
 Unica Deliver V12.1 Transactional Message
Administration Guide

Contents

Chapter 1. About Deliver and transactional message.. 1

Using Deliver to send transactional message...2

How transactional message works in deliver..2

Transactional messaging and standard messaging compared................................. 5

Message design for transactional message... 7

Recipient information for transactional message...8

Global message suppression and transactional message.......................................10

Attachments to transactional email...10

What digital marketers do for transactional message... 11

About enabling mailings for transactional message.. 13

About responding to errors related to transactional email.......................................14

What application developers do for transactional message..15

Chapter 2. Integrating with the Deliver transactional message service............................ 18

Identification of transaction events... 18

Access to recipient data...19

Connection to the Deliver TMS.. 19

Deliver TMS addresses... 20

WSDL for Deliver transactional email.. 20

About providing authentication credentials for transactional message.................. 21

Attachments in transactional email requests... 23

Construction of the transactional email request.. 24

mailingCode..24

audienceID..25

Contents | iii

Fields...26

Cell codes...26

additionalOptions... 27

attachments... 27

Tracking fields..28

locale...28

userName... 29

password.. 30

Chapter 3. The Deliver Transactional Mailing Service API... 31

NameValuePair.. 31

Response..32

AdvisoryMessage.. 33

Error messages for transactional email.. 34

Chapter 4. Sample client... 41

Chapter 5. About Dynamic Transactional Images.. 46

Using dynamic transactional images in transactional email messages......................... 46

Defining an image label for dynamic transactional images..................................... 47

How to specify dynamic transactional images in the transactional email

request.. 49

Chapter 1. About Deliver and transactional
message

A transactional message is a single message sent in response to a specific, predetermined

transaction detected in your business systems. Unica provides the Deliver Transactional

messaging Service (TMS) as a hosted web service to process transactional messages.

Digital marketers work with application developers to integrate corporate transaction

management systems with the Deliver TMS.

Note: From version 12.1.0.3 onwards, Deliver is supporting the following channels along

with email. In this guide, the term message applies to all channels.

• SMS

• WhatsApp

Sending transactional message lets you respond automatically to specific customer or

customer-related activities with a personalized message. Transactional messages tend

to have higher open rates than other types of marketing message. Message recipients are

more likely to open a message related to a transaction they recognize or expect than they

are to open an unsolicited message.

You can use any event that you can detect in your business systems to prompt a

transactional message. For example, you can send a transactional message when an

individual subscribes to your monthly newsletter or requests information in response to an

digital marketing campaign.

The following topics provide an overview of the Deliver TMS and the roles played by digital

marketers and application developers when using transactional message.

• Using Deliver to send transactional message (on page 2)

• What digital marketers do for transactional messages (on page 11)

• What application developers do for transactional message (on page 15)

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 2

Using Deliver to send transactional message
Implementing transactional message requires collaboration between digital marketers

and application developers. All parties must have a general understanding of the required

systems and workflow. Everyone involved must be familiar with the various roles that each

contributor plays in the transactional message implementation.

Using Deliver to send transactional message involves the following activities and systems.

Identify transactions that require an automated message response

The digital marketing team determines the types of transactions that require

an automated message response.

Transactional message is based on message content and recipient

information referenced in a standard Deliver messaging. You can enable

any standard messaging for transactional message. For details, see About

enabling messagings for transactional message (on page 13).

Deliver Transactional messaging Service

Unica hosts the Deliver Transactional messaging Service (TMS) as a web

service to automatically process transactional message requests.

Develop systems to monitor transactions and request transactional message

Application developers must create a client application that receives

transaction notifications from corporate business systems and submits

web service requests using SOAP to the Deliver TMS. Transactional email

messages sent using Deliver can include attachments. The requests must

provide personalization data and attachment content.

How transactional message works in Deliver
Digital marketers use Campaign and Deliver to configure messages and enable messagings

for transactional message. Application developers create a transactional message client

and integrate it with other business systems.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 3

The following table describes the how locally installed HCL Unica systems and HCL Unica

hosted services operate together to send transactional message.

Element Related activity

A

Unica Campaign

Campaign provides interfaces to compose

message, configure messagings, and

enable messagings for transactional

message.

B

Deliver messaging

The messaging configuration references a

message document that provides message

content, including personalization fields

that serve as placeholders for recipient

data.

1 The digital marketing team enables

a messaging (B) for transactional

message. Any standard messaging

can be enabled for transactional

message.

The messaging configuration

contains the mailing code that Deliver

uses to identify the messaging.

The mailing code is required for

transactional message requests.

Digital marketers must communicate

the mailing code to application

developers that create the local

transactional message client (E).

C

Your corporate business systems and

databases

2 A transaction occurs in your business

systems (C). The transaction is

considered a transaction event

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 4

Element Related activity

Various business systems and databases

can provide the personalization data and

attachment information that a transactional

message requires.

D

Your transaction monitoring systems

Corporate transactional applications

monitor business systems to detect

the types of transactions that trigger

transactional message. You can use almost

any business activity as a trigger for a

transactional message.

System administrators configure the

monitoring systems to detect the specified

transactions and provide message

personalization information.

Digital marketers and application

developers consult in advance to

identify the personalization data and

attachments required to respond to a

transaction event.

The transaction monitoring system

(D) does the following.

• Detects the transaction event

• Recognizes that the event type

has been designated as one that

requires an message response

• Provides the required

personalization data and

attachment content to the

transactional email client (E)

E

Local transactional message client

Client application that submits web service

requests to the Deliver Transactional

messaging Service (TMS). Unica provides

a WSDL for use as a development guide to

create the client.

The client resides in your local network. It is

not part of the Deliver TMS.

3 The TMS client provides access

credentials for HCL Unica hosted

services in a SOAP request over

HTTPS to the Deliver TMS (F).

The request specifies the Deliver

mailing code and provides values for

all personalization fields contained in

the email. The request also includes

attachments, as necessary.

F
Deliver Transactional messaging Service

(TMS)

4 The Deliver TMS reviews the web

service request.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 5

Element Related activity

A web service that resides in HCL Unica

hosted services. The service receives and

processes transactional email requests

from the local transactional message client.

If the request provides all information

required, the Deliver TMS forwards

the request, including attachments, to

the Deliver mailing infrastructure (G)

for transmission.

If the TMS encounters a problem,

it returns an error message to the

local client application describing the

issue.

G

Deliver mailing infrastructure

Deliver components and servers maintained

in Unica data centers that assemble

and transmit the transactional message

messages using SMTP.

5 Deliver transmits and tracks a single

personalized message addressed

to the recipient identified in the

message request.

The local Campaign installation

retrieves contact and response data

and stores it in the Deliver system

tables.

Transactional messaging and standard messaging compared
Deliver constructs and sends transactional messages differently than it does standard

personalized message. During a standard messaging run, the system processes potentially

large volumes of individually personalized messages. However, for transactional message,

Deliver performs the same personalization operations for multiple web service requests, but

each request processes only one message at a time.

You can enable any standard Deliver messaging for transactional message. Most

messaging features available to standard messagings remain available when you enable

the messaging for transactional message. Content elements available in standard

message, such as personalization fields, text, images, HTML snippets, and hyperlinks are

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 6

also available in transactional email message. However, some differences exist in the

messaging features available in standard and transactional message.

The following table compares key features available in standard and transactional email

message.

Comparison of features in standard messagings and transactional messagings.

Feature

Standard

messaging

Transactional

messaging

Transmit HTML, HTML and text, and text-only

versions.

X X

Output List Table (OLT) to specify personalization

data

X

OLT contains

all recipient

data used to

personalize

email.

Not used.

Can be used

for testing.

OLT personalization fields X X

Built-in personalization fields X X

Constant personalization fields (constants) X X

Conditional content X X

Advanced scripting for email X X

Message preview X X

Preview not

available for

attachments.

Messaging results appear in standard Deliver

performance reports

X X

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 7

Feature

Standard

messaging

Transactional

messaging

Track links in email messages X X

Tracking Audience ID as a contact attribute X X

Use personalization fields for contact tracking X X

Additional URL parameters for link tracking X X

Global email suppression X

Email attachments X

Message design for transactional message
Every messaging that you enable for transactional message must reference a Deliver

document. Any Deliver document created for use in a standard messaging can also be sent

as a transactional message. The Deliver document defines the content of the message,

including text, images (for email and Whatsapp messages), links, and conditional content.

The message document also contains personalization fields that serve as placeholders

for data specific to the recipient, including email addresses, phone numbers for SMS and

Whatsapp.

As part of the transactional message request, the local transactional message client

provides the unique mailing code that identifies the messaging. Deliver uses this code to

determine which message document it must use to create the transactional message.

The transactional message request must also provide the values required to populate the

personalization fields in the Deliver document that the messaging references. If all of the

required personalization values are not present in the request, Deliver will not process the

transactional message and the system returns an error.

Digital marketers and application developers must review each message design in advance

to ensure that the message request provides all of the information required. If the design

of the document changes, for example, to change the personalization information in the

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 8

message, the design of the transactional message request must be updated to reflect the

change.

About identifying the sender of the transactional message

The message document used in a transactional email must contain a From address that is

displayed to the recipient. If you specify the From address using a personalization field, the

email domain of the address must match the email domain registered with Unica for your

Deliver account.

Recipient information for transactional message
To personalize transactional message, you must provide recipient information in the

web service request that you send to the Transactional messaging Service (TMS). Unlike

other forms of personalized marketing message that you can send through HCL Unica,

transactional messages do not retrieve recipient information from an Output List Table

(OLT).

Digital marketers and application designers must ensure that the local transactional

message client can provide values to populate all of the personalization fields that are

used in the transactional message. Each web service request provides address and

personalization information that is specific to the message recipient.

You can enable a existing standard messaging to send messages as transactional

message. However, you do not need to reference an OLT to use a standard messaging

to send transactional message. The recipient information required by the transactional

message is contained in the web service request.

Personalization fields used in a transactional message

The local transactional message client identifies each personalization field as a separate

name-value pair in the web service request that it submits to the hosted transactional

messaging service. The client application must specify the name of each personalization

field that is contained in the message. The client must also access the business systems

and databases that provide the required personalization values.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 9

The messaging that you enable for transactional message must reference a corresponding

document. The document provides the structure and content of the transactional message.

The document also includes the names of the personalization fields that are included in

the message. The personalization fields are added to the document as placeholders that

accept specific information about the recipient when the messaging service assembles and

transmits the message.

The Summary Mailing tab provides a field that is labeled Complete field list for this mailing

to identify the personalization fields that are included in the document that is referenced

by the messaging. The web service request must contain information for each of the fields

on the list. The names of the personalization fields in the web service request must exactly

match the names that appear in the document.

The web service request must also provide the data that is required to complete the

message, including values for each personalization field that is included in the message.

The digital marketing team must consult with application developers to identify and locate

all of the information that the transactional message client must provide.

The transactional messaging service evaluates each web service request to determine if the

request provides all of the name-value pairs that are required by the transactional message.

The request fails if the personalization field names, values, or data types do not match the

requirements for the message.

Personalization fields for additional link or contact tracking in transactional
message

If you request that Unica perform additional link or contact tracking, every transactional

message request must include the name and value of personalization fields that are used

for additional tracking.

The web service request for transactional message must include parameters that specify

the name and value of the tracking personalization fields. The digital marketing team must

provide application developers with the following information.

• Names of the tracking personalization fields

• Expected personalization field values and data types

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 10

• Format or length restrictions

Deliver does not validate the uniqueness of the fields you specify for additional tracking. To

distinguish additional tracking data for transactional message from data that is collected

for standard message, establish internal procedures or naming conventions to ensure

unique personalization field names. Avoid specifying the same personalization field name

for link or contact tracking in standard messagings and transactional messagings.

Global message suppression and transactional message
Unica Deliver does not apply global email suppressions to transactional message requests.

To avoid violating laws regarding unwanted email delivery, such as CAN-SPAM, you must

make your transactional systems aware of email addresses that must not receive email.

Preventing transmission of transactional email to incorrect or unsubscribed addresses can

also avoid deliverability problems caused by recipients that mark the transactional email as

unwanted email.

Attachments to transactional email
The Deliver TMS supports attaching files to transactional email messages.

By attaching files to transactional email, you can provide the email recipient with extra

personalized information. For example, you can send a transactional email to confirm a

concert ticket purchase and use attachments to provide a printable ticket and seating map.

You cannot specify attachments for standard mailings.

When you enable a mailing for transactional email, you must specify how many

attachments you want to send with the email message. Deliver places limits on the size of

individual attachments and the total size of all attachments.

The transactional email request that is submitted to the Deliver TMS must contain the

document content and information about each attached document. The email marketing

team must work with application developers to provide the following information about

each attachment.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 11

• The file name of the attachment

• MIME content type of the file

• Contents of the file

The method that is used to include attachments depends on the programming language

and development tools that application developers use. For more information about how to

provide attached content, see Attachments in transactional email requests (on page 23).

Virus scanning for attachments

The Deliver Transactional Mailing Service does not scan attachments for computer viruses

or other types of malware.

You are responsible for ensuring that none of the files that you attach to transactional email

contain malicious code.

What digital marketers do for transactional messages
Using Deliver to send transactional message requires advance preparation and coordination

between the digital marketing team and application developers responsible for your

corporate transactional systems.

The following table lists typical activities that a digital marketer performs to prepare a

messaging for transactional message.

Responsibilities for digital marketers.

Activity Description

Identify the type of transaction that will initiate a

transactional message request.

Confirm with the application

development team that transaction

systems can detect the transaction

event that must trigger the email.

Compose and publish the Deliver document that

you want to use for the transactional messaging.

Compose a Deliver document for

transactional message in the same

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 12

Activity Description

way as you would any other Deliver

document.

Fully configure the messaging that you plan

to enable for transactional email. In the

configuration, indicate if transactional email

includes attachments.

Reference the document that you have

created for the transactional email. If

you are including attachments, specify

the number of attachments.

Identify all personalization fields used in the

document. The mailing tab includes a list of

personalization fields used in the document.

Provide the names and personalization field

definitions to the application developers.

Application developers need

to configure the transactional

message client application to provide

personalization information.

Each transactional message request

web service request must specify the

personalization field names and values

as name-value pairs and specify the

required data type.

Provide application developers with the mailing

code for the messaging that you intend to enable

for transactional message.

Developers require this information to

identify the messaging for the Deliver

TMS.

Determine if the transactional email includes

attached files. If you use dynamic transactional

images, add placeholders for the attachments

in the email document that defines the

transactional email message.

Consult with application developers

regarding the number and size of the

attached files. Agree on the labels to be

used to identify dynamic transactional

images.

Enable the messaging for transactional

message, using links on the mailing tab.

Confirm that developers have finished

configuring the local transactional message

The Deliver TMS begins accepting

message requests immediately

after you enable the messaging for

transactional message.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 13

Activity Description

client before you enable the messaging for

transactional message.

About enabling messagings for transactional message
Transactional messages are based on standard messagings that have been enabled for

transactional message. You enable a messaging for transactional message in Campaign, on

the Summary Mailing tab. Consult the Deliver Mailings page to see which messagings are

enabled for transactional message.

You can enable any Deliver messaging for transactional message. The transactional

message request fails if you have not updated the messaging configuration to enable the

messaging for transactional message. However, even after you enable a messaging to

send individual messages as transactional message, you can run the same messaging

as a standard messaging to perform a messaging campaign involving a large volume of

messages.

Each transactional message request must include the mailing code that identifies the

messaging. When you enable a messaging for transactional message, note the mailing

code and provide it to application developers responsible for configuring the local

transactional message client.

If you are attaching files to the transactional email messages, the messaging configuration

must specify the number of attachments. Every transactional email message receives the

number of attachments you specify. The number of attachments entered in the messaging

configuration must match the number configured in the web service request submitted to

the Deliver TMS. The attached files are sent only with transactional email. Deliver does not

support sending attachments when you run a standard messaging, even if the messaging is

also enabled for transactional email.

You can disable the messaging for transactional message at any time. For example,

you must disable a messaging for transactional message to change the messaging

configuration. The Deliver TMS does not accept transactional message requests while the

messaging is disabled for transactional message.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 14

As a best practice, before you enable a messaging for transactional message, fully test the

messaging and preview the Deliver document the messaging references. Make certain that

the messaging and the message meet your expectations and business objectives.

About editing messagings that are enabled for transactional message

To edit a messaging that is enabled for transactional message, you must disable the

messaging for transactional message before you begin.

After you finishing editing the messaging, you must re-enable the messaging for

transactional message. During this process, the Deliver TMS does not respond to

transactional requests for the disabled messaging. The local systems that monitor

transaction events must be designed to temporarily store the message requests until you re-

enable the messaging for transactional message.

About responding to errors related to transactional email
Sometimes a transactional email message does not transmit as expected. The failure could

be due to problems with the message configuration or temporary problems with mailing

resources. If the Deliver TMS determines that a problem exists, the web service returns an

advisory error code to the local transactional email client.

The local transactional email client is responsible for error handling. Application developers

must design the client to recognize the error messages that the Deliver TMS might return.

For a list of error codes in the Deliver TMS, see Error messages for transactional email (on

page 34).

All parties must be prepared to respond to unforeseen email problems. If the problems

relate to mailing configuration or message design, application developers might call on the

digital marketing team to resolve the issue.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 15

What application developers do for transactional
message
Application developers create the local transactional message client that submits

transactional message requests to the Unica Deliver Transactional messaging Service

(TMS).

The local transactional message client application processes each transactional message

message by making a SOAP request to the Deliver TMS over an HTTPS connection.

Unica provides a WSDL to allow developers to design the web service request. For more

information about the WSDL, see WSDL for Deliver transactional email (on page 20).

Creating the local transactional message client application requires coordination between

application development team responsible for corporate transaction systems and the digital

marketing team. Digital marketers provide information about the transactional message

messages and attachments that are to be sent as transactional message.

The following table lists the activities that application developers must perform.

Developer responsibilities for transactional messaging.

Activity Description

Build the transactional monitoring

systems required to detect the types

of transaction events that trigger

transactional message.

Consult with the Digital marketing team

to determine which business or customer

activities qualify as suitable transaction

events.

Code or configure a local transactional

message client application to connect

to the Deliver TMS and submit web

service requests in response to specified

transaction events.

Review the WSDL and sample transactional

message client examples provided byUnica for

guidance.

Unica provides an updated WSDL as a model

for a transactional email client that can

process email attachments. Earlier versions of

the WSDL did not support using attachments.

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 16

Activity Description

The client must be able to provide access

credentials for your hosted message

account.

Structure web service requests to

provide personalization information as

name-value pairs. The request must

also specify the data type for each

personalization field.

Consult with the digital marketing

team to determine if sending email

attachments is a requirement.

Coordinate with the digital marketing

team to identify the sources for

the personalization required by the

transactional email messages and

attachments.

The transactional message client must be

able to connect to the business systems and

databases that provide personalization values

in the transactional message request.

Design and code error handling. Code the client to handle errors reported by

the Deliver TMS. Include features to notify

administrators if the client cannot connect or if

web service requests fail.

For information about error codes returned

by the Deliver TMS, see AdvisoryMessage (on

page 33).

Coordinate with the digital marketing

team to test the integration of the local

transactional message client with the

Deliver TMS.

Digital marketers need to enable messagings

for transactional message testing and specify

test addresses.

Application developers need to devise

ways to simulate the target transactional

Transactional Message Administration Guide | 1 - About Deliver and transactional message | 17

Activity Description

events and provide expected transaction

and personalization information to the local

transactional message client.

Chapter 2. Integration with the Deliver
transactional message service

The Deliver Transactional messaging System (TMS) is a web service hosted as part of

HCL Unica hosted services. Application developers must work with digital marketers in

your organization to create the client applications required to integrate your corporate

transactional systems with the Deliver TMS. These client applications initiate each

transactional message by making a SOAP request to the Deliver TMS over an HTTPS

connection.

Client applications that submit the transactional message request must be able to perform

the following actions.

• Identify transactions that trigger transactional message.

• Connect to marketing databases that contain data used to personalize the message

• Initiate® the transactional message request as a SOAP request

• Provide credentials to access the Deliver TMS over a secure connection

• Provide message information, including attachment contents

• Handle error messages returned by the Deliver TMS

All of the actions required for transactional message must occur without manual

intervention. Unica provides a WSDL to assist developers that design the automated

web service calls to the Deliver TMS. For more information, see the WSDL for Deliver

transactional email (on page 20) topic.

Identification of transaction events
Application developers must design the local transactional message client to interact with

transaction monitoring systems used by your organization. The client must take transaction

notifications as input and distinguish the type of transaction event that the transaction

management system is reporting.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 19

A transaction event can be any action that your transaction management systems can

detect. For example, a transaction event might be a purchase, a customer request for

service, an information request, or a change in customer account status.

Typically, your marketing organization determines the types of transactional events that

warrant a transactional message request and the content of the message sent in response.

Each transactional event requires a separate transactional message request to the Deliver

TMS.

Access to recipient data
To personalize transactional messages, the local transactional message client must

access business systems and databases that can provide recipient-specific data used in

transactional message.

Application developers must collaborate with the digital marketing team to identify the

personalization fields used in the message referenced by mailings enabled for transactional

message. The summary Deliver mailing tab provides a link to a list of the personalization

fields used in the message.

The personalization fields are placeholders for information specific to the recipient of the

message. This information is provided by business systems and databases managed by

your organization. The local transactional message client must be able to access these

systems and retrieve data used as personalization field values.

Connection to the Deliver TMS
You must design the local transactional message client to automatically connect to the

Unica data center assigned to your hosted message account. The client must be able to

provide the appropriate authentication credentials as part of the web service request.

For information about which data center to specify, see Deliver TMS addresses (on page

20).

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 20

For information about how to provide authentication credentials, see About providing

authentication credentials for transactional message (on page 21).

Deliver TMS addresses
Unica has established message domains reserved for processing transactional messages.

You must configure your transactional message applications to request access to HCL

Unica using the correct domain. The domain you use depends on which Unica data center

processes your request.

To process transactional email through the Unica data center for North American, configure

a connection to tms-us.unicadeliver.com.

To process transactional email through the Unica data center for the Europe, configure a

connection to tms-eu.unicadeliver.com.

If you do not know which data center Unica uses to process your transactional email,

contact technical support.

WSDL for Deliver transactional email
Unica provides two versions of the WSDL for building applications that access the Deliver

TMS. The choice of WSDL depends on if you plan to use email attachments and on how the

client application provides access credentia. WSDL describes how to construct an interface

to the Deliver TMS that supports providing email attachments. It also describes how to

specify access credentials as parameters in the web service request, instead of modifying

the SOAP header.

The WSDL is available for download from the Unica data center that Unica has instructed

you to use for connecting to the Deliver TMS. Construct the download URL as follows:

<URL for connecting to your assigned TMS>/delivertms/services/TMS?wsdl

Unica provides an example of how to create the local transactional email client based on

the second-generation WSDL. To view the example, see Sample client (on page 41)

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 21

Note: If you have already constructed a transactional email client based on the first-

generation WSDL you must recompile the code if you change to a client design based on the

second-generation WSDL.

Second-generation WSDL

The second-generation WSDL describes how to construct an interface to the Deliver TMS

that supports providing email attachments. This WSDL also describes how to specify

access credentials as parameters in the web service request, instead of modifying the

SOAP header.

The second-generation WSDL is available for download from the Unica data center that

Unica has instructed you to use for connecting to the Deliver TMS. Construct the download

URL as follows:

<URL for connecting to your assigned TMS>/deliverds/services/TMS?wsdl

Unica provides an example of how to create the local transactional email client based on

the second-generation WSDL. To view the example, see Sample client (on page 41)

Note: If you have already constructed a transactional email client based on the first-

generation WSDL you must recompile the code if you change to a client design based on the

second-generation WSDL.

About providing authentication credentials for transactional
message
The local transactional message client must be able to provide the authentication

credentials required to connect to the Deliver TMS automatically.

When requesting transactional message, transactional applications must provide

authentication credentials to access HCL Unica hosted services. You can provide the

access credentials either by modifying the SOAP header or by providing them as parameters

in the SOAP web service request.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 22

The user name and password that the client must provide in the SOAP request are the user

name and password assigned to your Deliver account. If you do not know these credentials,

contact individuals in your organization who are responsible for maintaining your account,

or contact Unica technical support.

Adding access credentials to the SOAP header

The Deliver TMS requires a user name and password in the web services request. Modifying

the SOAP header in the web services request to include access credentials for HCL Unica

hosted services is one method to access the Deliver TMS. You cannot use this method if

you plan to use attachments with transactional email messages.

Before you begin, obtain the username and password that has been created for your Unica

Deliver hosted email account.

The user name and password that you add to the SOAP header must be the username

and password created for your Unica Deliver hosted email account, as shown below. The

following code examples are based on an Axis2 SOAP library.

String userName = "<user name for your Unica Deliver account>";

String password = "<password for your Unica Deliver account>";

Modify the headers of your client application, as follows.

ServiceClient serviceClient = stub._getServiceClient();

 serviceClient.addStringHeader(new QName

("http://soap.tms.webservices.deliver.unica.com",

"userName", "ns2"), userName);

 serviceClient.addStringHeader(new QName

("http://soap.tms.webservices.deliver.unica.com",

"password", "ns2"), password);

The modified headers must appear as shown in this example, where UserName and

Password are the user name and password for your Deliver account.

<ns2:userName xmlns:ns2="http://soap.tms.webservices.deliver.unica.com">

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 23

UserName</ns2:userName>

<ns2:password xmlns:ns2="http://soap.tms.webservices.deliver.unica.com">

Password</ns2:password>

Access credentials as parameters

You can create a local transactional email client that accesses HCL Unica hosted services

by submitting credentials as parameters in the web service request.

To submit access credentials as parameters, base the client design on the second-

generation WSDL for the Deliver TMS. For more information about this WSDL, see Second-

generation WSDL (on page 21).

Attachments in transactional email requests
The Deliver TMS supports attaching one or more files to a transactional email message.

The web services request must contain the file contents and information that describes

each file.

The second-generation WSDL available from Unica describes how to configure a

transactional email request that includes email attachments. The transactional email

request must specify the following.

• Name of the file to be attached

• The MIME content type of the file

• Contents of the file

You pass attachments to the Deliver TMS inline as separate MIME parts using techniques

described in either of the following standards recognized by the World Wide Web

Consortium (W3C):

• SOAP Message Transmission Optimization Mechanism (MTOM)

• SOAP Messages with Attachments (SWA)

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 24

Consult the W3C web site for details about these standards.

Construction of the transactional email request
To access the Deliver TMS, the transactional email client must be able to provide

credentials to connect to the TMS. It must also provide mailing and message information

as part of the web service request. Unica provides two versions of a WSDL as a guide to

structuring a SOAP request that includes all information required to send a transactional

email.

For more information about the WSDL, see WSDL for Deliver transactional email (on page

20).

The following topics describe the parameters that the client application must define in the

web services request.

• mailingCode (on page 24)

• audienceID (on page 25)

• Fields (on page 26)

• Cell codes (on page 26)

• additionalOptions (on page 27)

• attachments (on page 27)

• Tracking fields (on page 28)

• locale (on page 28)

• userName (on page 29)

• password (on page 30)

mailingCode
The mailingCode parameter specifies the unique mailing code defined in the configuration

of the Deliver mailing that you have enabled for transactional email. The mailingCode

specifies the unique mailing code that is defined in the transactional mailing in Marketing

Center. Marketing Center assigns the code to the mailing after the mailing is deployed. The

code is displayed on the Deploy tab of the mailing.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 25

Parameter name

mailingCode

Data type

String

Because the mailing code is unique within your account, you can use this parameter to

identify the mailing. See the mailing for the specific value.

You can make the mailing code configurable in your local transactional email client

application so that you can point to a different mailing if necessary.

audienceID
You define the audienceID parameter to correlate transactional email messages with email

recipients when you perform additional reporting and processing.

Parameter name

audienceID

Data type

Varies.

You can identify one or more audience IDs for the transactional email

recipient. Pass data for audienceID as an array of name-value pairs.

You can define any value or set of values for each audienceID. For example, you might

use a promotional code, account type, geographical identifier, or all three as the value for

audienceID.

Because each request sends transactional email to one individual, you can identify a

specific email recipient by defining a unique audienceID. In this scenario, you might use a

customer account number as a value for audienceID.

Deliver adds the name and value that you provide for audienceID to the tracking records in

the Deliver system tables. Single audience ID values are stored in the UCC_Envelope table.

Multiple audience ID values are stored in the UCC_EnvelopeAttr table.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 26

In Unica Campaign, marketers can define various audience levels to identify individuals for

tracking purposes. The Deliver TMS does not validate that the audience names that you

provide for audienceID in a transactional email request match the audience names defined

in Campaign. To avoid possible confusion when interpreting tracking results, consult with

your marketing team to determine the correct audience names and values to pass.

Fields
Use the fields parameter to provide recipient-specific information to populate

personalization fields defined in the transactional email message.

Parameter name

fields

Data type

Varies

Provide data as separate name-value pairs for each personalization field used

in the email message.

You must identify each personalization field contained in the document referenced by the

Deliver mailing. The name-value pair must provide the personalization field name as it is

defined in the document. You can assign any value of the appropriate data type.

Cell codes
The cellCodes parameter is optional. By default, the Deliver TMS expects to receive a null

value for this parameter. If you provide a value for cellCodes, you can pass only one cell

code in each web service request.

Parameter name

cellCodes

Data type

String

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 27

You define cells and cell codes in Unica Campaign. A cell is a list of identifiers (such as

customer or prospect IDs from your database). Each cell generated in a flowchart has a

system-generated cell code. You can include a cell code in a web services request if you

want to specify the cell that includes the message recipient.

For more information about defining cells, see the section on managing cells in the Unica

Campaign User's Guide.

additionalOptions
This parameter is reserved for future use.

Parameter name

additionalOptions

Data type

Null

attachments
Use this parameter to specify files that are attached to the transactional email message.

The web service request includes the content of the attached file in the format that you

specify.

You can provide values for multiple elements in this parameter. If the email message

includes a dynamic transactional image, you specify the image label as an element in this

parameter.

Parameter name

attachments

Data Type

fileName: Name of the attached file. Pass the name as a string.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 28

label: Used to identify dynamic transactional images. If the email includes

dynamic transactional images, pass the label as a string. Otherwise, pass this

value as null.

label: Used to identify personalized images. If the email includes a

personalized image, pass the label as a string. You can omit the label if you

are not using personalized images.

fileContent: the MIME content type of the attached file. The type is always

base64Binary.

For more information about using the label attribute to identify dynamic transactional

images, see About Dynamic Transactional Images (on page 46).

Tracking fields
Use this parameter to specify personalized fields used for additional contact tracking.

Parameter name

trackingFields

Data type

Varies. Pass this data as separate name-value pairs for each personalization

field used for tracking.

For more information about the contact and response information provided by additional

contact tracking and the preparations required, see the section on additional tracking in the

Unica Deliver User's Guide.

locale
This parameter specifies the locale, including the associated language, which is used for

messages that are sent back from the Deliver Transactional Mailing Service.

This section lists the valid arguments for the supported locales.

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 29

Note: The list of locales that are available for the Deliver Transactional Mailing Service

is different from the list of locales that area available for Marketing Center.

Parameter name

locale

Data type

Brazilian Portuguese: arg.locale=pt_BR

English: arg.locale=en_US

French: arg.locale=fr

German: arg.locale=de

Italian: arg.locale=it

Japanese: arg.locale=ja

Korean: arg.locale=ko

Russian: arg.locale=ru

Simplified Chinese: arg.locale=zh_CN

Spanish: arg.locale=es

userName
This parameter specifies the user name that is associated with your hosted email account.

Specifying the user name is part of the authentication that is required to establish a

connection with the Deliver TMS. You must also specify the password that is assigned to

the hosted email account.

Parameter name

userName

Data type

Transactional Message Administration Guide | 2 - Integration with the Deliver transactional message service | 30

String

For more information about your hosted email account and establishing a secure

connection to HCL Unica hosted services, see the Unica Deliver Startup and Administrator's

Guide.

password
This parameter specifies the password that is associated with your hosted email account.

Specifying the password is part of the authentication that is required to establish a

connection with the Deliver TMS. You must also specify the user name that is assigned to

the hosted email account.

Parameter name

password

Data type

String

For more information about your hosted email account and establishing a secure

connection to HCL Unica hosted services, see the Unica Deliver Startup and Administrator's

Guide.

Chapter 3. The Deliver Transactional Mailing
Service API

The Deliver Transactional Mailing Service is a web service hosted in HCL Unica. It provides

an API that contains one method calledsendMailing.

The sendMailing method uses the following custom types.

• NameValuePair

Provides methods to store mailing inputs as a name and corresponding value. See

NameValuePair (on page 31)

• Response

Provides status messages for the transactional email request. See Response (on page

32)

• AdvisoryMessage

Provides detailed responses if the request status indicates a warning or error. See

AdvisoryMessage (on page 33)

NameValuePair
The NameValuePair type provides the following methods for submitting parameter names.

You can submit the parameters as string, numeric, or datetime values.

Note: Although NameValuePair supports datetime parameter values, Deliver currently

does not support using datetime values.

Method Parameter

setName name

setValueAsString valueAsString

setValueAsNumeric valueAsNumeric

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 32

Method Parameter

setValueAsDate valueAsDate

setValueDataType valueDataType

Response
The Response custom type provides general acknowledgment messages that indicate if the

email request was successful, or if the request resulted in an error or warning.

The following table lists the status types and related codes for Response. These codes

are considered high-level status codes that describe the success or failure of the email

request. The AdvisoryMessage custom type provides access to more detailed messages

that describe the reasons for a failed email request.

Status Type Description Code

STATUS_SUCCESS The request to the Deliver TMS is successful. 0

STATUS_WARNING The request encountered at least one warning,

but no errors. The client can query the

AdvisoryMessage type for more detail.

1

STATUS_ERROR The request encountered at least one error. 2

Methods for Response

The Response type contains the following methods.

Method Description Returns

getAdvisoryMessages Returns the list of advisory

messages.

AdvisoryMessage[]

getApiVersion Returns the API version. String

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 33

Method Description Returns

getStatusCode Returns the most severe advisory

message in the response.

For example, if the response contains

a warning (code: 1) and an error

(code: 2) then this method returns a

2.

Int

AdvisoryMessage
The AdvisoryMessage custom type provides more detail about status messages.

The following table lists the status types and related codes for the AdvisoryMessage type.

Status Type Description Code

STATUS_LEVEL_INFO Informational message only. Does not reflect a

failure in the call to the Deliver TMS.

0

STATUS_LEVEL_WARNING The call to the Deliver TMS succeeded, but an

issue exists that requires further investigation.

1

STATUS_LEVEL_ERROR The call to the Deliver TMS failed. 2

Methods for AdvisoryMessage

The AdvisoryMessage type contains the following methods.

Method Description Returns

getStatusLevel Returns the severity level of the status

messages: Informational, Warning, or Error.

For example, for STATUS_LEVEL_ERROR, this

method returns the code: 2.

Int

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 34

Method Description Returns

getMessageCode Returns the code for an error message.

For example, for the error, INVALID_LOGIN, this

method returns the code: 1.

Int

getMessage Returns an error message. String

getDetailMessage Returns more details about an error message, if

available.

String

Error messages for transactional email
The Deliver Transactional Mailing Service returns error messages and related codes.

The error messages that are described in the following table apply only to transactional

email and transactional email requests.

Message Description Code

INVALID_LOGIN The authentication

credentials (user name,

password, or both)

provided during the call

to the Deliver TMS do not

match the credentials

on file with Unica for

your account. Review the

userName and password

parameters to ensure that

the credentials have been

specified correctly.

1

UNRECOGNIZED_MAILING_CODE The mailing identified

by the mailing code

2

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 35

Message Description Code

included in the call to

the Deliver TMS is not

enabled for transactional

email. Check the mailing

configuration to verify

the code. Review the

mailingCode parameter

to ensure that the code

has been configured

correctly.The mailing

code included in the call

to the TMS does not

match a transactional

mailing. Check the

mailing to verify the code.

Review the mailingCode

parameter to ensure that

the code is correct.

RUNTIME_EXCEPTION_ENCOUNTERED The email request

encountered an

unexpected runtime

exception. Contact Unica

support.

3

ENVIRONMENT_EXCEPTION_ENCOUNTERED The email request

encountered an

unexpected environment

exception. Contact Unica

support.

4

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 36

Message Description Code

SMTP_CONNECTION_FAILURE The connection to the

SMTP server failed.

Contact Unica support.

5

DOCUMENT_NOT_DEFINED_FOR_SPECIFIED_MAILING The mailing enabled for

transactional email does

not reference an Deliver

document. Examine the

mailing configuration.

The mailing configuration

must reference an email

document that defines

the contents of the email

message.The mailing

does not include an

email.

6

EMAIL_FAILED_TO_SEND The email message

was not transmitted

successfully. You can try

again or contact Unica

support.

7

REQUIRED_PFS_MISSING The email request did

not specify names and

values for all of the

personalization fields

required by the mailing.

Confirm that the web

service request defines

all personalization

fields used in the email

document. The mailing

8

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 37

Message Description Code

configuration contains

a link that lists all of the

required personalization

fields.The email request

did not specify names

and values for all of the

fields that are required by

the mailing. Confirm that

the web service request

defines all fields that are

used in the email. The

mailing lists all of the

required fields.

AUDIENCE_ID_MISSING The request does not

include an audience ID.

Confirm that the web

service request defines a

value for the audienceID

parameter.

9

ATTACHMENT_NUMBER_MISMATCH The number of

attachments defined

in the mailing does

not match the number

passed in the web service

request. Review the

mailing configuration

and the web service

request. The mailing

configuration and web

service request must

12

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 38

Message Description Code

specify the same number

of attachments. The

number of attachments

that is defined in the

mailing does not match

the number that is

passed in the web service

request. Review the

mailing and the web

service request. The

mailing and web service

request must specify

the same number of

attachments.

ATTACHMENT_SIZE_EXCEEDED The size of one of the

attachments exceeded

the maximum allowed

attachment size.

Individual attachments

cannot exceed 1 MB.

13

TOTAL_ATTACHMENT_SIZE_PER_MESSAGE_EXCEEDEDThe total size of all

attachments in the

request exceeded

the maximum total

attachment size per

message. The total size

of all attachments cannot

exceed 2 MB.

14

TMS_MAILING_ATTACHMENTS_LABEL_NOT_FOUND A label provided in the

attachments parameter

15

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 39

Message Description Code

(typically to identify a

dynamic transactional

image) is missing or

does not match the

label contained in the

email document. NOTE:

Attachment labels are

case-sensitive; labels

entered in the web

service request must

exactly match the label

as entered in the mail

document. A label

that is provided in the

attachments parameter

(typically to identify a

personalized image)

is missing or does not

match the label in the

email. NOTE: Attachment

labels are case-sensitive;

labels in the web service

request must exactly

match the label in the

email.

TMS_MAILING_ATTACHMENTS_LABEL_DUPLICATED A label provided in the

attachments parameter

(typically to identify a

dynamic transactional

image) appears multiple

times in the web

16

Transactional Message Administration Guide | 3 - The Deliver Transactional Mailing Service API | 40

Message Description Code

service request. In the

web service request,

attachment labels

must be unique. A label

that is provided in the

attachments parameter

(typically to identify a

personalized image)

occurs multiple times in

the web service request.

In the web service

request, attachment

labels must be unique.

Chapter 4. Sample client

Unica provides sample transactional message clients to guide application developers

that create client applications that make web service calls to the Deliver Transactional

Messaging Service (TMS). This sample client is based on the second-generation WSDL.

The major difference between this WSDL and the earlier version is that this version supports

using attachments with transactional message and provides authentication credentials as

parameters.

The following program is an example that demonstrates how to structure a request to the

Deliver Transactional Mailing Service. Review this example as an illustration of how to work

with the application programming interface for the Deliver TMS.

This example is based on libraries for axis2 1.3. For details about axis2 1.3, see the

following website: http://ws.apache.org/axis2/ .

public class SampleTestClient {

 public static void main(String[] args) throws AxisFault, RemoteException {

 /**

 * The sendMailing method of the TMS webservice requires:

 * 1) proper authentication information - a valid username and

 password recognized by the TMS

 * 2) a mailingCode to identify the Mailing that contains the

 document to be sent

 * 3) an audience identifier (used primarily for tracking)

 * 4) personalized fields that will be merged into the document to

 be sent

 * 5) optional cellCode(s) associated to the audience identifier.

 * 6) optional additionalOptions - there are currently no

 additional options supported,

 * but is here for future use. For now this parameter can be

 left as null.

http://ws.apache.org/axis2/

Transactional Message Administration Guide | 4 - Sample client | 42

 * 7) optional locale for the response messages to be returned

 otherwise default is "en" (Locale.US) for english

 */

 // authentication information

 String userName = "MyTMSUserName";

 String password = "MyTMSPassword";

 // mailing code

 String mailingCode = "mailing 123";

 // audience id: note, an audience id is comprised of at least one

 name value pair.

 // a custom type called NameValuePair needs to be constructed.

 NameValuePair[] audienceId = new NameValuePair[1];

 NameValuePair nvp = new NameValuePair();

 nvp.setName("CustomerID");

 nvp.setValueDataType("numeric");

 nvp.setValueAsNumeric(2021);

 audienceId[0] = nvp;

 // personalized fields: each personalized field is a name value

 pair, so again we use the

 // custom type "NameValuePair". For this example, we want to send

 two personalized fields (emailAddress, gender)

 NameValuePair[] personalizedFields = new NameValuePair[2];

 NameValuePair nvp1 = new NameValuePair();

 nvp1.setName("emailAddress");

 nvp1.setValueDataType("string");

Transactional Message Administration Guide | 4 - Sample client | 43

 nvp1.setValueAsString("johndoe@foobar.com");

 personalizedFields[0] = nvp1;

 NameValuePair nvp2 = new NameValuePair();

 nvp2.setName("gender");

 nvp2.setValueDataType("string");

 nvp2.setValueAsString("male");

 personalizedFields[1] = nvp2;

 // Cell code

 String[] cellCodes = { "CC243935" };

 // Load the attachment data from the file system using a data source

 FileDataSource logo = new FileDataSource(new File("C:\\logo.png"));

 DataHandler handler = new DataHandler(logo);

 Base64Binary attachmentBinary = new Base64Binary();

 attachmentBinary.setBase64Binary(handler);

 ContentType_type0 actualContentType = new ContentType_type0();

 actualContentType.setContentType_type0(handler.getContentType());

 // specify the content type for the attachment

 attachmentBinary.setContentType(actualContentType);

 // Add the attachment

 Attachment attachment = new Attachment();

 attachment.setFileName("First Attachment");

 attachment.setLabel("Attachment");

 attachment.setFileContent(attachmentBinary);

 // Configure attachments

 Attachment[] attachments = new Attachment[] {attachment};

Transactional Message Administration Guide | 4 - Sample client | 44

 // Additional Options - this is a name value pair again - but for now

 // send as null

 NameValuePair[] additionalOptions = null;

 NameValuePair[] trackingFields = null;

 // locale - rely on default by setting as null;

 String locale = null;

 /**

 * Calling the Method:

 * 1) set up a connection object with the URL of the TMS webservice

 * 2) Construct the required security header with the

 authentication credentials

 * 3) Construct the method and Set the parameters

 * 4) Make the call

 * 5) Process the response

 */

 // connection object

 TMSStub stub = new TMSStub("http://<Replace IP of Deliver TMS

 Service>:<PORT>/delivertms/services/TMS");

 ServiceClient serviceClient = stub._getServiceClient();

 serviceClient.getOptions().setProperty(HTTPConstants.SO_TIMEOUT, new

 Integer(60 * 1000));

 serviceClient.getOptions().setProperty(HTTPConstants.CONNECTION_TIMEOUT,

 new Integer(60 * 1000));

 // authentication: the TMS web service requires the client to submit

 // user and pw info via soap headers.

Transactional Message Administration Guide | 4 - Sample client | 45

 // the following code sets up the authentication credentials that are

 // passed in via the headers.

 UserName un = new UserName();

 un.setUserName(userName);

 Password pwd = new Password();

 pwd.setPassword(password);

 // make the call

 Response response = stub.sendMailing(mailingCode, audienceId,

 personalizedFields, cellCodes, additionalOptions,

 attachments, trackingFields, locale, un, pwd);

 // process the response - a customType Response is returned

 // all responses come back with a top level code that indicates whether

 // or not the request was

 // successful (0) or a warning (1) or error (2) occurred. If the request

 // was not successful, the client code

 // should log/alert the issue, and possibly retry the request depending

 // on the issue

 if (response.getStatusCode() == 0) {

 System.out.println("Request to TMS successful");

 } else // an error or warning occurred

Chapter 5. About Dynamic Transactional
Images

Dynamic transactional images are images specific to a particular individual that you can

include with transactional email messages. Dynamic transactional images are sent as

attachments to transactional email but they display as images embedded in the body of the

message.

A common example of using individualized images involves embedding ticket barcodes

or QR codes in a transactional email message. Your corporate business systems create

the barcode and provide it to the local transactional email client. The client includes the

image attachment in the SOAP request submitted to the Deliver TMS. Because the image is

transmitted as an attachment, the email recipient sees the barcode displayed in the email

even if the email client is configured to turn images off.

Dynamic transactional images are not available in standard email messages nor are they

supported for use within advanced scripts for email.

Using dynamic transactional images in transactional
email messages
Using dynamic transactional images requires separate actions by email designers

and transactional application developers. Email designers define an image label in the

email document to indicate where a dynamic transactional image appears in the email.

Application developers configure the local transactional email client to reference the image

label in transactional email requests. Corporate transactional systems provide the image

content when the transactional mailing runs.

Email designers define dynamic transactional image labels by modifying tags in the

HTML template that defines the email. Designers can define image labels with the Deliver

Document Composer or by modifying the HTML code directly. Image labels use a syntax

reserved for dynamic transactional images. The location of the image label determines how

and where a dynamic transactional image appears in the body of an email.

Transactional Message Administration Guide | 5 - About Dynamic Transactional Images | 47

Application developers must ensure that all of the labels that appear in the email are

referenced in transactional email requests. The image label and the image content must

be part of the SOAP request that the local transactional email client submits to the Deliver

TMS. The image labels are case sensitive and must appear in the SOAP request exactly as

they are defined in the email.

Defining an image label for dynamic transactional images
You define image labels for dynamic transactional images using a specific format.

Use the following syntax to define the label for a dynamic transactional image in an email

document.

#include:image_label#

The local transactional email client references the value that you define for image_label in

the SOAP request it submits to the Deliver TMS.

The value for image_label is case-sensitive. The image label defined in the email must

exactly match the image label provided in the SOAP request submitted to the Deliver TMS.

The email marketing team and application developers must develop consistent naming

conventions and procedures to ensure that the names match.

In the Document Composer, you can add the label for a dynamic transactional image to

an email document by using the image widget. You can also add the label for a dynamic

transactional image directly to the HTML code in the template used to create the email.

Note: When you preview an email that contains dynamic transactional images, the

image links appear to be broken. This behavior is expected. The images are populated when

Deliver receives the image content as part of the transactional email request.

Adding dynamic transactional images using the image widget

You can use the image widget in the Deliver Document Composer to define a dynamic

transactional image in an email document. Replace the image URL with the image label for

the dynamic transactional image.

Transactional Message Administration Guide | 5 - About Dynamic Transactional Images | 48

The following procedure defines a label to identify the image. The image label is case

sensitive. Consult with application developers to ensure that transactional email requests

reference the image using the exact same image label.

1. Insert or drag an image widget to a droppable zone in the email document.

2. In the Image field, enter the label for the dynamic transactional image in the following

format.

#include:image_label#

Replace image_label with a unique name to identify the image. For example,

#include:barcode1#

3. Save the email document.

Adding dynamic transactional images directly to email templates

You can add a dynamic transactional image directly into an email document with an IMG tag

in the HTML code of the template.

• Define the IMG tag as follows.

• Replace image_label with a unique name to identify the image. As a best practice,

provide alternate text for the image.

For example:

<img src="#include:barcode1#"

alt="Label for dynamic transactional image" border="0" />

Adding dynamic transactional images in an image link

You can use a dynamic transactional image to create an image link in a transactional email.

Transactional Message Administration Guide | 5 - About Dynamic Transactional Images | 49

• Define an HREF tag in the email template, as follows.

<img src="#include:image_label#"

alt="alt_text_for_link" border="0" />

• Replace image_label with a unique name to identify the image. The target URL is the

value for link_target. As a best practice, provide alternate text for the image.

For example:

<img src="#include:picture1#"

alt="Link to web site" border="0" />

How to specify dynamic transactional images in the transactional
email request
In the web service request for transactional email, specify dynamic transactional images as

email attachments. Attachment size requirements for other types of attachments also apply

to dynamic transactional images. Each dynamic transactional image cannot exceed 1 Mb

and the total of all attachments cannot exceed 2 Mb.

An image label can appear multiple times in an email but it must appear only once in the

SOAP request. If you use the same label in multiple attachments.

Use the attachments parameter to specify dynamic transactional images as attachments

to transactional email. In the attachments parameter, the value for thelabel attribute is the

image label that is defined in the email document.

Consider the following example of how to configure the attachments parameter to specify

dynamic transactional images. Assume that you want to send a transactional email that

includes an entrance pass to an upcoming customer conference and a map with directions.

You must configure two attachments in the web service request. The first attachment is a

QR code that admits the recipient to the conference. The second attachment is a map that

provides driving directions from the physical address currently on file for the customer. The

following example illustrates how the attachments portion of the web service request might

look.

Transactional Message Administration Guide | 5 - About Dynamic Transactional Images | 50

// Configure attachments In this example, there are two attachments:

// QRblock and MAP_site

Attachment[] attachments = new Attachment[2];

//This is the first of the two attachments

// Load the attachment data from the file system

 using a data source

FileDataSource QRdataSource = new FileDataSource(new File("C:\\QR.png"));

DataHandler QRhandler = new DataHandler(QRdataSource);

Base64Binary QRattachmentBinary = new Base64Binary();

attachmentBinary.setBase64Binary(QRhandler);

ContentType_type0 QRContentType = new ContentType_type0();

QRContentType.setContentType_type0(QRhandler.getContentType());

// specify the content type for the attachment

QRattachmentBinary.setContentType(QRContentType);

// Add the attachment

Attachment QRblock = new Attachment();

QRblock.setFileName("QR.png");

QRblock.setLabel("PremiumTix_QR");

QRblock.setFileContent(QRattachmentBinary);

//This is the second of the two attachments

// Load the attachment data from the file system

 using a data source

FileDataSource MAPdataSource = new FileDataSource(new File("C:\

\SiteMap.png"));

DataHandler MAPhandler = new DataHandler(MAPdataSource);

Base64Binary MAPattachmentBinary = new Base64Binary();

MAPattachmentBinary.setBase64Binary(MAPhandler);

ContentType_type0 MAPContentType = new ContentType_type0();

Transactional Message Administration Guide | 5 - About Dynamic Transactional Images | 51

MAPContentType.setContentType_type0(MAPhandler.getContentType());

// specify the content type for the attachment

MAPattachmentBinary.setContentType(MAPContentType);

// Add the attachment

Attachment MAP_site = new Attachment();

MAP_site.setFileName("SiteMap.png");

MAP_site.setLabel("Map_directions");

MAP_site.setFileContent(MAPattachmentBinary);

// Set the attachment array

attachments[0] = QRblock;

attachments[1] = MAP_site;

	Transactional Message Administration Guide
	Contents
	Chapter 1. About Deliver and transactional message
	Using Deliver to send transactional message
	How transactional message works in deliver
	Transactional messaging and standard messaging compared
	Message design for transactional message
	About identifying the sender of the transactional message

	Recipient information for transactional message
	Personalization fields used in a transactional message
	Personalization fields for additional link or contact tracking in transactional message

	Global message suppression and transactional message
	Attachments to transactional email
	Virus scanning for attachments

	What digital marketers do for transactional message
	About enabling mailings for transactional message
	About editing messagings that are enabled for transactional message

	About responding to errors related to transactional email

	What application developers do for transactional message

	Chapter 2. Integrating with the Deliver transactional message service
	Identification of transaction events
	Access to recipient data
	Connection to the Deliver TMS
	Deliver TMS addresses
	WSDL for Deliver transactional email
	Second-generation WSDL

	About providing authentication credentials for transactional message
	Adding access credentials to the SOAP header
	Access credentials as parameters

	Attachments in transactional email requests
	Construction of the transactional email request
	mailingCode
	audienceID
	Fields
	Cell codes
	additionalOptions
	attachments
	Tracking fields
	locale
	userName
	password

	Chapter 3. The Deliver Transactional Mailing Service API
	NameValuePair
	Response
	Methods for Response

	AdvisoryMessage
	Methods for AdvisoryMessage

	Error messages for transactional email

	Chapter 4. Sample client
	Chapter 5. About Dynamic Transactional Images
	Using dynamic transactional images in transactional email messages
	Defining an image label for dynamic transactional images
	Adding dynamic transactional images using the image widget
	Adding dynamic transactional images directly to email templates
	Adding dynamic transactional images in an image link

	How to specify dynamic transactional images in the transactional email request

