
Unica Campaign Validation
PDK Guide V12.1.1

Contents

Chapter 1. Validation Plug-in Developer's Kit (PDK) overview.. 1

Contents of the Validation PDK... 1

Two ways to use the validation API.. 2

Build a ™ class plug-in that is loaded into the application..3

Call an application to handle validation...3

Offer versus campaign validation.. 4

Sample validators included in the Validation PDK..4

Test harness for the Validation PDK..5

Build scripts for the Validation PDK.. 6

Chapter 2. Developing validation plug-ins for Unica Campaign..7

Setting up your environment to use the Validation PDK.. 7

Building the validator.. 8

Configuring Unica Campaign to use a validation plug-in... 9

validationClass... 10

validationClasspath..10

validatorConfigString... 11

Testing the validator configuration.. 12

Creating a validator... 12

Example validation scenario: prevent campaign edits... 13

Chapter 3. Calling an application to handle validation... 15

Configuring Unica Campaign to use the sample executable plug-in...............................15

Expected executable usage interface..16

Index..

d30e3063
d30e3063
d30e3063
d30e3063

Chapter 1. Validation Plug-in Developer's Kit
(PDK) overview

Use the Validation Plug-in Developer's Kit (PDK) to develop custom validation logic for use

in Unica Campaign.

You can create plug-ins to perform custom validation logic for campaigns, offers, or both.

Some possible uses of validation logic are:

• To check extended (custom) attributes

• To provide authorization services that are outside of the scope of Unica Platform (for

example, validating which users are allowed to edit which extended attributes).

The Validation PDK is a subclass of a more generic plug-in framework that is provided with

Unica Campaign.

The Validation PDK contains Javadoc™ reference information for both the Plug-In API and

the sample code. To view the documentation, open the following file in your web browser:

C:\HCL\Unica\Campaign_Home\devkits\validation\javadoc\index.html

For example:

C:\HCL\Unica\Campaign\devkits\validation\javadoc\index.html

Contents of the Validation PDK
The Validation PDK contains components to develop Java™ plug-ins or command-line

executables to add custom validation to Unica Campaign. The PDK contains documented,

buildable examples of how to use the PDK.

Unica Campaign Validation PDK Guide V12.1 | 1 - Validation Plug-in Developer's Kit (PDK) overview | 2

The following table describes each component.

Table 1. Components of the Validation PDK

Component Description

Developer guide A PDF document titled Unica Campaign Validation PDK Guide.

API Javadoc Reference information for the plug-in API.

Java .jar file A sample JAR file that contains the sample plug-ins. The JAR file

contains:

• Simple plug-in: an example of a self-contained validator class.

• Executable plug-in: an example validator that runs a user-defined

command line executable to perform validation.

Sample Executable A command-line executable that can be used with the executable

plug-in on UNIX™.

Build Script An Ant script that builds the included source code into usable

validator plug-ins.

Samples Source

Code

The Java source code for the simple validator and the executable

validator.

Unica Campaign Validation PDK Guide V12.1 | 1 - Validation Plug-in Developer's Kit (PDK) overview | 3

Two ways to use the validation API
There are two ways to use the Validation API.

• Use it to build a Java class plug-in that is loaded into the application.

• Use one of the included plug-ins to call out to an executable application to handle the

validation.

Build a Java class plug-in that is loaded into the application
The Validation PDK provides the interfaces, helper classes, and Developer's tools for

developing these classes.

Unica Campaign Validation PDK Guide V12.1 | 1 - Validation Plug-in Developer's Kit (PDK) overview | 4

Call an application to handle validation
You can use one of the included Validation PDK plug-ins to call out to an executable

application to handle the validation.

The executable may be written in any language, but must reside on the Unica Campaign

server and be executed on the server. The plug-in that calls the executable sends in an XML

file that contains the information to be validated; for example, the user editing the object

and the before and after values for all standard and extended attributes of that object.

Unica Campaign expects results information in the form of an XML file in return.

Offer versus campaign validation
A plug-in that is made with the Unica Campaign Validation PDK can perform custom

validation logic for campaigns, offers, or both.

The Validation PDK can validate offers and campaigns. If a validation plug-in is defined, it is

automatically called by Unica Campaign each time an offer or campaign object is saved.

Unica Campaign sets a flag when it calls the plug-in's validate method. Unica Campaign

passes the following flags:

• ValidationInputData.CAMPAIGN_VALIDATION, when adding or changing a campaign

or

• ValidationInputData.OFFER_VALIDATION, when adding or editing an offer.

You can then use these flags to construct validation rules applying to offers and campaigns.

Unica Campaign Validation PDK Guide V12.1 | 1 - Validation Plug-in Developer's Kit (PDK) overview | 5

Sample validators included in the Validation PDK
Two sample validators are included in the Unica Campaign Validation PDK:

SimpleCampaignValidator and ExecutableCampaignValidator.

• SimpleCampaignValidator is a self-contained plug-in that shows how to do such

things as custom authorization and validating allowable campaign names. It can be

found in the following path:

devkits\validation\src\com\unica\campaign\core\validation\

samples\SimpleCampaignValidator.Java

We recommend that you make a copy of the class before you edit it, so you can retain

the original version if needed.

• ExecutableCampaignValidator is a Java plug-in that calls out to an

executable application to perform the validation. The source code for the

ExecutableCampaignValidator is included in the same directory as the

SimpleCampaignValidator:

devkits\validation\src\com\unica\campaign\core\validation\

samples\ExecutableCampaignValidator.Java

However, the real purpose of this example is for use as a command-line executable for

validation. This file is in the following path:

devkits/validation/src/com/unica/campaign/core/validation/

samples/validate.sh

This file is a sample loopback executable, illustrating common types of validation work.

Test harness for the Validation PDK
Being able to test validation code without putting it into Unica Campaign speeds up the

plug-in Developer's process.

Unica Campaign Validation PDK Guide V12.1 | 1 - Validation Plug-in Developer's Kit (PDK) overview | 6

Customers who use extreme programming and other agile methodologies use unit testing

extensively. The Validation PDK supports these methodologies by offering a test harness for

running a plug-in outside of Unica Campaign.

To use the test harness:

1. Alter the unit test case to reflect the validation logic in the plug-in.

2. Run the build script:

• To create the plug-in without doing any unit tests, run the build scripts using the

"ant jar" command.

• To create the plug-in and also do unit testing, run the build scripts using the "ant

run-test" command.

Build scripts for the Validation PDK
The build scripts in the Validation PDK compile all of the classes in a directory and put them

in a JAR file that is suitable for use in Unica Campaign.

The supplied build script uses the following directory:

devkits/validation/src/com/unica/campaign/core/validation/samples/

Chapter 2. Developing validation plug-ins for
Unica Campaign

A plug-in is a Java class that is loaded at startup time and called whenever a campaign or

offer is validated.

The validation occurs whenever a user saves a campaign. You can create your own Java

plug-ins with the tools that are provided in the Validation PDK. The PDK contains source

code for sample plug-ins and an Ant file (Apache Ant is a Java based build tool) that you

use to compile plug-ins.

The following steps explain how to set up your environment to develop a plug-in and then

walk you through the creation of your own plug-in.

1. Setting up your environment to use the Validation PDK (on page 7)

2. Building the validator (on page 8)

3. Configuring Unica Campaign to use a validation plug-in (on page 9)

4. Testing the validator configuration (on page 12)

5. Creating a validator (on page 12)

Setting up your environment to use the Validation PDK
To use the Validation PDK with Unica Campaign, you must modify your path and set the

JAVA_HOME environment variable.

The Validation PDK can be installed on any machine, but the plug-ins that you create with it

must be on the machine where Unica Campaign is running. We recommend that you install

the PDK on the machine where you are testing your plug-ins.

The PDK requires you to have Apache Ant and a Sun Java developer kit on your machine to

create Java plug-ins. To ensure compatibility, use the Ant and JDK packages that come with

your application server.

To set up your environment to use the Validation PDK:

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 8

1. Add the folder containing the Ant executable to your path. Two examples are provided.

• For WebLogic 11gR1 installed in the default directory on Windows™, add the

following to your path: C:\Oracle\Middleware\wlserver_10.3\common\bin

• For WebSphere® 7.0 installed in the default directory on Windows, add the

following to your path: C:\HCL\WebSphere\AppServer1\bin

2. Set the JAVA_HOME environment variable to the directory containing the bin and lib

directories of the JDK. Two examples are provided.

• For WebLogic 11gR1 on Windows, set JAVA_HOME to C:\Oracle\Middleware

\jdk160_18

• For WebSphere 7.0 on Windows, set JAVA_HOME to C:\HCL\WebSphere

\AppServer1\java\jre

Building the validator
The Unica Campaign Validation PDK supplies an Ant script that can build all of the code in

the sample files.

The default behavior for the script is to create a jar that contains the validation classes.

Optionally, it can also create Javadoc and run tests against the validators to ensure that

they work in Unica Campaign before trying to use the plug-in in production.

To build the validator:

1. Change to the PDK directory <HCL_Unica_Home\Unica Campaign_Home>

\devkits\validation\build

For example: C:\HCL\Unica\Campaign\devkits\validation\build

This directory contains the Ant script, build.xml.

2. Run the Ant jar at the command line.

• To create the plug-in without doing any unit tests, use the ant jar command.

• To create the plug-in and also do unit testing, use the ant run-test command.

Ant runs the script and produces a JAR file called validator.jar in the lib

subdirectory. For example:

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 9

C:\HCL\Unica\Campaign\devkits\validation\build\lib

You now have a custom validator that can be used in Unica Campaign. Your next step is to

configure Unica Campaign to use this validator.

Configuring Unica Campaign to use a validation plug-
in
To configure Unica Campaign to use a validation plug-in, use the configuration settings at

Unica Campaign > partitions > partition[n] > validation.

The configuration properties tell Unica Campaign how to find the plug-in class and they

provide a way to pass configuration information to the plug-ins.

Note: Validation works with multiple partitions; partition[n] can be changed to any

partition name to provide validation routines for those partitions as well.

You can adjust the following validation configuration settings:

• validationClass (on page 10)

• validationClasspath (on page 10)

• validatorConfigString (on page 11)

To use the SimpleCampaignValidator, set the properties as follows:

• validationClasspath: Unica\campaign\devkits\validation\lib\validator.jar

• validationClass:

com.unica.campaign.core.validation.samples.SimpleCampaignValidator

• The validatorConfigString does not have to be set to use the

SimpleCampaignValidator because it does not use a configuration string.

To use the ExecutableCampaignValidator, set the properties as follows:

• validationClasspath: <Campaign_home>\devkits\validation\lib\validator.jar

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 10

• validationClass:

com.unica.campaign.core.validation.samples.ExecutableCampaignValidator

• The validatorConfigString: <Campaign_home>\pdk\bin\validate.sh

validationClass
The validationClass tells Unica Campaign the name of the class to use for validation with

a Validation PDK plug-in.

Property Description

Description The name of the class to use for validation. The value of the

validationClasspath property indicates the location of this class.

Details The class must be fully qualified with its package name. If this property is

not set, Unica Campaign does not do any custom validation.

Example com.unica.campaign.core.validation.

samples.SimpleCampaignValidator

This example sets validationClass to the SimpleCampaignValidator

class from the sample code.

Default By default, no path is set:

<property name="validationClass" />

validationClasspath
The validationClasspath tells Unica Campaign the location of the class to use for

validation with a Validation PDK plug-in.

Property Description

Description The path to the class that is used for custom validation.

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 11

Property Description

Details Use either a full path or a relative path. If the path is relative, the behavior

depends on the application server that is running Unica Campaign.

WebLogic uses the path to the domain work directory, which by default is

c:\bea\user_projects\domains\mydomain.

If the path ends in a slash (/ for UNIX or \ for Windows), Unica Campaign

assumes that it points to the location of the Java plug-in class to be used.

If the path does not end in a slash, Unica Campaign assumes that it is the

name of a .jar file that contains the Java class, as shown in the following

example.

If the path is not set, Unica Campaign does not attempt to load a plug-in.

Example /<CAMPAIGN_HOME>/devkits/validation/lib/validator.jar

This is the path on a UNIX platform that points to the JAR file that is

packaged with the plug-in developer's kit.

Default By default, no path is set:

<property name="validationClasspath" />

See also See validationClass (on page 10) for information about designating

the class to use.

validatorConfigString
The validatorConfigString is passed into the validator plug-in when it is loaded by Unica

Campaign.

Property Description

Description A string that is passed into the validator plug-in when it is loaded by Unica

Campaign.

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 12

Property Description

Details How the plug-in uses this string is up to the designer. You can use it to

send a configuration string into your plug-in when the system loads it.

For example, the ExecutableCampaignValidator (from the sample

executable plug-in included with the PDK) uses this property to indicate

the executable to run.

Example To run the sample Bourne shell script as the validation script, set

validatorConfigString

to

/opt/unica/campaign/devkits/validation/src/com/unica/campaign /

core/validation/samples/validate.sh

Default By default, no path is set:

<property name="validatorConfigString" />

Testing the validator configuration
After building the validator.jar file that contains the SimpleCampaignValidator class and

making the necessary configuration changes, you can test and use the plug-in.

The following plug-in example prevents Unica Campaign users from saving a campaign that

is named "badCampaign."

To test your configuration:

1. Redeploy your application server so the changes take effect. For instructions, see your

server documentation.

2. Log in to Unica Campaign and go to the campaign creation page.

3. Create a campaign with the name badCampaign and try to save it.

If everything is properly configured, you are not able to save the new campaign. If you

receive an error message from the validator, you know that it is working correctly.

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 13

Creating a validator
Follow these instructions to create a validation plug-in that is much like the

SimpleCampaignValidator, but prevents the creation of campaigns that are called

"badCampaign2."

1. Make a copy of the sample validator SimpleCampaignValidator.java

in <HCL_Unica_Home\Campaign_Home>\devkits\validation\src

\com \unica\campaign\core\validation\samples. Name the copy

MyCampaignValidator.java and leave it in the same directory as the source. For

example:

C:\HCL\Unica\Campaign\devkits\validation\src\com \unica\campaign

\core\validation\samples\MyCampaignValidator.java

2. Open MyCampaignValidator.java in an editor. Find the word "badCampaign" in the

document and replace it with the word "badCampaign2."

3. Save the file and close the editor.

4. Build the validators again. For details, see Building the validator (on page 8). If your

application server locks the validate.jar file while in use, stop the server before you

build the validators.

5. Reconfigure campaign_config.xml to use your

new class: <property name="validationClass"

value="com.unica.campaign.core.validation.samples.MyCampaignValidator">

6. Test the validator. For details, see Testing the validator configuration (on page 12).

Confirm that the validator works: You should not be able to save campaigns named

"badCampaign2."

Example validation scenario: prevent campaign edits
This example explains how to use validation to prevent specific edits to a campaign.

Unica Campaign Validation PDK Guide V12.1 | 2 - Developing validation plug-ins for Unica Campaign | 14

If you are trying to prevent someone who is editing a campaign from changing the

campaign code, you can use a custom campaign validation routine. The routine ensures

that the following check is done when the campaign is saved:

new_campaign_code == old_campaign_code

To handle the case when the campaign is first being created, pass to the routine a flag that

indicates whether the campaign being validated is new (creation) or existing (edit). If this

flag indicates edit, then compare the campaign codes.

The Campaign application sets this flag in the InputValidationData object that it then

passes to the plug-in. The plug-in reads the flag when it determines whether the validation is

for a new or changed campaign.

Chapter 3. Calling an application to handle
validation

The Validation PDK includes a sample validator, ExecutableCampaignValidator, which runs

an executable, validate.sh, from the command line, to perform validation.

The following sections explain how to:

• Configure Unica Campaign to run the sample executable plug-in, and

• Create your own executable plug-in that conforms to using the executable usage

interface.

Configuring Unica Campaign to use the sample
executable plug-in
To use the ExecutableCampaignValidator, adjust the configuration settings at Unica

Campaign > partitions > partition[n] > validation.

Set the properties as follows:

• validationClasspath:

<Unica Campaign_home>\devkits\validation\lib\validator.jar

• validationClass:

com.unica.campaign.core.validation.samples.ExecutableCampaignValidator

• validatorConfigString:

<Unica Campaign_home>\pdk\bin\validate.sh

The sample script that ships with the Validation PDK is a Bourne shell script for UNIX. It

denies campaign creation to anyone who has the user name "badUser." You can view the

code for that executable in the following directory:

Unica Campaign Validation PDK Guide V12.1 | 3 - Calling an application to handle validation | 16

devkits\validation\src\com\unica\campaign\core\validation\

samples\validate.sh

You need to develop your own script that performs relevant validation for your

implementation. Scripting languages such as PERL and Python are good candidates for text

processing scripts like this; however, any language that can be run from the command line

is acceptable.

Expected executable usage interface
The ExecutableCampaignValidator plug-in calls an executable file with a command line

that contains the following arguments.

• executable_name: The string set in the validatorConfigString in Unica Platform.

• data_filename: The name of the file that the executable reads as input. The input data

must be formatted in XML.

• expected_result_filename: The name of the file that the executable should send as

output. The expected results are of the form data XXX.xml where XXX is a number.

◦ Here is an example of how successful data is sent:

<ValidationResult result="0" generalFailureDeliver="" />

◦ Here is an example of how failed data is sent:

<ValidationResult result="1" generalFailureDeliver="">

 <AttributeError attributeName="someAttribute"

 errorMessage="something" />

 <AttributeError attributeName="someAttribute2"

 errorMessage="something2" />

 </ValidationResult>

◦ Text in the XML file must be encoded in regular ASCII characters or UTF-8.

Note: It is highly recommended that you provide easy-to-understand error messages to

users so they can correct the problem before reattempting another save operation.

	Unica Campaign Validation PDK Guide V12.1
	Contents
	Chapter 1. Validation Plug-in Developer's Kit (PDK) overview
	Contents of the Validation PDK
	Two ways to use the validation API
	Build a Java class plug-in that is loaded into the application
	Call an application to handle validation

	Offer versus campaign validation
	Sample validators included in the Validation PDK
	Test harness for the Validation PDK
	Build scripts for the Validation PDK

	Chapter 2. Developing validation plug-ins for Unica Campaign
	Setting up your environment to use the Validation PDK
	Building the validator
	Configuring Unica Campaign to use a validation plug-in
	validationClass
	validationClasspath
	validatorConfigString

	Testing the validator configuration
	Creating a validator
	Example validation scenario: prevent campaign edits

	Chapter 3. Calling an application to handle validation
	Configuring Unica Campaign to use the sample executable plug-in
	Expected executable usage interface

