
Unica Link V12.1.1
Creating Link Connectors Tutorial

© Copyright HCL Ltd. 2021 All rights reserved 1

Contents
Introduction .. 3
Approach ... 3
Scenario... 4

Requirements ... 4
Validation of Technical Requirements... 4
Webapp Simulator for testCONN .. 6

Task 1 – Setup ... 6
Step 1 – Install the webapp .. 6
Step 2 – Install the test application ... 7

Task 2 – Create a Service Definition .. 8
Step 1 – Define the REST service .. 8
Step 2 – Define a Test Connection endpoint (optional) .. 11
Step 3 – Define the Send Email endpoint .. 13
Step 4 – Define the Get Templates endpoint ... 15

Task 3 – Create the Connector Project ... 16
Step 1 – Create (or Import) the Project .. 16
Step 2 – Create Link Schema for JSON Templates for API Endpoints 19
Step 3 – Create Schema for Input and Output CSV ... 22
Step 4 – Create Request Map ... 26
Step 5 – Create Response Map ...35
Step 6 – Create Error Response Map .. 37
Step 7 – Create First Flow ... 39
Step 8 – Running the Flow .. 47
Step 9 – Enhance Flow to Process Large Data.. 50
Step 10 – Extend the Request Map ... 54
Step 11 – Updating and Running the Bulk Flow ... 57

Task 4 – Create the Properties Descriptor .. 60
Task 5 – Package the Connector .. 62
Task 6 – Install the Connector ... 64
Task 7 – Test the Connector ... 65

Step 1 – Define a Server ... 65
Step 2 – Create a Connection.. 66
Running the Action .. 69

© Copyright HCL Ltd. 2021 All rights reserved 2

Next Steps .. 72

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 3

Introduction
This document provides a walkthrough of the steps required to create, test, and deploy a Link
connector. The document Creating Link Connectors – Reference provides more details about
the concepts of Link connectors and should be read in parallel with this document.

This tutorial provides step-by-step instructions for creating a connector, using the hypothetical
example 'testconn' provided in the development package. The tutorial is aimed at those who are
inexperienced with Link, but for experienced users it provides a useful guide for the logical steps
in creating a connector.

The tutorial describes a step-by-step approach where one first builds a simple solution, then
incrementally expands upon it to produce the complete connector.

Approach
Creating a Unica Link custom connector consists of completing the tasks shown below.

1. The first task is to define the requirements for the custom connector and then to verify
that appropriate REST APIs or available integration methods are provided by the
third-party application to be able to meet those requirements. This is frequently the most
difficult and time-consuming task, but it is also the most important. As with any other
development project, if you do not know what you’re trying to accomplish, you will never
accomplish anything. Once the requirements are documented and the REST APIs
identified, you are ready to begin creating the connector.

2. Next, you use the Link Service Builder to create service definitions for the REST

APIs and endpoints that will be used to connect to the third-party application/service.

3. After creating the service definitions, you create HCL Link artifacts – integration flows,
transformation maps and schema definitions – that implement the connector logic.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 4

4. Once the connector is developed, you create a simple connector descriptor, which is
a JSON text file, that identifies the connector in Unica Link and displays the Unica Link
user interface within Unica Campaign and Unica Journey.

5. Now, you are ready to package and install the connector using the Link Packager

utility provided in the development kit.

6. Finally, it is time to do end-to-end testing, which can be done from the HCL Link Design
Client, Unica Campaign, Unica Journey and Swagger.

Scenario
For the purposes of this tutorial, you want to connect Campaign or Journey to a service
provided by fictitious testCONN, which sends personalized emails to the audience list you
provide.

Requirements
As described above, the first step is to define what you want the connector to do. The desired
functionality for this tutorial connector is fairly simple and straight-forward. Ideally, the
connector shall:

• Work in both Campaign and Journey.
• Enable the Marketer who is creating the flowchart or journey to specify the template to

be used to send the personalized email.
• Invoke public REST APIs provided by testCONN to send an email to a designated

audience member.
• Process the response(s) from testCONN to provide those results back to Campaign

and/or Journey.
• Periodically poll (every 4 hours for 30 days) for additional results responses from

testCONN to provide those results back to Campaign and/or Journey.
• Correlate the result responses received with the emails sent.

Validation of Technical Requirements
The next step is to see if the APIs provided by the testCONN service enable the desired
functionality. Taking the requirements one-by-one, here is what we have discovered:

 Work in both Unica Campaign and Unica Journey.

o Unica Link is designed in such a way that you can create a single connector that
works with both Unica Campaign and Unica Journey.

o Unica Campaign and Unica Journey interface with Unica Link by delivering an
audience list via a defined channel (a file for Campaign, a message on a Kafka
topic for Journey), which is delivered to Unica Link as CSV formatted data.

 Enable the Marketer who is creating the flowchart or journey to specify the template to

be used to send the personalized email.
o Unica Link provides a mechanism via a connector descriptor to give users the

ability to customize the settings for their connector.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 5

o The testCONN REST API provides an API (template) that will get a list of
templates that can be used

 Invoke public REST APIs provided by testCONN to send an email to a designated

audience member.
o testCONN is a hypothetical email service with a simple REST API that mimics an

email delivery engine.

POST /sender/immediate

o This REST API takes a JSON-formatted request, sends the email, and then
returns one of two JSON-formatted responses – one if the email is sent
successfully and a different one if sending the email resulted in an error.

 Process the response(s) from the public REST API(s) provided by testCONN to provide

those results back to Unica Campaign and/or Unica Journey.
o Unica Link has a defined standard response history CSV format, which the two

JSON-formatted responses from the testCONN REST API can be mapped to
produce.

o Campaign and Journey will consume this response data and update response
history accordingly.

 (NOT SUPPORTED) Periodically poll (every 4 hours for 30 days) for additional results

responses from testCONN to provide those results back to Campaign and/or Journey.
o testCONN does not provide an API to be able to poll for results after the email is

sent. Status of the send is returned at the time the email is sent as part of the
immediate response.

 Correlate the result responses received with the emails sent.

o Campaign and Journey can pass context information for each audience member
that allows the contact to be identified uniquely.

o Testconn can receive context information in the Send email request API and
return it with its status response.

o Therefore, this context information can be returned to Campaign or Journey with
the contacts results.

As you can see, the desired functionality is limited by what the third-party application supports.
In our tutorial, polling is not supported, so it will not be possible to support that in the testCONN
connector.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 6

The following diagram illustrates the data flow of this simple custom connector starting at the
Unica logo at the left and going clockwise.

Webapp Simulator for testCONN
Included in the development package with this tutorial is a simple webapp (called testapp) that
implements this API. The main API is:

POST /sender/immediate

where the body is a JSON object that has the email address and other attributes that would be
used in the email body if this service actually sent an email. This API returns a status that
indicates whether the email was sent, undelivered or bounced. It returns these statuses
randomly. It also validates that the given email address is validly formed, i.e., has an '@' and a
'.' character, and returns a 400 status if the format is invalid.

Task 1 – Setup
Perform the following steps to set up the development environment for this tutorial.

Step 1 – Install the webapp
The first step is to install the testapp.war file in the Link runtime server. This needs to be copied
from the testapp directory in the toolkit to the /usr/local/tomcat/webapps directory in the server.

1. If using the Docker version of Link, issue this command running as the user that was used to

install Link:

docker cp testapp.war hip-rest:/usr/local/tomcat/webapps

If using a native (non-Docker) install, the war file can be directly copied to the
/usr/local/tomcat/webapps directory in the Link install. Once copied, it will be automatically
installed by Tomcat.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 7

2. You can verify that it was installed by invoking the 'test connection' API. The webapp uses
Basic authentication, but simply checks that the password value is "good". To test that the
webapp is installed invoke:

curl -u test:good http://localhost:8080/testapp/

Adjust the scheme, host, and port accordingly. If the webapp is installed correctly it will
return:

{"status":"OK"}

Step 2 – Install the test application
As well as implementing the 'send email' service, the test application also mimics the application
that Link is integrated with. This application is invoked from the field mapping UI when
configuring an action.

1. To install the test app copy these files from the testapp directory to the modules directory on

the server (which is /opt/hipmodules by default):

2. Then edit the testapp.properties file and specify the base_url to point to the server where

testapp.war was installed. This needs to specify the IP address of the server: "http://<ip-
address>:8080/testapp". Specifying 'localhost' will not work because that is not resolved
when invoking the Link runtime container from the Link server container.

3. Restart the hip-server server to install the testapp app:

docker restart hip-server

4. After the server starts refresh the project list and you should see a project named

_app_testapp:

Now that setup is complete, the following steps should be followed in sequence to create the
necessary artifacts for the connector.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 8

Task 2 – Create a Service Definition
To meet the requirements described in the scenario earlier in this document, you need to define
the Testapp service and three APIs in Link's Service Builder:

• Test connection: GET {$base_url}/sender/test
• Send email: POST {$base_url}/sender/immediate
• Get a list of templates: GET {$base_url}/templates

Step 1 – Define the REST service
Testapp uses basic authentication to authenticate the user and the only accepted password is
'good'.

To define a REST service for testCONN:

1. Launch Link in your browser and login on the main screen.

2. Click on Service Builder on the home page.

3. Create a new service by clicking on the 'Create Service' button.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 9

4. Name the service and specify the URL. Use a parameter value for the server address, so it
can be provided at runtime. Parameters are specified by using notation "{$variable-name}".

5. Specify basic authentication in the next page and specify the username and password as

parameters.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 10

6. Advance to the last step where the parameters table will be displayed. Populate the values
with default values that will be used when invoking endpoints in the editor. These parameter
values can be set to different values when we subsequently invoke the endpoints.

The base_url should include the IP address of the host server. If Link was installed as
Docker containers, specifying 'localhost' will not work because that is not resolved from the

server docker container.

7. Click Save to save the service definition.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 11

Step 2 – Define a Test Connection endpoint (optional)
The next step is to create an endpoint for the 'test connection' API. This is optional but is a good
idea to ensure that the configuration is correct. The test connection endpoint will be invoked
when a user creates a connection to the resource.

1. Select the Testapp service you just created and then click on Create Endpoint

2. Name the endpoint Ping and click Next.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 12

3. In the Request page, specify the Relative URL and Method. The relative API is the path
added to the base URL that is defined for the service. Alternatively, you can put an absolute
path starting with http/https here.

4. Click Call API at the bottom of the Request page to invoke the API. If the call is successful,

it will display this message and the Success Response page will be populated.

5. Click Next to view the successful response:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 13

{
"email": "fred@test.com",
"first_name": "Fred",
"last_name": "Smith",
"template": 12345

}

6. Click Next and then Save to save the endpoint.

Step 3 – Define the Send Email endpoint
The 'Send email' endpoint requires a JSON request body that looks like this:

1. Create a new endpoint for Testapp named 'Send email' and select Next.

mailto:fred@test.com

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 14

2. Enter the relative URL and method properties on the Request page.

3. Then, scroll down on the Request page and specify the content type and body, as shown.

4. Click Call API. The API call should be successful and the Success Response populated.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 15

5. Click Next and Save to save the endpoint definition.

Step 4 – Define the Get Templates endpoint
Finally, repeat the same steps to create an endpoint for invoking the 'get templates' API.

1. Create a new endpoint for Testapp named “Get templates” and select Next.

2. Enter the relative URL and method properties on the Request page.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 16

3. Click Call API. The API call should be successful and the Success Response should be
populated:

4. Click Next and Save to save the endpoint definition. Having defined the testapp service and

the three endpoints, the Service Builder should show these entries.

We can now reference the service in the project.

Task 3 – Create the Connector Project
This section walks through the steps of creating a project for the connector implementation and
then creating the various artifacts within the project.

Step 1 – Create (or Import) the Project
The next step is to create a Link project for the new connector. In this tutorial, the project and
artifacts are already created, so you can simply import the existing project. If creating a new
connector, one would create a new project and populate it with artifacts.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 17

1. Go to the Link home screen. (Note: From the Service Builder, click on HCL Link Design
Server in the upper left blue title bar.)

To continue the tutorial, either create the project (step 2) or import the project (step 3) before
continuing with step 4.

2. To create a new project, plus sign in a circle icon above the project list and give your

project a meaningful name.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 18

3. To import the existing project, click on the icon and select the testconn.zip project file.

4. Open the project by clicking on its name from the list of projects.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 19

[
{

"_request_": {
"email": "fred@test.com",
"first_name": "Fred",
"last_name": "Smith",
"template": 123

},
"_context_": {

"identity": "xxx"
}

}
]

[
{

"_response_": {
"email": "fred@test.com",
"status": "undelivered"

},
"_context_": {

"identity": "xxx"
}

}
]

Step 2 – Create Link Schema for JSON Templates for API Endpoints
The testCONN API request and response messages are JSON formatted. You need to define
Link schemas that describe the format of these JSON formatted messages. Link can
automatically generate those schemas based on a “sample JSON document” – also called a
template. There are three API formats for which we need to import templates – the request, the
response, and the error response. These schemas will be used with the REST node when we
create the Link flow that implements the connector logic.

We will be creating a flow that uses the REST Client node in Multiple Request mode. In this
mode, a JSON array of objects is passed in and the REST API is invoked for each object in the
array. This mode also allows for a context object to be passed in, which is then copied to the
response, allowing for context for an individual request to be passed through the flow.

Request

This file is saved in the schemas directory of the tutorial as file sendEmail_request.json.

Response

This file is saved in the schemas directory of the tutorial as file sendEmail_response.json:

mailto:fred@test.com
mailto:fred@test.com

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 20

[
{

"_context_": {
"identity": "002"

},
"_response_": {

"status": 400,
"message": "",
"response": {

"email": "bad-email.com",
"error": "email is not valid"

}
}

}
]

Error Response

The API produces a different format for an error response. This file is saved in the schemas
directory of the tutorial as file sendEmail_error_response.json.

All three files need to be imported into the project by clicking on the Schemas list and selecting
XSD/JSON. Select each file in turn and import into the project.

Creating the Schemas

1. From within the _app_testapp project, click on Schemas from the bottom navigation bar and

click on XSD/JSON from the popup menu.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 21

2. Drag sendEmail_request.json to the Link window or browse to locate and select the
file from the <devkit>\testconn\schemas directory.

3. Confirm the name for the schema and add a description (optional), then click OK.

4. Repeat steps 1-3 for the response and error response schemas.

5. Click on Schemas from the bottom navigation bar and you should see the three JSON

schemas that you just created.

Now we have the input and output definitions for the REST calls ready.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 22

email,first,last,identity
name1@test.com,First1,Last1,0001
name2@test.com,First2,Last2,0002
name3@test.com,First3,Last3,0003
name4@test.com,First4,Last4,0004
bad-email.com,First5,Last5,0005

email,status,errormessage,timestamp,identit
y fred@test.com,sent,,2020-07-20T13:01:19,001

Step 3 – Create Schema for Input and Output CSV

As shown above (and previously), the connector’s flow will receive a CSV file (containing
audience data from Campaign or Journey), map from that CSV to the JSON request, and invoke
the REST API with each JSON object. It will then map the results returned by the REST API to a
CSV results file that is returned from the connector to Campaign or Journey.

To develop our map and flow we need to create a CSV data file and its corresponding schema,
which we can do using the Link CSV import capability.

The file <devkit>/testconn/schemas/input5.csv is a small CSV file containing a
header row and five rows of data that represent the audience data from Campaign or Journey
identifying the emails to be sent via testCONN:

The file <devkit>/testconn/schemas/response.csv is a small CSV file containing a
header row and one row of data that represents the response results data to be sent to
Campaign or Journey:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 23

Add the CSV Files to the Project

1. From within the _app_testapp project, click on Files from the bottom navigation bar and
click on New from the popup menu.

2. Drag input5.csv to the Link window or browse to locate and select the file from the

<devkit>\testconn\schemas directory. Click OK.

3. Click on Files from the bottom navigation bar to view the file you just added.

4. Repeat steps 1-3 for <devkit>/testconn/schemas/response.csv.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 24

 Change Format to
Custom, which results in a
simpler schema, but should
only be enabled if the CSV

data will never contain
commas in the data

Create the Schema for the Input CSV
1. Click on Schemas from the bottom navigation bar and click on Import from the popup

menu.

2. Select CSV as the Import Type and click Next.

3. Enter the Import Properties as shown below.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 25

4. Enter a name for the schema and click Import to create the schema.

5. Repeat steps 1-4 for <devkit>/testconn/schemas/response.csv.

6. Click on Schemas from the bottom navigation bar to view your two new schemas.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 26

Step 4 – Create Request Map
Now we have the input, request and response schemas defined in the project we can create a
map that maps from the audience (input) CSV to the JSON array Send Email request we
created earlier.

Note: Initially, we will create a map that uses a fixed set of fields for a specific case. At the end
of the tutorial, we will replace this map with an auto-generated one. For the purposes of
development, it is necessary to start with a specific use case, so that schemas and maps can be
generated.

The map CreateRequest is an example of such a map. To create this map, follow these
steps:

1. Click on Maps from the bottom navigation bar and click on New from the popup menu.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 27

2. Enter a name and description (optional) and click OK.

3. Click on the drop-down menu next to Structure in the upper left and select Create Source.

4. Provide a meaningful name for the source, such as AudienceCSV, and a description

(optional) and click Next.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 28

5. Disable Use Existing Connection and select File from the Type drop-down list. Click Next.

6. Select input5.csv for File Path and click Next.

7. Select the CSV audience schema you created in the earlier step for Schema and select the

Document for Select Type, then click OK.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 29

8. Click on the drop-down menu next to Structure in the upper left and select Create Target.

9. Provide a meaningful name for the target, such as RequestJSON, a description (optional)

and click Next.

10. Disable Use Existing Connection and select Sink from the Type drop-down list. Click

Next. Sink means that the output will not be written to a file or other resource, but the data
sent to this output can be viewed in the Map Designer and will be passed to a downstream
node in a flow.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 30

11. Click Next.

12. Select sendEmail_request for Schema and specify the schema properties, as shown

below, and click OK.

13. In the Structure panel, click over your AudienceCSV source and click on Add from the

context menu. This adds AudienceCSV to the mapping workspace to the right.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 31

14. Now you are ready to map! (If your sources and targets are collapsed, click on the arrows
next to AudienceCSV and ResponseJSON to expand the schema structure.)

15. Map the input to the output by dragging the Row object in the AudienceCSV to the JSON

object in the ResponseJSON.

Notice that Row in AudienceCSV and JSON in ResponseJSON can occur a variable
number of times (0…s means 0 to unlimited). To be able to handle these repeating
elements, you need to create a sub-map, called a functional map, to map each Row in
AudienceCVS to each JSON object in ResponseJSON.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 32

16. To create a functional map, click on the JSON rule to open the Rule Editor. Add fEachRow()
around the Row object that is already present in the rule. Press Enter. A dialog appears at
the bottom of the window asking if you want to create the map fEachRow. Click Yes.

17. The new functional map, fEachRow, will be displayed. Drag the inputs from Row to the

corresponding outputs in JSON.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 33

Default value

18. The value for template will be coming from properties that the end user specifies when
configuring the connector in Campaign or Journey. These are passed to the map as flow
variables. The rule for template will use the flowlib->GETVARIABLE function to get the
value of these variables/properties. The TEXTTONUMBER function converts the flow
variable (which is text) to the template ID (which is a numeric value).

19. Return to the main CreateRequest map by clicking on its name in the Navigator. Cllick

Insert NONE on ResponseJSON and then click Save and Build on the toolbar. If there are
no errors in the map, a message will indicate that the build was successful.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 34

20. The map can now be run directly in the Map Designer by clicking the Run icon. After
running, the Structure panel shows the state of the inputs and outputs.

21. The input data, as well as the data produced by the output can be viewed by right-clicking

on the appropriate node in the Structure panel and selecting View Data. This data will be
passed to the REST Client node in a flow in a subsequent step.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 35

Step 5 – Create Response Map
Now we need to create a map that maps the JSON formatted success responses returned by
testCONN’s API to the response CSV file expected by Campaign and Journey, as shown in the
diagram.

Follow these steps to create a map to map the success JSON array to the results CSV (refer to
the steps in the Step 4 – Create Request Map, as needed):

1. Click on Maps from the bottom navigation bar and click on New from the popup menu.

2. Enter ProcessResponse as the name and a description (optional) and click OK.

3. Click on the drop-down menu next to Structure in the upper left and select Create Source.

4. Provide a meaningful name for the source, such as ResponseJSON, and a description

(optional) and click Next.

5. Disable Use Existing Connection and select File from the Type drop-down list. Click Next.

6. Select --- Update File --- for File Path, upload the sendEmail_response.json file, click OK
and then click Next.

7. Select the sendEmail_response JSON schema you created in the earlier step for Schema

and select JSON for Select Type, then click OK.

8. Click on the drop-down menu next to Structure in the upper left and select Create Target.

9. Provide a meaningful name for the target, such as ResultsCSV, a description (optional) and
click Next.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 36

10. Disable Use Existing Connection and select Sink from the Type drop-down list. Click Next
and click Next again.

11. Select the Responses schema and the Document type, then click OK.

12. In the Structure panel, click over your ResponseJSON source and click on Add from the

context menu. This adds ResponseJSON to the mapping workspace to the right.

13. Map the input to the output by dragging the JSON object in ResponseJSON to the Row
object in ResultsCSV.

14. To create a functional map to map each incoming JSON array to a corresponding row in the

CSV file, click on the JSON rule to open the Rule Editor. Add fEachResponse() around the
Row object that is already present in the rule. Press Enter. A dialog appears at the bottom
of the window asking if you want to create the map fEachResponse. Click Yes.

15. The new functional map, fEachResponse, will be displayed. Drag the inputs from Row to

the corresponding outputs in JSON, type in the rule shown below for timestamp (using the
FROMDATETIME and CURRENTDATETIME functions) and click on the Insert NONE icon
in the Row title bar to map errormsg Field.

16. Return to the main ProcessResponse map by clicking on its name in the Navigator. Cllick

Insert NONE on ResultsCSV and then click Save and Build on the toolbar. If there are no
errors in the map, a message will indicate that the build was successful.

17. The map can now be run directly in the Map Designer by clicking the Run icon. After

running, the Structure panel shows the state of the inputs and outputs.

18. The input data, as well as the data produced by the output can be viewed by right-clicking
on the appropriate node in the Structure panel and selecting View Data.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 37

Step 6 – Create Error Response Map
Now we need to create a map that maps the JSON formatted success responses returned by
testCONN’s API to the response CSV file expected by Campaign and Journey, as shown in the
diagram.

Follow these steps to create a map to map the JSON array of error responses to the results
CSV (refer to the steps in the Step 4 – Create Request Map, as needed):

1. Click on Maps from the bottom navigation bar and click on New from the popup menu.

2. Enter ProcessErrorResponse as the name and a description (optional) and click OK.

3. Click on the drop-down menu next to Structure in the upper left and select Create Source.

4. Provide a meaningful name for the source, such as ErrorResponseJSON, and a description

(optional) and click Next.

5. Disable Use Existing Connection and select File from the Type drop-down list. Click Next.

6. Select --- Update File --- for File Path, upload the sendEmail_error_response.json file, click
OK and then click Next.

7. Select the sendEmail_error_response JSON schema you created in the earlier step for

Schema and select JSON for Select Type, then click OK.

8. Click on the drop-down menu next to Structure in the upper left and select Create Target.

9. Provide a meaningful name for the target, such as ResultsCSV, a description (optional) and
click Next.

10. Disable Use Existing Connection and select Sink from the Type drop-down list. Click Next

and click Next again.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 38

11. Select the Responses schema and the Document type, then click OK.

12. In the Structure panel, click over your ErrorResponseJSON source and click on Add from
the context menu. This adds ResponseJSON to the mapping workspace to the right.

13. Map the input to the output by dragging the JSON object in ErrorResponseJSON to the

Row object in ResultsCSV.

14. To create a functional map to map each incoming JSON array to a corresponding row in the
CSV file, click on the JSON rule to open the Rule Editor. Add fEachErrorResponse()
around the Row object that is already present in the rule. Press Enter. A dialog appears at
the bottom of the window asking if you want to create the map fEachResponse. Click Yes.

15. The new functional map, fEachErrorResponse, will be displayed. Drag the inputs from Row

to the corresponding outputs in JSON, type in the rule shown below for timestamp (using the
FROMDATETIME and CURRENTDATETIME functions) and click on the Insert NONE icon
in the Row title bar to map errormsg Field.

16. Return to the main ProcessErrorResponse map by clicking on its name in the Navigator.

Click Insert NONE on ResultsCSV and then click Save and Build on the toolbar. If there are
no errors in the map, a message will indicate that the build was successful.

17. The map can now be run directly in the Map Designer by clicking the Run icon. After

running, the Structure panel shows the state of the inputs and outputs.

18. The input data, as well as the data produced by the output can be viewed by right-clicking
on the appropriate node in the Structure panel and selecting View Data.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 39

Now we have created the necessary three maps, each with its own functional map:

Step 7 – Create First Flow
The next step is to create a simple flow that will leverage the other artifacts created so far in this
tutorial – services, endpoints and maps – to build out the logic for the connector, including:

• Map incoming CSV to a JSON array
• Invoke the Send Email API for each object in the array
• Map the JSON arrays for successful and error responses to a CSV result

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 40

The final flow is provided in the project as SendEmails which looks like this:

To create this flow:

1. Click on Flows from the bottom navigation bar and click on New from the popup menu.

2. Drag a Map node from the Palette to the canvas:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 41

3. Right-click on the new map node and select the CreateRequest map from the list.

4. Drag a REST Client node from the palette, and then connect the output of the

CreateRequest map to the input of the REST Client node to connect them.

Note that the Rest Client node has two output terminals. The top one is for the success
response and the bottom one is for the error response. You can see information on each
output by hovering over the terminal, as shown below.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 42

5. Click on the Rest Client1 node and then click on the edit icon in the information panel.

6. Enter a meaningful name and description in the information panel in the lower right for the

REST endpoint node that will send the email request and click Update.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 43

7. Repeat steps 2 and 3 to add the ProcessResponses and ProcessErrorResponse maps
to the flow. Then connect the two maps to the appropriate terminals (top is success
response, bottom is error response) from the Send email REST node.

8. Now we need to configure the Send email REST Client node. Right-click on the node and
select Settings. Configure the settings as shown below and described on the following
page, then click OK.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 44

• Configuration Mode: Select Service Definition. This instructs the node to get the API
information from a service created in the REST Service Editor.

• Service: Click on Fetch to get a list of services and select Testapp.
• Endpoint: Click on Fetch to get a list of the endpoints defined in service Testapp and

select Send email.
• Authentication: Select Use Endpoint Definition Auth. This instructs the node to use

the authentication setting defined in the service (this was defined earlier as basic
authentication).

• Input Data Request Mode: Select Multiple Requests. In this mode the node expects
an array of JSON objects, which contain the request data to send to the Send Email API.

• Logging: Optionally, specify Logging properties. The log path is a file on the design
server.

9. Click on the Settings icon in the toolbar to add flow variables to the flow properties.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 45

10. Configure the flow properties, as shown below. The value for each property is a default
value that can be overridden when the flow is run. Enabling Publish will make these
variables be documented in the Swagger user interface when the flow is deployed.

Finally, we need to specify what are the inputs and outputs for the flow. When the flow is
invoked via a REST API call, this determines where the HTTP request data is sent, and which
output terminal(s) are providing the HTTP response data. We want the request to be passed to

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 46

the input terminal of the CreateRequest map and want the outputs of the ProcessResponse
and ProcessErrorResponse maps to be returned (we will combine these two outputs later).

11. Click on the CreateRequest node in the flow diagram, and then in the structure diagram

right-click on the input terminal and select Set as Flow Terminal.

12. Repeat step 12 for the two response maps, selecting Set as Flow Terminal for the output

of each in the Structure panel.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 47

13. Click on Save on the toolbar to save the flow.

Step 8 – Running the Flow
Having created the Send Emails flow, it can be run directly in the designer. To run it, follow
these steps:

1. Click on the Run icon on the toolbar.

2. Under Server, select Run on Design Server. This will run the flow directly in the designer

environment.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 48

3. Expand Variables and specify the values for the variables that will be used when the flow is
run. It will default to the values defined earlier in the flow settings.

4. Expand Input Data and select the input5.csv file added to the project earlier.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 49

name1@test.com,undelivered,,2020-11-12T11:15:33,0001
name2@test.com,undelivered,,2020-11-12T11:15:33,0002
name3@test.com,sent,,2020-11-12T11:15:33,0003
name4@test.com,undelivered,,2020-11-12T11:15:33,0004

5. Click Run to run the flow. After a few seconds, the run will complete and the status of each
flow node will have a graphical indicator showing whether the node succeeded, failed, or
was not run.

6. To view more information about each node run, right click on the node and select View Log.

7. To view the data that was sent down a link, right click on the link and select View Data.

8. To view the data that was returned from the flow, click on the final nodes (ProcessResponse

and ProcessError) and from the structure panel, right click the output terminal:

This will open a new browser window displaying the output data:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 50

Step 9 – Enhance Flow to Process Large Data
The next step is to expand the flow – by adding Split and Join nodes – so that large data can
be processed efficiently in parallel. The flow created above is fine if there are a small number of
records to be processed, but if there are many rows, then we need to process requests in
parallel to achieve adequate performance.

The Split node allows a large data set to be split into smaller batches, and each batch to be
processed in parallel in separate threads of execution. The Join node then consolidates the
results of the split flow, concatenating the results into a single output.

To create this bulk processing flow:

1. Open the Send Emails flow and click Save As () from the toolbar.

2. Enter a name for the new flow, such as SendBulkEmails, and click OK.

3. Drag the Split node from the Palette and place close to the first node.

4. Connect the output terminal of the Split1 node to the input terminal of the CreateRequest

node:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 51

5. Right click on the Split node to edit its properties, as shown and described below.

• Batch Size: Specifies how many rows will be contained per batch.
• Maximum Instances: Specifies how many parallel batches will be executed at one time.
• File Path: Specified as a flow variable csv_filename.
• Record Delimiter: Specified as \n, which means a newline character.
• Has Header: Specifies that the incoming CSV data has a header row.
• Include Header: Specifies that the header row should be provided in each batch sent to

the output terminal.

6. Add a Join node after the ProcessResponse node.

7. Connect the output terminal of ProcessResponse to the new Join node.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 52

8. Right click over the new Join node and specify the Join Settings, as shown. Specify that the
Output Header is coming from a flow variable named results_header. We will set up this
flow variable in a subsequent step.

9. Click on the new Join node and add a meaningful name in the Information panel in the

lower right. Click Update.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 53

10. Repeat steps 6-9 to add a Join node following the ProcessErrorResponse map node.

11. After adding the Split and Join nodes, the flow terminals need to be set on the Split and Join

source and target terminals, as before. Select the node in the flow, then right-click on the
source (Split node) or target (Join Success and Join Errors nodes) to define the flow
terminals.

Your flow should now look like this.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 54

email,status,errormessage,timestamp,identit
y fred@test.com,sent,,2020-07-20T13:01:19,001

12. Finally, we want the flow to combine the results from the success and error paths into a
single CSV file. To do so, click on the Settings icon on the toolbar to bring up the Flow
Settings and enable the Combine Output Terminals property. Click OK.

13. After this enabled, the icon on the Join nodes changes, and the tooltip indicates that the

terminals are combined.

14. Click on Save on the toolbar to save your changes to the flow.

Step 10 – Extend the Request Map
The Join node will be setting the CSV header row to the value of the flow variable
results_header, so this variable needs to be set in the CreateRequest map.

The output results file has a prescribed format necessary to be successfully updated in
Campaign or Journey. It consists of fields from the audience data

Remember from earlier that the file <devkit>/testconn/schemas/response.csv is a
small CSV file containing a header row and one row of data that represents the response results
data to be sent to Campaign or Journey:

The first four fields – email, status, errormessage and timestamp – in this CSV are fixed.
However, the last field contains the identity context information that is sent from
Campaign/Journey, passed to testConn in the Send email request, returned as the results
from the Send email request and then returned to Campaign/Journey. The name of this field
can vary from campaign-to-campaign or journey-to-journey. Therefore, we are going to get
the name of this identity context field directly from the audience CSV input header and
capture it in the results_header flow variable to be used when producing the output CSV.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 55

To do this:

1. Open the CreateRequest map.

2. Click on Create Target to add this new output.

3. Give it a meaningful name, such as Properties or OutputHeaderRowVar. Click Next.

4. For Connection, specify the output as Sink and click Next. Click Next again.

5. Select a schema that has a single text object. One is provided in the tutorial project named

Simple. Select String from the Simple schema for Type.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 56

flowlib->SETVARIABLE("results_header",
"email,status,errormessage,timestamp,"

6. In the Structure panel, click on the new target to make it the current card in the mapping
canvas.

7. Right-click on AudienceCSV in the Structure panel and select Add to add it to the mapping

canvas.

8. Use the flowlib->SETVARIABLE() function to set results_header to the value:

String literal

Concatenation operator

Identify field name from the

header record in audience CSV

9. In the Structure panel in the upper left, switch the order of the outputs so that the new output

is first. Simply drag the new target to be above the ResponseJSON target.

This is very important and necessary, so that it is executed (and the output header flow
variable value assigned) before data produced from the output link in the flow is sent to
downstream nodes.

10. On the toolbar, click Save and then click Build.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 57

Step 11 – Updating and Running the Bulk Flow
After modifying the map, the flow needs to be refreshed to pick up the new map definition.

1. Open the Send Emails in Bulk flow.

2. A warning message will be displayed and the CreateRequest map node will have a warning

icon.

3. Drag the target terminal from CreateRequest to the source terminal of Send email.

4. On the toolbar, click Save and then click Analyze.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 58

5. Run the flow as before, this time using the larger input data set, input100.csv, which can be
found in <devkit>/testconn/schemas/.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 59

6. Since the split node had Batch Size set to 10 and 100 records were provided in the test
data, the flow will have run 10 threads in parallel. You can see this if you right-click on a link
to see the data that is sent to the link. For example, click on the first link. The data will be
displayed as:

7. Clicking View Log on the Split node confirms that 10 batches were created:

With this, we are done creating the connector flows and maps.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 60

{
"version": 1,
"id": "testconn",
"name": "Testconn",
"type": "utility",
"category": "email",
"description": "Testconn Sample",
"validate": "action",
"contexts": [

"target"
],
"package": "com.hcl.hip.adapters.m4rest:testconn",
"template_version": 1,
"select_schema": false,
"testable": true,
"properties": [

{
"name": "base_url",
"label": "Base URL",
"description": "The base URL of the service",
"type": "string",
"required": true,
"scope": "connection"

},
{

"name": "username",
"label": "User ID",
"description": "The user ID",
"type": "string",
"required": true,
"scope": "connection"

},
{

"name": "password",
"label": "Password",
"description": "The key for the user ID",
"type": "string",
"required": true,
"masked": true,
"scope": "connection"

},
{

"label": "Subject",
"name": "subject",
"type": "string",
"required": true,
"description": "The subject of the email",
"scope": "target_action"

},
{

"label": "Template",
"name": "template",
"type": "string",

Task 4 – Create the Properties Descriptor
The next step is to define the properties that will be exposed to the user in the Unica Campaign
or Unica Journey. This is specified by creating a properties JSON file. The tutorial files provide
this in testconn/testconn.json. This file has the following contents:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 61

"required": true,
"enumeration": "template",
"description": "The email template to use",
"scope": "target_action"

}
],
"rest_config": {

"service": "Testapp",
"test_endpoint": "Ping",
"enumerations": [

{
"name": "template",
"endpoint": "Get Templates",
"array_path": "templates",
"value_path": "id",
"label_path": "name"

}
],
"schema_mapping": [

{
"name": "Static fields",
"static": [

{
"internal_name": "email",
"external_name": "Email",
"description": "Email address",
"type": "text",
"required": true

},
{

"internal_name": "first_name",
"external_name": "First name",
"description": "First name",
"type": "text",
"required": true

},
{

"internal_name": "last_name",
"external_name": "Last name",
"description": "Last name",
"type": "text",
"required": true

}
]

}
]

},
"implementations": [

{
"name": "send_emails",
"run": {

"flow": {
"template": "SendBulkEmails"

}
}

}
]

}

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 62

Connector information
The fields at the start of the file provide some metadata about the connector. These are
explained in more detail in the Reference Guide.

Properties

This descriptor file defines five properties – three are connection properties (base_url,
username and password) and two are action properties (Subject and template). The "scope"
attribute specifies whether a property is a connection property or whether it is pertinent to a
source or target action.

If connection/action properties does not exist for a connector, define the following tag in the
connector descriptor file:

"properties": []

REST Configuration
The rest_config element provides some additional details that reference the services created in
Task 2.

• The name of the service must match the service name created earlier.
• The 'test_endpoint' name specifies the 'Ping' endpoint created in the Service Editor.
• The endpoint name in the enumerations must match the endpoint created in the Service

Editor.
• The schema_mappings defines a set of static fields that the connector expects on input.

These fields can also be dynamically obtained from the resource, but for simplicity this
example uses only static fields.

Implementations

The implementations element provides a means to specify the flow that implements the 'send
email' action.

Descriptor validation utility

The file can be validated for correctness by running the 'validate descriptor' -vd packager
command:

~/link/devkit/packager$./packager.sh /connectors/testconn /output/testconn -vd
Validating descriptor file ~/connectors/testconn/testconn.json...
Done!

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 63

Task 5 – Package the Connector
The connector can now be packaged up and deployed. To package the connector:

1. Create a local directory (\connectors\testconn in this example).

2. Into this directory, copy the testconn.json properties descriptor.

3. Create a file named version.txt containing a version string, e.g., "v1".

The directory should now contain these files:

Package this into a connector zip by running the packager tool. You can see the options that the
packager tool supports by going to the packager directory and typing 'packager'.

4. To package the connector into an output directory called '\output\testconn', invoke the

packager tool with -p (package) and -ep (export package) options:

C:\packager> packager \connectors\testconn \output\testconn -ep Testconn -
p -h https://localhost:8443/ -u admin -pw ****
Exporting project Testconn to \connectors\testconn\Testconn.zip...
Done.
Exporting the service definition to
\connectors\testconn\service\Testapp.json...
Exporting the service definition as a configuration...
Validating configuration file
C:\connectors\testconn\config\testconnConfig.json...
Variables:

base_url referenced from:
endpoint: Get Templates, field: url
endpoint: Ping, field: url
endpoint: Send Email, field: url

Validation complete: No issues were found.
Validating descriptor file C:\connectors\testconn\testconn.json...
Packaging files into directory C:\output\testconn...
Done!

In the -u and -pw commands specify the username and password of an administrative user.
By default, in a development environment, an admin user is created with username 'admin'
and password 'admin'.

This command did a number of things:

• Exported the Link project named "Testconn" to Testconn.zip in the connector directory
• Exported the service definition to service\Testapp.json in the connector directory
• Validated the properties definition file
• Created the output directory, if it did not exist
• Zipped everything up into the output directory

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 64

After running the packager, it will have created a properties file called testconn_labels.properties
containing label and description strings in the connector directory. This file can be sent to a
translation service to create localized descriptors. Translated properties files should be named
<basename>_<language>.properties, where language can be de, es, fr, it, ja, ko, pt_BR, ru, zh
and zh_TW. When the packager tool is run, it will produce a localized descriptor for each
language properties file that it finds.

In the output directory, there will a zip file named testconn_connector_v1.zip. This name is
composed of the connector id, the string "_connector_" and the version number.

Task 6 – Install the Connector
1. To install the connector, copy it to the modules directory on the server. By default, this is

/opt/hipmodules.

2. After copying the file, it needs to be picked up by the design and runtime servers. This can
be done by invoking the update_modules API in both servers, but the simplest approach is
to simply restart both servers:

docker restart hip-server
docker restart hip-rest

5. To verify that it was installed correctly, refresh the Designer UI and in the project list filter the

projects to look for "testconn". There should be a project named _conntype_testconn

This is a copy of the project that was exported into the packaged connector.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 65

Task 7 – Test the Connector
Step 1 – Define a Server
A server definition needs to be created which references the Link runtime.

1. From the Link home page, expand the Deploy options, and click on Servers.

3. Click on the '+' icon to add a new server definition.

4. Name the server 'HCH Runtime'. The name must be exactly this, because the deployment

step looks for a server with this name.

5. Change the Type to 'Web'.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 66

6. Specify the Base URL as http://<host>:8080/hip-rest.

7. Click 'Test' to test the connection to the server

8. Click 'Add' to save the server.

Step 2 – Create a Connection
The next step involves creating a connection to the resource using the connector.

1. Invoke this URL in a browser to open the connections user interface:

https://localhost/hch/_app_testapp/existingConnection?dev=true&isAdminUser
=true

https://localhost/hch/_app_testapp/existingConnection?dev=true&isAdminUser=true
https://localhost/hch/_app_testapp/existingConnection?dev=true&isAdminUser=true

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 67

The URL includes the name of the application (testapp) and invokes the 'Existing
Connections' endpoint. This should display the following:

The Testapp connection was created when the testapp application was installed.

2. Click on 'Create New' and specify a name for your connection:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 68

3. Click on 'Next' and select Testconn from the connection types:

4. Click on 'Next' and enter properties for the connection. Note that these are the properties

defined above in the properties descriptor file. Set the IP address to the address of the host
machine.

5. Click the Test button to test the connection. This will invoke the "Ping" endpoint that was

specified in the descriptor file ("test_endpoint": "Ping").

6. Now we have defined a connection, we can define an action for the connection. Copy this
URL to your browser:

https://localhost/hch/_app_testapp/createAction?actionName=tc_action4&conn
ectionName=Testconn&dev=true&deploy=true

This specifies the connection that we just created (Testconn) and gives the action a name
(tc_action4). This will display the action properties, of which there is only one: Template.
Clicking in the Template property invokes the Get Templates endpoint which was listed as
an enumeration for the template property:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 69

7. Click Next to display the field mapping screen. This displays the static fields obtaining from
the schema mapping in the Testconn descriptor, and allows for the selection of fields from
the Testapp application:

8. Finally, click Save. When Save is clicked the following occurs:

• The properties and field mapping are saved to the Link repository
• If this is the first action, artifacts are copied from the connector's project

(_conntype_testconn) to the application project (_app_testapp)
• The flow and maps are packaged and deployed to the runtime.

Running the Action
After an action has been deployed it can be run via the URL specified in the package. It is
convenient to invoke it from the Swagger page that is generated from the list of deployed
packages.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 70

{
"connection_type": "testconn",
"connection_name": "Testconn2",
"action_id": "tc_action4",
"creation_date": "2020-11-13T16:27:04.407+0000",
"run": {

"url_path": "/v2/run/tc_action4/run",
"fields": [

{
"name": "email",
"type": "text",
"label": "Email",
"is_key": false,
"is_required": true

},
{

"name": "first_name",
"type": "text",
"label": "First Name",
"is_key": false,
"is_required": true

},
{

"name": "last_name",
"type": "text",
"label": "Last Name",
"is_key": false,
"is_required": true

}
]

}
}

To access the Swagger use this URL, adjusting the hostname accordingly:

http://localhost:8080/hip-rest/api-docs?url=/hip-rest/v2/docs

On the Swagger page you will see entries like this that contain the name of the action you
created above:

The PUT endpoints are synchronous calls, and the POST endpoints are asynchronous. The info
API provides information about the endpoint. Try invoking the PUT /v2/run/<action>/info API. It
will return the following:

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 71

To invoke the action (run the flow), click on PUT /v2/run/<action>/run and click on the 'Try it Out'
button. The flow variables defined in the flow are shown as query parameters with the default
value shown, but the values can be overridden:

When running the flow, select the input100.csv file that is in the Link project. The flow will run,
and the results can be obtained from the Download file link:

The return parameter determines what gets returned from the flow. If the value is set to 'status'
then a summary execution is returned. If set to 'log' then a more detailed log is produced,
including audit log for all map nodes.

Creating Link Connectors – Tutorial

Copyright © 2021 HCL Software 72

Next Steps
Having worked through this tutorial you have been introduced to almost all the aspects of
developing a connector. The Creating Link Connectors Reference document expands upon
the topics covered in this tutorial and should be consulted when developing a Link connector.

	Contents
	Introduction
	Approach
	Scenario
	Requirements
	Validation of Technical Requirements
	Webapp Simulator for testCONN

	Task 1 – Setup
	Step 1 – Install the webapp
	Step 2 – Install the test application

	Task 2 – Create a Service Definition
	Step 1 – Define the REST service
	Step 2 – Define a Test Connection endpoint (optional)
	Step 3 – Define the Send Email endpoint
	Step 4 – Define the Get Templates endpoint

	Task 3 – Create the Connector Project
	Step 1 – Create (or Import) the Project
	Step 2 – Create Link Schema for JSON Templates for API Endpoints
	Request
	Response
	Error Response
	Creating the Schemas

	Step 3 – Create Schema for Input and Output CSV
	Add the CSV Files to the Project
	Create the Schema for the Input CSV

	Step 4 – Create Request Map
	Step 5 – Create Response Map
	Step 6 – Create Error Response Map
	Step 7 – Create First Flow
	Step 8 – Running the Flow
	Step 9 – Enhance Flow to Process Large Data
	Step 10 – Extend the Request Map
	Step 11 – Updating and Running the Bulk Flow

	Task 4 – Create the Properties Descriptor
	Connector information
	Properties
	REST Configuration
	Implementations
	Descriptor validation utility

	Task 5 – Package the Connector
	Task 6 – Install the Connector
	Task 7 – Test the Connector
	Step 1 – Define a Server
	Step 2 – Create a Connection
	Running the Action

	Next Steps

