
Cloud Native Unica V12.1.7
Installation and Configuration Guide

ii

Contents
Chapter 1. Pre-installation configurations.........................1

Avoiding timeout issues.. 1
Application server setup..2
Configuring application servers for Cloud Native
Unica... 2
Database setup.. 3
Listener Database client setup....................................... 7
Setting up the Cloud Native environment.......................7
Cloud Native Unica setup on SSL................................... 9

Chapter 2. Installation and verifying the installation........ 10
Installation.. 10
Verifying the chart... 10
Log files.. 10

Campaign Log Files... 11
Chapter 3. Post installation configurations..................... 12

Configurations for Campaign..12
Configuring multi-partitions for Campaign........... 12

Configurations for Director..13
Configurations for Interact.. 13
Configurations for Platform.. 14

Chapter 4. Migration of on-premises applications to Cloud
Native Unica... 17

Migration prerequisites..17
common-configMap configurations............................. 17
JVM option configurations..18
Performing the migration.. 18
Configuring Unica Campaign post migration...............19
Configuring Unica Interact post migration................... 19
Configuring Unica Platform post migration................. 19

Chapter 5. Cloud Native Unica upgrade...........................20
Custom listener scripts and Cloud Native Unica
container OS upgrade..20

Chapter 6. Scaling Unica containers............................... 21
Scaling Listener containers...21

Load balancing... 22
Listener integration.. 22

Scaling Interact containers... 23
Scaling Journey engine containers...............................28

Chapter 7. Using Red Hat OpenShift............................... 30
Security Context Constraints for Unica on Red Hat
OpenShift.. 30

Chapter 8. Deployment monitoring..................................33
Deploying the dashboard user interface...................... 33

Chapter 9. Product utilities... 34
Chapter 10. Using secret to avoid passwords in plain
text... 35

Chapter 11. Using AWS Secrets and Configuration Provider
with Kubernetes Secret Store CSI Driver......................... 36

AWS Secret Manager Implementation......................... 36
Prerequisite Software for AWS Secret
Manager.. 37
Prerequisite Configurations for AWS Secret
Manager.. 37
Implementing AWS Secret Manager..................... 38

Chapter 12. Enabling Multicast using Weave-Net CNI
plugin on AWS EKS cluster... 41
Chapter 13. Uninstalling the chart...................................42

Chapter 1. Pre-installation configurations
Before installing or upgrading to Cloud Native Unica, you should complete some configurations.

The list of pre-installation or pre-upgrade configurations are as follows:

• Configure the resources for containers. For more information, see Cloud Native Unica Getting Started Guide.

• Ensure that you have installed Docker Enterprise version 19.xx.x. For more information, see Docker documentation.

• Ensure that you have installed Kubernetes. For more information, see Kubernetes documentation.

• Verify if:

◦ you have configured a Kubernetes cluster.

◦ the Kubernetes environment has the appropriate image enforcement policy to allow access to the required

repositories.

◦ the application server is setup. For more information, see see one of the following topics based on the

application server that is installed on your system:

▪ Setup for Apache Tomcat on page 2

▪ Setup for Red Hat JBoss Enterprise Application Platform on page 2

▪ Configuring JBoss for Cloud Native Unica on page 3

▪ Setup for Oracle WebLogic on page 2

▪ Configuring WebLogic for Cloud Native Unica on page 3

◦ the database is setup. For more information, see one of the following topics based on the application server

that is installed on your system:

▪ For Apache Tomcat on page 4

▪ For Red Hat JBoss Enterprise Application Platform on page 5

▪ For Oracle WebLogic on page 6

• Ensure that you have installed Helm. For more information, see Helm documentation.

Avoiding timeout issues
To avoid timeout issues, perform the following steps.

1. Access the path <chart-location>/unica/.

2. Open the file values-local.yaml.

3. Add the following lines of code in the annotations section within ingress.

nginx.ingress.kubernetes.io/proxy-connect-timeout: "30"
nginx.ingress.kubernetes.io/proxy-read-timeout: "1800"
nginx.ingress.kubernetes.io/proxy-send-timeout: "1800"
nginx.ingress.kubernetes.io/proxy-body-size: 50m
ingress.kubernetes.io/proxy-body-size: 50m

4. Save the changes.

1

https://docs.docker.com/ee/supported-platforms/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/intro/install/

Cloud Native Unica V12.1.7 Installation and Configuration Guide

2

Application server setup
Cloud Native Unica supports Apache Tomcat®, Red Hat® JBoss® Enterprise Application Platform (EAP), and Oracle®

WebLogic Server application servers.

Setup for Apache Tomcat
You do not have to set up the Apache Tomcat application server as it is embedded in the Cloud Native Unica image.

1. Edit the setenv.sh file for the respective product instances script in the bin directory under your Tomcat instances

directory to add the following Java options:

-Dfile.encoding=UTF-8
-Dclient.encoding.override=UTF-8

2. If you are deploying on a non-production setup, add:

-DENABLE_NON_PROD_MODE=true

3. If you are deploying on a production setup, remove the Java option -DENABLE_NON_PROD_MODE=true, or set it to false.

4. After saving the changes, restart the Apache Tomcat server.

Setup for Red Hat JBoss Enterprise Application Platform
To setup the JBoss application server, place the JBoss EAP ZIP file on the mount location and configure the path in the

Helm chart.

1. For JBoss server, edit the standalone.conf script in the JBoss/bin directory to add the following Java options to

JAVA_VENDOR:

-Dfile.encoding=UTF-8
-Dclient.encoding.override=UTF-8
-Djboss.as.management.blocking.timeout=3600

2. If you are deploying on a non-production setup, add:

-DENABLE_NON_PROD_MODE=true

3. If you are deploying on a production setup, remove the Java option -DENABLE_NON_PROD_MODE=true, or set it to false.

4. After saving the changes, restart the JBoss server.

Setup for Oracle WebLogic
Install Oracle WebLogic Server on the shared filesystem.

1. For WebLogic server, edit the setDomainEnv script in the bin directory, within the WebLogic domain directory, to

add the following Java options to JAVA_VENDOR:

2. If you are deploying on a non-production setup, add:

3. If you are deploying on a production setup, remove the Java option -DENABLE_NON_PROD_MODE=true, or set it to false.

4. After saving the changes, restart the WebLogic server.

Configuring application servers for Cloud Native Unica
You must perform additional configurations on JBoss and WebLogic.

Chapter 1. Pre-installation configurations

Configuring JBoss for Cloud Native Unica
To use JBoss with Cloud Native Unica, complete the following steps:

1. Open the file common-configMap.yaml. To locate the file, access the JBOSSOracle/unica/templates/

location.

2. For the _JBOSS_ZIP_LOCATION parameter, provide the folder name, residing within the HOME folder, containing the

JBoss installation ZIP file. For example, /docker/unica/JBossZip/JBOSS.Zip.

3. For the _JBOSS_ZIP_NAME_ parameter, provide the name of the JBoss installer ZIP file. For example, jboss-

eap-7.1.0.zip.

4. For the _DEST_JBOSS_UNZIP_LOCATION_ parameter, provide the absolute directory location where you want to

install JBoss. For example, if you want to install JBoss inside the container, provide the value /opt. If you want to

install JBoss in a mapped shared folder, provide the value /docker/unica.

5. For the _DEST_UNZIP_FOLDER_ parameter, provide a folder name that contains the unzipped contents of the JBoss

installer ZIP file. For example, if the ZIP file is jboss-eap-7.1.0.zip and the folder within the ZIP file is jBoss710,

provide the value jBoss710.

Results

Completing the earlier mentioned configuration will automatically install JBoss and the required Unica component.

Configuring WebLogic for Cloud Native Unica
Your system should have WebLogic installed to use it with Cloud Native Unica. Cloud Native Unica uses the utilities from

WebLogic to create a domain for the required Unica component.

About this task

To use WebLogic with Cloud Native Unica, complete the following steps:

1. For the JAVA_HOME_WEBLOGIC parameter, WebLogic requires Oracle JDK. The value of this setting is the HOME

location of the JDK used for the existing WebLogic installation. For example, /docker/unica/jdk18_oracle.

2. For the WLS_HOME_DIR parameter, provide the home directory of the WebLogic server installation. For example, /

docker/unica/oracle_products/middleware/wlse.

3. For the WLS_DOMAIN_LOCATION parameter, provide the fully qualified path of the directory under which the domains

for the products will be created. For example, /docker/unica/wlsdomains.

CAUTION: The creation of a new pod creates a directory for the domain of that Pod. If you discard a pod,

the directory is not deleted automatically. You should delete such directories as they consume a lot of disk

space.

Database setup
You need to set up the database before you begin installation.

You can setup the database in one of the following ways.

3

Cloud Native Unica V12.1.7 Installation and Configuration Guide

4

• Use your database Docker image

• Connect to an external database system

In case of Managed Kubernetes Clusters on Cloud, the system data and the customer data must reside on Cloud.

If your database resides in an external system, the configuration of the following parameters, in Unica Helm chart, is

mandatory.

• Database Users

• Tablespace Users

• Operating System Users

The database can reside within Kubernetes cluster. If the database resides within the Kubernetes cluster, use any available

database image, and edit the Unica Helm chart. Ensure that user creation is complete before the Cloud Native solution

starts.

For Apache Tomcat

To use Tomcat, within the cluster or with an external database, complete the following steps:

1. Download Cloud Native Unica images and Helm Chart.

2. Create Databases and Users and enter those details in the Unica Helm Chart.

If you set the Database as a sub-chart in Unica chart, you can completely automate data import using Shell scripts. For

import, data should be available on the Database container mount point. You can also place the data after the container

starts. Ensure that Database configuration and user creation activity is completed before running the Unica chart.

For auto-installation of database client on listener pod or container, complete the following steps:

Note: The commands and filenames are mentioned specific to Oracle database. Provide appropriate values based on

the the database you use.

1. Place the Oracle client installer, named linuxamd64_12102_client.zip, inside the /tmp folder.

2. To extract the installer file, run the unzip command.

A new folder, named client is created in the location /tmp.

3. Run the following command:

cp /tmp/client/response/client_install.rsp /tmp/oracle_client.rsp

4. Access the oracle_client.rsp file and make the following changes in the file:

UNIX_GROUP_NAME=oinstall
INVENTORY_LOCATION=/home/oracle/oraInventory
ORACLE_HOME=/home/oracle/app/oracle/product/12.1.0/client_1
ORACLE_BASE=/home/oracle/app/oracle
oracle.install.client.installType=Administrator

5. Run the following commands:

Chapter 1. Pre-installation configurations

cd /tmp

mkdir linuxamd64_12102_client

mv client linuxamd64_12102_client

tar -cvf Oracle_client.tar linuxamd64_12102_client oracle_client.rsp

gzip Oracle_client.tar

mv Oracle_client.tar.gz oracle_client.rsp /docker/unica

6. In the /docker/unica/ location, create a file named oracle.sh and add the following content in the file:

yum install -y libaio
/tmp/Oracle_client_install/linuxamd64_12102_client/client/runInstaller
-silent -ignoreSysPrereqs -responseFile /tmp/Oracle_client_install/oracle_client.rsp

For Red Hat JBoss Enterprise Application Platform
To use JBoss, within the cluster or within an external database, complete the following steps.

1. Download Cloud Native Unica images and Helm Chart.

2. Add the installable JBoss and JDBC Drivers to the mount location.

3. Create Databases and Users and enter those details in the Unica Helm Chart.

If you set the Database as a sub-chart in Unica chart, you can completely automate data import using Shell scripts. For

import, data should be available on the Database container mount point. You can also place the data after the container

starts. Ensure that Database configuration and user creation activity is completed before running the Unica chart.

For auto-installation of database client on listener pod or container, complete the following steps:

Note: The commands and filenames are mentioned specific to Oracle database. Provide appropriate values based on

the the database you use.

1. Place the Oracle client installer, named linuxamd64_12102_client.zip, inside the /tmp folder.

2. To extract the installer file, run the unzip command.

A new folder, named client is created in the location /tmp.

3. Run the following command:

cp /tmp/client/response/client_install.rsp /tmp/oracle_client.rsp

4. Access the oracle_client.rsp file and make the following changes in the file:

UNIX_GROUP_NAME=oinstall
INVENTORY_LOCATION=/home/oracle/oraInventory
ORACLE_HOME=/home/oracle/app/oracle/product/12.1.0/client_1
ORACLE_BASE=/home/oracle/app/oracle
oracle.install.client.installType=Administrator

5. Run the following commands:

cd /tmp

mkdir linuxamd64_12102_client

mv client linuxamd64_12102_client

5

Cloud Native Unica V12.1.7 Installation and Configuration Guide

6

tar -cvf Oracle_client.tar linuxamd64_12102_client oracle_client.rsp

gzip Oracle_client.tar

mv Oracle_client.tar.gz oracle_client.rsp /docker/unica

6. In the /docker/unica/ location, create a file named oracle.sh and add the following content in the file:

yum install -y libaio
/tmp/Oracle_client_install/linuxamd64_12102_client/client/runInstaller
-silent -ignoreSysPrereqs -responseFile /tmp/Oracle_client_install/oracle_client.rsp

For Oracle WebLogic
To use WebLogic, within the cluster or within an external database, complete the following steps:

1. Download Cloud Native Unica images and Helm Chart.

2. Create Databases and Users and enter those details in the Unica Helm Chart.

If you set the Database as a sub-chart in Unica chart, you can completely automate data import using Shell scripts. For

import, data should be available on the Database container mount point. You can also place the data after the container

starts. Ensure that Database configuration and user creation activity is completed before running the Unica chart.

For auto-installation of database client on listener pod or container, complete the following steps:

Note: The commands and filenames are mentioned specific to Oracle database. Provide appropriate values based on

the the database you use.

1. Place the Oracle client installer, named linuxamd64_12102_client.zip, inside the /tmp folder.

2. To extract the installer file, run the unzip command.

A new folder, named client is created in the location /tmp.

3. Run the following command:

cp /tmp/client/response/client_install.rsp /tmp/oracle_client.rsp

4. Access the oracle_client.rsp file and make the following changes in the file:

UNIX_GROUP_NAME=oinstall
INVENTORY_LOCATION=/home/oracle/oraInventory
ORACLE_HOME=/home/oracle/app/oracle/product/12.1.0/client_1
ORACLE_BASE=/home/oracle/app/oracle
oracle.install.client.installType=Administrator

5. Run the following commands:

cd /tmp

mkdir linuxamd64_12102_client

mv client linuxamd64_12102_client

tar -cvf Oracle_client.tar linuxamd64_12102_client oracle_client.rsp

gzip Oracle_client.tar

mv Oracle_client.tar.gz oracle_client.rsp /docker/unica

6. In the /docker/unica/ location, create a file named oracle.sh and add the following content in the file:

Chapter 1. Pre-installation configurations

yum install -y libaio
/tmp/Oracle_client_install/linuxamd64_12102_client/client/runInstaller
-silent -ignoreSysPrereqs -responseFile /tmp/Oracle_client_install/oracle_client.rsp

Listener Database client setup
To establish an ODBC connection to the database, the Campaign listener requires a database client.

About this task

If you do not have a database client, you must install it. For a seamless installation of the database client, perform the

following steps:

1. Place the database client installer at the mount locaction (NFS).

2. Configure the location of the database client installer in the campaign-configMap.yaml file. For more information,

see Cloud Native Unica Implementation Guide for the respective Application Server,

Setting up the Cloud Native environment
You must set up the Cloud Native environment before implementing Cloud Native Unica. The chart that you download uses

Helm as a package manager for Kubernetes. The chart is a preconfigured application resource and it deploys Unica suite

on a specified Kubernetes cluster. Extract the chart ZIP file to a location in the cloud VM, where you plan to deploy Unica.

For reference purposes, this chart contains a placeholder for the database. Unica does not own the database and is not

responsible for database management. If required, set a containerized database (the charts and subcharts folders are for

reference) as a subchart to the Cloud Native Unica chart. You can use scripts to automate the restoration of database on a

container.

Before you begin

The prerequisites for running a Helm chart are as follows:

• Download the required Docker images from Flex Net Operations (FNO).

• To import the downloaded Docker images for all the products, run the following command:

docker load -i product_image_name.tar

• To verify if all products images are loaded and available for use, run the following command:

docker images

• To tag the images appropriately, run the following command:

docker tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TAG]

• To push the images to the docker registry, run the following command:

docker push TARGET_IMAGE[:TAG]

• Open the values.yaml file, which is placed inside the Unica folder, and edit:

◦ the Docker images name in the repository section

◦ the tag numbers in the tag section

See the following code snippet for reference:

7

Cloud Native Unica V12.1.7 Installation and Configuration Guide

8

image:
 repository:
 init: TARGET_IMAGE
 platform: TARGET_IMAGE
 tag:
 init: TAG
 platform: TAG

• Configure the database in one of the following ways:

◦ Database within Kubenetes cluster - Set the database as a subchart to Unica helm chart. Unica will not own

or manage the database chart.

◦ Pointing to an external database - Configure the database to reside on the same subnet as the worker nodes

to ensure good performance.

About this task

To set up Cloud Native Unica environment, complete the following steps:

1. Update chart configurations:

a. Update or customize database and application server details in the configMap files for each products. For

more information on configMap files, see the Cloud Native Unica Implemetation Guide for your respective

application server. An example for updating or customizing the campaign-configMap.yaml is as follows:

 CAMPAIGN_DATABASE_HOST: "{{ .Release.Name }}-unica-suite-database"
 CAMPAIGN_DATABASE_PORT: "1521"
 CAMPAIGN_DATABASE_NAME: "xe"
 CAMPAIGN_DATABASE_USERNAME: "campuser"
 CAMPAIGN_DATABASE_PASSWORD: "unica"
 CAMPAIGN_DS_INITIAL_SIZE: "1"
 CAMPAIGN_DS_MIN_IDLE: "1"
 CAMPAIGN_DS_MAX_IDLE: "15"
 CAMPAIGN_DS_MAX_TOTAL: "80"
 CAMPAIGN_DS_STATEMENT_CACHE_SIZE: "300"

For more information on configurations related to values.yaml file, see see the Cloud Native Unica Implemetation

Guide for your respective application server.

2. Update persistence volume:

a. Based on the persistent volume of your choice, update the following files:

 - unica/extra-configs/local-pv.yaml
 - unica/templates/pvc.yaml

3. Perform an upgrade:

a. You can use one of the following methods to upgrade:

• Upgrade from On-premises to Cloud Native (for example, Unica version 9.1.2 to Cloud Native version

12.1.0)

• Upgrade from earlier Cloud Native version to a new version (for example, Cloud Native version 12.0 to

Cloud Native version 12.1)

Chapter 1. Pre-installation configurations

b. Before the upgrade, ensure that you have backed up the file system and the Database.

c. Place the file system on the mount point and configure the BASE_FOLDER parameter in the common-

configMap.yaml file to point to the file system location.

d. Also, update the database details in the common-configMap.yaml file. For example, refer the following

code snippet:

 DATABASE_EXPORT_DIR: "/DBBACKUP/"
 BASE_FOLDER: "OLDINSTALL/IBMUnica_86"
 SOURCE_SCHEMA: "camp86"
 TARGET_SCHEMA: "camp86"
 SOURCE_SCHEMA_RT: "camp86"
 TARGET_SCHEMA_RT: "camp86"
 SOURCE_SCHEMA_PROD: "intpr86"
 TARGET_SCHEMA_PROD: "intpr86"
 SOURCE_SCHEMA_LRN: "intlr86"
 TARGET_SCHEMA_LRN: "intlr86"
 SOURCE_SCHEMA_RUN: "intrt86"
 TARGET_SCHEMA_RUN: "intrt86"

e. In case of managed Kubernetes clusters, change the value of the storageClassNames parameter in the

values.yaml file.

Note: Active MQ Image or Chart, provided by Unica, is for reference purposes only. Unica does not

own or is not responsible for Active MQ Deployments.

Cloud Native Unica setup on SSL
You can configure SSL on Cloud Native Unica setup at the ingress level.

A provision exists to create a secret with a CERT file. For additional details, see nginx-ingress documentation for TLS

configuration.

9

10

Chapter 2. Installation and verifying the installation
The following topics provide information related to installation and verification of installation.

• Installation on page 10

• Verifying the chart on page 10

• Log files on page 10

Installation
You can install Unica using Helm charts. Override the following Helm chart values using --set name=value.

Before you begin

• Ensure that configMaps in the helm chart are correctly configured.

• Verify all the configurations and ensure that the mount location does not have any Unica-related installation files.

1. kubectl apply -f ./omnix-unica/extra-configs/local-pv.yaml

2. helm install --name nginx stable/nginx-ingress -f ./omnix-unica/extra-configs/nginx-conf.yaml

3. helm install --name unica -f ./omnix-unica/values-local.yaml omnix-unica --set

service.hostname=kubernetes.nonprod.hclpnp.com --set service.applicationDomain='nonprod.hclpnp.com' --set

ingress.enabled=true

What to do next

After installation, add the installation related parameters in the commom-configMap.yaml file for version 12.1.4.

Verifying the chart
About this task

Follow the instructions after the completion of Helm installation for chart verification. The chart generates an output for all

the resources it creates.

1. To confirm if a chart has generated output for all the resources, run the following command:

helm ls

2. To view the installed helm release, run the following command:

helm status unica

3. To view the Unica Kubernetes pods, run the following command:

kubectl get pods

Log files
Confirm if the required containers are up and running. Upon confirmation, check the logs for all the running services.

Chapter 2. Installation and verifying the installation

• Installation log files:

The installation log files are placed in the logs folder at the mount point. For example, $HOME_DIR/logs.

• Product log files:

Log files are persisted out of the containers at the mount location. The log files for the products are placed in their

respective install location folders. For example, if the product is Campaign and the mount location is /docker/

unica, the Campaign log files will be available within the /docker/unica/Campaign/logs/ location.

Campaign Log Files
To enable the ETL, Engage, and UBX logs within the Campaign logs folder, provide the absolute path in the $CAMPAIGN_HOME/

conf/campaign_log4j.xml file.

Example

log4j.appender.ETL.File=/docker/unica/Campaign/logs/ETL.log
log4j.appender.ENGAGE_ETL.File=/docker/unica/Campaign/logs/EngageETL.log
log4j.appender.UBX.File=/docker/unica/Campaign/logs/UBX.log

11

12

Chapter 3. Post installation configurations
The following topics contain details about post installation configurations related to the products of Unica.

• Configurations for Campaign on page 12

• Configurations for Director on page 13

• Configurations for Interact on page 13

• Configurations for Platform on page 14

Configurations for Campaign
To add user database in Campaign, complete the following steps:

1. Connect to the Listener pod.

2. Add the user database.

3. In the application, navigate to Campaign > Configuration.

4. Add an entry for Datasources.

Configuring multi-partitions for Campaign
For Unica Campaign, you can configure the application within the partitions where you have configured an instance of

Campaign.

Application users, within each partition, can access the Campaign functions, data, and customer tables that are configured

for Campaign in the same partition.

Multiple partitions are useful for setting up a strong security between groups of users, because each partition has its own set

of Campaign system tables.

You must not create multiple partitions if groups of users have to share data with each other.

Each partition has its own set of configuration settings. You can customize Campaign for each group of users. However, all

partitions share the same installation binaries.

With the same binaries for all partitions, you can minimize the installation and upgrade efforts for multiple partitions.

The utility to create multi-partition is available in the $HOME_DIR/Platform/tools/bin location.

Provide values for the following parameters in the Campaign chart:

• PARTITIONS - Name of the partition you want to configure. In case of multiple partitions specify partition name

separated by a semi-colon. For example partition2;partition3.

• SOURCE_PARTITION - The name of the source partition to be replicated.

• DEST_PARTITION - The name of the destination partition to be created.

• PARTITION_USER - Specifies the user name of the admin user for the replicated partition. The name must be unique

within the instance of Unica Platform.

• PARTITION_GROUP - Specifies the name of the Platform admin group that the utility creates. The name must be

unique within the instance of Unica Platform.

Chapter 3. Post installation configurations

• CAMPAIGN_PARTITION2_DATABASE_HOST - Host system details of the system hosting the Campaign Partition2

database.

• CAMPAIGN_PARTITION2_DATABASE_PORT - Port number of the Campaign Partition2 database.

• CAMPAIGN_PARTITION2_DATABASE_NAME - Name of the Campaign Partition2 database.

• CAMPAIGN_PARTITION2_DATABASE_USERNAME - Username to access the Campaign Partition2 database.

• CAMPAIGN_PARTITION2_DATABASE_PASSWORD - Password to access the Campaign Partition2 database.

• CAMPAIGN_PARTITION2_DS_INITIAL_SIZE - The initial size of the Campaign Partition2 datasource connection pool.

• CAMPAIGN_PARTITION2_DS_MIN_IDLE - The minimum number of idle connections (not connected to a database) in

the Campaign Partition2 datasource connection pool.

• CAMPAIGN_PARTITION2_DS_MAX_IDLE - The maximum number of idle connections (not connected to a database)

in the Campaign Partition2 datasource connection pool.

• CAMPAIGN_PARTITION2_DS_MAX_TOTAL - The maximum number of connections that the Campaign Partition2

datasource can hold. If the number of connection requests exceed the configured value, the connection will be

refused.

• CAMPAIGN_PARTITION2_DS_STATEMENT_CACHE_SIZE - Maximum number of statements that can be cached in

the Campaign Partition2 datasource. Statement caching improves performance by caching executable statements

that are used repeatedly.

• CAMPAIGN_PARTITION2_JNDI_NAME - JNDI name for Campaign Partition2.

• CAMPAIGN_PARTITION2_POOL_NAME - Pool name for Campaign Partition2.

The syntax to generate a partition is:

./multiPartition.sh >> output.out

After running the utitilty, restart the Platform and Campaign pod. After restarting the pods, login with platform_admin.

You can login with PARTITION_USER and the partition name you specify is used as the password for the admin user

Configurations for Director
ActiveMQ image is for reference or for tests. Unica does not own ActiveMQ. You can plug in your own ActiveMQ image in the

helm chart.

About this task

To configure Director, complete the following step:

Update the _DIR_HOME_ in the Campaign/bin/setenv.sh location with the actual path.

Configurations for Interact
About this task

For Gateway configurations to work, perform the following step.

13

Cloud Native Unica V12.1.7 Installation and Configuration Guide

14

1. Add the required JAR files and the configuration files to the mount location.

2. On JMX console, use the CentOS desktop and the VNC viewer to view the individual pod consoles. Enable port

forwarding on different ports.

Configurations for Platform
For Director and Campaign History tab, you should configure the Platform settings.

About this task

To configure Platform settings, complete the following steps:

1. Log in to Unica Platform.

2. Select Settings > Configuration.

3. On the left pane, select Unica Platform > Security > API management > Unica Platform.

4. On the left pane, select Authentication and in the right pane click Edit settings. The value for the fields should be:

Field name Value

API URI /authentication/login

Block API access Disabled

Secure API access over HTTPS Enabled

Require authentication for API access Disabled

5. On the left pane, select User and in the right pane click Edit settings. The value for the fields should be:

Field name Value

API URI /usr/partitions/*

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

6. On the left pane, select Policy and in the right pane click Edit settings. The value for the fields should be:

Field name Value

API URI /policy/partitions/*

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

7. On the left pane, select Configurations and in the right pane click Edit settings. The value for the fields should be:

Chapter 3. Post installation configurations

Field name Value

API URI /datasource/config

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

8. On the left pane, select Datasource and in the right pane click Edit settings. The value for the fields should be:

Field name Value

API URI /datasource

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

9. On the left pane, select Login and in the right pane click Edit settings. The value for the fields should be:

Field name Value

API URI /authentication/v1/login

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Disabled

10. On the left pane, select Unica Campaign > Campaign REST API Filter and in the right pane click Edit settings. The

value for the fields should be:

Field name Value

API URI /rest/v1/*

Block API access Disabled

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

11. On the left pane, select Unica Campaign > Campaign REST API V2 Filter and in the right pane click Edit settings. The

value for the fields should be:

Field name Value

API URI /rest/v2/*

Block API access Disabled

15

Cloud Native Unica V12.1.7 Installation and Configuration Guide

16

Field name Value

Secure API access over HTTPS Disabled

Require authentication for API access Enabled

Chapter 4. Migration of on-premises applications to Cloud
Native Unica
You can migrate an on-premise version of Unica to the Cloud Native version. The Cloud Native version will be deployed on

the application server.

Migration prerequisites
The prerequisites for the migration are as follows:

• Take a backup of your existing database.

• Copy the file system of the previous version to the mount location.

• Provide appropriate values the database parameters of all Unica components.

• For Interact, the schema name in the target setup should be the same as the one in the base setup.

• Manually map the tables and restart the Campaign Pod.

common-configMap configurations
In the common-configMap.yaml file, provide values for the following fields:

Table 1. Configurable Parameters to perform an Upgrade

Parameter Name Example Value

BASE_FOLDER "OLDINSTALL/HCLUnica_86"

FROM "8.6.0"

TO "12.0.0"

SOURCE_SCHEMA "CAMP86"

TARGET_SCHEMA "DBO"

DB_DRIVER_CLASS com.microsoft.sqlserver.jdbc.SQLServerDriver

AC_VERSION "12.1.x"

ACI_UNICODE "No"

CONFIGURE_ON_ERROR_PROMPT "Yes"

LOCALE "en_US"

TYPE UPGRADE

DATABASE_EXPORT_DIR /DBBACKUP/

ISEXTERNALDB false

DB_IMPORT_WAIT_TIME 1050

17

Cloud Native Unica V12.1.7 Installation and Configuration Guide

18

Table 1. Configurable Parameters to perform an Upgrade (continued)

Parameter Name Example Value

DB_PRE_IMPORT_WAIT_TIME 1050

IS_UNICODE false

UPGRADE_FROM_TO 11.1+To12.1

LISTENER_HOST_NAME {{ .Release.Name }}-omnix-unica-listener

SOURCE_SCHEMA_RT camp86

TARGET_SCHEMA_RT camp86

DB_DRIVER_CLASS_RT com.ibm.db2.jcc.DB2Driver

SOURCE_SCHEMA_PROD intpr86

TARGET_SCHEMA_PROD intpr86

DB_DRIVER_CLASS_PROD com.ibm.db2.jcc.DB2Driver

SOURCE_SCHEMA_LRN intlr86

TARGET_SCHEMA_LRN intlr86

DB_DRIVER_CLASS_LRN com.ibm.db2.jcc.DB2Driver

SOURCE_SCHEMA_RUN intrt86

TARGET_SCHEMA_RUN intrt86

DB_DRIVER_CLASS_RUN com.ibm.db2.jcc.DB2Driver

JVM option configurations
Add the JVM option -DFAST_UPGRADE_VERSION=<BASE_VERSION>. For example: JAVA_OPTIONS="${JAVA_OPTIONS}

-DFAST_UPGRADE_VERSION=8.6.x.

Performing the migration
The mount location should contain the old version of the Unica file system. Cloud Native containers will manage the

database upgrade and the file system updates.

1. To perform the migration, run the following command.

helm install --name unica omnix-unica --set service.hostname=<kubernetes.nonprod.hclpnp.com --set

service.applicationDomain='nonprod.hclpnp.com' --set ingress.enabled=true

2. Access the migration logs from the mount location.

Chapter 4. Migration of on-premises applications to Cloud Native Unica

Configuring Unica Campaign post migration
To configure Unica Campaign post migration, complete the following steps:

Update the parameter internalServerURL to point to your Campaign pod.

For example, http://hcl-unica-campaign:9125/Campaign.

Configuring Unica Interact post migration
To configure Unica Interact post migration, complete the following steps:

1. Back up the current configurations.

2. Navigate to Affinium > Campaign > partitions > partition1 > Interact > serverGroups.

3. In Unica configuration, delete the old serverGroup and retain only the Interact serverGroup.

4. Define Interact as the serverGroup for the following configurations:

• flowchart configuration within Affinium > Campaign > partitions > partition1 > Interact

• simulator configuration within Affinium > Campaign > partitions > partition1 > Interact

5. Update the Interact design schema by replacing the old serverGroup name with a new name. Execute the following

commands:

• update uaci_deployment set servergroupname='interact';

• update uaci_ICTOSVRGROUP set servergroupname='interact';

• update uaci_OfferMappingSG set servergroupname='interact';

Configuring Unica Platform post migration
To configure Unica Platform post migration, complete the following steps:

1. The Unica Platform application URL will point to the old base environment. Change the navigation URL using the SQL

script from the Platform system database.

2. Manually change the URL of the start page, which appears when you log in to Unica Platform, from the

USM_PERSONALIZATION table.

3. Copy the following properties files from the source environment to the destination environment. Ensure that all the

URLs mentioned in the files are also updated to the destination environment.

• Platform_Admin_URL.properties

• Platform_Admin_View_Priv.properties

• Platform_Admin_URL.properties

• Platform_Admin_Scheduler_Scripts.properties

• Platform_Admin_Scheduler_API.properties

19

20

Chapter 5. Cloud Native Unica upgrade
To upgrade an earlier version of Cloud Native Unica to a newer version, complete the following steps:

1. Unica support team will roll out the Helm Charts after you specify the offering related details and requirements.

Please contact Unica support team to get a Helm chart.

2. Download the required version image and push it to the Docker registry.

3. Update the image URLs in the helm charts.

4. Back up the Database and the file system before you start the upgrade.

5. Run the following helm upgrade command:

helm upgrade hcl unica -f ./unica/values-local.yaml --set service.hostname=kubernetes.nonprod.hclpnp.com
 --set service.applicationDomain='nonprod.hclpnp.com' --set ingress.enabled=true

6. Add upgrade related parameters in the common-configMap.yaml file when upgrading to version 12.1.6.

7. Edit the helm chart platform-deployment.yaml. In the file, replace args: ["chmod 755 /docker/unica && ./

entrypoint.sh"] with the following entry:

args: ["chmod 755 /docker/unica && echo 'find /opt/generate_datasource_snippet.sh -type f -print0 | xargs

-0 sed -i \"s/export DB_URL=\\$/#export DB_URL=/g\"' > /docker/unica/centos_patch.sh && chmod 777 /docker/

unica/centos_patch.sh && ./entrypoint.sh"]

Custom listener scripts and Cloud Native Unica container OS upgrade
Unica container OS upgrade from CentOS 8 to RHEL Universal Base Image (UBI) v8.5 may cause listener pod custom scripts

to fail (applies to Cloud Native Unica versions 12.1.2 / 12.1.3).

1. Modify custom scripts as per RHEL UBI OS. Example: Database Client Installation Script on listener pod.

2. Centos8 OS was updated to RHEL UBI 8.5 because of CentOS 8 end of life.

3. Also, RHEL UBI containers are less vulnerable to security threats because of the frequent fixing and release cycle.

Chapter 6. Scaling Unica containers
The following topics provide information on scaling the containers of Unica:

• For details related to scaling Listener containers, see Scaling Listener containers on page 21.

• For details related to scaling Interact containers, see Scaling Interact containers on page 23.

• For details related to scaling Journey engine containers, see Scaling Journey engine containers on page 28.

Horizontal scaling of Unica containers

Scaling a deployment ensures creation and scheduling of new Pods. Scaling increases the number of Pods to the new

required state. Kubernetes also supports autoscaling of Pods.

For Multicast, perform the configurations on Kubernetes host to support it. For example, weave supports multicast and can

be configured for multicast support.

Note: Autoscaling of Unica containers is not supported.

Scaling Listener containers
Listeners are defined as StatefulSets in Kubernetes. Each Pod in a StatefulSet derives its hostname from the name of the

StatefulSet and the ordinal of the Pod.

The Pod domain is managed by the service and it takes the following form:

$(service name).$(namespace).svc.cluster.local.

For example, the listener pod entry is registered as follows:

listener-0.listener.default.svc.cluster.local

These can be configured in the Helm chart in the campaign-configMap.yaml file.

Like a Deployment, a StatefulSet manages the Pods that are based on identical container specifications. Unlike a

Deployment, a StatefulSet maintains a sticky identity for each of their Pods.

The location of Campaign shared home is $HOME_DIR/Campaign.

For the scaled instances of StatefulSet, listener-0, listener-1, listener-2,..listener-n, each instance has a file system

mapped on the mount location. For example, $HOME_DIR/listener/listener-0.

Ordered scale up and scale down

1. Ordered and graceful deployment and scaling.

If you want to scale up the Listener pod, run the following command:

kubectl scale StatefulSets listener --replicas=2

2. First instance gets deleted in the end.

If you want to scale down the Listener pod, run the following command:

kubectl scale StatefulSets listener --replicas=1

21

Cloud Native Unica V12.1.7 Installation and Configuration Guide

22

Listener-Optimize merge

1. Single scalable deployment in Kubernetes.

2. Configuration and license driven config.xml.

3. Listener integration on page 22

Cluster mode

1. To enable scaling, by default, cluster mode must be TRUE.

Also perform the following listener-related scaling activities:

• Load balancing on page 22

• Listener integration on page 22

Load balancing
For load balancing, there is a single listener that executes commands related to Campaign flowchart and Optimize sessions.

In comparison to Campaign flowchart, an Optimize session requires a significantly better hardware configuration, which

exceeds the minimum recommendation, for successful execution.

About this task

This newly introduced single listener helps the master listener to decide the node on which it should send the execution of

the flowcharts or sessions, considering the loadBalanceWeight. We recommend that you avoid executing Optimize sessions

on a node, configured to execute Campaign flowcharts. Similarly, we recommend that you avoid setting up a node with a

significantly higher configuration of hardware for executing flowcharts. Using the new flag, the master listener can utilize the

available resources in an appropriate way.

Choose an appropriate listenerType during installation based on the hardware, or configuration, or your requirements.

Listener integration
Prior to Unica 12.0 release, Campaign and Optimize were separate products. Users having both Campaign and Optimize had

to run separate listeners. The Campaign listener unica_aclsnr to run flowcharts and Optimize listener unica_acolsnr

to run the Optimize session.

Campaign-Optimize merged scenario

With text-based license for v12, the listener image expects a license file at mount point.

If both listener host name txt (listener-0.txt …) and opt.instance file exist, it will create only the Optimize listener.

If listener host name TXT contains the first listener, it creates the listener as LISTENER_TYPE 3, which means it is for both

Campaign and Optimize, otherwise it creates the listener as LISTENER_TYPE 2 indicating that it is only for Optimize.

If the listener host name txt, listener-0.txt and so on, exists and the opt.instance file does not exist, it creates the

listener as LISTENER_TYPE 3, which indicates that it is for both Campaign and Optimize.

Chapter 6. Scaling Unica containers

Listener types

• CAMPAIGN_ONLY (TYPE 1) - This listener can handle commands for Campaign or flowchart only.

• OPTIMIZE_ONLY (TYPE 2) - This listener can handle commands for Optimize session only.

• ALL ((TYPE 3)- This listener can handle commands for Campaign or Flowchart or Optimize session.

The Type option is available in the following locations:

• Settings > Configuration > Campaign > unicaACListener

• Settings > Configuration > Campaign > unicaACOListener

Scaling Interact containers
Each existing Interact machine runs a Kubernetes Interact deployment. If you have set the hostNetwork to TRUE, the existing

network, which already supports multicast, can be used as it is without changing any settings. You can also use the existing

load balancers over the Kubernetes Interact deployments.

To scale Interact pods for multiple server groups, refactor the helm chart to add services and deployments per server group.

Each Server Group should point to a different Platform Instance. For example, if there are three RT server groups, there will be

three Platform instances (three services and three deployments for Platform and Interact).

The CONTEXT_ROOTS variable, in the interact_configMap.yaml file drives:

• the context roots for Interact and Platform.

• PLT and RT database details per server group.

If you want to scale pods for a server group, run the following command:

kubectl scale deployment hcl-unica-interact --replicas=2

If the Interact POD crashes, or if you manually delete the pod, manually delete an entry from the configuration using the

following command:

./configTool.sh -d -p 'Affinium|Campaign|partitions|partition1|Interact
|serverGroups|interactatm|instanceURLs|$1' -o "

In the earlier command $1 refers to the Interact POD name that crashed or was manually deleted.

Monitoring the scaled instances

Note: Ensure that VNC viewer exists on the host machine to monitor instances.

You can perform JMX monitoring for each of the scaled instances using port forwarding.

For POD1, run the following command:

kubectl port-forward --address 0.0.0.0 pod/unica-omnix-unica-interact-84d7b47f59-d2rsl 9998:9998 &

For POD2, run the following command:

kubectl port-forward --address 0.0.0.0 pod/unica-omnix-unica-interact-84d7b47f59-d2rsl 9999:9998 &

23

Cloud Native Unica V12.1.7 Installation and Configuration Guide

24

Additionally, if your application server is WebLogic, the DB hostname should be a fully qualified domain name or else the

Kubernetes service name will not work.

Interact Autoscaling

Interact Autoscaling feature ensures optimal performance and resource management with Cloud Native Deployments.

Leveraging the autoscaling capabilities ensures the maintenance of a seamless customer experience, adapting dynamically

to varying workloads and resource demands.

With autoscaling, you can automatically scale Interact runtime servers up or down, based on defined situations such as

traffic, resource utilization levels and quality of metrics.

Additionally, you can use autoscaling to maintain application availability. Autoscaling responds to changing demand. The

metrics that are used to trigger scaling are an aggregation of metrics coming from all of the Interact server instances.

Example:

If have two runtime server instances where one instance is at 60 percent CPU and the other is at 40 percent CPU, the average

of both is 50 percent CPU. When the policy is in effect, Autoscaling adjusts the group’s desired capacity to go up or down

when the threshold is triggered.

Define a scaling policy to track a specific metric using parameters mentioned in the configuration file. The parameters are as

follows:

Variables Example Values Required For Description

AUTOSCALE True To enable or disable custom

autoscale. To enable set it

to True. To disable set it to

False.

AVERAGEEXECUTIONTIMEINMILL

IS_THRESHOLD

1500 AUTOSCALE JMX threshold for

AVERAGEEXECUTIONTIMEINMILL

IS.

CPU_HIGH_LIMIT 97 AUTOSCALE CPU high limit. In case the

CPU utilization reaches

97%, it autoscales without

checking any other

paramater.

CPU_LOW_LIMIT 15 AUTOSCALE CPU low limit. In case the

CPU utilization reaches

15%, it does not scaledown.

CPU_TARGET_MAX 65 AUTOSCALE CPU target limit. If CPU

utilization reaches 65%,

it checks and scales up

Interact deployments.

Chapter 6. Scaling Unica containers

Variables Example Values Required For Description

CPU_TARGET_MIN 25 AUTOSCALE CPU target low limit. if CPU

utilization reaches 25%, it

checks and sclaes down

Interact deployments.

GETOFFERSAVERAGE_THRESHOLD 0.2 AUTOSCALE JMX threshold for

GETOFFERSAVERAGE.

HOME_PATH /docker/unica AUTOSCALE /

HYBRIDINTERACT /

INTERACTURL

• The path to access

Unica logs folder to

write logs.

• To copy, create, and

delete temproary

files or folders.

• To access the

config tool.

HYBRIDINTERACT False Enables or disables Interact

hybrid solution. To enable,

set it to True. To disable, set

it to False.

INTERACTURL False Enables or disables Interact

RT registration and deletion.

To enable, set it to True. To

disable, set it to False.

MEMORY_HIGH_LIMIT 97 AUTOSCALE Memory high limit. In case

the memory utilization

reaches 97%, it autoscales

without checking any other

paramater.

MEMORY_LOW_LIMIT 15 AUTOSCALE Memory low limit. In case

the memory utilization

reaches 15% it does not

scaledown.

NameSpace {{ .Release.Namespace }} AUTOSCALE /

HYBRIDINTERACT /

INTERACTURL

Paramtere for specifying

the namespace to be

monitored. It is required for

scaling or Interact hybrid,

Interact URL regestration,

and deletion module.

25

Cloud Native Unica V12.1.7 Installation and Configuration Guide

26

Variables Example Values Required For Description

Partition_Name partition1 INTERACTURL Parameter required for

Interact URL regestration

and deletion module.

Since it can monitor only

one partition at a time, it

monitors only the specified

partition.

POD-REG-COUNTER 5 AUTOSCALE The number of times to

check if any new pods

are getting started before

moving to the cleanup

section or the waiting cycle.

POD-REG-COUNTER-DELAY 10 AUTOSCALE Delay between two checks

of POD-REG-COUNTER. If

POD-REG-COUNTER is 5 and

POD-REG-COUNTER-DELAY is 10

seconds, the total exection

time will be minimum 50

seconds.

Qos_Enabled True AUTOSCALE To enable or disable

autoscale on quality of

service. Valid values are:

AVERAGEEXECUTIONTIMEINMILL

IS, GETOFFERSAVERAGE.

RAM_TARGET_MAX 65 AUTOSCALE The Memory target limit. If

Memory utilization reaches

65% it checks and scales up

Interact deployments.

RAM_TARGET_MIN 55 AUTOSCALE Memory target low limit. If

Memory utilization reaches

55% it checks and scales

down Interact deployments.

REPLICAS '{interact :[1,3] }' AUTOSCALE The count of minimum

and maximum replicas

required for each Interact

deployment.

Chapter 6. Scaling Unica containers

Variables Example Values Required For Description

Resource_Enabled True AUTOSCALE To enable or disable

autoscale on resources,

RAM, and CPU.

SCALEDOWN_COUNTER_DELAY 10 AUTOSCALE The delay between two

checks for any incoming

session before scaling

down pods.

SCALEDOWN_COUNTER_int 5 AUTOSCALE The delay counter for

checking any incoming

session before scaling

down pods.

SCALEDOWN_ENABLED True AUTOSCALE Enabling or Disabling scale

down. To enable, set it to

True. To disable, set it to

False.

SCALEDOWN_HOURS_OF_DAY 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21,

22, 23, 24

AUTOSCALE Value in hours (24 hours)

for scale down. If 2 is not

set, scale up does not run at

2 AM.

SCALEUP_COUNTER_DELAY 10 AUTOSCALE Delay between two checks

for any incoming session

before scaling down pods.

SCALEUP_COUNTER_int 5 AUTOSCALE Delay counter for checking

any incoming session

before scaling down pods.

SCALEUP_ENABLED True AUTOSCALE Enabling or Disabling scale

up. To enable, set it to True.

To disable, set it to False.

SCALEUP_HOURS_OF_DAY 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21,

22, 23, 24

0 Value in hours (24 hours)

for scale down. If 2 is not

set, scale up does not run at

2 AM.

SCALING_CHECK_INTERVAL 12 AUTOSCALE Delay between the two

checks of scale up and

scale down.

27

Cloud Native Unica V12.1.7 Installation and Configuration Guide

28

Variables Example Values Required For Description

SCALING_FREQUENCY DAILY AUTOSCALE The frequency of running

autoscale. Valid values are:

DAILY, WEEKDAYS, or WEEKENDS.

SERVER_GROUPS interact AUTOSCALE The server groups to be

monitored. If you deploy

Interact and InteractATM,

the value should be as

follows: SERVER_GROUPS:

interact,interactatm.

SyncTimePyPod 30 INTERACTURL The gap between the check

of registration and deletion

of Interact URL.

Unica_Deployment {{ .Release.Name }}-{{ inc

l udeunica.name . }}

AUTOSCALE /

HYBRIDINTERACT /

INTERACTURL

Name of the release

deployment. Example: If

your Interact deployment

name hcl-unica-interact,

the release deploymen

name is hcl-unica.

Deployment hcl-unica-interact HYBRIDINTERACT Deployment name for

Hybrid.

file_Handle /

docker/unica/logs/file-pat

t ern

HYBRIDINTERACT The filename to capture

the pod name. If the helper

is deleted or recreated, it

captures pod name from

the file.

CHANNELNAME_list intractatm HYBRIDINTERACT The channel name.

REDIS_CONFIGURED True HYBRIDINTERACT If Redis is configuired,

set to True. If Redis is not

configured, set to False.

Scaling Journey engine containers
In Kubernetes, Journey engine are defined as StatefulSets.

Each Pod in a StatefulSet derives its hostname from:

• the name of the StatefulSet, and

• the ordinal of the Pod.

Chapter 6. Scaling Unica containers

The service manages the Pod domain and the format is as follows:

$(service name).$(namespace).svc.cluster.local

Example:

The Journey engine pod is regitered in the following format:

journey-0.listener.default.svc.cluster.local

In the Helm chart, you can configure these pods in the journey-configMap.yaml file.

Like a Deployment, a StatefulSet manages the Pods that are based on identical container specifications.

Unlike a Deployment, a StatefulSet maintains a sticky identity for each of their Pods.

The location of Journey Engine shared home is $HOME_DIR/Journey/Engine.

For the scaled instances of StatefulSet, journey-0, journey-1, journey-2,..journey-n, each instance has a file system mapped

on the mount location.

Example:

$HOME_DIR/Journey/journey-0

In a Journey engine, by default, clustering is enabled. As soon as the engine starts, it creates journey-0, which is a

copy of the engine folder. As you keep scaling the Journey engine, it creates folders named journey-0, journey-1,

journey-2,..journey-n.

The logs for each pod will also be generated as journey-0, journey-1, journey-2,..journey-n.

29

30

Chapter 7. Using Red Hat OpenShift
You can use OpenShift to develop and runcontainerized applications. OpenShift allows applications, and the data centers

that support them, to expand from just a few machines and applications to thousands of machines that serve millions of

clients.

About this task

For detailed information related to Red Hat OpenShift Container Platform, see OpenShift Container Platform documentation.

The benefits of using OpenShift Container Platform are as follows:

• Does not require separate charts as the OpenShift charts are customized, or updated, charts when compared to

Kubernetes charts.

• Easy to manage and monitor using the OpenShift console.

To configure the changes required for Unica, complete the following steps:

1. Place the following items on a location that is accessible from the listener pod:

• unixodbc

• libltdl.so.7

• libltdl.so.7.30

• mariadb driver (must be installed and then copied to the required location)

Update the same in campaign-configmap.yaml file:

export ODBCINI=<driver-path>/etc/odbc.ini
export ODBCINST=<driver-path>/etc/odbcinst.ini
export ODBCSYSINI=<driver-path>/odbc1/etc

Note: <driver-path> is the path where you have copied the driver. For example, /docker/unica/odbc1.

2. In the campaign-configmap.yaml file, update the namespace for listener domain name.

3. Based on your setup, you can:

Choose from:

• update the PVC.yaml file before using it.

• avoid the PVC.yaml file.

Security Context Constraints for Unica on Red Hat OpenShift
For any Security Context Constraint (SCC), perform the following steps:

1. If AllowPrivilegedContainer is enabled (set to TRUE) or not enabled, set it to FALSE.

2. Do not assign root access to the users specified in the deployment.yaml file.

3. For pods that do not have a gid (group ID), perform the following configuration:

securityContext:
 runAsUser: 1000610000

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/

Chapter 7. Using Red Hat OpenShift

The configuration ensures that the start user of the pods is 1000610000. The 1000610000 user cannot switch to the root

user or change the root user password.

4. For the Oracle client, in the listener pod, create a user for a valid group and perform the following configurations:

securityContext as :
 securityContext:
 runAsUser: 1000
 runAsGroup: 1001

oracle:x:1000:1000::/home/oracle:/bin/bash
dba:x:1001:oracle
1000=oracle and 1001 = dba group

The configuration ensures that the Oracle user also cannot switch to the root user or change the root user password.

5. For the SCC (anyuid), configure the following values:

allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny
groups:
- system:cluster-admins
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: anyuid provides all features of the restricted SCC
 but allows users to run with any UID and any GID.
 release.openshift.io/create-only: "true"
 creationTimestamp: "2020-08-24T17:55:03Z"
 generation: 6
 name: anyuid
 resourceVersion: "23505934"
 selfLink: /apis/security.openshift.io/v1/securitycontextconstraints/anyuid
 uid: 43877aab-c522-4ca9-9575-e8b212749e29
priority: 10
readOnlyRootFilesystem: false
requiredDropCapabilities:
- MKNOD
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: MustRunAs
supplementalGroups:
 type: RunAsAny
users:
- system:serviceaccount:unica:default
volumes:
- configMap
- downwardAPI

31

Cloud Native Unica V12.1.7 Installation and Configuration Guide

32

- emptyDir
- persistentVolumeClaim
- projected
- secret

6. For the listerner pod, remove all chmod or su.

7. In the listener rc.unica_ac, remove the root user check and change it to oracle.

8. In the Journey configmap, update the namespace from default to unica.

Chapter 8. Deployment monitoring
The Kubernetes Dashboard is a web-based user interface to monitor deployments.

Use the Kubernetes Dashboard to:

• deploy containerized applications to a Kubernetes cluster

• troubleshoot your containerized applications

• managing cluster resources

You can also the use Dashboard to get an overview of the applications running on your cluster, as well as for creating or

modifying individual Kubernetes resources.

The Dashboard also provides information on the state of Kubernetes resources in your cluster and on any errors that may

have occurred.

Figure 1. Kubernetes dashboard

Deploying the dashboard user interface
The Dashboard user interface is not deployed by default.

To deploy the Dashboard user interface, run the following command.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta4/aio/deploy/recommended.yaml

33

34

Chapter 9. Product utilities
You can execute all the utilities of the Unica products in their assigned pods.

The following table lists the Unica products and their assigned pods for running the product-specific utilities.

Table 2. Unica products and their assigned pods for running the utilities

Unica Product Name Pod Name

Unica Campaign Listener

Unica Platform Platform

Unica Plan Plan

Chapter 10. Using secret to avoid passwords in plain text
To use a secret to avoid using passwords in plain text, complete the following steps:

1. On a Linux virtual machine, run the following command:

echo -n 'unica*03' | base64

Result

You will see the following output: "dW5pY2EqMDM="

2. Create a YAML file (example unicadbSecret.yaml) and in the YAML file add the following parameters:

apiVersion: v1
kind: Secret
metadata:
name: unica-db-token
type: Opaque
data:
PLATFORM_DATABASE_PASSWORD: "dW5pY2EqMDM="

3. To use the password in Unica Platform, update the Platform deployment, and wherever envFrom exists, add the the

following code:

envFrom:
- secretRef:
name: unica-db-token
- configMapRef:

4. Either comment or delete the parameter PLATFORM_DATABASE_PASSWORD: unica*03 from the platform-

configMap.yaml file.

What to do next

Note:

• The same unicadbSecret.yaml can be used for multiple Unica product database passwords. Repeat Step

3 and Step 4 for each products deployment and their respectiv configmap.yaml file. For example, in case

of Unica Plan, with PLAN_DATABASE_PASSWORD: unica*03, add the following lines of code

apiVersion: v1
kind: Secret
metadata:
name: unica-db-token
type: Opaque
data:
PLATFORM_DATABASE_PASSWORD: "dW5pY2EqMDM="
PLAN_DATABASE_PASSWORD: "dW5pY2EqMDM="

In this case, update the Plan deployment and configmap.yaml file.

• Limit the secret size to 1 MB. If the secret size is more than 1 MB, split it into multiple tokens.

35

36

Chapter 11. Using AWS Secrets and Configuration Provider
with Kubernetes Secret Store CSI Driver
AWS Secrets Manager securely retrieves secrets from the AWS Secrets Manager for Amazon Elastic Kubernetes Service

(Amazon EKS) Kubernetes pods.

AWS Secrets and Config Provider (ASCP) contains an an easy-to-use plugin that provides secrets to applications that operate

on Amazon EKS. The plugin supports industry-standard Kubernetes Secrets Store and Container Storage Interface (CSI)

driver.

The benefits of ASCP are as follows:

• Provides compatibility for legacy Kubernetes workloads that fetched secrets through the file system or etcd.

• Securely store and manage your secrets in Secrets Manager.

• Retrieve secrets, using applications that run on Kubernetes, without writing a custom code.

• Use AWS Identity and Access Management (IAM) and resource policies on your secret to limit and restrict access to

specific Kubernetes pods inside a cluster to tightly control secrets accessible by the pods.

AWS Secrets Manager Working Concept with Unica

AWS Secret Manager Implementation
To implement AWS Secret Manager, ensure that the prerequisites are met and the configurations are executed.

For more details, see the following topics:

• Prerequisite Software for AWS Secret Manager on page 37

• Prerequisite Configurations for AWS Secret Manager on page 37

• Implementing AWS Secret Manager on page 38

Chapter 11. Using AWS Secrets and Configuration Provider with Kubernetes Secret Store CSI Driver

Prerequisite Software for AWS Secret Manager
The prerequisite software requirement for AWS Secret Manager are as follows:

• An AWS account

• AWS Command Line Interface installed

• kubectl installed

• Helm installed

• eksctl installed

• An existing EKS cluster

Prerequisite Configurations for AWS Secret Manager
Before implementing AWS Secret Manager, make the following configurations:

• An IAM policy, with permissions to retrieve secrets from Secret Manager.

• Your secret stored in Secrets Manager, for example platsecret, campsecret, and plansecret with keys

PLATFORM_DATABASE_PASSWORD, CAMPAIGN_DATABASE_PASSWORD, and PLAN_DATABASE_PASSWORD:

◦ keys should match the configMap entries

◦ encryption key value must be aws/secretsmanager

• A user or iamserviceaccount that can modify your Kubernetes cluster.

• To the Docker registry, push the new set of images.

• To use the new image tags, update the values.yaml file.

• In the Helm chart, comment out the following _PASSWORD parameters from the configMap.yaml files:

◦ CAMPAIGN_DATABASE_PASSWORD

◦ PLAN_DATABASE_PASSWORD

◦ PLATFORM_DATABASE_PASSWORD

• In the common-configMap.yaml file, add the following parameter:

TOMCAT_FACTORY: "com.unica.manager.tomcat.utils.TomcatDSFactory"

• Create secrets for the following Unica products with the corresponding names:

Unica Porduct Secret name

Unica Campaign campsecret

Unica Plan plansecret

Unica Platform platsecret

• Update the secret arn, secret name, and key in the following files (see the example for reference):

◦ values.yaml

37

Cloud Native Unica V12.1.7 Installation and Configuration Guide

38

◦ deployment.yaml

Implementing AWS Secret Manager
To implement AWS Secret Manager on your setup, complete the following steps:

1. Using a command line interface, restrict access to your pods using IAM roles for service accounts. Alternatively, you

can also restrict access using a console.

2. To turn on Open ID Connect (OIDC), run the following eksctl command:

eksctl utils associate-iam-oidc-provider --region=<REGION> --cluster=<CLUSTERNAME> --approve

Note:

• You must run the earlier mentioned command only once.

• In the command, mentioned earlier, replace <REGION> and <CLUSTERNAME> with relevant and appropriate

values.

3. For retrieving secrets from AWS Secret Manager, create a policy by running the following command:

aws iam create-policy --policy-name <my-policy> --policy-document file://policy

A sample policy file follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [x`
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:ap-south-1:385481138434:secret:*"
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:ListSecrets",
 "Resource": "*"
 }
]
}

4. Create a service account role to associate the policy (created in Step 2) with your service account. To create a

service account, run the following command:

eksctl create iamserviceaccount --name <SERVICE_ACCOUNT_NAME> --namespace <NAMESPACE> --cluster
 <CLUSTERNAME> --attach-policy-arn <IAM_policy_ARN> --approve --override-existing-serviceaccounts

Chapter 11. Using AWS Secrets and Configuration Provider with Kubernetes Secret Store CSI Driver

Note: In the command, mentioned earlier, replace <NAMESPACE>, <CLUSTERNAME>, <IAM_policy_ARN>, and

<SERVICE_ACCOUNT_NAME> with relevant and appropriate values.

5. To install the Kubernetes secrets store CSI driver, using helm with syncSecret.enabled=true, run the following

commands:

a. Run the following command:

helm repo add secrets-store-csi-driver
 https://kubernetes-sigs.github.io/secrets-store-csi-driver/charts

b. If you do not require a periodical pull of updated secrets, initialize the driver by running the following

command:

helm install csi-secrets-store secrets-store-csi-driver/secrets-store-csi-driver --set
 syncSecret.enabled=true --namespace kube-system

c. If you want to turn on automated rotation for the driver, using the rotation reconciler feature which is currently

in alpha, run the following command:

helm -n kube-system install csi-secrets-store secrets-store-csi-driver/secrets-store-csi-driver
 --set enableSecretRotation=true --set rotationPollInterval=3600s

Note: You can adjust the rotation intervals, as per your requirements, to find an appropriate balance

between API call cost consideration and rotation frequency

6. To install the ASCP, run the following command:

kubectl apply -f
 https://raw.githubusercontent.com/aws/secrets-store-csi-driver-provider-aws/main/deployment/aws-provide
r-installer.yaml

7. Create the custom resource SecretProviderClass and deploy it to sync with AWS secret with Kubernetes. For details,

access the spc.yaml inside the Unica helm chart.

8. Configure and deploy the pods to mount the volumes based on the configured secrets.

39

Cloud Native Unica V12.1.7 Installation and Configuration Guide

40

9. In the rbac.yaml file, assign the ClusterRoleBinding permissions to the iamservice account, created in Step 3, for

internal Kubernetes communication.

Chapter 12. Enabling Multicast using Weave-Net CNI plugin on
AWS EKS cluster
You can enable multicasting on AWS EKS cluster only for Kubernetes versions 1.21 or above,

Before you begin

• Create a role on AWS having the necessary privileges for creating AWS clusters (example: AWS_EKS_CLUSTER_ROLE).

• Create a minimum of two subnets within the VPC. You must create the cluster within this VPC.

About this task

To enable multicasting on AWS EKS cluster using Weave-Net CNI plugin, complete the following steps:

1. Use the AWS CLI and create an EKS cluster without any node group.

Note: Multicasting will not work if you create clusters using AWS web console.

Sample Command:

aws eks create-cluster --region <region-name> --name <cluster-name> --kubernetes-version 1.21 --role-arn
 <full-arn-of-the-role> --resources-vpc-config subnetIds=<subnet-id1>,<subnet-id2>,...<subnet-idn>

2. Run the following command to delete the aws-node default daemon-set:

kubectl delete ds aws-node -n kube-system command

Result

This disables the default vpc-cni plugin.

3. Confirm if your security group allows TCP port 6783 and UDP ports 6783 and 6784. If your security group does not

allow these ports, add the necessary firewall rules to your security groups to allow these ports.

4. Run the following command to delete the kube-proxy ds:

kubectl delete ds kube-proxy -n kube-system

5. Run the following command to create an add-on for Kube-proxy:

aws eks create-addon --cluster-name <your-cluster-name> --addon-name kube-proxy --resolve-conflicts
 OVERWRITE

Result

This will add the latest kube-proxy add-on to the cluster, based on the Kubernetes cluster version.

6. Run the following command to apply weave-net daemoset:

kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 | tr -d
 '\n')"

7. Verify the Daemon sets on cluster. There should be two daemon sets for Weave and correspondingly two Kube-proxy

daemon sets.

8. Add the node group to the Cluster and wait till the nodes are created and all the required nodes are ready.

9. Deploy the Unica product and verify the Multicasting.

41

42

Chapter 13. Uninstalling the chart
1. To uninstall or delete the my-release deployment, run the following command:

helm delete --purge <releasename>

2. Delete the persistent volumes.

3. Delete the file systems.

What to do next

If required, clean the persisted data of the database.

	Cloud Native Unica V12.1.7 Installation and Configuration Guide
	Contents
	Chapter 1. Pre-installation configurations
	Avoiding timeout issues
	Application server setup
	Setup for Apache Tomcat
	Setup for Red Hat JBoss Enterprise Application Platform
	Setup for Oracle WebLogic

	Configuring application servers for Cloud Native Unica
	Configuring JBoss for Cloud Native Unica
	Configuring WebLogic for Cloud Native Unica

	Database setup
	For Apache Tomcat
	For Red Hat JBoss Enterprise Application Platform
	For Oracle WebLogic

	Listener Database client setup
	Setting up the Cloud Native environment
	Cloud Native Unica setup on SSL

	Chapter 2. Installation and verifying the installation
	Installation
	Verifying the chart
	Log files
	Campaign Log Files

	Chapter 3. Post installation configurations
	Configurations for Campaign
	Configuring multi-partitions for Campaign

	Configurations for Director
	Configurations for Interact
	Configurations for Platform

	Chapter 4. Migration of on-premises applications to Cloud Native Unica
	Migration prerequisites
	common-configMap configurations
	JVM option configurations
	Performing the migration
	Configuring Unica Campaign post migration
	Configuring Unica Interact post migration
	Configuring Unica Platform post migration

	Chapter 5. Cloud Native Unica upgrade
	Custom listener scripts and Cloud Native Unica container OS upgrade

	Chapter 6. Scaling Unica containers
	Horizontal scaling of Unica containers
	Scaling Listener containers
	Ordered scale up and scale down
	Listener-Optimize merge
	Cluster mode
	Load balancing
	Listener integration
	Campaign-Optimize merged scenario
	Listener types

	Scaling Interact containers
	Monitoring the scaled instances
	Interact Autoscaling

	Scaling Journey engine containers

	Chapter 7. Using Red Hat OpenShift
	Security Context Constraints for Unica on Red Hat OpenShift

	Chapter 8. Deployment monitoring
	Deploying the dashboard user interface

	Chapter 9. Product utilities
	Chapter 10. Using secret to avoid passwords in plain text
	Chapter 11. Using AWS Secrets and Configuration Provider with Kubernetes Secret Store CSI Driver
	AWS Secret Manager Implementation
	Prerequisite Software for AWS Secret Manager
	Prerequisite Configurations for AWS Secret Manager
	Implementing AWS Secret Manager

	Chapter 12. Enabling Multicast using Weave-Net CNI plugin on AWS EKS cluster
	Chapter 13. Uninstalling the chart

