

The Expression Builder is used throughout Opportunity Detect to compare strings
and numbers, perform math operations, and apply database functions.

The Expression Builder uses standard mathematical syntax. String constants must
be surrounded by double quotes.

For operands, you can enter constant values using the keyboard, or you can use
the Value Selector to specify the following.
v Field values from a transaction or profile data source.

If a Named Value list is configured for a field, you must use the Value Selector
to add the value.

v Values calculated in expression components.
v Field values from records returned by a Select or Container component.

Your choices differ depending on the component you are working with, and on the
data type you select.

CAUTION:
If you enter an operand using the keyboard, and you insert an extra space
between operands, the expression does not validate even if you remove the extra
space. You must clear the expression and create it again.

Boolean, comparison, and math operators
You can use a variety of Boolean, comparison, and math operators to build an
expression.

Boolean operators

Table 22. Boolean operators in the Expression Builder

Operator Definition Example

And Returns TRUE when all conditions are
true.

Look for transactions that have a price per share greater
than $99.99 AND were processed on June 15, 2001 AND
were for accounts in New York.

Or Returns TRUE when at least one of the
conditions is true.

Look for transactions that have a price per share greater
than $99.99 OR were processed on June 1, 2001 OR
were for accounts in New York.

Comparison operators

The following comparison operators are available. They are listed in their order of
precedence.
v Equal
v Not Equal

This is available only in the Simple Event component.
v Greater Than
v Greater Than or Equal To

© Copyright IBM Corp. 1996, 2016 63

v Less than
v Less Than or Equal To
v Like

Math operators

The following math operators are available. They are listed in their order of
precedence.
v Multiply
v Divide
v Add
v Subtract
v Modulo (finds the remainder of division of one number by another)
v Exp (raises a number to the power of another number)

Order of operations

This is the order of precedence for operators.
v multiplication
v division
v addition
v subtraction

If you use a comparison in an expression that uses a Boolean operator, you must
enclose the operand that follows the Boolean operator in parentheses whenever the
result of the calculation would be ambiguous if you do not use parentheses. For
example, you would need parentheses to clarify whether you want
trans.frequency < 3 AND trans.deposit > 2 * (prev.deposit + 50) or
trans.frequency < 3 AND trans.deposit > (2 * prev.deposit) + 50.

Value Selector fields
In component editors, you specify values for expressions using the Value Selector.

Table 23. Value Selector fields

Field Description

Output Data Type The data type of the value returned by this expression.

v Integer

v Boolean

v Currency

v Date

v Double

v String

64 IBM Opportunity Detect User's Guide

Table 23. Value Selector fields (continued)

Field Description

Type The data type of the field in the source data. Available options vary,
depending on the selected Output Data Type.

v Boolean Expression

v Constant

v Container

v Data Source

v Math Expression

v Select

v Date Expression

Data Source Available when you select Data Source as the Type. Your
configured data sources are available for selection. Availability
depends on the component's data source dependency constraints.

Field Available when you select Data Source, Container, or Select as the
Type. The fields in the selected data source that match the selected
data type are available.

Value Available when you select Constant as the Type. You can enter a
value here.

Function Available when you select Container or Select as the Type. You can
apply a database function here.

Expression Available when you select Boolean Expression or Date Expression
as the type. The relevant expression components in your workspace
are available.

Chapter 9. Building expressions using the Expression Builder 65

66 IBM Opportunity Detect User's Guide

Chapter 10. Regular expressions in Opportunity Detect

In Opportunity Detect, you use regular expressions in two situations.
v When you create a Real time file connector in the Server Groups page, you use a

regular expression to match the pattern used in file names.
v When you create a Boolean expression in a component and you select the Like

operator, you can use a regular expression to set the criteria for comparison.

Opportunity Detect uses the Streams standard toolkit for matching regular
expressions. Opportunity Detect supports the POSIX extended regular expressions
standard.

The regular expression must conform to the Streams Processing Language
requirements, described here: https://www-01.ibm.com/support/
knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.spl-language-
specification.doc/doc/primitivetypes.html

Take care that the pattern you specify exactly matches your intent. Some level of
testing is always advisable to verify that your patterns are actually matching the
required expressions. You can use a trial and error process to design patterns,
starting with low complexity and changing them bit by bit to achieve the required
result. Pay particular attention to escaping backslashes.

Special characters

Here is a summary of special character usage in POSIX regular expressions.
v Period (.) : Matches any character.
v Anchors (^, $) : The (^) anchor defines the start of the expression, and the ($)

anchor defines the end of the expression.
v Asterisk (*) : A quantifier that matches a single character or group of characters

any number of times.
v Plus (+) : A quantifier that matches a single character or a group, one or more

times.
v Question mark (?) : A quantifier that represents optional items.

Bracket expressions

A bracket expression represents a class of characters, any one of which could be a
match a single character. For example [a-c] is a bracket expression that will match
any of the characters a, b, or c. For example: the regex [a-c]+ will match aaa, abc,
ca, etc; or any string containing a sequence of at least one character from the set a,
b, or c followed by any number of characters also from that set.

There are other forms of bracket expressions. For example, [a-c] could be also
specified as [abc]. Within a bracket expression, there are collating elements. It has
the form [.col.]. (There might be other forms.) A collating element is a character
or group of characters that act as a single character in a bracket expression. For
example, if [.ae.] is a collating element, then it can be used within a bracket
expression [[.ae.]bc], which states: match any of the characters "ae", b, or c. In
other words, it forces ae to be treated as a single character.

© Copyright IBM Corp. 1996, 2016 67

https://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/primitivetypes.html
https://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/primitivetypes.html
https://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/primitivetypes.html

Table 24. Character classes

POSIX Description ASCII

[[:alnum:]] Alphanumeric characters [a-zA-Z0-9]

[[:alpha:]] Alphabetic characters [a-zA-Z]

[[:blank:]] Space and tab [\t]

[[:cntrl:]] Control characters [\x00-\x1F\x7F]

[[:digit:]] Digits [0-9]

[[:graph:]] Visible characters (that is, anything except
spaces, control characters, etc.)

[\x21-\x7E]

[[:lower:]] Lowercase characters [a-z]

[[:print:]] Visible characters and spaces (that is, anything
except control characters, etc.)

[\x20-\x7E]

[[:punct:]] Punctuation and symbols [!"#$%)’()*+,-./:;<=>?@[\
]^_`{}~]

[[:space:]] All whitespace characters, including line
breaks

[\t\r\n\v\f]

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hexadecimal digits [A-Fa-f0-9]

Quantification

The question mark makes the preceding token in the regular expression optional.
For example, colou?r matches both colour and color.

The star (*) tells the engine to attempt to match the preceding token zero or more
times. The plus sign (+) tells the engine to attempt to match the preceding token
one or more times.

An additional quantifier allows you to specify how many times a token can be
repeated. The syntax is {min,max}, where min is zero or a positive integer
indicating the minimum number of matches, and max is an integer equal to or
greater than min indicating the maximum number of matches. If the comma is
present but max is omitted, the maximum number of matches is infinite.

For example:
v {0,1} is the same as ?

v {0,} is the same as *

v {1,} is the same as +

Omitting both the comma and max tells the engine to repeat the token exactly min
times.

You could use \b[1-9][0-9]{3}\b to match a number between 1000 and 9999.
\b[1-9][0-9]{2,4}\b matches a number between 100 and 99999. Notice the use of
the word boundaries.

Grouping

Single characters, or expressions matching single characters, enclosed in
parentheses (round brackets), are treated as a regular expression matching a single

68 IBM Opportunity Detect User's Guide

character. That is, quantification and other rules apply to the group in the
parentheses as a whole.

Alternation

Two regular expressions separated by the special character vertical-line ('|')
match a string that is matched by either.

For example, the regular expression "a((bc)|d)" matches the string "abc" and the
string "ad".

Single characters, or expressions matching single characters, separated by the
vertical bar and enclosed in parentheses, are treated as a regular expression
matching a single character.

Example for file name matching

You might create the following regular expression to match timestamp suffixed file
names used with the Real time file connector.

Detect\.a\.trans\.[0-9]{8,14}

This expression matches file names with the common prefix Detect.a.trans and
ending with timestamp digits of length greater than 8 and less than 14. This is
done because file names can have 8 digits for the basic date (4 for year, 2 for
month, 2 for date) and 6 extra digits for more granular timestamps (hh:mm:ss).
Detect.a.trans.20100901
Detect.a.trans.20100908
Detect.a.trans.20100922
Detect.a.trans.20101001
Detect.a.trans.20101008
Detect.a.trans.20101022
Detect.a.trans.20101201
Detect.a.trans.20101208
Detect.a.trans.20101222
Detect.a.trans.20101222
Detect.a.trans.20101223040506
Detect.a.trans.20101223033240

Useful links for POSIX regular expressions
v OpenGroup POSIX regular expression specification:

http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
v http://www.regular-expressions.info/posix.html
v Wikipedia regular expressions:

https://en.wikipedia.org/wiki/Regular_expression#POSIX_basic_and_extended
v Wikibooks POSIX regular expressions:

https://en.wikibooks.org/wiki/Regular_Expressions/
POSIX_Basic_Regular_Expressions

Chapter 10. Regular expressions in Opportunity Detect 69

http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
http://www.regular-expressions.info/posix.html
https://en.wikipedia.org/wiki/Regular_expression#POSIX_basic_and_extended
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions

70 IBM Opportunity Detect User's Guide

Chapter 11. Date, Math, and Boolean expression components

Expression components evaluate customer data and return a value that can be
used by other components. You can create similar logic by using inline expressions
within components, but creating an expression component for frequently used
calculations allows you to re-use this logic.

For example, you might want to create a Date expression that returns a date that is
three weeks before the current date. You could use this component in multiple
workspaces by copying it with a component reference.

When you configure expression components, you use the Expression Builder,
which provides options appropriate for the expression type.

There are three expression components.
v Date
v Math
v Boolean

Date components and dates in inline expressions

Date components return a single calendar date.

To create a date in a Date component, you select a date value as the first operand
in the Expression Builder, and then add or subtract specified time periods. The
date expression always has exactly one date value and one time period.

To create a rolling date in a Date component, you select Now for the first operand.
For example, the expression Now - Period(1, Week) equals one rolling week prior
to Now as defined in the trigger system. The expression Now - Period(1, Day)
equals one rolling day prior to Now as defined in the trigger system.

To create a calendar date, you can use a time constant in a Date component or an
inline expression, depending on the result you want to obtain. For example,
Beginning of Current Week is the time constant for the beginning of the current
calendar week, relative to Now as defined in the trigger system. You can use
Beginning of Current Week in the following ways.
v To obtain the beginning of two calendar weeks ago, use a Date component. In

the date expression, select Beginning of Current Week as the first operand and
subtract a one week time period.

v To obtain the beginning of the current calendar week, use an inline expression
within a component. For example, in a Select component, you use a WHERE
clause to compare Beginning of Current Week with a transaction date.
You cannot specify the beginning of the current calendar week with a Date
component. The Date component can obtain the transaction date in an
expression, but the only thing it can do with it is add or subtract some time
span.

Related concepts:
Chapter 9, “Building expressions using the Expression Builder,” on page 63

© Copyright IBM Corp. 1996, 2016 71

72 IBM Opportunity Detect User's Guide

Chapter 12. Simple components

Trigger systems in IBM Opportunity Detect all have Simple components as their
basic building block. Simple is the only component type that is triggered by
incoming transactions in the transaction data feed, and not by an event produced
by another component. This is why every trigger system requires at least one
Simple component.

Simple components watch for the occurrence of a single transaction that matches
specified criteria. A Simple component fires a positive event when the criteria are
met.

A Simple component must contain at least one comparison to a transaction data
source field, in the form of a Boolean expression. This Boolean expression can be
either an inline expression or a reference to an expression component. Without a
transaction, the Simple component would never fire.

Simple component example

In its most basic form, the Simple Event component compares one field from a
transaction data source to a specified value.

For example, you could look at the value of the field Transaction Code found in
the data source Account Transactions and test to see if it matches the string
constant ACH Credit.

© Copyright IBM Corp. 1996, 2016 73

74 IBM Opportunity Detect User's Guide

Chapter 13. Action components

The purpose of an Action component is to send a notification that a specified
behavior has occurred by writing data to a database or sending the data to a web
service. Like all event components, an Action component fires and writes its
outcome when it receives an incoming event from another event component.

The audience ID is automatically included in each record that the Action
component writes. In addition, you can include a static message and values created
in the Value Selector.

The data source connector that you choose for the outcome determines the format
and location of the data that the Action component writes. When you choose the
Table type of data source connector, you can also map the connector to the desired
database table.

Action component examples

Examples of the outcome data that an Action can write include the following.
v Customer ID
v The identifier of the Action component that caused the outcome to be written
v The timestamp when the Action component triggered
v A message consisting of a string you specify and optional additional information

derived from the data available in the trigger system.

The following diagram illustrates the use of the Action component in a basic
trigger system configured as follows.
v A Simple component fires when a transaction data source contains a transaction

of type "purchase" with an SKU that indicates that the customer purchased a
printer.
These criteria are specified in the Firing Condition panel using inline
expressions.

v An Action component has the Simple component as its Incoming Event.

When the Simple component receives a transaction that meets the criteria set in its
Firing Condition, the trigger system does the following.
v The Simple component fires and sends an event that activates the Action

component.
v The Action component fires and writes an outcome that consists of the string

"Printer purchase" and the customer ID.
The outcome is specified in the Outcome panel.

© Copyright IBM Corp. 1996, 2016 75

Outcome fields
In Action components, you can define the data that is written to the database or
web service.

Table 25. Outcome fields

Field Description

Message You can enter any string, which will be written to the database or
web service when the Action component fires.

Additional
Information

You can use the value selector to choose data from any data source
or component that is available to the Action component.
Availability depends on the component's data source dependency
constraints.

You can attach a label to each outcome value that you specify.
These labels become the names of fields in the outcome. When you
use a queue connector for outcome data, a label is required.

When you include data from a Container or Select component, you
can select Column or Tabular as the data type. Use Column for
fields that are aggregated into a single value, and Tabular for
records that contain a set of fields.

76 IBM Opportunity Detect User's Guide

Chapter 14. Select components

Select components perform operations that are similar to the SQL SELECT
database query with optional WHERE clauses. A Select component holds a set of
records that you define, and on which you can perform further operations.

Select components can use data from the following sources.
v Container components
v Other Select components
v Lookup tables

You can give meaningful names to the fields in the records that Select passes to
downstream components.

You can also apply functions to the fields, and group and sort the fields to further
filter the results.

When you use more than one WHERE clause to refine the record set, you can
specify whether to evaluate them using either AND or OR.

Fields in the Output panel of the Select component editor

Table 26. Fields in the Output panel of the Select component editor

Field Description

Name Name of the field in the originating data source. Read only.

Data Type Data type of the originating field. Read only.

Output Name Name of the field in the record that Select passes on to downstream
components. You can supply a different name, or retain the original
name.

When the Trigger Table data source connector is used to process the
trigger system that contains the Select, these labels become the
names of fields in the trigger table. Optional.

Output Function Function to apply to the data in this field. Optional.
Tip: For help with functions, see the related topics.

Output Sort You can apply an ascending or descending sort to the records.
Optional. When multiple fields have sort applied, the sort is
applied based on the order in which the rows are shown.

Primary Date If selected, the field is designated as a timestamp field.

Related concepts:
“Functions in Opportunity Detect” on page 60

© Copyright IBM Corp. 1996, 2016 77

78 IBM Opportunity Detect User's Guide

Chapter 15. Container and Container Manipulator components

Container components store data that you define for a specified length of time.
Container components depend on Container Manipulator components to feed them
the data that they store.

Container components
Container components provide a way to create a data structure similar to a
database table in your trigger systems. You use the Container to define the table
that holds the data inserted by a Container Manipulator.

Optionally, you can also define the following.
v The aggregation, or database function, applied to each field in the table
v The number of records that are retained and how long to retain them

The Container never fires an event.

Container usage

Containers can store data from multiple data sources. A single Container can also
be used by multiple trigger systems.

Multiple data sources

Here is an example of a trigger system with a Container that holds data from two
data sources. Suppose you have transaction data from two channels: your web site
and in-store purchases. Fields in the data from each channel may differ, but both
channels include the following fields.
v date of purchase
v SKU number
v quantity
v price

You could use a single Container to hold data from both feeds, and use this
Container in a trigger system designed to respond when a customer's activity
declines. The trigger system illustrated by the following diagram evaluates the
average customer spending from two time periods, and responds when spending
decreases.

© Copyright IBM Corp. 1996, 2016 79

Multiple trigger systems

Containers can be designed to be useful within a single trigger system, or across
multiple trigger systems. For example, a Container could be limited to hold
information on only the color and size of garments a customer purchases. You
might draw data from this Container for use within a single trigger system.

In contrast, you could define a Container that holds as much data as is required
across all the trigger systems that will use it, and then share the Container across
trigger systems.

You should consider processing efficiency when deciding whether to create a
limited or broad Container. Containers that are expected to hold a very high
number of records should generally limit the number of fields per record.

Types of data that a Container can hold

The fields you define in Container components can hold any of the following data
types.
v Boolean
v Currency
v Date
v Double
v Integer
v String

Table Definition

For each field you want to define, you select a data type and an aggregation
function to apply to the field. You also give the field a name.

80 IBM Opportunity Detect User's Guide

In a Container Manipulator, you specify what data is inserted into the fields you
define in the Container.

How aggregation works

Use aggregation to apply commonly used database functions to reduce multiple
data items to a single data item.

When you enable aggregation in a Container component, rows are grouped
according to the time span you specify in the Aggregate by field in the
Aggregation panel. For example, if the time unit is Day, then the timestamps are
used to identify which calendar day a row belongs to, and there is one group for
each day. If the time unit is Week, there is one group for each week, and so on.

Aggregation functions are performed on all the fields of each row within a time
span group. You set the function used on each field in the Aggregation column in
the Table definition panel. The Timestamp field is the exception to this in that it is
automatically set to the Maximum function and you cannot change it.

For example, suppose you have enabled aggregation and the following functions
are applied to the fields.

Table 27. Example container

Field Aggregation

timestamp Maximum

integerField Sum

doubleField Minimum

stringField Last Inserted

This aggregation is the equivalent to applying the following select statement to the
example container.
SELECT MAX(timestamp),
SUM(integerField),
MIN(doubleField),
LAST(stringField)
WHERE timestamp => [beginning of time unit] AND timestamp < [end of time unit]

This select statement is repeated for every group of rows that falls within a time
unit. Each statement results in a single row, one per time unit group. These rows
are the new contents of the container.

If the example above had used the Group by function for stringField instead of the
Last function, the select statement would look like this.
SELECT MAX(timestamp),
SUM(integerField),
MIN(doubleField)
WHERE timestamp => [beginning of time unit] AND timestamp < [end of time unit],
GROUP BY stringField

This results in a single row for every unique stringField value within a time unit
group. With Group by, a time unit group contains multiple rows if there are
multiple unique values in the field where the Group by function is applied.

Chapter 15. Container and Container Manipulator components 81

Available aggregation methods

The aggregation methods available for a field depend on the data type. The
following table describes all of the aggregation methods.

Table 28. Aggregation methods

Aggregation method Description

Last Inserted Use the most recently inserted value in the field.

Minimum Use the lowest value in the field. In string fields, this returns the
string that comes first in an alphabetical sort.

Maximum Use the highest value in the field. In string fields, this returns the
string that comes last in an alphabetical sort.

Sum Use the total of the values in a numerical field.

And For Boolean values, use the false value if one is present; if all
values are true, use the true value.

Or For Boolean values, use the true value if one is present; if all values
are false, use the false value.

Aging

In the Aging panel of the Container component, you can specify how long data is
retained. You select the time unit and the number of time units, such as 2 weeks or
1 day. You also specify whether the time span is calculated on a calendar or rolling
basis.

Overflow

In the Overflow panel of the Container component, you can set a limit on the
number of records, or rows, that the component stores. You can specify whether to
delete rows based on the lowest or highest value of any defined field that you
specify.

When a maximum number of rows is reached, the overflow settings determine
what happens when a request is made to store another row. The options in the If
the maximum number of rows is exceeded delete field are as follows.
v Minimum - deletes the item containing the smallest value in the specified field.
v Maximum - deletes the item containing the largest value in the specified field.

Detailed Container example

Suppose that your goal is to offer customers a discount for printer paper when
they purchase more than $200 in printer paper in a calendar month. You can set up
a trigger system as follows.
v Create a Simple Event component that fires an event when it receives printer

paper purchase data.
v Create a Container component to store dollar amounts of printer paper

purchases.
– In the Aging panel, set a calendar month time span to set a limit on the

length of time that the data is retained. The Container is cleared at the end of
every month.

v Create a Container Manipulator, CM1, that listens for the Simple component
event.

82 IBM Opportunity Detect User's Guide

– In the Action panel, specify that the purchase amount is inserted into the
Container.

v Create an Action component that listens for the CM1 event.
– In the Firing Condition panel, define a Boolean expression that applies the

Sum function to the dollar amount field in the Container and returns True
when the amount is equal to or greater than $200.

– Optionally, add the same Boolean expression in the Additional Information
section of the Outcome panel. This includes the dollar amount in the data
that is written to the Outcome table.

Each time a customer purchases printer paper during a calendar month, the dollar
amount is saved. If the total amount is equal to or greater than $200 in any month,
the Action component fires for that customer.

Tip: This example uses a limited Container that contains only the data needed for
the single trigger system described in this scenario.

Related concepts:
“Functions in Opportunity Detect” on page 60
“Container Manipulator components”

Container Manipulator components
You use Container Manipulator components to add and delete data in Container
components.

In the Container Manipulator component, you can map fields from a data source
to the fields you defined in the Container.

Firing conditions

Firing conditions are optional. If no firing conditions are set, the Container
Manipulator fires a positive event when it completes its processing.

If firing conditions are specified, the Container Manipulator evaluates the data to
see whether it meets the firing condition criteria. If the data satisfies the criteria,
the Container Manipulator performs its defined operations on a specified
Container component and then sends its event. If the data does not satisfy the
firing condition criteria, the Container Manipulator does nothing.

Chapter 15. Container and Container Manipulator components 83

A Container Manipulator component can also be configured to send a negative
event when the criteria in its firing condition are not met.

Tip: The only required field in a Container Manipulator is the Incoming Event.
Therefore, you can use a Container Manipulator without referring to a Container
component. For example, you can create one or more Boolean expressions in the
Firing Condition panel that control when the Container Manipulator fires its event.

Delayed insert

Delayed insert provides a special way to insert a value into a container. When you
choose the Delayed insert option, the system adds the values to the contents of the
Container only after all logic in the trigger system has finished processing the
transaction.

For example, suppose you have a trigger system like the one shown in the
following diagram. It includes a Container that holds purchase amounts. You want
to detect any purchase that is larger than the previous purchases made by that
customer. If you perform a delayed insert, you can check the incoming purchase
against previous purchases before the incoming purchase is inserted into the
Container.

Detailed Container Manipulator example

Suppose your goal is to offer a discount to customers who purchase $500 or more
within a 6 week period. You can set up a trigger system as follows.
v Create a Simple Event component that fires an event when a customer makes a

purchase.
v Create a Container to store dollar amounts of purchases.

– In the Aging panel, set a rolling six month limit on the amount of time to
retain data, to prevent overload.

v Create a Container Manipulator, CM1, that listens for the Simple component
event.
– In the Action panel, specify that the purchase amount is inserted into the

Container.

84 IBM Opportunity Detect User's Guide

Tip: Unlike the simplified example shown in the detailed Container example,
this Container holds more data than is needed for the current scenario, so
additional components are needed to filter the data.

v Create a Date component that returns a date of 6 weeks before the current date.
v Create a Select component.

– In the Select panel, pull the purchase data from the Container.
– In the Where panel, use the date returned by the Date component to limit the

data to the last six weeks.
v Create an Action component that listens for the CM1 event.

– In the Firing Condition panel, define a Boolean expression that applies the
Sum function to the dollar amount field in the Select and returns True when
the amount is equal to or greater than $500.

Each time a customer makes a purchase, the dollar amount is saved and the total
purchases for the last six weeks are evaluated for that customer. When the amount
is equal to or greater than $500, the Action component fires for that customer.

Related concepts:
“Container components” on page 79

Inserting data into a Container component with a Container
Manipulator

Use this procedure to use a Container Manipulator component to insert data into a
Container component.

Before you begin

Your workspace should contain the Container component where you want to insert
data. Your workspace should also contain any other components whose data you
want to use when defining the data to be inserted.

Procedure
1. Open a Container Manipulator editor, give your component a name, and select

an incoming event.

Chapter 15. Container and Container Manipulator components 85

2. In the Action panel, select Insert as the action, select the desired Container
component, and click Add.
The Insert Mapping window opens, listing the fields defined in the selected
Container component.
All Container components automatically contain a Timestamp field, mapped to
the Now time constant.

3. Click the link in each Value field and use the Value Selector to define the data
that the Container stores in each listed field.
You can choose data from any data source or component that is available to the
Container Manipulator. Availability depends on the component's data source
dependency constraints.

4. Optionally, add one or more firing conditions.
If one or more firing conditions exist, the Container Manipulator does not
perform its operations or fire its event unless all the conditions are met.

Deleting data from a Container component with a Container
Manipulator

Use this procedure use a Container Manipulator component to delete data from a
Container component.

Before you begin

Your workspace should contain the Container component from which you want to
delete data.

Procedure
1. Open a Container Manipulator editor, give your component a name, and select

an incoming event.
2. In the Action panel, select Delete as the action, select the desired Container

component, and click Add.
A row is automatically added to the action list. By default, this action deletes
all data from the Container.

3. Optionally, add a WHERE clause to further specify what data is deleted.
a. Click the link in the Value field of the Action list to open the Where

window.
b. In the Where window, select a field from the drop-down list.

The options include all of the fields in the selected Container.
c. Click Add.

The field is added to the list in the Where window.
d. Click the link next to the field in the list to define the data that the value in

the field is compared to, and the operator used in the comparison.
You can choose data from any data source or component that is available to
the Container Manipulator. Availability depends on the component's data
source dependency constraints.

4. Optionally, add one or more firing conditions.
If one or more firing conditions exist, the Container Manipulator does not
perform its operations or fire its event unless all the conditions are met.

86 IBM Opportunity Detect User's Guide

Chapter 16. Pattern components

You can use Pattern components to test whether one or more events for a given
customer occur over a period of time. A Pattern component collects events that
match its criteria and stores these events in the customer's state history. When the
specified pattern of events is met, the pattern drops those events from state history
and fires a positive event.

Pattern components use a time span to set a boundary around the events it
evaluates against its criteria. When you specify the time span, you can choose
between Rolling and Calendar spans.

If events held in state history age out of this window, they are dropped and are no
longer evaluated against the pattern criteria.

Pattern component types
There are three types of pattern components: Match All, Counter, and Weighted
Counter.

The three pattern types work as follows.

Match All
If all of the specified incoming events occur, the pattern fires a positive
event.

Counter
If the specified incoming events occur a specified number of times, the
pattern fires a positive event.

For example, you might look for cases where a customer makes 3 deposits.

Weighted Counter
You assign a score to each incoming event that you specify, and the pattern
fires if a specified total score is reached.

Unlike the Match All pattern, all of the specified incoming events do not
have to occur; the total score is what determines whether the pattern
criteria are met.

For example, suppose you configure the pattern as follows.
v You select incoming events and assign the following scores.

– Incoming event 1 has a score of 1.
– Incoming event 2 has a score of 2.

v You specify a Weighted Counter value of 10.

The event pattern would be true in any of the following cases.
v Incoming event 1 occurs 10 times.
v Incoming event 1 occurs 2 times and incoming event 2 occurs 4 times.
v Incoming event 2 occurs 5 times.

Sequence
You can specify a series of incoming events, and set the number of times
the complete sequence of events must occur before the Sequence Pattern
component fires.

© Copyright IBM Corp. 1996, 2016 87

Negative event modes in Pattern components
By default, a Pattern fires a positive event when its criteria are met, but it does not
fire a negative event when the aging out of an event creates a negative condition.
However, you can configure the behavior to include negative events.

When you enable negative events, the component alternates between firing
positive and negative events, starting with a positive event.

You can select the mode for negative events: Immediate or Delay.
v In Immediate mode, the actions are as follows.

– When the Pattern component fires a positive event, it retains the events that
fulfilled its criteria in the customer's state history. They continue to be used in
evaluating the collection of events against the pattern criteria.

– The component fires a negative event as soon as the pattern is no longer
fulfilled by collection of events being held for the customer in state history.

– The component continues to listen for incoming events and fires a positive
event when the pattern is again fulfilled.

v In Delay mode, the actions are as follows.
– When the Pattern component fires a positive event, it drops the events that

fulfilled its criteria from the customer's state history.
– The delay period, which is specified in the duration field, begins immediately.

During the delay period, the component ignores incoming events.
– At the end of the delay period, the component fires a negative event.

When you run a workspace that includes a Pattern component configured to use
the negative event mode, on the Batch Run tab of the workspace, you must set the
Inactivity Mode and Inactivity Date fields.

Inactivity Mode
Set this value to On for workspaces with Forward Inactivity components.

Inactivity Date
Set this to a value greater than the latest transaction date in the last
transaction file being processed.

Related reference:
“Pattern Behavior fields” on page 94

Calendar time span in Pattern components
You specify the calendar time span for the pattern using the Time Span section of
the component editor.

The timestamp on the event, not the time when the event was processed,
determines whether the event falls within the time span.

The start and end points of the calendar time span are fixed. When the calendar
time span is over, the span resets.

The calendar time span works in conjunction with calendar time units, which have
defined start and end points. These start and end points affect the behavior of

88 IBM Opportunity Detect User's Guide

calendar time spans. For example, if the time unit is weeks, the calendar time span
ends on Saturday at one second before midnight, and the next time span begins at
midnight on Sunday.

The following examples illustrate how the calendar time span works with positive
and negative events in Pattern components.

Example: Calendar time span, negative events not enabled

The following diagram illustrates how a calendar time span works when used in a
Counter Pattern component where negative events are not enabled.

In the example, the component fires a positive event as soon as its criteria are met
within the specified time span. Then it drops the events that caused the component
to fire. When the time span expires, it resets.

Example: Calendar time span, negative events enabled in
Immediate mode

The following diagram illustrates how a calendar time span works when used in a
Counter Pattern component where negative events are enabled, and Immediate
mode is selected.

In the example, as soon as the component's criteria are met, the component fires a
positive event and drops the events that caused the component to fire. When the
time span resets to the next calendar period, the component fires a negative event
immediately.

Chapter 16. Pattern components 89

Example: Calendar time span, negative events enabled in Delay
mode

The following diagram illustrates how a calendar time span works when used in a
Counter Pattern component where negative events are enabled in Delay mode, and
a time span of 1 calendar week and a Delay mode of 2 calendar days are selected.

In the example, the actions are as follows.
v The event that completes the component's pattern has a timestamp of

Wednesday. The component fires a positive event immediately and drops all
events from the customer's state history.

v The 2 day delay period begins. During the delay period, eligible incoming
events are ignored.

v At the end of the delay period, on Friday, the component fires a negative event
and begins to collect events again.

v The time span resets at midnight on Sunday (not shown in the diagram).

90 IBM Opportunity Detect User's Guide

Related reference:
“Time Spans” on page 56
“Time constants and time units” on page 58

Rolling time span in Pattern components
You specify the rolling time span for the pattern using the Time Span section of
the component editor.

Events must occur within the specified time span to be eligible for evaluation
against the pattern criteria. The start of the rolling time span moves forward in
time, but the span you specify always determines the length of the window.

In contrast to the calendar time span, with the rolling time span, events are
retained after a positive event is fired. They are dropped only when they age out
of the time span.

The timestamp on the event, not the time when the event was processed,
determines whether the event falls within the time span.

Example: Rolling time span, negative events not enabled

The following diagram illustrates how a rolling time span works when used in a
Counter Pattern component where negative events are not enabled.

Chapter 16. Pattern components 91

In the example, as soon as the component's criteria are met, the component fires a
positive event. It drops the events that caused the component to fire. As the time
span rolls forward, the event that ages out is dropped, and the component
continues to collect eligible events.

Example: Rolling time span, negative events enabled in
Immediate mode

In Immediate mode with the rolling time span, the pattern must fire its first
positive event before it ever fires a negative event.

The following diagram illustrates how a rolling time span works when used in a
Counter Pattern component where negative events are enabled, and Immediate
mode is selected.

In the example, after the first positive event is fired, the component retains the
events until they age out. It fires a negative event as soon as an event ages out so
that the pattern is no longer fulfilled. The pattern continues to listen for incoming
events and fires a positive event when the pattern is again fulfilled.

92 IBM Opportunity Detect User's Guide

Example: Rolling time span, negative events enabled in Delay
mode

In Delay mode with the rolling time span, the pattern must fire its first positive
event before it ever fires a negative event.

The following diagram illustrates how a rolling time span works when used in a
Counter Pattern component where negative events are enabled, and Delay mode is
selected.

In the example, after the first positive event is fired, the component drops its
events, the delay period begins, and the component ignores incoming events. It
does not fire the negative event until the delay period you specify is over. At that
point the component begins to listen for incoming events again.

Chapter 16. Pattern components 93

Related reference:
“Time Spans” on page 56

Pattern Behavior fields
Pattern behavior options allow you to enable the pattern to fire a negative event
(by default patterns fire only positive events). They also allow you to delay firing
the negative event.

Table 29. Pattern Behavior fields

Field Description

Incoming events must
occur this many times

This field is available only on the Counter Pattern cand Sequence
Pattern omponents. Enter an integer to specify how many times the
incoming event must occur before the pattern fires a positive event.

Enable negative
events

By default, pattern components send only positive events. This
checkbox enables the pattern to send negative events.

Delay Mode and
Immediate Mode

Delay mode allows you to delay the firing of the negative event for
a specified period of time. For details, see “Negative event modes
in Pattern components” on page 88.

Related concepts:
“Negative event modes in Pattern components” on page 88

94 IBM Opportunity Detect User's Guide

Reset Event fields
You can define reset event when you configure all types of Pattern components.
Optional.

Table 30. Reset Event fields

Field Description

Event Select a positive or negative event, then select the component type
and the component that supplies the event, and click Add.

When the component receives a reset event, all incoming events
that are being held for evaluation against the pattern criteria are
dropped, and the component continues to listen for new incoming
events.

If negative events are enabled, and the last event that the
component fired was positive, when the reset occurs the pattern
fires a positive event.

Chapter 16. Pattern components 95

96 IBM Opportunity Detect User's Guide

Chapter 17. Backward Inactivity and Forward Inactivity
components

You use a Backward Inactivity component when you want to verify that some
event did not occur within a specified period of time prior to an incoming event.
You use a Forward Inactivity component to set a timer when it receives an
incoming event, and optionally to specify another event that turns off the timer.

Backward Inactivity components
When a customer withdraws $10,000 from her account, you might want to
determine whether she has made any other withdrawals larger than $5,000 within
the past two months. For this, you would use a Backward Inactivity component.

The Backward Inactivity component uses the following primary settings.

Triggering event
This is the event that causes the component to execute its logic. The
timestamp of this event is compared with the Blocking event's timestamp
to determine whether the time span between the two events is greater than
the Time span specified in the component.

Time span
The Time span is used in conjunction with the Blocking event. It sets the
period of time prior to the Triggering event that is used as a criterion
against which the system compares the timestamp of the Blocking event.

Blocking event
A Blocking event is an event prior to the Triggering event that the system
evaluates to determine if the timestamp falls within the specified Time
span.

The component functions as follows.
v The Backward Inactivity component stores the timestamp of the most recent

Blocking event.
v When the Triggering event arrives, the component compares the Blocking event

timestamp to the Triggering event timestamp. If the Blocking event timestamp
falls before the backward-looking Time span, or if no Blocking event has been
received yet, the component fires.

v If the Blocking event timestamp falls within the backward-looking Time span,
the component does not fire.

v When no Blocking event is specified in the Blocking Event panel, you must
choose the Use the firing of this component as a blocking event option
described below. The component fires when it receives the Triggering event,

Additional options

In addition, you can use either or both of the following options.

Use the firing of this component as a blocking event
If you select Use the firing of this component as a blocking event, then
the timestamp of the most recent firing of this component is saved as the
most recent Blocking event timestamp.

© Copyright IBM Corp. 1996, 2016 97

For example, suppose you have a trigger system where a component
named C_1 sends its event as the triggering event to BI_1, a Backward
Inactivity component that uses this option.

When C_1 fires for the first time, BI_1 fires, because BI_1 has never fired
before, and its blocking event timestamp has not yet been set. After BI_1
fires, the firing event timestamp of BI_1 is then used as the blocking event
timestamp. The next time C_1 fires, BI_1 compares the blocking event
timestamp to the timestamp of C_1, and BI_1 fires again if the difference is
greater than the Time span set in BI_1.

Use creation date if no blocking event
By default, if the Triggering event occurs, and no Blocking event occurred
before the triggering event, the component fires. If you check Use creation
date if no blocking event, the component uses its creation date as the start
of the time span if the Blocking event did not occur.

Related reference:
“Time constants and time units” on page 58

Examples of Backward Inactivity Components
This section provides examples of Backward Inactivity components.

Example 1: Store purchase after no online purchases

When a customer makes a store purchase, the Backward Inactivity component
evaluates the data for that customer to see if he made an online purchase in the
previous 6 months. If an online purchase has not occurred in the past six months,
the component fires for that customer.

This component has the following parameters.
v Triggering event-customer makes a store purchase
v Blocking event-online purchase
v Time span-prior 6 months

Example 2: First major deposit after a long interval

When a customer makes a major deposit, the Backward Inactivity component
evaluates the data for that customer to see if she made any other deposits or
withdrawals in the past month. If these activities have not occurred in the past
month, the component fires for that customer.

This component has the following parameters.
v Triggering event-make a major deposit
v Blocking event-major deposit
v Time span-1 month

Forward Inactivity components
In their simplest form, Forward Inactivity components set a timer. They can also
look for the absence of a specified event within a specified time span following the
event that activates the component. If the specified event does not occur, the
component fires.

98 IBM Opportunity Detect User's Guide

For example, when a customer makes a purchase, you might want to determine
whether he returns within the next month. For this, you would use a Forward
Inactivity component.

The Forward Inactivity component requires the following settings.

Incoming Event
The event that activates the component. The timestamp of the incoming
event is used as the starting point of the time span.

Time Span
The period of time after the timestamp of the incoming event before the
component fires its positive event.

In addition, on the Batch Run tab of the workspace, you must set the Inactivity
Mode and Inactivity Date fields when you run the workspace.

Inactivity Mode
Set this value to On for workspaces with Forward Inactivity components.

Inactivity Date
Set this to a value greater than the latest transaction date in the last
transaction file being processed.

In the component editor, you can set additional specifications to modify the way
the component behaves after it has been activated by the incoming event.

The reset option

You can add an optional reset to the component by checking the Reset the timer
each time the incoming event occurs box in the Incoming Event panel. It changes
the behavior of the Forward Inactivity component as follows.

Reset option is not enabled
After the component is activated by an incoming event, the component
ignores any additional instances of the incoming event that have a
timestamp that falls within the time span, until the time span is over.
When the time span is over, the component fires its event.

Reset option is enabled
After the component is activated by an incoming event, if the component
receives an additional instance of the incoming event that has a timestamp
that falls within the time span, it resets the time span.

Canceling event

You can set an optional canceling event. If a canceling event occurs after the
component is activated, it stops the clock on the time span and the component can
again respond to an incoming event. The timestamp of the canceling event is used
as the starting point for the reset time span.

Additional time settings

You can use the settings in the Effective Window and Firing Frequency panels to
refine the component's behavior.

Chapter 17. Backward Inactivity and Forward Inactivity components 99

Rolling time span in Forward Inactivity components
You can set either a calendar or rolling time span in Forward Inactivity
components.

For both calendar and rolling time spans, the incoming event timestamp is used as
the starting point of the time span.

Rolling time span

The rolling time span works differently in Forward Inactivity components from the
way it works in Pattern components. The length of the span remains constant, but
the start date does not move forward in time as it does with a Pattern.

In the example diagram, a Forward Inactivity has a rolling time span of two
weeks, and the component is activated by a transaction with a timestamp of
Thursday, August 4. No canceling event is specified.

The time span expires and the component fires 14 days later, on Thursday, August
18.

The component in the following diagram ignores any additional incoming events
because reset is not enabled.

Rolling time span with reset

If reset is enabled, the component continues to listen for incoming events even
after it is activated.

In the example diagram, a Forward Inactivity has a rolling time span of two
weeks, and the component is activated by an event with a timestamp of Thursday,
August 4. No canceling event is specified.

With reset enabled, the component would reset its time span if a second incoming
event arrives with a timestamp that falls within the time span. Suppose this
timestamp is Wednesday, August 10 at 9:47AM. The time span resets, and the first
week of this reset time span ends at 9:47AM on Wednesday, August 17. The time
span expires and the component fires on at 9:47AM on August 24.

100 IBM Opportunity Detect User's Guide

Related reference:
“Time Spans” on page 56
“Effective Window” on page 56
“Firing Frequency” on page 56
“Time constants and time units” on page 58

Calendar time span in Forward Inactivity components
You can set either a calendar or rolling time span in Forward Inactivity
components.

For both calendar and rolling time spans, the incoming event timestamp is used as
the starting point of the time span.

Calendar time span

In the example diagram, a Forward Inactivity component has a time span of two
calendar weeks, and the component is activated by an event with a timestamp of
Thursday, August 4. No canceling event is specified.

The first week of this calendar time span ends at midnight on Sunday, August 7,
only three days later. When the second week ends at midnight on Sunday, August
14, the time span expires and the component fires. This is because a week as
defined by the time constant always begins at midnight on Sunday.

The component in the example ignores any additional incoming events because
reset is not enabled.

Chapter 17. Backward Inactivity and Forward Inactivity components 101

Calendar time span with reset

If reset is enabled, the component continues to listen for incoming events even
after it is activated.

In the example diagram, a Forward Inactivity has a calendar time span of two
weeks, and the component is activated by an event with a timestamp of Thursday,
August 4. No canceling event is specified.

With reset enabled, the component would reset its time span if a second incoming
event arrives with a timestamp that falls within the time span. Suppose this
timestamp is Wednesday, August 10. The time span resets, and the first week ends
at midnight on Sunday, August 14, only four days later. When the second week
ends at midnight on Sunday, August 21, the time span expires and the component
fires.

Related reference:
“Time Spans” on page 56
“Effective Window” on page 56
“Firing Frequency” on page 56
“Time constants and time units” on page 58

Examples of Forward Inactivity components
This section provides examples of Forward Inactivity components.

Example 1: No additional deposits in one month

On June 10, a customer makes a complaint through a bank's call center. The
Forward Inactivity component is activated and starts monitoring to determine
whether that customer makes any deposits. If the customer makes a deposit, the
Forward Inactivity does not fire. If the customer does not make any deposits, the
component fires for that customer so that a follow-up can be initiated.

This component is configured as follows.
v Incoming event-customer makes a complaint
v Canceling Event-customer makes a deposit
v Time Span-one rolling month

102 IBM Opportunity Detect User's Guide

Example 2: No additional deposits this month

On June 10, a customer makes a deposit. The Forward Inactivity component starts
monitoring to determine whether that customer makes another deposit. If another
deposit does not occur by July 1, the component fires for that customer.

This component is configured as follows.
v Incoming Event-customer makes a deposit
v Canceling Event-customer makes a deposit
v Time Span-one calendar month

Chapter 17. Backward Inactivity and Forward Inactivity components 103

104 IBM Opportunity Detect User's Guide

Chapter 18. Trend, Spike, and Exceeded Standard Deviation
components

Trend components detect changes in activity measured over defined periods of
time. Before you can create a trend component, your trigger system must include a
Container or Select component that the trend can use as a data source.

To be available for use in a trend component, a Select component must have a
primary timestamp field in the output.

Three components track trends.

Trend component
Detects simple trends. For example, the average rolling monthly balance
has been increasing or decreasing by 10% over the last three months.

Spike component
Detects an unusually large change in activity. For example, a deposit is
50% larger or smaller than any other deposit made in the last 3 months.

Exceeded Standard Deviation (ESD) component
Detects activity outside of the standard variance for a specified time
period. For example, a monthly balance that is greater than or less than the
average monthly balance for the past 12 months by two standard
deviations.

For simplicity, when this document refers to all three types of trend component as
a group, it uses the term "trend components."

Trend components never fire on their own. They are used internally by Action or
Container Manipulator components. You can configure an Action or Container
Manipulator component to fire when a Trend Component evaluates to true.

A trend component can reference a single numeric value from the following
components.
v Container
v Select

About time boundaries for trends
Trend components can filter the data in a Container or a Select component based
on time periods. Some of these time periods have a natural definition (such as
calendar day) and some do not (such as rolling month).

There are two types of time periods: calendar and rolling.

Rolling periods
Start at the time of day noted in the timestamp of the transaction, and go
back to that same time of day on an earlier day. The interval (such as day,
week, or month) can be specified.

Calender periods
Calendar days, calendar weeks, and calendar months always begin and
end at midnight.

© Copyright IBM Corp. 1996, 2016 105

When you define a trend component, you select calendar or rolling for only the
last time period, and Opportunity Detect adjusts all previous time periods
accordingly. For example, if a spike period is rolling, then the historical period is
also rolling. If the spike period is calendar, then the historical period is also
calendar.

Rolling bounded periods
Under certain conditions, the system imposes special rules to define boundaries for
rolling time periods.

Rolling bounded periods are calendar weekly or monthly periods that do not
necessarily start on the first day of the week or the first day of the month.

Rolling bounded periods are required to tight-fit historical periods to a spike
period of a calendar day or in some cases a calendar week. The spike period is
used in Spike and Exceeded Standard Deviation components.

Time boundaries for trend components
The following table describes the time boundaries that can be used in trends, and
explains the rules that define the boundaries of the trend time periods. All
examples are shown with granularity of 1 second.

Note: The rolling bounded time boundaries do not appear as settings in the user
interface. However, they are included here to explain how the time boundaries
behave when the system requires them to tight-fit historical periods to a spike
period of a calendar day or in some cases a calendar week.

Time Boundary Description

Calendar Day Includes midnight of the transaction day up to but not including
midnight of the next day.

For example: If the current transaction is dated 2009-03-17 09:22:00,
then the boundaries of its calendar day are 2009-03-17 00:00:00 -
2009-03-17 23:59:59 inclusive

Rolling Day Includes everything greater than this second of the previous day up to
and including the second of this current transaction.

If the current transaction is dated 2009-03-17 09:22:00, then the
boundaries of its rolling day are 2009-03-16 09:22:01 - 2009-03-17
09:22:00 inclusive

Calendar Week Includes Sunday midnight up to but not including midnight of the
following Sunday.

For example: If the current transaction is dated (Tuesday) 2009-03-17
09:22:00, then the boundaries of its calendar week are (Sunday)
2009-03-15 00:00:00 - (Saturday) 2009-03-21 23:59:59 inclusive

Rolling Week Includes everything greater than this second of the previous week up
to and including the second of this current transaction.

If the current transaction is dated (Tuesday) 2009-03-17 09:22:00, then
the boundaries of its rolling week are (Tuesday) 2009-03-10 09:22:01 -
(Tuesday) 2009-03-17 09:22:00 inclusive

106 IBM Opportunity Detect User's Guide

Time Boundary Description

Calendar Month Includes midnight of the first of the month up to but not including
midnight of the first of the next month. Note that calendar months
vary in length.

For example: If the current transaction is dated 2009-03-17 09:22:00,
then the boundaries of its calendar month are 2009-03-01 00:00:00 -
2009-03-31 23:59:59 inclusive

Rolling Month Includes everything greater than this second of this day of the month
of the previous month up to and including the exact second of this
current transaction.

For example: If the current transaction is dated 2009-03-17 09:22:00,
then the boundaries of its rolling month are 2009-02-17 09:22:01 -
2009-03-17 09:22:00

Rolling Bounded
Week

Used for historical periods when the spike period is of type calendar.
For a particular day of the week, includes midnight of that day of the
week up to but not including midnight of that same day of the next
week.

For example: If the current transaction is dated 2009-03-17 09:22:00,
then the boundaries of its calendar day are 2009-03-17 00:00:00 -
2009-03-17 23:59:59. Also, the boundaries of the rolling bounded week
that precedes the calendar day are: 2009-03-10 00:00:00 - 2009-03-16
23:59:59

Rolling Bounded
Month

Used for historical periods when the spike period is of type calendar.
For a particular day of the month, includes midnight of that day of the
month up to but not including midnight of that same day of the next
month

For example: If the current transaction is dated 2009-03-17 09:22:00,
then the boundaries of its calendar day are 2009-03-17 00:00:00 -
2009-03-17 23:59:59. Also, the boundaries of the rolling bounded month
that precedes the calendar day are: 2009-02-17 00:00:00 - 2009-03-16
23:59:59

End of month boundaries
The system calculates end of month boundaries as described in this section.

End date 29 through 31

If the end date is 29 through 31, then the end dates of the each previous month are
the same corresponding days of the month unless a month is short and lacks that
day of the month. In that case the end date for the short month is the last calendar
day of the month in that month.

If a month end date reverts to the last day because the month is short of days,
then the month end of the month previous to the shortened month recovers the
lost end days.

For example, if the end date is 3/31, then the end dates of previous months are
2/28, 1/31, 12/31, 11/30, 10/31, etc.

Note: These monthly end dates are preserved even if they are embedded in a
trend period that ends on 30. For example, if the trend has four three-month time

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 107

periods in it, and the end date of the last period is 3/31, then going backward the
end dates of the four trend periods are 3/31, 12/31, 9/30, and 6/30.

End date 1 through 28

If the end date is 1 through 28, then the end dates of each previous month are the
same corresponding days of the month.

For example if the end date is 3/28, then the end dates of previous months are
2/28, 1/28, 12/28, 11/28, 10/28, etc.

Beginning points, ending points, and end-of-month arithmetic
The way time periods are calculated is defined within the system as described in
this section.

Every period has a beginning and end point.

For monthly rolling periods, the beginning and end points are calculated as
follows.
v The end point is the date and timestamp of the transaction.
v The beginning point is the previous month with the same day of the month and

timestamp as the current transaction.

In contrast, for monthly calendar periods, the beginning and end points are
calculated as follows.
v The beginning point is midnight of day x to midnight of day x of the next

month.
v To ensure that contiguous time periods are continuous and do not overlap, one

of the end points is included in the calculation of the period and the other is
not.

With calendar or rolling bounded periods, the midnight of the beginning point is
included but the midnight of the ending point is not.

For example: For June, the calendar month includes midnight of June 1 to
midnight of July 1. The midnight of June 1 is included in the time period but the
midnight of July 1 is not.

With rolling periods, the end point of the transaction date is included, but the
beginning point of the same day of the month and the same time of the previous
month is not.

For example: For a transaction occurring on June 29 at 23:59:59, the end point of
June 29 23:59:59 is included, but the beginning point of May 29 at 23:59:59 is not.

Note: End of month boundaries are calculated moving backward using the end
point of the last period as the reference point. So if the end point of a period is
6/30, then the end point of the previous month is 5/30. And if the end point of a
period is 7/1, then the end point of the previous month is 6/1.

Around the end of a month, a 1 second difference in two transactions could mean
a difference of a day or more in the monthly duration.

108 IBM Opportunity Detect User's Guide

For example: A rolling month period that ends on June 29 at 23:59:59 spans from
May 29 at 23:59:59 (point not included) to June 29 at 23:59:59 (point included). And
a rolling month period that ends on July 1 at 00:00:00 spans from June 1 at 00:00:00
(point not included) to July 1 at 00:00:00 (point included). Here a difference of one
second (end date of June 29 at 23:59:59 versus an end date of July 1 at 00:00:00)
results in two monthly durations that differ by 1 day.

The Trend component
The Trend component detects either upward or downward changes in data values
over a length of time.

The length of time is divided into equal periods. A mathematical function (such as
sum or average) is applied to the data collected for each period. The calculated
result is evaluated against a specified value to determine whether the values of the
period are either consistently increasing or consistently decreasing by a certain
percentage. If the percentage change of the values is consistently above the
specified value for all of the periods, the component evaluates to true.

To detect a trend, you specify a field in the data source on which to do the
trending. You also specify the time period over which the evaluation is done and
the percentage increase or decrease you are looking for. The data values all come
from a designated field in a pre-populated Container or Select component.

The trend groups data values by fixed time intervals within the specified period.
For example, if a period spans three calender months beginning January 1 to the
end of March, the data values are grouped into intervals for the months of January,
February, and March.

Example of a Trend component
In this example, the Trend component is looking for a 20% increase, each week for
four weeks, in the weekly average of a daily sum of deposits.

The following figure illustrates data that would cause a Trend component to
evaluate to true.

For this trend you would need a Container component with bank transactions
(deposits, with date and amount). The Container is configured to sum the
transactions for each day. Then to build the Trend component, you would do the
following.

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 109

v In the Source panel, do the following.
– Use the Value Selector to configure the standard deviation.

You can enter a constant or choose a value that is used to calculate the
number of standard deviations. Only numeric data types are allowed. In this
example, enter a constant of 2.

– Select the Container component that contains the data used for comparison.
– Select the field that sums the transactions for each week.

v In the Trend Period Value panel, set four trend periods of 1 week, and select the
Average function.

v Optionally, set Advanced Configuration options.

Specifying a Trend component
These steps describe how to build a Trend component.

Procedure
1. Name the component.
2. In the Source panel, do the following.

a. Define the Percentage value that represents the nature of the trend
(percentage change) you are looking for.
The value can be any of the following.
v Positive, to track an increase
v Negative, to track a decrease
v A constant value
v A lookup value from a data source, a Select component, or a Container

component
v If the data dependency allows it, a value from a transaction data source.
v A calculated math value

b. Select the data source by type and name, and identify the field on which to
do the trending.

3. In the Trend Period Value area, do the following.
a. Enter the Number of trend periods you want to track. A trend must have

at least two periods. (In the next step, you define each time period.)
The trend evaluates to true only if each successive period increases (or
decreases) over the previous period by the specified amount. For a tend
with four time periods, the percentage of change must hold true for each of
the three time period transitions: from period 1 to 2, 2 to 3, and 3 to 4.

b. Define the Period length for the trend.
For example, you might set the Time Period to be 3 calendar months long,
and the Function to be maximum. In that case, the trend period value
would be the maximum value in each three calendar month time period
within the trend.

4. Optionally, set values in the Advanced Configuration panel.
Advanced configuration settings can further refine the criteria used to evaluate
the trend, and can help to ensure that data has been tracked long enough, or
that there are enough data points, to be statistically significant.

5. Click Save and Close to save the component.

110 IBM Opportunity Detect User's Guide

Trend component fields
Fields used in defining a Trend component are described in this section.

Table 31. Trend component field

Field Description

Source

Percentage The percent by which the period values must change to
cause the component to evaluate as true.

To detect an upward trend, set the trend percentage value
to a positive value. To detect a downward trend, set it to a
negative value.

Type The component type that supplies the data to be evaluated
(Container or Select).

Name The name of the component that supplies the data to be
evaluated.

Field The field in the selected component that supplies the data
to be evaluated.

Trend Period

Number of trend periods The number of time periods for which data is evaluated.

Period length The length of each time period for which data is
evaluated.

Advanced Configurations

Value of last up trend period
or first down trend period

Sets a minimum value for the last upward trend period or
the first downward trend period.

Number of container data
points in each trend period

Sets a minimum number of data points required within
each trend period for the trigger to fire. This setting
ensures that there are enough tracked activities (such as
deposits or withdrawals) to be statistically significant.

Audience ID start date must
be before trend period begins

Sets the earliest date on which the component can evaluate
to true. For each audience ID, the start date is the date of
the first transaction captured by Opportunity Detect for
that audience ID.

This optional setting allows you to ensure that the trend
does not evaluate or fire until the data source that the
trend is using (Container or Select component) has existed
for a sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 111

Table 31. Trend component field (continued)

Field Description

Trend will not fire until this
Date

This option sets the earliest date on which the component
can evaluate to true.

This setting allows you to ensure that the trend does not
evaluate or fire until the data source that the trend is using
(Container or Select component) has existed for a
sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

The Spike component
The Spike component looks for a significant jump or a significant drop in
comparison to a historical value. Spike components are used as filters for Action
components, Container Manipulators, and Boolean expressions.

Based on the parameters you set, the system formulates two values then compares
the two values. The Spike component returns true if the Spike Period Value is
greater than or less than the Historic Value For Period by the specified percentage.

Example of a Spike component
In this example, the Spike component is looking for a 75% increase (spike) in the
current daily deposit sum above the three month average of daily sums for
deposits.

The following figure illustrates data that would cause a Spike component to
evaluate to true.

112 IBM Opportunity Detect User's Guide

To build a Spike component like this you would need a Container with bank
transactions (deposits, with date and amount). The Container is configured to sum
the deposits for each day. Then you would do the following.
v In the Source panel, do the following.

– Select the Container component that contains the data used for comparison.
– Set a percentage value of 75%
– Select the field that sums the deposits for each day.

v
v In the Spike Period Value panel, set the period to 1 day and select the Sum

function.
v In the Historical Value for Period panel, select a time span of 3 months and use

the Average function.
v Optionally, set Advanced Configuration options.

Specifying a spike component
These steps describe how to build a Spike component.

Procedure
1. Name the component.
2. In the Source panel, do the following.

a. Define the Percentage value that represents the nature of the trend
(percentage change) you are looking for.
The value can be any of the following.
v Positive, to track an increase
v Negative, to track a decrease
v A constant value
v A lookup value from a profile data source
v A value from a Container or a Select of a transaction or profile data

source
v If the data dependency allows it, a value from a transaction data source.
v A calculated math value

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 113

b. Select the data source by type and name, and identify the field on which to
do the trending.

3. In the Spike Period Value panel, do the following.
a. Enter the Spike period you want to track and the function to apply to the

data within that period.
For example, you might define the spike value to be the average for two
rolling days.

4. In the Historical Value for Period panel, define the value to which the spike
value is compared.
For example, you might define it to be the average over three weeks.

5. Optionally, set values in the Advanced Configuration panel.
Advanced configuration settings can further refine the criteria used to evaluate
the trend, and can help to ensure that data has been tracked long enough, or
that there are enough data points, to be statistically significant.

6. Click Save and Close to save the component.

Spike component fields
Fields used in defining a Spike component are described in this section.

Table 32. Spike component fields

Field Description

Source

Percentage The percent by which the period values must change to
cause the component to evaluate as true.

To detect an upward spike, set the spike percentage value
to a positive value. To detect a downward spike, set it to a
negative value.

Type The component type that supplies the data to be evaluated
(Container or Select).

Name The name of the component that supplies the data to be
evaluated.

Field The field in the selected component that supplies the data
to be evaluated.

Spike Period Value

Spike period The time period that is compared to the historical period.

Function The mathematical function applied to the data within the
period.

Historical Value for Period

Historical period The past time period that is used for comparison.

Function The mathematical function applied to the data within the
period.

Advanced Configuration

Historical value Sets a minimum for the historical value against which the
spike is compared, Enter a value for the minimum historic
average. The component does not fire for a customer
whose historic base does not meet this value.

Rise or fall from historical
value

Sets a fixed rise or fall compared to the historical value.

114 IBM Opportunity Detect User's Guide

Table 32. Spike component fields (continued)

Field Description

Number of container data
points in historical period

Sets a minimum number of data points required within
each trend period for the trigger to fire. This setting
ensures that there are enough tracked activities (such as
deposits or withdrawals) to be statistically significant.

Audience ID start date must
be before trend period begins

Sets the earliest date on which the component can evaluate
to true. For each audience ID, the start date is the date of
the first transaction captured by Opportunity Detect for
that audience ID.

This setting allows you to ensure that the trend does not
evaluate or fire until the data source that the trend is using
(Container or Select component) has existed for a
sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

Spike will not fire until this
Date

This option sets the earliest date on which the component
can evaluate to true.

This setting allows you to ensure that the trend does not
evaluate or fire until the data source (Container or Select
component) that the trend is using has existed for a
sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

The Exceeded Standard Deviations component
The Exceeded Standard Deviations (ESD) component compares the value in a
current time period to the average of that value over a historical time period.

The comparison is made in terms of a specified number of standard deviations,
with the standard deviation itself being based on the historical assemblage of
values. An ESD component detects activity that exceeds the specified number of
(positive or negative) standard deviations over specific time period.

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 115

The ESD component allows the detection of a jump or drop that is significant not
just in its size but also in comparison to how much the value has typically jumped
or dropped for this customer in the past.

Example of an Exceeded Standard Deviations component
In this example, the ESD component is looking for the weekly sum of check card
usage to exceed the average of weekly sums over the last twelve weeks by two
standard deviations.

The following figure illustrates data that would cause an Exceeded Standard
Deviations (ESD) trend to evaluate to true.

For this ESD you would need a Container component with check card transactions.
The Container is configured to sum the transactions for each week. Then to build
the ESD you would do the following.
v In the Source panel, do the following.

– Use the Value Selector to configure the standard deviation.
You can enter a constant or choose a value that is used to calculate the
number of standard deviations. Only numeric data types are allowed. In this
example, enter a constant of 2.

– Select the Container component that contains the data used for comparison.
– Select the field that sums the transactions for each week.

v In the Spike Period Value panel, set the period to 1 week and select the Sum
function.

v In the Historical Value for Period panel, select a time span of 12 weeks and use
the Average function.

v Optionally, set Advanced Configuration options.

Difference between setting a spike period to a rolling week
versus a calendar week
There is a difference in behavior when a spike period is set to a rolling week
versus when it is set to a calendar week. When using rolling time, the periods are
completely full and span the entire week.

116 IBM Opportunity Detect User's Guide

When deciding whether to use a calender week or rolling week for the spike value,
keep these guidelines in mind.
v Use a rolling time period when you want to compare a complete period ending

at the point of the transaction.
v Use calendar periods when you want to compare a period that is in the process

of completion, to a fixed historical period.

A calendar comparison is more appropriate for uncovering abrupt changes;
whereas a rolling comparison is more appropriate for changes that are smoothed
into even divisions.

In the example above, the spike period was set to one rolling week. In that case,
the week of the spike period is a full seven days long, ending at the current time.
The spike value returned from that seven day period is compared to the average of
the twelve other rolling weeks which begin and end at the same time and day of
the current transaction.

If a calendar week were used in the previous example, there would only be data in
the current calendar week between the beginning of that week and the current
transaction time (which would generally be a fraction of a week). The spike value
returned from that calendar week period would be compared to the average of the
twelve other calendar weeks which begin and end on strict calendar week
boundaries.

Specifying an Exceeded Standard Deviations component
These steps describe how to build an Exceeded Standard Deviation (ESD)
component.

Procedure
1. Name the component.
2. In the Source panel, do the following.

a. Define the Standard Deviation value that sets the number of standard
deviations above (or below) the historical value for whatever time period
you are looking at.
The value can be a constant value or it can be custom to the customer based
on a lookup value from a datasource or on a calculated math value.
The value can be any of the following.
v Positive, to track an increase
v Negative, to track a decrease
v A constant value
v A lookup value from a profile data source
v If the data dependency allows it, a value from a transaction data source.
v A calculated math value

b. Select the data source by type and name, and identify the field on which to
do the trending.

3. In the Spike Period Value panel, enter the ESD period you want to track and
the function to apply to the data within that period.

4. In the Historical Value for Period panel, enter the ESD period you want to use
for comparison.

5. Optionally, set values in the Advanced Configuration panel.

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 117

Advanced configuration settings can further refine the criteria used to evaluate
the trend, and can help to ensure that data has been tracked long enough, or
that there are enough data points, to be statistically significant.

6. Click Save and Close to save the component.

ESD component fields
Fields used in defining an ESD component are described in this section.

Table 33. ESD component fields

Field Description

Source

Standard Deviations The number of standard deviations that cause the
component to evaluate as true.

To detect an upward trend, set the number of standard
deviations value to a positive value. To detect a downward
trend, set it to a negative value.

Type The component type that supplies the data to be evaluated
(Container or Select).

Name The name of the component that supplies the data to be
evaluated.

Field The field in the selected component that supplies the data
to be evaluated.

ESD Period Value

ESD period The time period that is compared to the historical period.

Function The mathematical function applied to the data within the
period.

Historical Value for Period

Historical period The past time period that is used for comparison.

Advanced Configuration

Historical value Sets a minimum for the historical value against which the
ESD is compared. Enter a value for the minimum historic
average. The component does not fire for a customer
whose historic base does not meet this value.

Rise or fall from historical
value

Sets a fixed rise or fall compared to the historical base.

Percentage rise or fall from
historical value

Sets a percentage rise or fall compared to the historical
base.

Number of container data
points in historical period

Sets a minimum number of data points required within
each trend period for the trigger to fire. This setting
ensures that there are enough tracked activities (such as
deposits or withdrawals) to be statistically significant.

118 IBM Opportunity Detect User's Guide

Table 33. ESD component fields (continued)

Field Description

Audience ID start date must
be before trend period begins

Sets the earliest date on which the component can evaluate
to true. For each audience ID, the start date is the date of
the first transaction captured by Opportunity Detect for
that audience ID.

This setting allows you to ensure that the trend does not
evaluate or fire until the data source that the trend is using
(Container or Select component) has existed for a
sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

ESD will not fire until this
Date

This option sets the earliest date on which the component
can evaluate to true.

This setting allows you to ensure that the trend does not
evaluate or fire until the data source that the trend is using
(Container or Select component) has existed for a
sufficiently long time and has sufficient data.

Set this value based upon your data. For example, if you
create a new trend that bases a calculation on 3 months of
data then:

v If your Container component contains 3 months of data,
you should set this date to the current date. That would
allow the trend to start to evaluate to true immediately.

v If you have just created the Container today, and have
not loaded it with historical data, then set this date to
the current date + 3 months. That setting forces the
trend to wait for 3 months while the container builds up
enough data.

Chapter 18. Trend, Spike, and Exceeded Standard Deviation components 119

120 IBM Opportunity Detect User's Guide

Chapter 19. Artificial transactions in Opportunity Detect

An artificial transaction (ATX) is a system-generated event that you can use as an
incoming event in an event component.

The ATX is available in the Action, Container Manipulator and the Backward
Inactivity components. In the Backward Inactivity component, it is available only
as a triggering event.

If you use an ATX as an incoming event in a trigger system, then on the Batch Run
tab of the workspace you must select an Artificial Transaction to have it go into
effect.

Trigger systems that use the Web Service data source connector for input should
not use an ATX, as it does not function with the Web Service connector.

There are two types of ATX.
v End of Run – An ATX fires at the end of each batch run for each audience ID

being processed. If no transactions occur for an audience during a run, the ATX
does not fire.

v End of Day – An ATX fires at the end of each day’s set of transactions for each
audience ID being processed. If no transactions occur for an audience during a
day, the ATX does not fire.

When to use an ATX

Both types of ATX are useful when you want to detect a decline in customer
activity. The End of Run ATX is most often used for production, and the End of
Day ATX is most often used for testing.

Production

In most production use cases, batch files are processed every business day. Batch
files for Tuesday, Wednesday, Thursday, and Friday contain transactions for the
previous day. The batch file for Monday includes transactions from Friday,
Saturday, and Sunday.

For the batch files that contain a transactions from a single day, The End of Run
ATX produces the same results as the End of Day ATX. However, on Mondays,
when transactions from three days are included, you want to process an account's
transactions from all three days before firing a trigger indicating a decline in
activity.

The trigger for a decline indicates that a customer did not do something, and it
initiates a response urging the customer to resume the activity or asking why the
decline occurred. If you respond in this way based on a Saturday transaction, and
the customer contradicts that with a transaction on Sunday, you run the risk of
sending an inappropriate response, because the customer's activity has not
declined. This is when you would use an End of Run ATX to process all available
transactions before responding to a decline in activity.

Testing

© Copyright IBM Corp. 1996, 2016 121

To simplify testing operations, you often put six months of transactions into a
single file. You want to simulate the behavior of a production workspace running
every business day with the ATX in End of Run mode. You can not use the End of
Run mode, because the trigger indicating a decline would fire only once, after all
six months of transactions have been processed.

Therefore, you would use the ATX in End of Day mode to approximate the
behavior you would see in production. An End of Day ATX does not account for
the Friday-Saturday-Sunday transactions all coming in on Monday, but with
transactions from a long time period, it gives test results that are much closer to
actual firing behaviors than the End of Run ATX.

Data dependency considerations for artificial transactions

When an event component uses an ATX as its incoming event, the descendent
components that depend on it do not have access to any transaction data sources
or to data components based on transaction data sources. The reason is that the
system initiates the End of Day ATX after all the transactions have been processed.

The descendent components that depend on a component that uses an ATX do
have access to a single profile data source. The first descendent component that
uses a profile data source determines the profile data source available to all the
other descendents of the component that uses the ATX. When you choose this
profile data source in a descendent component, it should align with the profile
data source used in the logic of the other transaction-based sections of your logic.

ATX in real time deployments

For real time, the ATX is always on and is set to End of Run.

In real time, a transaction set only has one transaction. The result is that the End of
Run ATX is sent after every transaction even if there will be more transactions for
that audience. When the ATX is sent, the components that are downstream from
the component that uses the ATX perform their operations.

You can use an ATX with a real time deployment to activate consistent trigger
logic after the transaction has been processed. Most often this is used to perform
data calculations after the transaction has finished updating data. This can be
useful in a production workspace, which typically contains many triggers. The
ATX executes after all the triggers are processed. For example, Container
components might be updated by the logic of several triggers before the ATX fires.

Artificial transaction example

The following ATX example illustrates a batch trigger system that a telephone
company might use.

Suppose your goal is to take some action when a the average of a customer's call
minutes used during a week is less than 70 percent of the average minutes per
week used in the four weeks prior to that week.

To make the calculation required in this example, you must collect all call minutes
for a complete week and compare their average with the average call minutes for
the previous four weeks. The End of Day ATX ensures that all transactions for the
week are included in the evaluation.

122 IBM Opportunity Detect User's Guide

You can set up a trigger system as follows.
v Create a Simple component that fires an event when it receives customer call

data.
v Create a Container component holds transactions that occur during a 90-day

period.
– In the Time Span panel, set a limit of 90 calendar days. Transactions with

timestamps older than 90 days ago are cleared from the Container.
Typically, you create Containers that can be useful in multiple trigger systems.
This is why you specify that this Container stores more transactions than you
need for this example.

v Create a Container Manipulator that listens for the Simple component event.
– In the Action panel, specify that the call data is inserted into the Container.

v Create a Date component named Previous Week.
– Use the Expression Builder to specify a date seven days in the past. The

expression looks like this when complete: Now - Period(1,week).
v Create a Select component named Last Week to gather records from the past

week.
– In the Source panel, select the Container and select the timestamp and the

field that holds the call minutes.
– In the Where panel, create a WHERE clause that limits the data in the Select

to records from the previous week.
Specify records with timestamps greater than the date returned by the
Previous Week Date component.

v Create a Date component named Five Weeks Ago.
– Use the Expression Builder to specify a date five weeks in the past. The

expression looks like this when complete: Now - Period(5,week).
v Create a Select component named Past Weeks to gather records from the time

period between five weeks prior to the current week and the beginning of the
current week.
– In the Source panel, select the Container and select the timestamp and the

field that holds the call minutes.
– In the Where panel, specify the following two WHERE clauses to limit the

data in the Select to records from the four weeks prior to the current week.
- In one clause, specify records with timestamps less or equal to the date

returned by the Previous Week Date component.
- In another clause, specify records with timestamps greater than the date

returned by the Five Weeks Ago Date component.
v Create an Action component that listens for an artificial transaction. In the Firing

Condition panel, specify the following Boolean expression.
– Compare the sum of the call minutes in the Current Week Select component

to the sum of the call minutes in the Past Weeks Select component. The
expression looks like this when complete, where the field that holds the call
minutes is named call_minutes.
[Last Week].[call_minutes].Sum() < [Past Weeks].[call_minutes].Sum()/
4*0.7

When you run the example workspace, select an End of Day Artificial Transaction
on the Batch Run tab of the workspace. The Artificial Transaction fires after the
transactions for each day have been processed by the components upstream from
the Action component.

Chapter 19. Artificial transactions in Opportunity Detect 123

When the Action component receives the ATX event, it performs its comparison for
each customer, but it fires only when its firing condition criteria are met.

The following diagram illustrates this example.

Related reference:
“Time constants and time units” on page 58
“Fields and buttons on the Batch Run tab” on page 34
“Fields and buttons on the Deployment tab” on page 26

124 IBM Opportunity Detect User's Guide

Before you contact IBM technical support

If you encounter a problem that you cannot resolve by consulting the
documentation, your company's designated support contact can log a call with
IBM technical support. Use these guidelines to ensure that your problem is
resolved efficiently and successfully.

If you are not a designated support contact at your company, contact your IBM
administrator for information.

Note: Technical Support does not write or create API scripts. For assistance in
implementing our API offerings, contact IBM Professional Services.

Information to gather

Before you contact IBM technical support, gather the following information:
v A brief description of the nature of your issue.
v Detailed error messages that you see when the issue occurs.
v Detailed steps to reproduce the issue.
v Related log files, session files, configuration files, and data files.
v Information about your product and system environment, which you can obtain

as described in "System information."

System information

When you call IBM technical support, you might be asked to provide information
about your environment.

If your problem does not prevent you from logging in, much of this information is
available on the About page, which provides information about your installed IBM
applications.

You can access the About page by selecting Help > About. If the About page is not
accessible, check for a version.txt file that is located under the installation
directory for your application.

Contact information for IBM technical support

For ways to contact IBM technical support, see the IBM Product Technical Support
website: (http://www.ibm.com/support/entry/portal/open_service_request).

Note: To enter a support request, you must log in with an IBM account. This
account must be linked to your IBM customer number. To learn more about
associating your account with your IBM customer number, see Support Resources
> Entitled Software Support on the Support Portal.

© Copyright IBM Corp. 1996, 2016 125

http://www.ibm.com/support/entry/portal/open_service_request

126 IBM Opportunity Detect User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2016 127

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
B1WA LKG1
550 King Street
Littleton, MA 01460-1250
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

128 IBM Opportunity Detect User's Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Privacy Policy and Terms of Use Considerations
IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. A cookie is a piece of data that a web site can
send to your browser, which may then be stored on your computer as a tag that
identifies your computer. In many cases, no personal information is collected by
these cookies. If a Software Offering you are using enables you to collect personal
information through cookies and similar technologies, we inform you about the
specifics below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user's user name, and other
personal information for purposes of session management, enhanced user usability,
or other usage tracking or functional purposes. These cookies can be disabled, but
disabling them will also eliminate the functionality they enable.

Various jurisdictions regulate the collection of personal information through
cookies and similar technologies. If the configurations deployed for this Software
Offering provide you as customer the ability to collect personal information from
end users via cookies and other technologies, you should seek your own legal
advice about any laws applicable to such data collection, including any
requirements for providing notice and consent where appropriate.

IBM requires that Clients (1) provide a clear and conspicuous link to Customer's
website terms of use (e.g. privacy policy) which includes a link to IBM's and
Client's data collection and use practices, (2) notify that cookies and clear gifs/web
beacons are being placed on the visitor's computer by IBM on the Client's behalf
along with an explanation of the purpose of such technology, and (3) to the extent
required by law, obtain consent from website visitors prior to the placement of
cookies and clear gifs/web beacons placed by Client or IBM on Client's behalf on
website visitor's devices

For more information about the use of various technologies, including cookies, for
these purposes, See IBM's Online Privacy Statement at: http://www.ibm.com/
privacy/details/us/en section entitled "Cookies, Web Beacons and Other
Technologies."

Notices 129

130 IBM Opportunity Detect User's Guide

IBM®

Printed in USA

	Contents
	Chapter 1. About IBM Opportunity Detect
	Integration with IBM Campaign
	About trigger systems
	How processing works in a workspace
	Ancestor and descendent relationships among components
	Input data in Opportunity Detect
	Enable cookies

	Chapter 2. Opportunity Detect roles and permissions
	Permissions for Opportunity Detect
	Built-in roles in Opportunity Detect

	Chapter 3. Creating workspaces
	Fields and buttons in the Workspace List

	Chapter 4. Adding and deleting components
	Adding components to workspaces from the Component Palette
	Adding components within workspaces by saving a copy
	About component references
	Sharing components across workspaces using component references
	Deleting components
	Fields and buttons on the Workspace Component List tab
	Component list filters
	Filtering the component list
	Deleting or modifying component list filters

	Component type details and examples

	Chapter 5. Deploying and running workspaces
	About deployment configurations
	Creating and deploying a deployment configuration
	About input mode
	Fields and buttons on the Deployment tab

	About data source connectors
	Data source connector mapping
	Running workspaces
	Fields and buttons on the Batch Run tab
	The profile data refresh mechanism

	Fields on the Batch History tab
	About batch notifications

	Chapter 6. Outcome data in Opportunity Detect
	Outcome format with the Outcome data source connector
	Outcome format with the Expanded Outcome data source connector
	Integrating Opportunity Detect with Campaign in batch mode
	Integrating Opportunity Detect with Campaign in interactive mode

	Outcome format with the Web Service data source connector

	Chapter 7. Component types in Opportunity Detect
	Component type details and examples

	Chapter 8. Common features of components
	Data Dependencies
	Dependent Components
	Effective Window
	Firing Frequency
	Properties
	Incoming Event fields
	Time Spans
	Time constants and time units
	Firing Condition fields
	Functions in Opportunity Detect
	The IsMemberOf function

	Chapter 9. Building expressions using the Expression Builder
	Boolean, comparison, and math operators
	Value Selector fields

	Chapter 10. Regular expressions in Opportunity Detect
	Chapter 11. Date, Math, and Boolean expression components
	Chapter 12. Simple components
	Chapter 13. Action components
	Outcome fields

	Chapter 14. Select components
	Chapter 15. Container and Container Manipulator components
	Container components
	Container Manipulator components
	Inserting data into a Container component with a Container Manipulator
	Deleting data from a Container component with a Container Manipulator

	Chapter 16. Pattern components
	Pattern component types
	Negative event modes in Pattern components
	Calendar time span in Pattern components
	Rolling time span in Pattern components
	Pattern Behavior fields
	Reset Event fields

	Chapter 17. Backward Inactivity and Forward Inactivity components
	Backward Inactivity components
	Examples of Backward Inactivity Components

	Forward Inactivity components
	Rolling time span in Forward Inactivity components
	Calendar time span in Forward Inactivity components
	Examples of Forward Inactivity components

	Chapter 18. Trend, Spike, and Exceeded Standard Deviation components
	About time boundaries for trends
	Rolling bounded periods
	Time boundaries for trend components
	End of month boundaries
	Beginning points, ending points, and end-of-month arithmetic

	The Trend component
	Example of a Trend component
	Specifying a Trend component
	Trend component fields

	The Spike component
	Example of a Spike component
	Specifying a spike component
	Spike component fields

	The Exceeded Standard Deviations component
	Example of an Exceeded Standard Deviations component
	Difference between setting a spike period to a rolling week versus a calendar week

	Specifying an Exceeded Standard Deviations component
	ESD component fields

	Chapter 19. Artificial transactions in Opportunity Detect
	Before you contact IBM technical support
	Notices
	Trademarks
	Privacy Policy and Terms of Use Considerations

