
Unica Link V12.1
REST Endpoint Configuration Guide

1

Contents
1 Introduction .. 2

2 Usage ... 2

3 Format ... 2

3.1 Authentication .. 2

3.2 Endpoints .. 4

3.2.1 Request ... 4

3.2.2 Response ... 5

3.2.3 Enumeration ... 6

3.2.4 Steps .. 7

3.2.5 Retry .. 7

3.2.6 Parameters .. 9

3.2.7 Assignments .. 10

3.2.8 Filter .. 10

3.3 Properties .. 11

3.4 Schema Mapping .. 11

3.4.1 Schema Mapping Example .. 13

4 Paths.. 14

5 Authentication .. 15

6 Form Data ... 15

6.1 Fields defined in Configuration File .. 15

6.2 Fields passed in JSON object ... 16

2

1 Introduction
The REST adapter uses a JSON configuration file to define endpoints for a service. The file is constructed
by examining the documentation of a service and transcribing the details of the relevant endpoints into
the configuration file.

2 Usage
Configuration files can be used in 2 ways:

• As a file in a HIP project that can be referenced from the REST adapter or REST node as a script.
• Installed into HIP as a packaged configuration. A configuration is a jar file containing the JSON

configuration file, and optionally a Java plugin class and JSON templates describing requests and
responses.

3 Format
The endpoint configuration file is a JSON file that contains some metadata about the service, and an
array of endpoint definitions.

The top-level fields in the JSON are:

Field Required Type Description
name Y string A displayable name for the service
id Y string An identifier for the service
description Y string A displayable description for the service
authentication object An object that defines the authentication properties to

be used when invoking APIs.
endpoints Y array of

objects
The endpoint definitions for the service.

connection_test string The name of an endpoint which performs a connection
test to the service.

properties array of
objects

(Not currently used)

schema_mapping array of
objects

Defines which endpoints are invoked to get field
definitions for the service.

plugin string The classname for a Java plugin class if required to
perform special processing.

3.1 Authentication
The authentication object defines the authentication scheme of the service. It has these fields:

Field Required Type Description
type Y string The authentication scheme. Permitted values are

BASIC (Basic authentication), OAUTH2 (OAuth2
authentication) and USEENDPOINTDEF (each
endpoint defines the authentication scheme, rather
than defining at the service level)

3

username string The username for authentication connections in
case of Basic authentication. For OAuth2, this is also
required when accesstokenExpiryAction is set as
"password" which means user credentials are
required for getting new access token

password string Similar to username, password is required for
authentication through Basic type and for OAuth2
when accesstokenExpiryAction is set to password.

tokenURL string For OAuth2, the URL for authentication provided by
the service. This is invoked to acquire a new access
token or for refreshing an expired token.

content_type string For OAuth2, the content type expected by the URL
specified by tokenURL.

consumer_key string For OAuth2, the consumer key is used by the
consumer to identify itself to the service provider. It
is required when OAuth accesstokenExpiryAction is
set to refresh or renew tokens.

consumer_secret string For OAuth2, the consumer secret is used to
establish ownership of the consumer key. It is
required when accesstokenExpiryAction is set to
"password" or "client_credentials"

accesstokenExpiryAction string For OAuth2, specifies what action should be taken
when the access token is invalid or expired. The
permitted values for this property include:
• report_error - report and error when the REST

call to the service is unauthorized.
• refresh_token – get an access token using the

refresh token grant type implemented by the
service.

• password – get a new access token using
username and password

• client_credentials – request a new token using
client_credentials grant type implemented by
the service.

This is a required property for OAuth2
authentication.

access_token string For OAuth 2.0, the initial access token.
security_token string For OAuth 2.0, set this if the service implementation

requires a further token to be added to password
for additional security.

refresh_token string For OAuth 2.0, if the accesstokenExpiryAction is set
as refresh_token, this is required. It is usually
provided to the user along with access_token when
they have set up refresh token policy on the service
side.

token_file string For OAuth2, when a new access token is retrieved it
is saved in this specified file path.

4

encryption_key string For OAuth2, to keep the access token secure, it is
encrypted using specified encryption_key.

3.2 Endpoints
The endpoint definitions define the APIs of the service. A definition has these fields:

Field Required Type Description
name Y string An identifying name for the endpoint. This name is

referenced when invoking the endpoint
label Y string A displayable label for the endpoint. This is shown in the

user interface when listing the endpoints for a given
service.

description Y string A displayable description for the endpoint This is shown
in the user interface when listing the endpoints for a
given service.

method Y string The HTTP method (also known as verb). Possible values
are GET, POST, PUT, DELETE, HEAD and PATCH

url Y string The URL of the API. This can contain property values
specified as {$<property-name}

category string Used to categorize connection types.
authenticate boolean If true, authentication is required for the endpoint. If not

specified, this defaults to false.
authentication object Defines the authentication to be used for the request.
request object Defines the attributes of the request. See the Request

definition below.
responses array of

objects
Defines one or more possible responses for the endpoint.
If the API can return different responses for different
HTTP status codes (e.g. a successful response for 2xx
statuses, and an error response for any other status
code), then the request definition must list the statuses
to which it applies. The format of a Response definition is
given below.

enumeration object An enumeration definition is used to tie a property in a
connector property definition to an endpoint that can be
invoked to fetch enumerated values for the property.
This is explained further below in Enumeration.

steps array of
strings

Steps provide a way to orchestrate one or more API calls
together in a single endpoint definition. This is explained
further in Steps.

retry object If retry object is specified, an endpoint may be invoked
repeatedly. This is explained further below in Retry

assignments array of
objects

This provides a way to provide initial values for
properties. See Assignments below.

3.2.1 Request
A request object defines properties of the request that are sent to the API. It has these fields:

5

Field Required Type Description
template string The template references a JSON file that is included in

the templates subdirectory of the configuration jar file.
The template file is read when performing import
when defining an action for a given endpoint.

content_type string The default content type of the data being sent in the
request. If not set, defaults to application/json

parameters List of
objects

Defines query parameters for a request. This section is
optional: query parameters can also be specified in the
URL string. Parameters can also be used to build
requests by setting the location to "BODY".
See Parameters below.

headers List of
objects

Defines header values for the request. The value of
headers can be passed as properties. Each header is
defined as a Parameters object which is defined below.

is_formdata Boolean Set to true if the request requires form data.
formdata_parts List of

objects
Defines the list of form data parts if is_formdata is set
to true. See section Form Data for an explanation as to
how form data is treated by the REST adapter.

body_from_template Boolean If true, the request body will be constructed from the
template provided in the 'template' field.

3.2.2 Response
A response object defines properties of the response that are returned from an API. It has these fields:

Field Required Type Description
status integer An HTTP status code to which the reply is applicable. This

is optional, but if more than one response is listed, then
each response must have a status code. [This ought to be
an array of status codes, or allow ranges or lists, e.g. 4xx]

template string The template references a JSON file that is included in the
templates subdirectory of the configuration jar file. The
template file is read when performing import when
defining an action for a given endpoint.

assignments List of
objects

Assign fields from the response to the property set. This
provides a convenient way to pass values between REST
calls that are invoked via steps. See Assignments section
below.

filter object A filter provides a means to filter what is returned from
the response. Often a response format has many fields
which are of no interest. See Filter section below.

conversion string Specify a conversion function to convert the response to
another format. The only supported value is " XML2JSON"
which results in an XML response being converted to its
corresponding JSON form.

6

3.2.3 Enumeration
The enumeration element identifies an endpoint to invoke to return a set of enumerated values for a
given property. The name of the enumeration must match the enumeration field in the corresponding
property in the connector descriptor. For example, a connection type for a given service may have a
property named template defined as follows:

{
 "label": "Email Template",
 "name": "template",
 "type": "string",
 "required": true,
 "enumeration": "templates",
 "description": "The template to use for the campaign",
 "scope": "target_action"
}

In the corresponding configuration file, there must be an endpoint which has an enumeration object
with a matching name (e.g. "templates"). The user interface for the connection type will then invoke this
endpoint to enumerate the list of values.

The enumerate object has the following fields:

Field Required Type Description
name Y string The name of the enumeration
array_path Y string The path of the JSON array containing the repeating

elements. If the response is a JSON array the path should
be specified as "/".

value_path Y string The relative path within the returned object containing
the enumerated value.

label_path string If the returned object has a field that provides a
descriptive name, this should be set to that relative path.

qualifier_path string If the object requires an additional qualifying field, then
this path specifies that qualifier. The qualifier is added to
the label in the user interface. Qualifiers may be
necessary to differentiate objects when the labels are not
necessarily unique

For example, if the response JSON has this content:

{
 "templates": [
 {
 "id": 123,
 "name": "My template",
 "data": "abc"
 },
 {
 "id": 678,
 "name": "My other template",
 "data": "def"
 }
]

7

}

The enumeration object for this response would have this content:

{
 . . .
 "enumeration": {
 "name": "templates",
 "array_path": "templates",
 "value_path": "id",
 "label_path": "name",
 "qualifier_path": "id"
 }
}

This would result in these enumeration values being displayed in the UI:

Value Label
"123" My template (123)
"678" My other template (678)

3.2.4 Steps
Steps provide a way to invoke multiple APIs in sequence. Typical use cases are:

• A logon API must be invoked to get a token that is then used in a header in a subsequent call
• An API starts a task and returns an ID, and another API is called to get the status of the task,

passing the ID as a query parameter.

The steps element is an array of endpoint names. In some cases, an endpoint definition may contain no
content other than steps. For example,

{
 "name": "getMergeFields",
 "label": "Get Fields For Campaign",
 "steps": [
 "getCampaign",
 "getMergeFields"
]
}

When invoked, this endpoint will first call the getCampaign endpoint, which would contain an
assignment element to get some contextual information from the response (e.g. an id field is assigned to
property "campaign_id"). If the first step is successful, then the second endpoint (getMergeFields) is
invoked. The URL, header or request for this endpoint would reference the property set by the first call,
for example "/server/campaigns/{$campaign_id}"

3.2.5 Retry
If specified, the retry element specifies properties that determine conditions for retrying the endpoint.
This can provide a way to poll an endpoint until some condition is satisfied. The fields of a retry
definition are:

8

Field Required Type Description
interval Y integer The interval between calls, specified in milliseconds.
attempts Y integer The number of times to make the call before stopping.
retry_on_error boolean If true, the API will be retried if it does not return a 2XX

success status.
condition string The condition to check to determine whether another call

should be made. The permitted expression formats are
detailed below.

The condition can be any of these expressions:

Expression:

{$<property>} <operator> <value>

Property – the name of a property

Operator – one of:

Operator Meaning

== Equal to

!= Not equal to

IN The value is one of the supplied values

!IN The value is not one of the supplied values

< For integer properties, less than

> For integer properties, greater than

<= For integer properties, less than or equal to

>= For integer properties, greater than or equal to

Value – The value to compare the property against. If the operator is IN or !IN, then the value
should be a comma delimited set of values enclosed in square brackets with no spaces. e.g.
[val1,val2,val3]

Example:

 {$status} != "complete"

Simple Expression:

 <expression> <logical operator> <expression>

 Expressions are expressed as above.

 The logical operator can be either 'OR' or 'AND'.

9

 There can only be 2 expressions and a single logical operator.

 Example:

 {$status} != "complete" AND {$status} != "error"

 Note that this can be also expressed using the IN operator:

{$status} !IN ["complete","error"]

Complex Expression:

 (<simple expression>) <logical operator> (<simple expression>)

 Simple expressions are expressed as above.

 The logical operator can be either 'OR' or 'AND'.

 There can only be 2 simple expressions and a single logical operator.

Example:

({$P1} == 10 AND {$P2} == 20) OR ({$P3} == 30 AND {$P4} == 40)

An example of a retry expression in an endpoint definition is:

{
 "name": "batchStatus",
 . . .
 "responses": [
 {
 . . .
 "assignments": [
 {
 "name": "batch_status",
 "location": "BODY",
 "path": "status"
 }
]
 }
],
 "retry": {
 "interval": 5000,
 "attempts": 100,
 "condition": "{$batch_status} != \"finished\""
 }
}

In this example, the property batch_status is set to the status field in the response. If the value of
batch_status is not the string "finished", then the call will be repeated every 5 seconds, for up to 100
iterations.

3.2.6 Parameters
Parameter objects are used to define query parameters, headers and formdata parts:

10

Field Required Type Description
name Y string The name of the parameter
value Y string The value for the parameter. Commonly, this will be set

to a property using the {$<property>} notation.
is_required boolean If set to true and the value is not provided an error will be

raised.
location string Location can be set to either "QUERY" or "BODY". If

"QUERY", the parameter is defining a query parameter. If
"BODY", the parameter is defining a field within the
request body. In this case the "path" must also be set to
provide the path of the JSON field within the request.

path string If location is "BODY" the path must be set to provide the
path to the JSON field to set in the request.

3.2.7 Assignments
Assignments provide a mechanism to assign the value of a property to some element of the response.
This is necessary when using steps within an endpoint, and some data elements need to be passed from
one step to another. For example, a logon API may return a token that is then set in a header in a
subsequent API call. The fields of an assignment are:

Field Required Type Description
name Y string The name of the property to which the value is assigned
value string The literal value to set the property to. One of value or

location must be specified.
location string This can either be set to BODY or HEADERS. If BODY, then

path defines the path of the JSON field within the
response, e.g. "address.city". If HEADERS, then the path
specifies the name of the header field. One of value or
location must be specified.

path string The path of the JSON field, or the name of a header,
depending on the value of location.

Assignments can also be set in an endpoint definition. These assignments will be made before the
endpoint is invoked, providing a way to provide default values for properties.

3.2.8 Filter
The filter object specifies JSON fields to include or exclude in the response data.

Field Required Type Description
type Y string The type of filter to apply. This must be either "INCLUDE",

"EXCLUDE" or "EXCLUDE_ARRAY_ELEMENTS". If set to
INCLUDE, then only the specified paths will be returned.
If set to EXCLUDE, then all paths will be returned other
than the listed paths.

EXCLUDE_ARRAY_ELEMENTS provides a way to remove
certain elements from a JSON array.

11

paths Y array of
strings

A list of paths to either include or exclude. Paths use dot
notation. For example, if a JSON response contains an
address field which is a JSON object containing a state
field, "address" identifies the address object, whereas
"address.state" identifies the state field within the
address object.

array_path string When type is EXCLUDE_ARRAY_ELEMENTS, the path to
the array in the response.

values array of
strings

When type is EXCLUDE_ARRAY_ELEMENTS, a list of paths
relative to the array that gathers values to test in the
condition

condition string When type is EXCLUDE_ARRAY_ELEMENTS, a condition to
determine whether elements are included or excluded.

An example of use of EXCLUDE_ARRAY_ELEMENTS is:

{
 "type": "EXCLUDE_ARRAY_ELEMENTS",
 "array_path": "clicks_detail",
 "values": ["ts"],
 "condition": "{$since_date} > {$ts}"
}

This filter will remove array elements from the array at path "clicks_detail" where the value of
"clicks_detail.ts" is less than the property "since_date".

3.3 Properties
Properties are currently not used. The intention of the properties section is to define properties that are
used within the endpoint definitions.

3.4 Schema Mapping
The schema mapping section is optional, but is required for connection types deployed to HCL Link. For a
given condition, it defines a set of field definitions that should be returned when that condition is true. A
condition is a property value having a certain value. The set of field definitions can be composed of
static and dynamic elements. Static field definitions define fields that are always returned. Dynamic
elements specify an endpoint that should be called to get field definitions, and additional attributes that
define how to interpret the results of the endpoint.

The schema_mapping is an array of objects where each object has these fields:

Field Required Type Description
name string A descriptive name for the mapping definition
condition string A condition which if true selects this mapping definition.

The condition is required if there is more than one
mapping but should not be specified if there is only one.

static array of
objects

One of more statically defined fields

dynamic array of
objects

One or more dynamically defined fields

12

format string The type of generated schema format. This can have the
values "json" or "tree".

mode string Can have the values "request", "reply" or "both".
Generated schema can be different for request and
response mode. If not specified, or specified as "both",
the schema mapping is valid for both request and
response types.

jsonSchema object When the format is "json", this field provides a fixed JSON
format that is returned as the schema.

A static definition has these fields

Field Required Type Description
internal_name Y string The name of the field
external_name Y string The descriptive name of the field suitable for displaying in

a UI
description string A description for the field which provides an explanation

of the purpose of the field
type Y string The type of the field. It must be one of:

text – a textual field
integer – an integer field
number – any numeric field (integer or decimal)
table – specifies that there are child field definitions. This
is only applicable to dynamic definitions.

default string A default value for the field.
required boolean Whether the field is required or not. Defaults to false.

A dynamic definition has these fields:

Field Required Type Description
endpoint Y string The name of the endpoint to invoke to fetch the dynamic

fields
paths Y object The paths of the dynamic field attributes in the JSON

response returned from the endpoint.
type_mapping array of

objects
A list of mappings from types of the endpoint's response
to the internal types listed above under the type attribute
of static definitions.

schema_path string When jsonSchema is configured, the generated dynamic
fields will be set in the specified schema_path of static
JSON.

The path object for a dynamic definition has these fields:

Field Required Type Description
array Y string The path of the array containing the field definition

objects

13

child_array string The path of the array containing child field definitions
relative to the array object. This is only applicable for a
table type property.

internal_name Y string The path of the field name
external_name string The path of the external displayable name of the field. If

not specified, the external name will be set to the
internal name.

default string The path of the default value of the field
description string The path of the description for the field
required string The path of the required attribute for the field. The value

can be a boolean (true/false), or a string
value("true"/"false")

type string The path of the field type. If not specified, the type of the
field will be set to "string"

The type mapping object has these fields:

Field Required Type Description
from Y string The type returned in the response
to Y string The type to which the type should map. The permitted

values are shown above in the static definition object.

3.4.1 Schema Mapping Example
Consider the following schema mapping definition:

{
 "schema_mapping": [
 {
 "name": "Get merge fields",
 "condition": "{$operation} == \"new\"",
 "static": [
 {
 "internal_name": "email",
 "external_name": "Email",
 "description": "Email address",
 "type": "text",
 "default": null,
 "required": true
 }
],
 "dynamic": [
 {
 "endpoint": "getMergeFields",
 "paths": {
 "array": "merge_fields",
 "external_name": "name",
 "internal_name": "tag",
 "default": "default_value",
 "required": "required",
 "type": "type"
 },
 "type_mapping": [

14

 {
 "from": "int",
 "to": "integer"
 },
 {
 "from": "text",
 "to": "string"
 }
]
 }
]
 }
]
}

An explanation of this JSON:

• The condition specifies that this schema mapping definition is applicable when the property
operation has the value "new". Since there is only one schema mapping object in the array, the
condition should not be specified, but is shown here simply to provide an example.

• This schema is defined by a single static field + the fields returned from the dynamic endpoint
getMergeFields

• The static field defines an email field
• The dynamic definition specifies that the getMergeFields should be invoked to get the field

definitions.
o The paths object specifies the paths of the JSON fields providing the field definition
o The types array specifies the mapping of the contents of the type field to the internal

types.

The paths in this object corresponds to this JSON response:

{
 "merge_fields": [
 {
 "name": "field1",
 "tag": "Field1",
 "default_value": "100",
 "required": true,
 "type": "int"
 }
]
}

4 Paths
Paths are used in some elements to identify fields in JSON objects. Paths are expressed using dot
notation. For example, consider the JSON:

{
 "a": 1,
 "b": {
 "c": {
 "d": 2,
 "e": [10,11,12]

15

 }
 }
}
The paths for the fields in this JSON are:

• a
• b
• b.c
• b.c.d
• b.c.e

5 Authentication
For any API call, authentication can be defined. If all APIs use the same authentication scheme, then this
can be defined in the top-level of the configuration. If certain endpoints require different schemes, then
each endpoint can have its own endpoint definition. If an endpoint definition defines authentication,
then that definition is used, otherwise the top-level definition is used.

Authentication is only applied to an API call if the "authenticate" attribute for the endpoint is set to true.

6 Form Data
Form data can be sent in requests in 2 ways:

- Specify the form fields in the configuration file
- Pass JSON containing the form fields.

In both cases, the request must have "is_formdata" set to true.

6.1 Fields defined in Configuration File
This approach provides a way to build the request from property values. Request data need not be
passed to the REST adapter or node.

To specify the form fields in the configuration file, the "request" element contains a "formdata_parts"
element which is a list of Parameters objects. For example,

{
 "request": {
 "is_formdata": true,
 "formdata_parts": [
 {
 "name": "FirstName",
 "value": "{$first_name}",
 "is_required": true
 },
 {
 "name": "LastName",
 "value": "{$last_name}",
 "is_required": true
 },
 {
 "name": "Age",
 "value": "{$age}"

16

 }
]
 }
}

The form data request will be constructed from the elements specified in the formdata_parts array. The
values can either be literal values or properties.

6.2 Fields passed in JSON object
An alternate approach is to pass the form data as a JSON object where the JSON fields are the form data
field names. Using the same example shown above, the JSON object passed as a request would be:

{
 "FirstName": "Fred",
 "LastName": "Quimby",
 "Age": 90
}

If the endpoint allows multiple fields with the same name, arrays of values can be passed for a given
field. For example, if a service allowed for multiple phone numbers to be passed as form data field
"TelNum", the request would be:

{
 "FirstName": "Fred",
 "LastName": "Quimby",
 "Age": 90,
 "TelNum": ["+11115551111", "+12225552222", "+13335553333"]
}

	1 Introduction
	2 Usage
	3 Format
	3.1 Authentication
	3.2 Endpoints
	3.2.1 Request
	3.2.2 Response
	3.2.3 Enumeration
	3.2.4 Steps
	3.2.5 Retry
	3.2.6 Parameters
	3.2.7 Assignments
	3.2.8 Filter

	3.3 Properties
	3.4 Schema Mapping
	3.4.1 Schema Mapping Example

	4 Paths
	5 Authentication
	6 Form Data
	6.1 Fields defined in Configuration File
	6.2 Fields passed in JSON object

