
Unica Content Integration V12.1.8 Developer Guide

ii

Contents
Chapter 1. Overview... 1

Plugins.. 1
Integration support and plugin development
approach... 1

RESTful content search flow................................... 1
Non-RESTful content search flow........................... 2

Chapter 2. Plugin development overview.......................... 3
Components of plugin... 3

Service declarations... 4
Standard services...8
Service implementations....................................... 15

Chapter 3. Plugin Development SDK............................... 20
Generic type parameters... 20
I18n support... 22
Service invocation..23
Execution context.. 26

User data source.. 27
Standard services and specialized types..................... 28

Invocation of standard services............................28
Specialized types..31

Request Validation...63
Standard exceptions..63

RESTful approach...63
Functional approach.. 63

Loggers... 64
Chapter 4. Setting up the development environment....... 66
Chapter 5. Verification and troubleshooting.................... 74

Overview of loggers...74
Useful loggers in log4j2.xml file............................74
Other important loggers.. 76

Chapter 1. Overview
Unica Content Integration facilitates easy integration with Content Management Systems and enables searching content

from them.

The fetched content can be used by the client of Unica Content Integration for various content-oriented business use cases.

A Unica Content Integration client is any product from Unica Suite which integrates with it to consume the content from the

target systems.

Plugins
To integrate with different CMS, Unica Content Integration uses REST APIs. Since each CMS has a unique programming

interface, Unica Content Integration uses custom plugins or modules written specifically for the target CMS.

You can implement plugins using Java programming language. Unica Content Integration does not enforce any dependency

of any third-party library for developing such plugins. You can customize plugins to utilize any third-party library for its

implementation. Plugins can be used to fill in the logical gaps related to the target system.

Plugins non-intrusively augment Unica Content Integration to facilitate various content-oriented use cases.

Integration support and plugin development approach
Unica Content Integration provides out-of-the-box support for easy integration with RESTful interfaces. It also facilitates

alternative approach of plugin development to integrate with non-RESTful systems such as database, file systems, or any

other content repository.

A typical plugin written for REST API integration does not contain any logic to establish connection with the target system,

and to handle protocol level success and failure conditions. Such responsibilities are handled by the Content Integration

Framework. Plugins provide only system-specific pieces of information, such as:

• absolute location of the target API

• HTTP method to be used

• headers to be supplied

• request body to be sent

• type of the response to be expected

• transformer for the received response

An alternate plugin development approach for non-RESTful integration involves thorough implementation. For example, a

plugin written for fetching content from database needs to address everything involved in making DB connection, executing

SQLs, closing connections, result set hydration, failure handling etc.

Content Integration Framework follows Inversion of Control (IoC) pattern while working with plugins. Framework delegates to

and/or calls back plugin services whenever respective user requests or system events occur.

RESTful content search flow
The following figure shows the end-to-end execution flow for RESTful content search:

1

Unica Content Integration V12.1.8 Developer Guide

2

Figure 1. RESTful content search flow

When Content Integration Framework receives content search request from user for the target system, it consults with the

respective plugin to gather request specific logical information and makes an API call to the target system. It consults with

the plugin once again to transform the API response into an expected format and responds to the user.

Non-RESTful content search flow
The following figure shows the end-to-end execution flow for Non-RESTful content search:

Figure 2. Non-RESTful content search flow

Non-RESTful plugins interact with the content repository and provides the search results to Content Integration Framework.

Unlike RESTful repositories, Content Integration Framework will not know the type, architecture, protocol and the

authentication mechanism used for communicating with the target repository.

Chapter 2. Plugin development overview
Unica Content Integration facilitates easy integration with new content repositories without having to alter the core Content

Integration framework.

Unica Content Integration seamlessly integrates with system-specific, independent plugins. Once the plugin is developed

and placed under the <ASSET_PICKER_HOME>/plugins/custom directory on the application server hosting Content

Integration, the corresponding content repository can be onboarded in the Unica product suite by updating a few

configurations in Unica Platform. For more information, see Unica Content Integration Administrator's Guide

Note: <ASSET_PICKER_HOME> refers to the base installation directory of Unica Content Integration placed within

Platform home. Hence, any further use of <ASSET_PICKER_HOME> in this guide should be considered as a path to

the Content Integration directory within Platform home.

Unica Content Integration is shipped with a development kit containing the dependencies, reference projects, and a starter

project to quick start the plugin development. Development kit is placed within the <ASSET_PICKER_HOME>/dev-kits

directory. Four reference projects, named aem-integration, wcm-integration, dx-integration, and commerce-integration

are available for Adobe Experience Manager (AEM), IBM Web Content Manager (WCM), HCL Digital Experience and HCL

Commerce, respectively.

Components of plugin
A typical plugin contains the following components:

• Service declarations on page 4

• Service implementations on page 15

• I18n resource bundle

The term Service represents a Java class, which either indirectly aids in consuming an external REST service, or directly

interacts with external web service(s) or system(s) for a designated purpose. External system need not be a standard

Content Management System and external services need not belong to any standard CMS. It can be any system or an API.

Any service implemented by the plugin must be declared in a centrally managed service declaration file. A service

declaration file is an YML configuration file containing the list of services implemented by all the available plugins.

The service declaration file must be named custom-plugin-services.yml. It should be available within the

<ASSET_PICKER_HOME>/conf directory. Structure of custom-plugin-services.yml file must be similar to the

plugin-services.yml file, which exists in the same directory. The plugin-services.yml file contains service

declarations for out-of-the-box system integrations. A service can either be a standard service or a custom service.

Standard services carry special semantics and purpose in Unica Content Integration. Implementation of certain standard

services is mandatory for Content Integration Framework to work with the content repository.

3

Unica Content Integration V12.1.8 Developer Guide

4

Service declarations
Reference service declarations can be found inside asset-integration-starter project within dev-kits\asset-

integration-starter\src\main\resources\META-INF directory.

The following are example service declarations from asset-integration-starter project:

services:
 -
 systemId: Foo
 serviceName: simple-search
 factoryClass: com.example.service.rest.SimpleSearchService
 params:
 supportedContentTypes: # Standard parameter, applicable only for simple-search service
 Images: Images
 customParam1: p1Value # String parameter
 customParam2: 1234.56 # Numeric parameter
 customParam3: # Key-value/Dictionary/Map parameter
 p3Key1: p3Value1
 p3Key2: p3Value2
 p3Key3: p3Value3
 customParam4: # Array parameter
 - p4Value1
 - p4Value2
 - p4Value3

 -
 systemId: Foo
 serviceName: resource-loader
 factoryClass: com.example.service.rest.ResourceLoaderService
 params:
 customParam1: p1Value # String parameter
 customParam2: 1234.56 # Numeric parameter
 customParam3: # Key-value/Dictionary/Map parameter
 p3Key1: p3Value1
 p3Key2: p3Value2
 p3Key3: p3Value3
 customParam4: # Array parameter
 - p4Value1
 - p4Value2
 - p4Value3
 -
 systemId: Foo
 serviceName: asset-selection-callback
 factoryClass: com.example.service.rest.ContentSelectionCallbackService
 params:
 customParam1: p1Value # String parameter
 customParam2: 1234.56 # Numeric parameter
 customParam3: # Key-value/Dictionary/Map parameter
 p3Key1: p3Value1
 p3Key2: p3Value2
 p3Key3: p3Value3
 customParam4: # Array parameter
 - p4Value1
 - p4Value2
 - p4Value3
 -
 systemId: Foo

Chapter 2. Plugin development overview

 serviceName: custom-service
 factoryClass: com.example.service.rest.ExampleExampleCustomService
 params:
 customParam1: p1Value # String parameter
 customParam2: 1234.56 # Numeric parameter
 customParam3: # Key-value/Dictionary/Map parameter
 p3Key1: p3Value1
 p3Key2: p3Value2
 p3Key3: p3Value3
 customParam4: # Array parameter
 - p4Value1
 - p4Value2
 - p4Value3

Service declaration file
Service declaration file contains services element, which is an array of individual service declarations. A service declaration

is a dictionary containing three mandatory elements named systemId, serviceName, and factoryClass, and one optional

element named params. Details of the elements are as follows:

• systemId

This string value uniquely identifies a target content repository. This identifier should preferably contain only English

alphanumeric characters. Use dots, dashes, and underscores to enhance readability. Avoid any other special

characters and unicode characters. Identifier once chosen for the target system must remain consistent across all

service declarations for the same system. This identifier is also used in Unica Platform configuration for onboarding

the respective system.

The following are some examples of valid system identifiers:

WCM
AEM
Example
WCM_1.0
AEM_1_1
DX-CORE
DX

You can write different plugins for different versions of the same system. In such case, different identifiers must

be used to identify each version distinctly. Alternatively, the same plugin may contain different versions of service

implementations specific to the respective versions of the corresponding system. In such case, different systemIds

must be carefully assigned to the respective service declarations. For example, two different versions of WCM,

namely 1.0 and 2.0 may contain different APIs for content search service, thereby causing following service entries

for respective versions:

 -
 systemId: WCM_1.0
 serviceName: simple-search
 factoryClass: com.hcl.wcm.service_1_0.WcmSimpleSearchService

 -
 systemId: WCM_2.0
 serviceName: simple-search
 factoryClass: com.hcl.wcm.service_2_0.WcmSimpleSearchService

5

Unica Content Integration V12.1.8 Developer Guide

6

The two entries may belong to the same plugin or may be placed in two different plugins for the sake of

implementation clarity. Content Integration Framework does not impose any restrictions.

• serviceName

This string value uniquely identifies the given service for corresponding system. It can either be a name of Standard

service, or an appropriately chosen name for the custom service. Standard services are discussed in subsequent

sections.

• factoryClass

This is a fully qualified path to the Java class providing service implementation.

• params

Provides a way to supply static parameters to the service to control, or modify, service behavior according to the

parameter values. In short, params can be used to hold static key-value configuration for service implementations.

This can include certain standard service parameters as well as any custom parameters that a service might want to

use. Parameter values are converted into the objects of closest matching primitive wrapper classes, such as Integer,

Long, Double, String etc. A parameter value can also be a map, array, or list of other values (plugins must verify the

runtime-type of these values before using them).

Service declaration file also contains certain properties pertaining to the target content repository. These properties are

covered under systems root element. The following is an example of such entry containing all the supported properties:

systems:
 YOUR_SYSTEM_ID:
 params:
 param1: value1
 param2:
 k1: v1
 k2: v2
 param3: 100
 additionalFeatures:
 securityPolicy: false
 content:
 paginatedSearch: true
 paginatedList: true
 anonymousContent: true
 categorization: lenient

This example entry shows the default values considered for each property mentioned herein in case no such entry is present

for the given target repository. Thus, this entry is optional unless one or more of these default considerations do not hold true

for the target content repository. Below section briefs the significance of each property:

params - Provides a way to supply static parameters to the respective plugin to control or alter plugin behavior according to

the parameter values. In short, params can be used to hold static key-value configuration for plugin implementations. This

can include predefined standard system parameters as well as any custom parameters that a respective plugin might want

to use. Parameter values are converted into the objects of closest matching primitive wrapper classes, such as Integer, Long,

Double, String etc. A parameter value can also be a map, array, or list of other values (plugins must verify the runtime-type of

these values before using them).

Chapter 2. Plugin development overview

additionalFeatures | securityPolicy - This setting must be set to true when content is protected inside respective system

using Unica's security policies.

additionalFeatures | content | paginatedSearch - This feature flag is used to convey whether content repository supports

paginated content search results or not. User experience is altered accordingly for showing content search result.

additionalFeatures | content | paginatedList - This feature flag is used to convey whether content repository supports

paginated content listing or not. User experience is altered accordingly for showing content list.

additionalFeatures | content | anonymousContent - This feature flag is used to convey whether publicly accessible content

should be expected from the content repository or not. If it is set to true, plugin must return publicly accessible URL for each

content. If contents cannot be made publicly accessible using HTTP(S) URL, plugin developer must set this flag to false. In

such case, users will not be able to see or download the contents fetched from the repository. If the target system does not

provide anonymously-accessible URL for the content, you must implement the resource-loader service to allow download of

protected content.

additionalFeatures | content | categorization - This property can be set to either strict or lenient. If it is left out, it is

assumed to be lenient by default. Content is generally organized in different categories. Value of this property provides a hint

about the structural similarities of contents across categories. Strictly organized contents are assumed to be heterogeneous.

Such contents may not share any attributes across categories. For example, insurance products can be considered as

strictly categorized. Life insurance, Automobile insurance, Health insurance, Travel insurance etc. have very few attributes in

common. Such products possess exclusive attributes relevant to the category they belong to. Whereas leniently categorized

contents are assumed to be homogeneous by and large. They share most of their attributes across categories. For example,

products in an e-commerce application can be considered leniently categorized since most of the products across all

categories have similar attributes such as product title, description, SKU, price, manufacturer, discount, imagery, rating,

offers, weight, warranty information etc.

Value of this property helps in deciding whether users should be allowed to pick contents across categories while using

Content Integration feature in Centralized Offers Management. Strict will restrict users to the contents of relevant category,

whereas lenient will allow users to choose content from any category regardless of the category used for setting up attribute

mapping.

In addition to standard system parameters, any custom parameters can also be declared similarly. Likewise, the Additional

parameters section in Platform configuration can also be utilized for admin configurable system parameters. Note that the

Additional parameters in Platform configuration does not support nested & collection (array & dictionary) parameters. It

must be a simple key: value pair, wherein key & value is separated by a colon & a space. Each key/value pair must be on

separate line.

For example,

param1: value1
param2: 2
param3: 1.2

The Additional parameters in Platform configuration as well as system parameters from YML file can be obtained by

invoking getParams() method on standard SystemConfig object available to each service.

7

Unica Content Integration V12.1.8 Developer Guide

8

Standard services
The following table introduces the standard services of Unica Content Integration. Hence, none of the service names

listed herein should be used for any custom service implementation. Content Integration SDK provides standard interfaces

and types to implement these standard services. These interfaces and types are discussed in more detail in subsequent

sections.

Table 1. Standard services and their description

Standard service name Description

simple-search Simple search service responds to the content search

requests received by Content Integration Framework.

This service accepts the search query string along with

required result pagination details. Based on the success

of search operation, it returns the search result for given

search query and according to the required pagination.

This is a mandatory service for the plugin.

list-folders This is an optional service. Folder is a general term used

to represent a container object used in target system

to hierarchically organize the contents. This service

is invoked to render the list of folders & sub-folders to

facilitate navigation through such hierarchically organized

contents.

Note: list-folders and list-contents are

correlated services. Implementation for both

services must exist for content navigation to

function properly.

list-contents This is an optional service. This service is invoked for

listing the contents belonging to a particular folder.

Note: list-folders and list-contents are

correlated services. Implementation for both

services must exist for content navigation to

function properly.

get-content-details Implementation of this service is useful for retrieving the

details of an individual content. Contents obtained using

simple-search & list-contents services are referenced

further in other Unica products. Users might want to see

the details of already referenced content at later point of

Chapter 2. Plugin development overview

Table 1. Standard services and their description (continued)

Standard service name Description

time. Therefore, we encourage to implement this service

to facilitate users to see the content details on demand.

get-object-schema This is an optional service. Object schema in simple

terms refers to the meta information about the properties

or attributes present in the given type of object.

Implementation of this service is useful for -

• allowing Centralized Offer Management users to

map Offer attributes with content attributes

• creating Custom Actions in Centralized Offer

Management

• letting Journey users create Entry sources by

leveraging attribute mapping between Data

Definitions & Content/Object received from

respective external system

resource-loader This service is useful when direct download of the

content from target system is not feasible. This service

is not mandatory and should be implemented only when

following challenges are encountered:

• If no direct web link exists to download the

contents

Contents returned by the simple-search and

list-contents services must include an absolute

URL to the respective content so that Content

Integration client can download it directly over

the web. If no such direct web link to the content

is present, then it is necessary to implement

the resource-loader service by overriding the

default implementation provided by Content

Integration Framework. For example, if the

contents are maintained in a database table, then

the simple-search and list-contents services will

fetch records from the database. Since the items

are loaded from the database, there may not be

any URL directly pointing to each record. In such

case, the resource-loader service can make use

of the content identifier to locate and provide the

9

Unica Content Integration V12.1.8 Developer Guide

10

Table 1. Standard services and their description (continued)

Standard service name Description

appropriate data whenever content download is

requested. All content download requests will

go through the Content Integration Framework,

which will delegate the downloading task to the

resource-loader service by providing it the content

URL and its identifier.

• If web links to the contents are protected

Certain systems may not provide anonymous

access to the contents despite of the availability

of direct web links. In such cases, access is

generally provided only after supplying required

authentication details. By default, Content

Integration Framework registers an out of the

box implementation of resource-loader service

for each plugin. This default implementation

makes use of the real content URL to download

the content from remote system by supplying

appropriate authentication details subject to

the configurations in Unica Platform. (For more

information on system onboarding configurations,

see Unica Content Integration Administrator's

Guide).

Alternatively, plugins can override the default

resource-loader implementation to alter the

content downloading behavior (using content

URL or content identifier). If the resource-loader

service is overridden using RESTful approach,

Content Integration Framework will continue

to take care of supplying authentication details

based on the Platform configuration.

Note: Content must be made anonymously

accessible if it is expected to be

seen/accessed by the external audience.

In such case, usage of resource-loader

service is not encouraged in production

systems. Usage of resource-loader

service can be turned off any time by

Chapter 2. Plugin development overview

Table 1. Standard services and their description (continued)

Standard service name Description

setting the Anonymous Content property

to Yes in Platform configuration. Likewise,

it can be turned on by setting the same

property to No.

list-category-folders This is an optional service. Some systems might organize

contents/entities into different folders. Likewise,

content categories might also be organized in folders.

Implementation of this service helps to navigate

folders for selecting desired content category. The

list-content-categories service mentioned further in

this section receives the ID of desired folder to list the

categories from.

list-content-categories Content can be logically categorized by its natural

classification. For example, Digital content can be

categorized into Images, Documents, Multimedia (audios

and videos), Archives etc. Similarly, E-commerce products

can be categorized into several broad categories,

such as Electronics, Healthcare, Books, Furniture etc.

Content Integration Framework allows following ways

of conveying such content categorization to facilitate

searching contents within specific category.

• supportedContentTypes service parameter

A standard service level parameter,

supportedContentTypes, can be used to statically

supply a dictionary of supported content types

under simple-search service declaration.

• getSupportedContentTypes() method in search

service implementation

getSupportedContentTypes() method can be

overridden to dynamically generate a map of

supported content types, wherein key serves as

the category identifier and value serves for the

label displayed on the UI. This method is executed

during the application startup, hence no remote

API call can be made using Content Integration

Framework’s capabilities since application might

11

Unica Content Integration V12.1.8 Developer Guide

12

Table 1. Standard services and their description (continued)

Standard service name Description

be in partially initialized state when this method is

invoked.

• list-content-categories service

Optionally, list-content-categories service can

be implemented to address the limitation of

getSupportedContentTypes() method. It enables

remote API calls to be made for fetching the

content categories even more dynamically. If

implemented, this service overrides the earlier

mentioned approaches. Content Integration

Framework invokes this service whenever content

search popup is rendered.

get-content-category-details This is an optional service. This service helps to

retrieve details of a specific content category using

its identifier. It is advised to implement this service if

list-content-categories is implemented for dynamically

fetching categories from remote system or categories are

listed using folder hierarchy.

This service need not be implemented if categories are

maintained using supportedContentTypes parameter to

simple-search service or getSupportedContentTypes()

method in simple-search service.

get-cognitive-analysis This is an optional service. If implemented, it is used to

fetch cognitive details associated with the given image,

subject to the "Preferred cognitive service provider"

configuration in Unica Platform.

Object extension service This is an optional service. This standard service does

not mandate any standard service name. There can

be more than one object extension services. The core

purpose of any object extension service is to enhance the

capability of any object (such as Offer in Centralized Offer

Management) by leveraging the attribute mapping feature.

Centralized Offer Management leverages object extension

services by means of Custom Actions in Offers.

Note: Object extension and get-object-schema

are correlated services. Implementation of

Chapter 2. Plugin development overview

Table 1. Standard services and their description (continued)

Standard service name Description

get-object-schema service is mandatory

for object extension feature to function

properly. get-object-schema service is

expected to support schema generation for the

contents in the context of Content Integration

capabilities in Centralized Offer Management.

In case of object extension capability,

get-object-schema service is additionally

expected to support the schema generation

for the object returned by the respective

object extension service. get-object-schema

service accepts the type/category of the

object/content to generate the schema

for. In case of object extension service, it

receives the type in {service-name}.request

& {service-name}.response format. For

example, if fetch-additional-attributes

is the name given to the object extension

service, then get-object-schema receives

fetch-additional-attributes.request &

fetch-additional-attributes.response as

the type of object whenever schema for

fetch-additional-attribute service’s request &

response objects is required.

Object event interpreter service (Webhook) This is an optional service. Unlike the services listed

above, this is in fact an inbound RESTful service. If

implemented, it lets the plugin expose webhooks in

Content Integration to be able to receive content lifecycle

events from the respective content repository. The core

responsibility of this service is to help Content Integration

Framework interpret the semantics associated with

incoming event so that Content Integration Framework

can process the event accordingly.

Incoming content events are relayed to Centralized Offer

Management for automatically synchronizing Offers

using associated content details. It leverages the attribute

mapping feature to synchronize Offers automatically.

13

Unica Content Integration V12.1.8 Developer Guide

14

Table 1. Standard services and their description (continued)

Standard service name Description

There is no standard name for this service. Plugin can

choose any appropriate name.

Likewise, Unica Journey can also use Webhooks for

syndicating Entry Sources.

Object event interpreter service (Kafka listener) This is an optional service. This service adds listener(s) to

the Kafka topic(s) for handling object events coming via

Kafka.

There is no standard name for this service. Plugin can

choose any appropriate name.

Events received either via Webhook or Kafka are used

for automatically synchronizing/update various objects

in Unica products, such as Offers in Centralized Offer

Management, and user Journeys in Unica Journey. Auto

synchronization happens entirely based on the attribute

mappings facilitated by get-object-schema service.

Kafka message publisher service This is an optional service. There is no standard name for

this service. Plugin can choose any appropriate name.

This service allows plugins to publish messages (JSON

and/or Avro) onto Kafka topic(s).

Content Integration Framework does not directly invoke

this service. Plugin can treat it as custom service

and invoke it wherever required. There are no special

semantics associated with any Kafka publisher service.

Single Kafka publisher service can publish same message

in different supported formats onto different topics.

Plugin can have more than one publisher service if

different messages need to be sent onto different topics.

Standard collaboration services – Collaboration services facilitate integration with external collaboration systems such as

Slack, Microsoft Teams etc. Unica Plan leverages such services to integrate its Message Board with desired collaboration

systems. Content Integration Framework provides out of the box integration with Slack. Content Integration Framework

allows integrating with any other similar system by means of these service implementations.

collaboration.create-channel This is a mandatory service. It is used for creating a

communication channel in respective collaboration

system. All subsequent collaborative operations happen

using the same channel. For example, addition of

Chapter 2. Plugin development overview

members/collaborators to the channel, removal of

members from channel, posting messages etc.

collaboration.update-channel This is a mandatory service. It is used for updating details

of existing collaboration channel. As of current release, it

is used mainly for renaming a channel.

collaboration.get-channel-details This is a mandatory service. It is used for fetching details

of already known channel using its unique identifier.

collaboration.add-members-to-channel This is a mandatory service. It is used for adding new

members/collaborators to an existing collaboration

channel.

collaboration.remove-members-from-channel This is a mandatory service. It is used for removing

existing members/collaborators from already created

channel.

collaboration.post-message-to-channel This is a mandatory service. It is used for posting a new

message to existing collaboration channel.

Service implementations
For each service declared in the service declaration file, there must be an implementation present inside the respective

factoryClass.

The Content Integration Framework provides an SDK to streamline the service implementation and facilitates rapid

development of plugins. The Content Integration SDK allows two different approaches for service implementations: RESTful

and Functional.

This section will provide a brief introduction to these approaches. For additional information, refer the asset-integration-

starter project.

This topic also introduces certain types, interfaces, their generic type parameters, and enums from Content Integration SDK.

For additional details, see Plugin Development SDK on page 20.

RESTful approach
The com.example.service.rest.ExampleCustomService class helps you understand REST based service implementation.

This class is an implementation of RestService interface, and thus represents a REST based service. Since REST is

completely based on HTTP standards, the RestService interface in Content Integration SDK is extended from HttpService

interface and is defined as a marker interface. The RestService interface does not declare any additional method of its own.

Listed below are the methods declared in HttpService interface, which REST based service implementation must implement.

Not all methods are mandatory. All methods accept ExecutionContext object, which contains all the contextual information

necessary for every method to perform its designated task. The generic type parameter to the ExecutionContext class

represents the type of input required for the respective service on its invocation.

15

Unica Content Integration V12.1.8 Developer Guide

16

• HttpRequest buildRequest(ExecutionContext<RQ> executionContext)

This is a mandatory method. It returns an object of type com.hcl.unica.system.model.request.HttpRequest. The

HttpRequest class provides builder API to construct the object with applicable details. This object comprises all the

required details for making an HTTP request, such as endpoint URL, HTTP method, HTTP headers, and HTTP request

body. The HttpRequest builder API accepts the following arguments:

◦ String endpointUrl

An absolute URL to target API.

◦ HttpMethod httpMethod

HTTP method to be used for making API call. Must be one of the values from

com.hcl.unica.system.integration.service.HttpMethod enum.

◦ Optional<Map<String, Object>> headers

An optional Map of HTTP headers. It can include standard as well as custom HTTP headers. Header names

must be specified in terms of Map keys, and header values must be supplied as corresponding values in the

Map. In the absence of this optional value, no custom headers will be sent along with the outgoing HTTP

request.

Note: Although the header Map accepts values of type Object (or its subtypes), only String objects are

supported as of current implementation of Content Integration Framework. Any other type of value

will be ignored, and following warning will be logged:

Header '{HEADER_NAME}' with value ‘{TO_STRING_REPRESENTATION}' will not be set since it is
 not a String and no Converter is available.

◦ Optional<?> payload

If the target service expects any request body, then this argument can be supplied with the desired HTTP

request body. It can be any valid object so long as appropriate Content-Type header is supplied in the headers

Map. In the absence of this argument, empty request body will be sent along with the outgoing HTTP request.

Note: Jackson and JAXB Support: Object serialization using Jackson and JAXB is completely

supported by the Content Integration Framework. Thus, appropriately decorated object with Jackson

or JAXB annotations can be set as the request payload. In such case, appropriate Content-Type

header must be specified in headers Map. Serialization of supplied object into the request body is

handled by the Content Integration Framework, hence no explicit serialization is required.

• Object transformResponse(HttpResponse<RS> response, ExecutionContext<RQ> executionContext)

This optional method transforms the HTTP response into a desired format. The first argument,

com.hcl.unica.system.model.response.HttpResponse, to this method, represents the response received from the

target system. The generic type parameter to the HttpResponse class represents the type of response body, or

response payload, expected from the remote API. Response payload can be of any type, such as a String containing

the entire text as received from the service, a byte array containing the response body, or a deserialized POJO

representing the response JSON/XML. In addition to the response payload, HttpResponse object can be used to obtain

response headers, status code, and cookies. Note that transformResponse method is invoked only when successful

Chapter 2. Plugin development overview

(2xx) response is received from respective system. For error response, HttpServiceExecutionException is thrown by

Content Integration Framework.

Note: Jackson and JAXB Support: Object deserialization using Jackson and JAXB is completely supported

by Content Integration Framework. Thus, appropriately decorated object with Jackson or JAXB annotations

can be accepted as an argument to this method. Deserialization of response body into specified type is

handled by Content Integration Framework, hence no explicit deserialization is required during response

transformation inside this method.

In the absence of this implementation, no implicit transformation is performed by the Content Integration Framework.

In addition to these methods, there is one more method the getServiceInterface inherited from

com.hcl.unica.system.integration.service.AbstractService interface, that needs to be implemented by the

service. But its implementation is more relevant to the service invocation rather than service implementation.

Content Integration Framework takes care of real HTTP interaction with target system and simply consults with

service object to obtain earlier mentioned details.

Error Handling: Errors or exceptions received during HTTP call are handled by the Content Integration Framework.

Methods listed earlier must not throw any checked exception. Unchecked exceptions can be thrown if required.

Functional approach
Refer to the com.example.service.functional.ExampleCustomService class to understand the functional service

implementation.

This class is an implementation of FunctionalService interface. Unlike REST based service, there are no HTTP specific

callback methods in this type of service implementation. In fact, functional service may not necessarily be related to

any HTTP invocation. This type of service can include any operation which has no out of the box support from Content

Integration Framework. It can talk to the database, invoke third party web service, do the file system operation etc.

Implement the following method for a functional service. This method also accepts an argument of type ExecutionContext,

containing the contextual information required for completing the desired task. The generic type parameter to the

ExecutionContext class represents the type of input required for the respective service on its invocation.

• RS execute(ExecutionContext<RQ> executionContext)

This method performs its designated task using the contextual information passed to it. In return, it gives the desired

value after finishing its operation. The return value shown in this signature is a generic type and is based on the type

used while implementing FunctionalService interface.

Error Handling

Above method must not throw any checked exception. Unchecked exceptions can be thrown if required.

17

Unica Content Integration V12.1.8 Developer Guide

18

Common methods

The following are the common methods applicable for RESTful as well as Functional services. These methods are inherited

from com.hcl.unica.system.integration.service.AbstractService interface.

• Class<? extends ServiceGateway<RQ, ?>> getServiceInterface()

Implementation of this method is more relevant to the service invocation rather than service implementation. For

more information, see Plugin Development SDK on page 20.

• void init(SystemConfig systemConfig, ServiceConfig serviceConfig)

Override this optional method to perform one-time initialization (after service object construction), prior to serving

any request. Use the SystemConfig object and the ServiceConfig object, passed to this method, to obtain system

and service-specific details respectively to make necessary initializations, such as obtaining a DB connection,

opening a file handle etc. A separate object of your service class is created for each individual system configuration

in Unica Platform. Thus, if the same target system is configured for two different partitions in Unica Centralized

Offer Management, then two different objects of your service class will be created for each partition. Likewise, if

the same target system is configured for any other Unica product, a separate object for that configuration will exist.

The com.hcl.unica.system.integration.config.SystemConfig object encapsulates all the system configurations

made in Unica Platform Configuration section, whereas com.hcl.unica.system.integration.config.ServiceConfig

object holds all the configurations made for the corresponding service in <ASSET_PICKER_HOME>/conf/plugin-

services.yml and <ASSET_PICKER_HOME>/conf/custom-plugin-services.yml files. These objects are

also accessible using ExecutionContext in all the methods discussed earlier.

Note: Content Integration Framework does not provide any special end-of-lifecycle method for services to

clean up the things initialized inside the init method. We recommend you to use the standard Java approach

by implementing the finalize method, if necessary.

Best approach selection
Although, it is possible to implement a service using either approaches, each approach has some advantages and limitations

when it comes to the capabilities.

1. RESTful approach

a. Advantages

• Less verbose & reads closer to the typical HTTP interaction

• Out of the box transport level error handling

• Out of the box support for retrial in case of temporary outages

• Out of the box support for proxied connectivity

• Out of the box support for future enhancements in Content Integration Framework

b. Limitations

• Cannot be used for non-RESTful or non-HTTP integrations, such as database or file system

interactions

2. Functional approach

Chapter 2. Plugin development overview

a. Advantages

• Can be used for non-RESTful or non-HTTP integrations, such as database or file system interactions

b. Limitations

• No out-of-the-box support available for transport level error handling, retrials, proxied connectivity, and

any future enhancements from Content Integration Framework.

• If required, the explicit implementation of missing out-of-the-box capabilities can make service

implementations very verbose.

You can see that the Functional approach is well suited for non-RESTful or non-HTTP based integrations. Any service

implemented using RESTful approach can also be implemented using Functional approach by taking care of all the

necessary out-of-the-box capabilities provided by Content Integration Framework. While Functional approach gives flexibility

in terms of implementation design, it takes away a few useful capabilities.

19

20

Chapter 3. Plugin Development SDK
This topic provides information about the various classes, interfaces, and enums from the Content Integration SDK, with the

help of corresponding logical units in asset-integration-starter, aem-integration, and wcm-integration reference projects

that are included as a part of development kit along with the Content Integration feature.

Content Integration SDK for plugin development can be found under <ASSET_PICKER_HOME>/dev-kits/sdk/ directory

on your application server. The following jars can be found inside the sdk directory:

• integration-api.jar

• entity-mapper-api.jar

• standard-integrations.jar

These jars contain all the SDK classes, interfaces & enums discussed in this section. Check out the relevant classes from

these jars whenever you come across the respective topic in this guide.

Generic type parameters
Generic type parameters are used for implementing service interfaces.

A service that resides in a plugin is just a programming unit, which takes some input and returns the expected output.

Similarly, the REST API, wrapped by our service, asks for the required input (request body, headers, cookies, and query

parameters) and produces the desired response (response body, headers, and cookies). It requires certain generic notations

for the inputs and outputs exchanged during end-to-end logical flow.

Content Integration Framework uses RQ type parameter to denote the type of input supplied to the service on its invocation.

Here, the RS type parameter is used to denote either the type of object returned by the Functional service or the type of

response body returned by the remote REST API invoked using RESTful approach. The purpose of RS might change based on

where it is used, but it always indicates the return value of something.

RestService<RQ, RS>

Refer the com.example.service.rest.ExampleCustomService class from the asset-integration-starter project to

understand the type parameters used in the RestService inteface. RestService is just a marker interface extended from

HttpService. The definition of these type parameters is similar for the HttpService too.

• RQ

A service requires an input to perform its operation. RQ corresponds to the type of input, or request, the service

requires when invoked. The com.example.service.rest.ExampleCustomService takes an input of type ServiceInput.

The same type parameter is used in the ExecutionContext object passed to all methods in the RestService or the

HttpService interface. The input, or the request, object passed to the service, when invoked, is obtained by calling the

getRequest method in the ExecutionContext object.

@Override
 public HttpRequest buildRequest(ExecutionContext<ServiceInput> executionContext) {
 ServiceInput input = executionContext.getRequest();
 // Remaining implementation omitted for brevity
 }

Chapter 3. Plugin Development SDK

• RS

This parameter type corresponds to the type of response (post deserialization) received from the remote

REST API. Service implementation chooses this parameter based on the kind of object it wants to work

with in transformResponse method. If you look at the signature of the transformResponse method in the

com.example.service.rest.ExampleCustomService class, you will see that the ApiResponse is supplied as the type

argument to the HttpResponse class, which corresponds to the RS type parameter of the RestService interface.

Note: Deserialization occurs according to the Content-Type header present in HTTP response received

from REST API. The type used as the second generic argument to RestService, or the HttpService, must be

appropriately annotated if Jackson or JAXB deserialization is expected.

FunctionalService<RQ, RS>
FunctionalService interface is analogous to the java.util.function.Function interface from the Standard Java Library.

The type parameters of FunctionalService have similar semantics as the type parameters of java.util.function.Function

interface.

• RQ

Represents the type of input given to the service upon invocation.

• RS

Represents the type of value returned by the service upon completion.

ServiceGateway<RQ, RS>

ServiceGateway is used as programmatic interface to services. ServiceGateway indicates the types of input & output/return

values of the given service. Implementation of getServiceInterface method is mandatory for all services (except inbound

HTTP service & Kafka consumer/listener services) & is supposed to return class object of subtype of ServiceGateway

parameterized with appropriate input & output types. ServiceGateways & implementation for getServiceInterface already

exists for all the standard services. All custom services implemented by the plugin must adhere to this contract. The

definition of com.hcl.unica.system.integration.service.gateway.ServiceGateway is as follows:

public interface ServiceGateway<RQ, RS> {
 public RS execute(RQ request) throws ServiceExecutionException;
 }

Semantics for the type parameter RQ is the same as mentioned earlier. The other type parameter, RS represents the output of

the service that resides in the plugin. It does not represent the response received from remote REST API or any other target

systems. For the com.example.service.rest.ExampleCustomService class, the CustomServiceGateway is defined as the child

interface of ServiceGateway by using ServiceInput and ServiceOutput type arguments because the service receives an input

of type ServiceInput and returns the value of type ServiceOutput on completion. For RESTful implementations, execution of

transformResponse method marks the service completion in case of successful response from respective system.

Note:

21

Unica Content Integration V12.1.8 Developer Guide

22

• getServiceInterface method in com.example.service.rest.ExampleCustomService class returns the class

object of CustomServiceGateway. ServiceGateway interface (or its child interface) provides information about

the input and the output of service implementation. ServiceGateway interface is further used to contain the

reference of service instance and invoke its execution.

• By obtaining reference to the ServiceGateway instance of any service thus implemented, execute(RQ

request) method can be invoked to execute the service. Note that the execute method may throw the

ServiceExcecutionException if anything goes wrong during service execution. Details on service invocation

and exception handling will be provided in topics that follow.

ObjectEventInterpreterService<T>

ObjectEventInterpreterService is used for implementing Webhooks to listen to the events coming over HTTP from

external systems. The ObjectEventInterpreterService<T> is subtype of InboundHttpService<RQ, RS>. The RQ & RS type

parameters in InboundHttpService represents the type of deserialized request expected by the inbound HTTP service & the

type of response (prior to serialization) returned by this service. ObjectEventInterpreterService is a specialized version of

InboundHttpService wherein type parameter T is analogous to RQ (the type of deserialized request). Services implementing

ObjectEventInterpreterService can only specify the request type since response is managed by the Content Integration

Framework itself. For example, refer to the com.example.service.rest.events.ExampleEventInterpreterService service from

asset-integration-starter project.

KafkaConsumerService<K, V, RS>

KafkaConsumerService is used for implementing Kafka event listener/interpreter services. The type

parameters K & V represents the Key & Value of incoming Kafka message. For example, refer to the

com.example.service.kafka.events.consumer.ExampleKafkaEventInterpreterService service from asset-integration-starter

project.

AbstractKafkaProducerService<K, V>

AbstractKafkaProducerService is used for implementing Kafka message publisher services. The type

parameter K & V represents the Key & Value of outgoing Kafka message. For example, refer to the

com.example.service.kafka.events.producer.ExampleKafkaProducerService service from asset-integration-starter project.

I18n support
Content Integration Framework makes use of localized messages wherever applicable & possible. It implicitly looks for

localized strings in certain cases. It expects certain standard keys to be present inside translation files. Likewise, it provides

an API to explicitly obtain localized messages inside service implementation should there be such need.

I18n support is provided to the plugins by means of translation (properties) files. Plugins can maintain the

translation files inside src/main/resource/i18n directory. Alternatively, i18n directory containing translation files

can be kept under classpath on the application server. Translation files must be named in the following format –

{SystemId}_Messages_{locale}.properties. For example, for a system with Foo as an identifier, following sort of translation

files can be placed inside i18n directory:

Chapter 3. Plugin Development SDK

• Foo_Messages.properties (default)

• Foo_Messages_de.properties

• Foo_Messages_en.properties

• Foo_Messages_es.properties

• Foo_Messages_fr.properties

• Foo_Messages_it.properties

• Foo_Messages_ja.properties

• Foo_Messages_ko.properties

• Foo_Messages_pt.properties

• Foo_Messages_ru.properties

• Foo_Messages_zh_CN.properties

• Foo_Messages_zh_TW.properties

Not all translation files are mandatory. Content Integration Framework looks for the properties file corresponding to the user

locale. If it does not find the translation in that file, or the file itself is not present, then it falls back to the file corresponding

to the system’s locale. If no translation is found in this case as well (or the file itself is not found), then it falls back to the

default translation file, Foo_Messages.properties. If the translation is found nowhere (either because of missing entry or

missing file), then it uses the text appropriate for the given context. asset-integration-starter project is shipped with these

sample translation files inside src/main/resources/i18n directory.

Service invocation
The asset-integration-starter project contains a com.example.service.client.ExampleServiceClient class to illustrate the

service invocation.

The ExampleServiceClient class obtains reference to the SystemGateway object for the system represented

by an identifier Foo by calling SystemGatewayFactory.getSystemGateway method with Foo as an argument.

SystemGatewayFactory.getSystemGateway method thus gives a handle to any target system by specifying its systemId. Once

the handle is obtained in terms of SystemGateway object, it can be used to invoke any service on the respective target system.

The following is the corresponding code snippet from ExampleServiceClient class:

private SystemGateway systemGateway = SystemGatewayFactory.getSystemGateway("Foo");

Note: System identifier has been hard coded in this example only for the sake of clarity. For real implementations,

avoid hard coding system identifiers for invoking the services from the same or any other plugin. Content Integration

Framework supports aliased configurations of same system. Aliased configurations are made by specifying the

desired system identifier, followed by a separator (space) and desired alias for the system. For example, Foo can

be configured in Platform Configuration using any of the following identifiers – Foo, Foo Staging, Foo Prod, Foo

Demo etc. More than one configuration can coexist for the same system by making use of aliased system identifiers.

Aliased identifiers refer the same plugin at runtime but execute within separate context. Hence, it is important to

invoke services within the right context by using the identifiers used in Platform configurations. Plugin can use

23

Unica Content Integration V12.1.8 Developer Guide

24

following API to obtain the identifier thus used in Platform configuration. Using identifiers obtained from this API

makes the plugin compatible for aliased configurations.

String systemId = executionContext.getSystemConfig().getIdentifier();

SystemGateway

The com.hcl.unica.system.integration.service.gateway.SystemGateway provides an overloaded method executeService,

for executing any service on the target system. One version of this method offers a way to execute any service

declared in service declaration files (<ASSET_PICKER_HOME>/conf/custom-plugin-services.yml and

<ASSET_PICKER_HOME>/conf/plugin-services.yml) for the respective system. And the other version offers a way to

execute an ad hoc HTTP call on the target system without declaring any explicit service for it in the service declaration file.

The following are the two versions of the executeService method with their signatures:

• <RQ, RS> RS executeService(String serviceName, RQ serviceInput, Class<? extends ServiceGateway<RQ, RS>>

gatewayClass) throws ServiceExecutionException

This is a generic method and works with the type parameters RQ & RS. The significance of RQ & RS is same as

mentioned earlier. This method helps to execute an already declared service. The invocationDemo method in

ExampleServiceClient class demonstrates the use of this method. It accepts the following arguments:

◦ String serviceName

This must be the name of service to be executed. Name of the service must exactly match with its

corresponding declaration in service declaration file.

◦ RQ serviceInput

This is an input to the service to be executed. The type parameter RQ represents the type of input required for

the service being invoked.

◦ Class<? extends ServiceGateway<RQ, RS>> gatewayClass

It must be same as the return value of getServiceInterface method in corresponding service implementation.

It helps the Content Integration Framework to identify the right input for the service being executed and

returns the output of desired type. The RQ and RS type parameters used for gatewayClass argument

represents the type of input supplied on service invocation and the type of response returned by the service

on completion, respectively.

On successful completion, this method returns the object of type represented by the type parameter RS. Thus, the

third argument to the executeService method, gatewayClass, governs the type of input that goes into the service and

the type of value that service returns.

• <T> HttpResponse<T> executeService(HttpRequest request, Class<T> expectedResponse) throws

ServiceExecutionException

This is also a generic method, where the type parameter T represents the type of response expected out of the

remote HTTP call. It helps to make an ad-hoc HTTP call to the target system without declaring an explicit service for

it in service declaration file. The adHocInvocationDemo method in the ExampleServiceClient class demonstrates the

use of this method. It accepts the following listed arguments:

Chapter 3. Plugin Development SDK

◦ HttpRequest request

This must be an object of com.hcl.unica.system.model.request.HttpRequest class. HttpRequest provides a

builder interface for constructing the object with required details. This object essentially encapsulates the

details required for making an HTTP call, such as absolute URL, HTTP request method, HTTP request headers

& HTTP request body or HTTP request payload.

◦ Class<T> expectedResponse

This must tell the type of response expected from remote URL. Jackson and JAXB types can also be used.

Deserialization of JSON/XML will happen automatically in such case.

On successful completion, this method returns the object com.hcl.unica.system.model.response.HttpResponse,

encapsulating the response object from the remote call. The type of response encapsulated by the HttpResponse will

be the same as the expectedResponse argument to the executeService method. The HttpResponse object gives access

to the HTTP response status code, response headers, and response cookies, in addition to the response payload.

Both versions of the executeService method can throw the

com.hcl.unica.system.integration.exception.ServiceExecutionException or one of its subtypes if anything goes wrong

during service execution. The object of this exception can be consulted for the immediate cause of service execution failure.

Likewise, if the invoked service represents a REST/HTTP service (ad-hoc service invocations are always HTTP calls), and

the failure occurs out of HTTP interaction, an optional HttpResponse object can also be obtained from the exception. In such

cases, the HttpServiceExecutionException is thrown by the executeService methods. The presence of HttpResponse depends

on whether the HTTP interaction happened or not. The HttpServiceExecutionException might be received because of an

exception in any logic executed prior to the actual HTTP call, such as buildRequest method in a declared service.

The executeService method can also throw a SystemNotFoundException if the plugin for the specified target system is not

present, or the corresponding system is not onboarded in Unica Platform. Similarly, it can throw a ServiceNotFoundException

if the specified service is either not declared in service declaration file or not implemented by the plugin.

Note:

• You will observe that the type of the input to the custom-service is same as the type used for

service implementation in the com.example.service.rest.ExampleCustomService class or the

com.example.service.functional.CustomService class. The type of output is same as the one used for

defining CustomServiceGateway interface whose class object is returned from getServiceInterface method in

both versions of CustomService implementations.

• The com.example.service.rest.ExampleCustomServiceclass and the

com.example.service.functional.ExampleCustomService class represents the same service implemented

with two different approaches. The service declaration files in asset-integration-starter project namely the

META-INF/rest-content-services.yml and the META-INF/functional-content-services.yml

have an entry for custom-service pointing to the respective versions of the factoryClass. These two

25

Unica Content Integration V12.1.8 Developer Guide

26

versions are provided only for illustration purpose. For all practical purposes, only one version of the service

implementation is expected by the Content Integration Framework. Irrespective of the approach used for

service implementation, the method for service invocation remains the same.

Multi-partitioned clients

From the perspective of service implementation, the ExecutionContext and SystemConfig objects, passed to various callback

methods, contain client application and partition specific information. And from the perspective of service invocation,

services executed using executeService method, from the SystemGateway class, runs against the system configured for the

right client application and the partition of the user accessing Unica Content Integration. Hence, neither the implementation

nor the invoker need to work with partitioning and other contextual details, explicitly. Content Integration Framework handles

it automatically.

Execution context
Almost every method in service implementation contract receives an instance of

com.hcl.unica.system.model.request.ExecutionContext class.

This object contains all the contextual information that is necessary for a service to perform its operation. The following are

the methods in ExecutionContext class, which can be used to obtain various types of information during service execution:

• T getRequest()

This method can be used to obtain the input, or request, object passed to the service when it is executed using

executeService method discussed in Service invocation on page 23 (The T return type is the type parameter

corresponding to the type parameter RQ used for defining the service).

• Map<String, Object> getAttributes()

Returns a Map which can be used to store and retrieve custom attributes during service execution. It is useful for

carrying execution specific temporary information across multiple callbacks. For example, if the implementation of

buildRequest method from the RestService interface or HttpService interface needs to share some information with

transformResponse method, it can share it using this attribute Map.

It is important to note that Content Integration Framework creates a separate instance of ExecutionContext for each

individual service invocation. Hence, context attributes cannot be shared across multiple service executions. Their

scope is limited to individual service execution.

• ServiceConfig getServiceConfig()

This method returns an instance of com.hcl.unica.system.integration.config.ServiceConfig class. ServiceConfig

object holds the configurations made in service declaration file for the respective service.

• SystemConfig getSystemConfig()

This method returns an instance of com.hcl.unica.system.integration.config.SystemConfig class. SystemConfig

object contains all the configurations made in Unica Platform for the target system. In case of multi-partitioned

configurations, this object will be appropriately populated by Content Integration Framework to hold partition-specific

Chapter 3. Plugin Development SDK

configuration for the concerned client application. To know the various system configuration settings in Unica

Platform, see Unica Content Integration Administrator's Guide.

• void setAttributes(Map<String, Object>)

This method can be used to set attributes in ExecutionContext, which can be then be obtained in other areas of the

service implementation. This is useful for sharing custom contextual information during service execution. Scope of

the attributes stored in execution context is limited to the current execution flow only. Attributes cannot be shared

across multiple execution flows of the same service.

• Locale getUserLocale ()

This method can be used to obtain signed in user’s locale.

• String localized(String key, String defaultText)

Returns the localized text for the given key. If translation does not exist for the given key in plugin’s I18n resource

bundles, then returns the default text.

InboundHttpRequestContext<T>

This class inherits from ExecutionContext<T> and holds the context information relevant to the inbound RESTful service. In

addition to the methods inherited from ExecutionContext, it provides following methods for obtaining HTTP request details:

• Map<String, Object> getPathVariables()

Inbound RESTful services can use path variables while defining the endpoint signature. Path variables allow

designing dynamic URLs, wherein certain portions of the URL carry value specific to the given request context. This

method can be used to obtain path variables thus defined & their values.

• Map<String, List<Object>> getRequestParams()

This method can be used to obtain request parameters & their values.

• Map<String, Object> getRequestHeaders()

This method can be used to obtain request headers & their values.

User data source
Unica Platform uses user data sources to store sensitive information, such as API credentials, security tokens, database

user credentials, etc. Plugins often need to store such configuration details. Content Integration provides the relevant

configuration to specify the name of user data source and the associated Unica user while onboarding systems using Unica

Platform configuration.

Use the ExecutionContext to obtain applicable user data source (credentials) by navigating through SystemConfig object:

executionContext.getSystemConfig().getDataSourceCredentials()

The DataSourceCredentials object returned by the getDataSourceCredentials method contains the selected data source

based on the strategy set up for User credentials in Platform configuration. Hence, plugins need not make any logical

decision pertaining to the right selection of the user data source.

Likewise, SystemConfig object also provides an overloaded version of getDataSourceCredentials,

getDataSourceCredentials(String username, String dataSourceName), which accepts the username & the name of data

27

Unica Content Integration V12.1.8 Developer Guide

28

source to be looked up in the given user’s account. This method can be used for obtaining user data sources in other similar

logical contexts should there be any need.

Standard services and specialized types
The plugin developer needs to implement one of the following interfaces to create an individual service - RestService/

HttpService, FunctionalService, KafkaConsumerService, KafkaProducerService.

The Content Integration Framework leverages this design and defines service classes for all the standard services. The

standard-integrations.jar provided as part of Content Integration SDK provides specialized versions of RestService and

FunctionalService for each standard service to facilitate their implementation using RESTful as well as Functional approach.

These specialized classes are discussed further in this guide under Specialized types on page 31 section.

Invocation of standard services
Once implemented & declared in service declaration file, Content Integration Framework invokes the standard services in

following scenarios provided that respective system is configured appropriately in Unica Platform configuration:

• Simple Search (simple-search)

Whenever Content Integration Framework receives content or asset search request from its client application

against target system, it invokes the simple-search service implemented for respective system. Content Integration

Framework provides necessary input to the simple-search service upon invocation. Search items received from

simple-search service are then returned to the client application. Identification of the target system happens based

on the systemId property used in the service declaration file and the corresponding System Identifier setting in Unica

Platform that is populated during the target system onboarding. This service must be implemented by the plugin, else

the content search request ends up in 404 response to the client application.

The search result produced by this service can be either paginated or unpaginated. Presence or absence of support

for paginated result should be clearly indicated using paginatedSearch property under systems section in service

declaration file as explained in the Service declaration file on page 5 topic.

• Resource Loader (resource-loader)

The resource-loader service is executed by the Content Integration Framework only when indirect (or authenticated)

access needs to be made to the search item on the target system. Configuration can be made in Unica Platform

to indicate whether contents can be accessed directly (anonymously) from the target system or not. For more

information about system configurations, see Unica Content Integration Administration Guide. Content Integration

Framework provides a default resource-loader service to each system. The default resource-loader service simply

loads the web resources from the target system by supplying necessary authorization details, if applicable. Plugins

may choose to override the default resource-loader service and include their own implementation by extending

the out-of-the-box implementation. Content download and content rendition might fail if the required overridden

resource-loader implementation is missing

• List Category Folders (list-category-folders)

If this service is implemented, system assumes that content categories are organized in folders. It is expected to

provide top/root level folders as well as sub-folders of a particular parent folder as and when requested for category

navigation. Only one level of folder list is expected in single execution, entire folder hierarchy need not be provided.

Chapter 3. Plugin Development SDK

If this service is implemented, it is imperative to implement the list-content-categories service accordingly so that

categories belonging to a specific folder can be retrieved at a time.

• List Content Categories (list-content-categories)

If implemented, this service is invoked for fetching the list of content categories supported by the respective system.

Content categories are used to narrow down the content search/selection within a particular category. There may be

other use cases pertaining to these categories in future releases of Unica Content Integration.

If content categories are organized in folders, then it is imperative to implement list-category-folders service to

return the folder hierarchy. In such case, list-content-categories service receives identifier of the folder for which

category list needs to be returned in single execution.

This is an optional service and absence of its implementation does not impact content searchability in Content

Picker. Other alternatives are used instead to generate the list of supported content categories in the absence of

this service, that is supportedContentTypes standard parameter for simple-search service in service declaration file

or getSupportedContentTypes() method in simple-search service implementation. These alternatives provide way for

static configuration of categories, whereas list-content-categories service provides opportunity to fetch categories

dynamically on each user request.

• List Folders (list-folders)

This service is used to facilitate content navigation along with the list-contents service. In addition to the content

search, content can also be located by navigating through the hierarchy of folders (or any other similar concept in

respective system). If this service is implemented, it is expected to provide top/root level folders as well as sub-

folders of a particular parent folder as and when requested during content navigation. Only one level of folder list

is expected in single execution. Entire folder hierarchy need not be provided. If this service is implemented, it is

imperative to implement the list-contents service as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact content searchability in Content

Picker. However, content navigation is disabled in Content Picker UI if this service is not implemented.

• List Contents (list-contents)

This service is used to facilitate content navigation along with the list-folders service. If implemented, this

service is expected to provide the list of contents belonging to a particular folder. List can be either paginated or

unpaginated. Presence or absence of support for paginated list should be clearly indicated using paginatedList

property under systems section in service declaration file as explained in the Service declaration file on page 5 topic.

If this service is implemented, it is imperative to implement the list-folders service as well to turn the content

navigation feature on.

This is an optional service and absence of its implementation does not impact content searchability in Content

Picker. However, content navigation is disabled in Content Picker UI if this service is not implemented.

• Get Content Details (get-content-details)

Any content searched using simple-search service or listed using list-contents service can be selected and used

for various use cases in Unica applications. Such use cases might demand the details of already chosen content at

later point of time. One such example is Content Preview feature in Centralized Offer Management, wherein details

of already linked content with offer attribute are shown. Whenever Unica applications need details of any individual

content, the get-content-details service is invoked by supplying the unique identifier of the required content.

29

Unica Content Integration V12.1.8 Developer Guide

30

This is an optional service and absence of its implementation does not impact content searchability in Content

Picker. However, subsequent user requests for fetching details of a content will not be served if this service is not

implemented.

• Get Object Schema (get-object-schema)

This service is invoked by Unica applications to fetch the meta information about various attributes present in the

content. Based on the strictness of content categorization as discussed in Service declaration file on page 5, this

service may choose to generate individual schema for each category of contents or generate a master schema

comprising the attributes of all category of contents. In case of strict categorization of content, separate schema

is preferable. Whereas for leniently categorized contents, a master schema is advisable. The meta information

about each content attribute must include the details such as the type and format of the value it holds and a unique

identifier to uniquely identify that attribute in the given system. Syntax & semantics associated with this service are

discussed in detail under Specialized types on page 31 section.

The object schema thus generated by this service is used by Unica applications for mapping individual attributes

of contents/domain objects with individual attributes of Unica objects (for example, Offers in Centralized Offer

Management, Data Definitions in Journey). Such object mappings allow Content Integration Framework to derive

attribute values for one object from the other. Furthermore, Content Integration Framework leverages this capability

to synchronize objects automatically whenever object events are received.

• Get Cognitive Analysis (get-cognitive-analysis)

This service is invoked to attempt cognitive analysis of an image and fetch the cognitive details accordingly. It is

invoked only if respective system is configured as the Preferred cognitive service provider in Platform Configuration.

For more information, see Unica Content Integration Installation and Configuration Guide.

This is an optional service and absence of its implementation does not impact content searchability or any other

feature in Content Picker. However, cognitive tagging feature is disabled in Centralized Offer Management if this

service is not available.

• Object extension service

Object extension services are presently used by Centralized Offer Management to add custom actions to the Offers.

Content Integration Framework does not mandate any standard service name for Object extension service. Plugin

can choose any suitable name for it and define more than one such services, if required. The core responsibility

of this service is to accept desired request attributes on invocation and use those attributes to enhance target

object’s capability (Offer in case of Centralized Offer Management) by either performing some supporting operation

or providing values for other attributes of the target object. As mentioned in Standard services on page 8 section,

implementation of get-object-schema service must be enhanced to address the schema generation requirement for

the expected request object as well as for the response object returned by this service. Request object’s schema is

used for mapping source object’s attributes to custom action’s request object attributes. Whereas response object’s

schema is used for mapping its attributes with target object’s attributes. For more information on setting up custom

actions in Centralized Offer Management, please refer to the Centralized Offer Management Administrator Guide.

Once the custom action is defined, its execution triggers the invocation of respective extension service. Syntax &

semantics of this service are further discussed in Specialized types section.

Chapter 3. Plugin Development SDK

This is an optional service and absence of its implementation does not impact content search ability in Content

Picker. However, the Custom Actions feature in Centralized Offer Management becomes unavailable for the

respective system if this service is not implemented.

• Object event interpreter service (Webhook)

Event interpreter service is invoked whenever there is an incoming HTTP request on the webhook exposed by

the respective event interpreter service. As of release 12.1.2, Unica Centralized Offer Management can listen to

the events received via such webhooks and synchronize Offers using the associated content details. For more

information on auto synchronization of Offers, see Unica Centralized Offer Management administrator guide.

Likewise, Unica Journey can also receive events via Webhooks using its REST Entry Sources. Events received via

Webhooks are processed based on the object mappings set up using object schemas returned by get-object-schema

service.

This is an optional service and absence of its implementation does not impact content searchability or any other

feature in Content Picker. However, if respective external system is interested in publishing content lifecycle events to

Unica products and/or Unica features associated with content events are desired, then implementation of this service

is necessary to aid event processing.

• Object event interpreter service (Kafka listener)

Kafka event listeners are another way of receiving & interpreting events from external systems. All dependencies,

characteristics & semantics of Kafka event listeners are same as Webhooks.

Specialized types
The following are the specialized derivatives of RestService, HttpService, FunctionalService, InboundHttpService,

KafkaConsumerService & KafkaProducerService interfaces, and their related types for all the standard services. Use the asset-

integration-starter project to implement the details mentioned in the following topics:

• Derivatives of RestService on page 31

• Derivatives of HttpService on page 44

• Derivatives of FunctionalService on page 45

• AbstractEntity on page 61

• Presentable on page 62

Derivatives of RestService
Derivatives of RestService interface facilitates creation of RESTful implementation of standard services.

Simple search (simple-search)
The following are the specialized interfaces and classes available for the simple-search service:

• com.hcl.unica.system.integration.service.search.RestSearchService

The com.example.service.rest.SimpleSearchService class in asset-integration-starter

project is a quick starter implementation for RESTful simple-search service. Its parent is

com.hcl.unica.system.integration.service.search.RestSearchService class.

31

Unica Content Integration V12.1.8 Developer Guide

32

The RestSearchService class has a type parameter RS, which represents the type of response (post deserialization)

received from the remote REST API. In this case it is SimpleSearchResponse class defined inside the asset-

integration-starter project.

RestSearchService class implements RestService interface and defines the SearchRequest class as the type argument

RQ for RestService. Thus, the object of SearchRequest becomes input to all the simple-search services (same input is

used for Functional counterpart of simple-search as well). SearchRequest class is part of the Content Integration SDK.

In addition to defining the input type for the simple-search service, RestSearchService class also overrides the

transformResponse method and defines return value of this method to be of ContentPage type. ContentPage is also part

of the Content Integration SDK and encapsulates the search result and associated pagination details.

The plugin must extend its simple-search implementation from the service

com.hcl.unica.system.integration.service.search.RestSearchService to be recognized as a simple-search service

by the Content Integration Framework (Functional counterpart, discussed later, is also a valid choice to extend from,

for the simple-search services implemented using the Functional approach).

RestSearchService extends from com.hcl.unica.system.integration.service.search .AbstractSearchService

abstract class.

We recommend looking at com.aem.service.AemSimpleSearchService class from the aem-integration project to know

more about how the SearchRequest class and the ContentPage class are used during service implementation.

Adhering to the contract of Presentable interface while populating list of contents in ContentPage is a crucial part of

this service implementation. Presentable interface is covered in more detail in subsequent section.

• com.hcl.unica.system.integration.service.search.AbstractSearchService

This is a common base class for RESTful as well as Functional simple-search implementations. So, the details of this

class also apply to the Functional implementation of simple-search.

This class defines the com.hcl.unica.system.integration.service.gateway.SimpleSearchServiceGateway interface as

the service gateway for the simple-search service. A closer look at this interface tells us that the simple-search takes

the SearchRequest object and returns the ContentPage object.

In addition to defining the service interface for simple-search, it introduces one more method for the simple-

search service, named getSupportedContentTypes. Every simple-search implementation can optionally override and

implement this method. Please note that this method is very simple-search specific and has nothing to do with other

standard and custom services. The signature of this method is as follows:

public Map<String, String> getSupportedContentTypes();

Implementation of this method returns a Map<String, String> representing the supported categories of contents that

can be searched in the target system. There is no specific semantic associated with the entries in this Map. It can

be any meaningful key-value pair. It acts as a filter for client application during the search operation. As of current

implementation of Unica Content Integration, this Map is used to populate entries in a drop down, wherein keys of

the Map become values of the options, and values of the Map become display labels for the options. Thus, keys can

carry internal names, or identifiers, and values should be readable and meaningful texts. If the user needs to search

any specific type of content, he can choose one or more options from the supported types. In such case, simple-

search service receives a set of keys corresponding to the values chosen by the user. Set of keys received from

Chapter 3. Plugin Development SDK

the client application can be obtained from ExecutionContext object by navigating through the getRequest method

and then calling getTypes() on it. The simple-search implementation deals with these set of keys, as per the target

system’s programming interface, and filters the search items accordingly.

Standard service parameter - supportedContentTypes

Overriding getSupportedContentTypes method is recommended only if the Map needs to be generated dynamically.

Content Integration Framework provides an alternate approach to statically define this Map using a standard service

parameter called supportedContentTypes, configured under params element in the service declaration file. For example,

refer the simple-search service declaration for AEM and WCM inside <ASSET_PICKER_HOME>/conf/plugin-

services.yml file.

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for the list-content-categories service:

• com.hcl.unica.system.integration.service.content.categories.list. RestContentCategoriesListService

The com.example.service.rest. ExampleContentCategoryListingService class in asset-integration-starter project is a

quick starter for RESTful list-content-categories service. ExampleContentCategoryListingService class extends from

RestContentCategoriesListService class.

The RestContentCategoriesListService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is specified as List<ContentCategoryDetails> for

the sake of example.

RestContentCategoriesListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.categories.ContentCategoryListRequest class as the type

argument RQ for RestService. Thus, the object of ContentCategoryListRequest becomes input to all the list-

content-categories services (same input is used for Functional counterpart of list-content-categories as well).

ContentCategoryListRequest object should be consulted for parent category ID as well as for parent folder ID if

categories are hierarchical and/or maintained in folder hierarchy.

In addition to defining the input type for the list-content-categories service, RestContentCategoriesListService class

also overrides the transformResponse method and mandates the return value of this method to be an object of

List<ContentCategory> type. ContentCategory class is part of Content Integration SDK.

The plugin must extend the implementation of list-content-categories service from

com.hcl.unica.system.integration.service.content.categories.list. RestContentCategoriesListService class to be

recognized as a valid list-content-categories service by the Content Integration Framework (Functional counterpart,

discussed later, is also a valid choice to extend from).

RestContentCategoriesListService extends from

com.hcl.unica.system.integration.service.content.categories.list.AbstractContentCategoriesListService
 class

.

• com.hcl.unica.system.integration.service.content.categories.list.AbstractContentCategoriesListService

33

Unica Content Integration V12.1.8 Developer Guide

34

This is a common base class for RESTful as well as Functional implementations of list-content-categories service.

So, the details covered herein applies to Functional version of list-content-categories as well.

This class defines the com.hcl.unica.system.integration.service.gateway.ContentCategoriesListServiceGateway

interface as the service gateway for the list-content-categories service. This interface extends from

com.hcl.unica.system.integration.service.gateway. ServiceGateway interface and mandates the

ContentCategoryListRequest & List<ContentCategory> objects to be the input and output types for the list-content-

categories service.

List folders (list-folders)

The following are the specialized interfaces and classes available for the list-folders service:

• com.hcl.unica.system.integration.service.folder.list.RestFolderListService

The com.aem.service.AemFolderListService class in aem-integration project is a reference implementation for

RESTful list-folders service. AemFolderListService class extends from RestFolderListService class.

The RestFolderListService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is SimpleSearchResponse class defined inside the

aem-integration project.

RestFolderListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.folder.list.FolderListRequest class as the type argument RQ for RestService.

Thus, the object of FolderListRequest becomes input to all the list-folders services (same input is used for

Functional counterpart of list-folders as well).

In addition to defining the input type for the list-folders service, RestFolderListService class also overrides the

transformResponse method and mandates the return value of this method to be an object of List<Folder> type. Folder

is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of list-folders service from

com.hcl.unica.system.integration.service.folder.list.RestFolderListService class to be recognized as a valid

list-folders service by the Content Integration Framework (Functional counterpart, discussed later, is also a valid

choice to extend from).

RestFolderListService extends from

com.hcl.unica.system.integration.service.folder.list.AbstractFolderListService class.

• com.hcl.unica.system.integration.service.folder.list. AbstractFolderListService

This is a common base class for RESTful as well as Functional implementations of list-folders service. So, the

details covered herein applies to Functional version of list-folders as well.

This class defines the com.hcl.unica.system.integration.service.gateway.FolderListServiceGateway

interface as the service gateway for the list-folders service. This interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface and mandates the FolderListRequest

and List<Folder> objects to be the input and output types for the list-folders service.

Chapter 3. Plugin Development SDK

List category folders (list-category-folders)

The specialized types used for implementing list-category-folders are exactly same as the ones used for list-folders.

List contents (list-contents)

The following are the specialized interfaces and classes available for the list-contents service:

• com.hcl.unica.system.integration.service.content.list.RestContentListService

The com.aem.service.AemContentListServiceclass in aem-integration project is a reference implementation for

RESTful list-contents service. AemContentListServiceclass class extends from RestContentListService class.

The RestContentListService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is SimpleSearchResponse class defined inside the

aem-integration project.

RestContentListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.list.ContentListRequest class as the type argument RQ for

RestService. Thus, the object of ContentListRequest becomes input to all the list-contents services (same input is

used for Functional counterpart of list-contents as well).

In addition to defining the input type for the list-contents service, RestContentListService class also overrides the

transformResponse method and mandates the return value of this method to be an object of ContentPage type. This

return type is same as the one used for simple-search service. ContentPage is a standard type defined in Content

Integration SDK.

The plugin must extend the implementation of list-contents service from

com.hcl.unica.system.integration.service.content.list.RestContentListService class to be recognized as a valid

list-contents service by the Content Integration Framework (Functional counterpart, discussed later, is also a valid

choice to extend from).

RestContentListService extends from

com.hcl.unica.system.integration.service.content.list.AbstractContentListService class.

• com.hcl.unica.system.integration.service.content.list.AbstractContentListService

This is a common base class for RESTful as well as Functional implementations of list-contents service. So, the

details covered herein applies to Functional version of list-contents as well.

This class defines the com.hcl.unica.system.integration.service.gateway.ContentListServiceGateway

interface as the service gateway for the list-contents service. This interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface and mandates the ContentListRequest

and ContentPage objects to be the input and output types for the list-contents service.

Get content details (get-content-details)

The following are the specialized interfaces and classes available for the get-content-details service:

35

Unica Content Integration V12.1.8 Developer Guide

36

• com.hcl.unica.system.integration.service.content.details.RestContentDetailsService

The com.aem.service.AemObjectDetailsService class in aem-integration project is a reference implementation for

RESTful get-content-details service. AemObjectDetailsService class extends from RestContentDetailsService class.

The RestContentDetailsService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is SimpleSearchResponse class defined inside the

aem-integration project.

RestContentDetailsService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.details.ContentDetailsRequest class as the type argument RQ for

RestService. Thus, the object of ContentDetailsRequest becomes input to all the get-content-details services (same

input is used for Functional counterpart of get-content-details as well).

In addition to defining the input type for the get-content-details service, RestContentDetailsService class also

overrides the transformResponse method and mandates the return value of this method to be an object of Presentable

type.

The plugin must extend the implementation of get-content-details service from

com.hcl.unica.system.integration.service.content.details.RestContentDetailsService class to be recognized as

a valid get-content-details service by the Content Integration Framework (Functional counterpart, discussed later, is

also a valid choice to extend from).

RestContentDetailsService extends from the

com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService class.

• com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService

This is a common base class for RESTful as well as Functional implementations of get-content-details service. So,

the details covered herein applies to Functional version of get-content-details as well.

This class defines the com.hcl.unica.system.integration.service.gateway.ContentDetailsServiceGateway interface

as the service gateway for the get-content-details service. ServiceGateways are the means to programmatically

define input and output types of the service and facilitate invocation of the services. A closer look at this interface

tells us that the get-content-details service accepts the ContentDetailsRequest object and returns a Presentable

object.

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for the get-cognitive-analysis service:

• com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService

The com.example.service.rest.ExampleCognitiveAnalysisService in asset-integration-starter project is a quick

starter implementation for RESTful get-cognitive-analysis service. ExampleCognitiveAnalysisService in class

extends from RestCognitiveAnalysisService class.

The RestCognitiveAnalysisService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is CognitiveDetails class defined inside the asset-

integration-starter project.

Chapter 3. Plugin Development SDK

RestCognitiveAnalysisService class implements RestService interface and defines the

com.hcl.unica.system.model.request.cognitive.analysis.CognitiveAnalysisRequest class as the type argument

RQ for RestService. Thus, the object of CognitiveAnalysisRequest becomes input to all the get-cognitive-analysis

services (same input is used for Functional counterpart as well).

In addition to defining the input type for the get-cognitive-analysis service, RestCognitiveAnalysisService class

also overrides the transformResponse method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.cognitive.analysis.CognitiveAnalysis type. CognitiveAnalysis is a standard

type defined in Content Integration SDK.

The plugin must extend the implementation of get-cognitive-analysis service from

com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService class to be

recognized as a valid get-cognitive-analysis service by the Content Integration Framework (Functional counterpart,

discussed later, is also a valid choice to extend from).

RestCognitiveAnalysisService extends from

com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService class.

• com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService

This is a common base class for RESTful as well as Functional implementations of get-cognitive-analysis service.

So, the details covered herein applies to Functional version of get-cognitive-analysis as well.

This class defines the com.hcl.unica.system.integration.service.gateway.CognitiveAnalysisServiceGateway

interface as the service gateway for the get-cognitive-analysis service. This interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface and mandates the

CognitiveAnalysisRequest and CognitiveAnalysis objects to be the input and output types for the get-cognitive-

analysis service.

Object extension service
The following are the specialized interfaces and classes available for the object extension service:

• com.hcl.unica.system.integration.service.object.extension.RestObjectExtensionService

The com.example.service.rest.ExampleObjectExtensionService in asset-integration-starter project is a quick

starter implementation for RESTful object extension service. ExampleObjectExtensionService class extends from

RestObjectExtensionService class.

The RestObjectExtensionService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case, it is CognitiveDetails class defined inside the asset-

integration-starter project.

RestObjectExtensionService class implements RestService interface and defines the

com.hcl.unica.system.model.request.object.extension.ObjectExtensionRequest class as the type argument RQ for

RestService. Thus, the object of ObjectExtensionRequest becomes input to object extension services (same input is

used for Functional counterpart as well). ObjectExtensionRequest is discussed in subsequent section.

In addition to defining the input type for object extension service, RestObjectExtensionService class also overrides

the transformResponse method and allows returning any type of object.

37

Unica Content Integration V12.1.8 Developer Guide

38

The plugin must extend the implementation of object extension service from com.

hcl.unica.system.integration.service.object.extension.RestObjectExtensionService class to be recognized as a

valid object extension service by the Content Integration Framework (Functional counterpart, discussed later, is also a

valid choice to extend from).

RestObjectExtensionService extends from

com.hcl.unica.system.integration.service.object.extension.AbstractObjectExtensionService class.

• com.hcl.unica.system.model.request.object.extension.ObjectExtensionRequest

The ObjectExtensionRequest provides and API to retrieve values of request attributes. The core principle of object

extension service is to accept desired request attributes, perform designated operation and optionally return with

a response object. Request attribute values are obtained from the object whose capabilities need to be extended

by using the object extension service being implemented. Implementation of object extension service must be

request object agnostic. It is the responsibility of Content Integration Framework to extract request attributes from

the object to be extended and supply it to the object extension service by means of ObjectExtensionRequest. Thus,

object extension service must be able to extend the capability of any object if the object being extended contains the

required request attributes for the object extension service. ObjectExtensionRequest provides following methods for

obtaining request attribute values –

◦ Collection<AttributeValue> getAttributeValues() – This method returns a collection of all request attribute

values.

Attribute values are wrapped inside AttributeValue object, which provides API for reading the value of

attribute. It provides a convenience method, as(Class<T> type), for obtaining type cast value of the attribute.

Likewise, getValue() method can be used to read the uncast value.

Furthermore, AttributeValue class provides getAttributeSchema() method to obtain the meta information

about respective attribute. getAttributeSchema() returns an object of AttributeSchema containing the

required meta information about attribute. The most important methods in AttributeSchema are getType() &

getFormat(). These methods can be consulted to check if the attribute is of desired type. As of 12.1.1 release

of Content Integration Framework, object extension service may receive values for the attributes which are

not of required type. Hence, extension service must consult the type & format of the attribute before using

its value. Service implementation must filter the required attribute values by itself. Refer to the buildRequest

method implementation in com.example.service.rest.ExampleObjectExtensionService to learn how this can

be achieved. This example implementation tries to extract first URL & first Text attribute from the request.

◦ Map<String, AttributeValue> getAttributes() - From release 12.1.2 onward, request attributes of object

extension service can also be mapped to source object’s attributes. get-object-schema service must be

enhanced in such case to generate schema for request object. Following standard service parameter must be

set to true if request attribute mapping is desired for the given object extension service. If this parameter is

missing, it is assumed to be false by default. Likewise, requirement of response attribute mapping can also

be indicated using attributeMappingSupport | response parameter. By default, Content Integration Framework

assumes value for response to be true.

 params:
 attributeMappingSupport:
 request: true

Chapter 3. Plugin Development SDK

 response: true

getAttributes() method returns map of attribute values, wherein values are organized by respective attribute

identifiers. The Map object returned by this method is useful for retrieving attribute value using its identifier

(as used in object schema).

Object extension service can override void validateRequest(ExecutionContext<ObjectExtensionRequest>

executionContext) method to probe request attributes before performing core operation.

InvalidServiceRequestException can be raised If desired attributes are not found in the

ObjectExtensionRequest. Refer to the Validation support on page 63

◦ boolean isStronglyBound() – Object extension services written prior to 12.1.2 may still receive unmapped

requests if user hasn’t changed the request mapping for such services. This method can be consulted

to check if request object attribute mapping exists for the given execution request. This method

returns true if object extension service does have request object attribute mapping, false otherwise.

If this method returns true, service can look for its request object attributes by their identifiers in the

Map returned by getAttributes() method. Else, it must find out required type of attributes the way

ExampleObjectExtensionService does in asset-integration-starter project.

• com.hcl.unica.system.integration.service.object.extension.AbstractObjectExtensionService

This is a common base class for RESTful as well as Functional implementations of object extension service. So, the

details covered herein applies to Functional version as well.

This class defines the com.hcl.unica.system.integration.service.gateway.ObjectExtensionServiceGateway

interface as the service gateway for object extension service. This interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface and mandates the

ObjectExtensionRequest to be the input type for object extension service. Object extension service can return any type

of object.

Service title & summary

Object extension services are listed as Custom actions in Centralized Offer Management. The title/label for object

extension service is derived from I18n resource bundles using the key same as service name declared for respective

object extension service. Likewise, a brief summary is also shown for the service to help users working with it.

Summary is maintained in I18n resource bundles using {service-name}.summary key. For example, check example-

object-extension-service & example-object-extension-service.summary keys in asset-integration-starter\src\main

\resources\i18n\Foo_Messages.properties file.

Collaboration services

• Channel creation service (collaboration.create-channel)

- The following are the specialized interfaces and classes available for the collaboration.create-channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.create.RestChannelCreationService –

The com.example.service.rest.collaboration. ExampleChannelCreationService in asset-integration-

starter project is a quick starter implementation for RESTful collaboration.create-channel service.

ExampleChannelCreationService class extends from RestChannelCreationService class.

39

Unica Content Integration V12.1.8 Developer Guide

40

The RestChannelCreationService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelCreationService class.

RestChannelCreationService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelCreationRequest class as the

type argument RQ for RestService. Thus, the object of CollaborationChannelCreationRequest becomes input

to all the collaboration.create-channel services (same input is used for Functional counterpart as well).

CollaborationChannelCreationRequest carries the name of channel to be created.

In addition to defining the input type for the collaboration.create-channel

service, RestChannelCreationService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails type.

CollaborationChannelDetails must carry the identifier of the newly created channel in addition to its name. It

can optionally contain URL to the channel page.

Plugin must extend the implementation of collaboration.create-channel service from

RestChannelCreationService class to be recognized as a valid collaboration.create-channel service by the

Content Integration Framework (Functional counterpart, discussed later, is also a valid choice to extend from).

• Channel modification service (collaboration.update-channel)

The following are the specialized interfaces and classes available for the collaboration.update-channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.update.RestChannelModificationService –

The com.example.service.rest.collaboration. ExampleChannelModificationService in asset-integration-

starter project is a quick starter implementation for RESTful collaboration.update-channel service.

ExampleChannelModificationService class extends from RestChannelModificationService class.

The RestChannelModificationService class has a type parameter RS, which represents the type of response

(post deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelModificationService class.

RestChannelModificationService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelModificationRequest class as the

type argument RQ for RestService. Thus, the object of CollaborationChannelModificationRequest becomes

input to all the collaboration.update-channel services (same input is used for Functional counterpart as well).

CollaborationChannelModificationRequest carries the identifier of the channel to be updated along with the

new channel name.

In addition to defining the input type for the collaboration.update-channel service,

RestChannelModificationService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails type.

CollaborationChannelDetails must carry the identifier & name of the updated channel. It can optionally

contain URL to the channel page.

Chapter 3. Plugin Development SDK

Plugin must extend the implementation of collaboration.update-channel service from

RestChannelModificationService class to be recognized as a valid collaboration.update-channel service by

the Content Integration Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

• Channel details service (collaboration.get-channel-details)

The following are the specialized interfaces and classes available for the collaboration.get-channel-details service:

◦ com.hcl.unica.system.integration.service.collab.channel.details.RestChannelDetailsService –

The com.example.service.rest.collaboration.ExampleChannelDetailsService in asset-integration-

starter project is a quick starter implementation for RESTful collaboration.get-channel-details service.

ExampleChannelDetailsService class extends from RestChannelDetailsService class.

The RestChannelDetailsService class has a type parameter RS, which represents the type of response (post

deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleChannelDetailsService class.

RestChannelDetailsService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelDetailsRequest class as the type

argument RQ for RestService. Thus, the object of CollaborationChannelDetailsRequest becomes input to all

the collaboration.get-channel-details services (same input is used for Functional counterpart as well).

CollaborationChannelDetailsRequest carries the identifier of the channel to be retrieved.

In addition to defining the input type for the collaboration.get-channel-details service,

RestChannelDetailsService class also overrides the transformResponse method and

mandates the return value of this method to be an object of java.util.Optional of

com.hcl.unica.system.model.response.collab.channel.CollaborationChannelDetails type.

CollaborationChannelDetails must carry the identifier & name of the requested channel. It can optionally

contain URL to the channel page. If requested channel is not found, this method can return Optional.empty().

Plugin must extend the implementation of collaboration.get-channel-details service from

RestChannelDetailsService class to be recognized as a valid collaboration.get-channel-details service by

the Content Integration Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

• Member addition service (collaboration.add-members-to-channel)

The following are the specialized interfaces and classes available for the collaboration.add-members-to-channel

service:

◦ com.hcl.unica.system.integration.service.collab.channel.member.RestChannelMemberAdditionService –

The com.example.service.rest.collaboration.ExampleMemberAdditionService in asset-integration-starter

project is a quick starter implementation for RESTful collaboration.add-members-to-channel service.

ExampleMemberAdditionService class extends from RestChannelMemberAdditionService class.

The RestChannelMemberAdditionService class has a type parameter RS, which represents the type of response

(post deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleMemberAdditionService class.

41

Unica Content Integration V12.1.8 Developer Guide

42

RestChannelMemberAdditionService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMembers class

as the type argument RQ for RestService. Thus, the object of CollaborationChannelMembers

becomes input to all the collaboration.add-members-to-channel services (same input is used for

Functional counterpart as well). CollaborationChannelMembers carries the channel identifier & list of

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMember objects. Each

CollaborationChannelMember object carries identifier of the user/member to be added to the channel

corresponding to the supplied channel identifier.

In addition to defining the input type for the collaboration.add-members-to-

channel service, RestChannelMemberAdditionService class also overrides the

transformResponse method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.ChannelMembersAdditionStatus type.

ChannelMembersAdditionStatus must carry the list of

com.hcl.unica.system.model.response.collab.channel.ChannelMemberAdditionStatus objects containing

addition status for each supplied member. The memberId property in ChannelMemberAdditionStatus object

should carry the identifier of member/user the status is being reported for. The error property can be used

to convey error message associated with specified member’s addition operation. Plugin can choose to send

localized error using an API provided by ExecutionContext. The ok property must be set to true if member

is successfully added to the channel, or to false otherwise. Reason property should be used to convey

appropriate failure reason. The entire list of member addition status should be set on the status property of

ChannelMembersAdditionStatus object to be returned from transformResponse method.

Plugin must extend the implementation of collaboration.add-members-to-channel service from

RestChannelMemberAdditionService class to be recognized as a valid collaboration.add-members-to-channel

service by the Content Integration Framework (Functional counterpart, discussed later, is also a valid choice

to extend from).

• Member removal service (collaboration.remove-members-from-channel)

The following are the specialized interfaces and classes available for the collaboration.remove-members-from-

channel service:

◦ com.hcl.unica.system.integration.service.collab.channel.member.RestChannelMemberRemovalService –

The com.example.service.rest.collaboration.ExampleMemberRemovalService in asset-integration-starter

project is a quick starter implementation for RESTful collaboration.remove-members-from-channel service.

ExampleMemberRemovalService class extends from RestChannelMemberRemovalService class.

The RestChannelMemberRemovalService class has a type parameter RS, which represents the type of response

(post deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleMemberRemovalService class.

RestChannelMemberRemovalService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMembers class as the

type argument RQ for RestService. Thus, the object of CollaborationChannelMembers becomes

input to all the collaboration.remove-members-from-channel services (same input is used for

Functional counterpart as well). CollaborationChannelMembers carries the channel identifier & list of

Chapter 3. Plugin Development SDK

com.hcl.unica.system.model.request.collab.channel.CollaborationChannelMember objects. Each

CollaborationChannelMember object carries identifier of the user/member to be removed from the channel

corresponding to the supplied channel identifier.

In addition to defining the input type for the collaboration.remove-members-

from-channel service, RestChannelMemberRemovalService class also overrides the

transformResponse method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.collab.channel.ChannelMembersRemovalStatus type.

ChannelMembersRemovalStatus must carry the list of

com.hcl.unica.system.model.response.collab.channel.ChannelMemberRemovalStatus objects containing

removal status for each supplied member. The memberId property in ChannelMemberRemovalStatus object

should carry the identifier of member/user the status is being reported for. The error property can be used

to convey error message associated with specified member’s removal operation. Plugin can choose to send

localized error using an API provided by ExecutionContext. The ok property must be set to true if member

is successfully removed from the channel, or to false otherwise. reason property should be used to convey

appropriate failure reason. The entire list of member addition status should be set on the status property of

ChannelMembersRemovalStatus object to be returned from transformResponse method.

Plugin must extend the implementation of collaboration.remove-members-from-channel service from

RestChannelMemberRemovalService class to be recognized as a valid collaboration.remove-members-from-

channel service by the Content Integration Framework (Functional counterpart, discussed later, is also a valid

choice to extend from).

• Message posting service (collaboration.post-message-to-channel)

The following are the specialized interfaces and classes available for the collaboration.post-message-to-channel

service:

◦ com.hcl.unica.system.integration.service.collab.channel.message.RestMessagePostingService –

The com.example.service.rest.collaboration.ExampleMessagePostingService in asset-integration-starter

project is a quick starter implementation for RESTful collaboration.post-message-to-channel service.

ExampleMessagePostingService class extends from RestMessagePostingService class.

The RestMessagePostingService class has a type parameter RS, which represents the type of response

(post deserialization) received from the remote REST API. In this case it is JsonNode class defined inside the

ExampleMessagePostingService class.

RestMessagePostingService class implements RestService interface and defines the

com.hcl.unica.system.model.request.collab.channel.GroupMessage class as the type argument RQ for

RestService. Thus, the object of GroupMessage becomes input to all the collaboration.post-message-to-

channel services (same input is used for Functional counterpart as well). GroupMessage carries the identifier of

target channel & the message itself.

In addition to defining the input type for the collaboration.post-message-to-channel service,

RestMessagePostingService class also overrides the transformResponse method and mandates the return value

of this method to be an object of same GroupMessage type. The response GroupMessage object should carry the

identifier of newly posted message.

43

Unica Content Integration V12.1.8 Developer Guide

44

Plugin must extend the implementation of collaboration.post-message-to-channel service from

RestMessagePostingService class to be recognized as a valid collaboration.post-message-to-channel service

by the Content Integration Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

Derivatives of HttpService
Only resource-loader standard service is implemented as an HttpService as it relates to the standard HTTP GET operation.

You can also use RestService without losing any capability.

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for resource-loader service:

• com.hcl.unica.system.integration.service.resourceloader.DefaultWebResourceLoaderService

The com.example.service.rest.ExampleResourceLoaderService class in asset-integration-starter project is a quick

starter implementation for the resource-loader service and extends from the following class:

com.hcl.unica.system.integration.service.resourceloader
.DefaultWebResourceLoaderService

DefaultWebResourceLoaderService class is the default implementation of resource-loader service provided by the

Content Integration SDK. If the plugin does not implement its own resource-loader service, Content Integration

Framework falls back on this default implementation. Default implementation of resource-loader provided by

Content Integration SDK simply follows the given resource URL and retrieves the web resource from target system. It

encapsulates the standard HTTP GET operation.

If the plugin needs to have its own resource-loader implementation which slightly modifies the standard HTTP

GET, we recommend extending it from the DefaultWebResourceLoaderService class. It is not necessary to extend

resource-loader implementation from the DefaultWebResourceLoaderService if the plugin must use a completely

different approach for loading contents, such as reading from file system, database, FTP server etc. In such a case,

it must extend from either HttpWebResourceLoaderService for HTTP-based approach or WebResourceLoaderService for

functional approach.

• com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService

The DefaultWebResourceLoaderService class discussed earlier extends from the HttpWebResourceLoaderService

abstract class. This class defines the input type and the type of HTTP response received from target URL for

resource-loader service as com.hcl.unica.system.model.request.resourceloader.ResourceRequest and byte[]

respectively. ResourceRequest class encapsulates the resource URL and system identifier. Similarly, resource-loader

works with a byte array when the content from remote HTTP URL is successfully read.

If the plugin does not extend its resource-loader implementation from

the DefaultWebResourceLoaderService class, it must at least extend from

com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService class to be recognized

as a resource-loader service by the Content Integration Framework (Functional counterpart, discussed later, is also a

valid choice to extend from for the resource-loader services implemented using the Functional approach).

• com.hcl.unica.system.integration.service.resourceloader.AbstractWebResourceLoaderService

Chapter 3. Plugin Development SDK

The HttpWebResourceLoaderService class discussed in previous point extends from

AbstractWebResourceLoaderService abstract class. This class defines the following service gateway interface for the

resource-loader service:

com.hcl.unica.system.integration.service.gateway
.ResourceLoaderServiceGateway

To know the role of service gateways in service invocation, see Service invocation on page 23.

ResourceLoaderServiceGateway interface defines ResourceRequest and HttpResponse<?> as input and output types for

the resource-loader service. HttpResponse is an interface, implemented by the WebResource class. It encapsulates

the HTTP response headers, body, or payload, and cookies received from the remote URL. Even if the customized

resource-loader service does not fetch the content over web, it must return the object of the WebResource (or any

other implementation of HttpResponse) populated with the appropriate details. Failing to populate the WebResource

appropriately may lead to content loading issues for client applications. The WebResource provides a builder API

to create an object with necessary details. The most important thing is to populate the Content-Type header so

that client application can deal with the payload accordingly. Similarly, Content-Disposition header must also be

populated appropriately containing the filename associated with the content.

Derivatives of FunctionalService
Derivatives of FunctionalService interface facilitates creation of functional implementation of standard services. Functional

service is just an object with a public method which takes a certain input and generates the desired output.

Simple search (simple-search)

The following are the specialized interfaces and classes available for simple-search service:

• com.hcl.unica.system.integration.service.search.SearchService

The com.example.service.functional.ExampleSimpleSearchService class in the asset-integration-starter

project is a quick starter implementation for the Functional simple-search service. It extends from the

com.hcl.unica.system.integration.service.search.SearchService class.

The SearchService class implements the FunctionalService interface and defines the SearchRequest class and the

ContentPage class to be the type arguments RQ & RS respectively for the FunctionalService. Thus, the object of the

SearchRequest becomes an input to all the simple-search services and the ContentPage is expected as an output on

completion of the service.

The plugin must extend its simple-search implementation from the

com.hcl.unica.system.integration.service.search.SearchService class to be recognized as a simple-search service

by the Content Integration Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from for the simple-search services implemented using RESTful approach).

The SearchService extends from the com.hcl.unica.system.integration.service.search.AbstractSearchService

abstract class. It introduces one more method, named getSupportedContentTypes. For more information on the

method, see Derivatives of RestService on page 31.

45

Unica Content Integration V12.1.8 Developer Guide

46

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for the resource-loader service:

• com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

The com.example.service.functional.ExampleResourceLoaderService class in asset-integration-starter

project is a quick starter implementation for Functional resource-loader service. It extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

The WebResourceLoaderService class implements the FunctionalService interface and defines the ResourceRequest

and the HttpResponse types to be the type arguments RQ & RS, respectively, for the FunctionalService. Thus, the

object of the ResourceRequest becomes an input to all the resource-loader services and the HttpResponse is expected

as an output on completion of the service (the same input and output types are used for RESTful counterpart of the

resource-loader). For more information on ResourceRequest & HttpResponse types, see Derivatives of RestService on

page 31.

The plugin must extend its resource-loader implementation from the

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService service to be recognized as a

resource-loader service by the Content Integration Framework (HTTP counterpart discussed in the earlier section is

also a valid choice to extend from for the resource-loader services implemented using the HTTP approach).

The WebResourceLoaderService extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.
AbstractWebResourceLoaderService

For more information about this class, see Derivatives of RestService on page 31.

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for list-content-categories service:

• com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService

Plugin can alternatively choose Functional approach to implement list-content-categories service by extending

the implementation from ContentCategoriesListService class. The ContentCategoriesListService class implements

the FunctionalService interface and mandates the ContentCategoryListRequest and the List<ContentCategory>

classes to be the type arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentCategoryListRequest becomes an input to the list-content-categories service and the object of

List<ContentCategory> type is expected as an output on completion of the service. ContentCategoryListRequest

should be consulted for parent category ID & folder ID to fetch categories belonging to specific parent category and/

or to parent folder. As of current implementation of Content Integration Framework, parent (category) ID is always

null since only one level of category list is supported. However, if categories are organized in folders & list-content-

categories service considers folder ID while listing categories, then Content Integration Framework can deal with

navigable folder list if list-category-folders service is also implemented.

• The plugin must extend its list-content-categories implementation from the

com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService class to be

Chapter 3. Plugin Development SDK

recognized as a valid list-content-categories service by the Content Integration Framework (RESTful counterpart

discussed in earlier section is also a valid choice to extend from).

ContentCategoriesListService extends from AbstractContentCategoriesListService class. Details of

AbstractContentCategoriesListService class are covered in the Derivatives of RestService on page 31 topic.

List folders (list-folders)

The following are the specialized interfaces and classes available for list-folders service:

• com.hcl.unica.system.integration.service.folder.list.FolderListService

Plugin can alternatively choose Functional approach to implement list-folders service by extending the

implementation from FolderListService class. The FolderListService class implements the FunctionalService

interface and mandates the FolderListRequest and the List<Folder> classes to be the type arguments RQ and RS

respectively for the FunctionalService. Thus, the object of the FolderListRequest becomes an input to the list-

folders service and the object of List<Folder> type is expected as an output on completion of the service.

• The plugin must extend its list-folders implementation from the

com.hcl.unica.system.integration.service.folder.list.FolderListService class to be recognized as a valid list-

folders service by the Content Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

FolderListService extends from AbstractFolderListService class. Details of AbstractFolderListService class are

covered in the Derivatives of RestService on page 31 topic.

List category folders (list-category-folders)

The specialized types used for implementing list-category-folders are exactly same as the ones used for list-folders.

List contents (list-contents)

The following are the specialized interfaces and classes available for list-contents service:

• com.hcl.unica.system.integration.service.content.list.ContentListService

Plugin can alternatively choose Functional approach to implement list-contents service by extending the

implementation from ContentListService class. The ContentListService class implements the FunctionalService

interface and mandates the ContentListRequest and the ContentPage classes to be the type arguments RQ and RS

respectively for the FunctionalService. Thus, the object of the ContentListRequest becomes an input to the list-

contents service and the object of ContentPage type is expected as an output on completion of the service.

• The plugin must extend its list-contents implementation from the

com.hcl.unica.system.integration.service.content.list.ContentListService class to be recognized as a valid list-

contents service by the Content Integration Framework (RESTful counterpart discussed in earlier section is also a

valid choice to extend from).

ContentListService extends from AbstractContentListService class. Details of AbstractContentListService class are

covered in the Derivatives of RestService on page 31 topic.

47

Unica Content Integration V12.1.8 Developer Guide

48

Get content details (get-content-details)

The following are the specialized interfaces and classes available for get-content-details service:

• com.hcl.unica.system.integration.service.content.details.ContentDetailsService

Plugin can alternatively choose Functional approach to implement get-content-details service by extending the

implementation from ContentDetailsService class.

The ContentDetailsService class implements the FunctionalService interface and mandates the

ContentDetailsRequest and the Presentable classes to be the type arguments RQ and RS respectively for the

FunctionalService. Thus, the object of the ContentDetailsRequest becomes an input to the get-content-details

service and the object of Presentable type is expected as an output on completion of the service.

The plugin must extend its get-content-details implementation from the

com.hcl.unica.system.integration.service.content.details.ContentDetailsService class to be recognized as a

valid get-content-details service by the Content Integration Framework (RESTful counterpart discussed in earlier

section is also a valid choice to extend from).

ContentDetailsService extends from AbstractContentDetailsService class. Details of AbstractContentDetailsService

class are covered in the Derivatives of RestService on page 31 topic.

Get object schema (get-object-schema)

get-object-schema service is used to generate the schema of domain object or entity used by the respective system to

represent the content. Object schema in simplest form is just a hierarchical metadata of each mappable content/object

attribute. Attribute hierarchy and metadata is expected to match the JSON representation of the domain object. Attribute

metadata mainly includes the data type of the attribute, format of the value held in the attribute, unique identifier of the

attribute and display title or label for the attribute.

The following are the specialized interfaces and classes available for get-object-schema service:

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService

The ObjectSchemaProviderService class implements the FunctionalService interface and mandates the

com.hcl.unica.system.model.ObjectSchemaRequest and the com.hcl.unica.system.model.json.schema.ObjectSchema

classes to be the type arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ObjectSchemaRequest becomes an input to the get-object-schema service and the object of ObjectSchema type is

expected as an output on completion of the service. Plugin however need not build the ObjectSchema by itself. It

should just override and implement following abstract method from ObjectSchemaProviderService class.

ObjectProfile getObjectProfile(ObjectSchemaRequest objectSchemaRequest)

The getObjectProfile() method accepts ObjectSchemaRequest and returns ObjectProfile. (These types are discussed

in subsequent section.)

The plugin must extend get-object-schema implementation from the

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService class to be recognized

as a valid get-object-schema service by the Content Integration Framework. There is no RESTful counterpart of this

Chapter 3. Plugin Development SDK

standard super class since object schema generation does not include any HTTP interaction. Plugins can implement

custom RESTful service and invoke it internally from within get-object-schema service if required.

• com.hcl.unica.system.model.ObjectSchemaRequest

Object of this class is supplied as an input to the get-object-schema service. The most important method of this class

is getObjectIdentity() which returns an object of type com.hcl.unica.system.model.ObjectIdentity encapsulating

the details of the content chosen by the user to request the master schema. It includes applicationId (the system

identifier), objectType (content type/category identifier) and objectId (unique identifier of the selected content).

Content categorization can be strict or lenient. (Refer to additionalFeatures | content | categorization section

in Service declaration file on page 5 for the overview of content categorization & the standard system property to

declare the nature of categorization.) If additionalFeatures | content | categorization is set to strict, then object

schema should be generated strictly specific to the given content type/category.

If categorization property is set to lenient, then regardless of the category and/or content chosen by the user at the

time of setting up content mapping, the generated schema must include attributes of all kinds of contents supported

by the respective system. In other words, only one master schema is used for mapping all types of contents provided

by the given system.

Furthermore, get-object-schema service is also used for generating schemas for request & response objects of

Object extension services (known as Custom actions in Centralized Offer Management). In such case, {object-

extension-service-name}.request & {object-extension-service-name}.response are supplied in objectType property

of ObjectSchemaRequest object. ({object-extension-service-name} denotes the actual name of service declared in

custom-plugin-services.yml file).

The getEnrichmentObjectJson() method in ObjectSchemaRequest class can be ignored as of current release.

• com.hcl.unica.system.integration.service.object.schema.ObjectProfile

This is a return type of getObjectProfile() method in get-object-schema service. It carries the Java type

corresponding to the domain entity/object representing the required type/category of content for which

schema needs to be generated.. Content Integration Framework consults this Java type to generate the schema

for public and non-public non static class properties (inclusive of Enums & Optionals). @MappableAttribute

annotation can be used to configure each individual class property to control the schema generated by

Content Integration Framework. Refer to the com.aem.model.response.simplesearch.SimpleSearchItem domain

object in aem-integration reference project to get an idea about how this annotation is used. More details

are provided on @MappableAttribute in next section. ObjectProfile can optionally include an instance of

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher to dynamically add/modify/remove

attributes from the schema thus generated. Next section explains ObjectSchemaEnricher in detail.

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher

ObjectSchemaEnricher is an abstract class. Implementation of ObjectSchemaEnricher gives an opportunity to generate

object schemas dynamically if the concerned domain object contains some dynamic properties (for example,

dynamically added attributes to Offer Template. Each Offer Template can have different set of attributes which

cannot be statically listed in corresponding Java class.). The ObjectProfile class discussed in previous section

has a property (schemaEnricher) to hold reference to ObjectSchemaEnricher, if required. If dynamic enrichment is

not desired, then schemaEnricher property of ObjectProfile can be left out (don’t set it to null though). Plugin should

49

Unica Content Integration V12.1.8 Developer Guide

50

extend it to have desired implementation. The type parameter to ObjectSchemaEnricher class represents the Java

type containing the additional details required for enriching the statically generated object schema. These additional

details might be provided by the client applications of Unica Content Integration. As of current release, no additional

details are provided, hence it should be set to Void while implementing the schema enricher. ObjectSchemaEnricher

declares only one abstract method which should be implemented by the plugin:

abstract public ObjectSchema enrich(
 ObjectSchema objectSchema,
 ObjectSchemaEnrichmentRequest<T> objectSchemaEnrichmentRequest
)

The first argument to this method is an instance of com.hcl.unica.system.model.json.schema.ObjectSchema class. It

contains the automatically generated domain object schema derived from the Java type supplied in ObjectProfile.

At its core, ObjectSchema is just a Map<String, AttributeSchema>, wherein class property names forms the keys of this

map and property metadata ends up as an object of AttributeSchema. If the class property in turn refers to another

object, the corresponding AttributeSchema will have another Map<String, AttributeSchema> containing the attributes

of that object type and so on.

Note: It is important to note that attribute names used as the keys in attribute map correspond to the

JSON properties which ends up in the JSON representation of the domain object. Hence, if @JsonProperty

annotation is used to override the JSON property name for certain class attribute, then Content Integration

Framework automatically detects it and uses the overridden property name while generating schema for

the supplied Java type. Likewise, ObjectSchemaEnricher implementation must also ensure that names of

dynamically added attributes must match JSON representation of concerned domain object.

ObjectSchema as well as AttributeSchema extend from com.hcl.unica.system.model.json.schema.AttributeContainer

abstract class. AttributeContainer provides convenience methods to ObjectSchema and AttributeSchema classes

for navigating through attribute hierarchy as well as for adding, modifying and removing attributes at any level in the

hierarchy to ease the schema enrichment. Attributes at any level in the hierarchy can be accessed and manipulated

using their names as appearing in JSON representation.

• com.hcl.unica.system.model.json.schema.generator.annotations.MappableAttribute

@MappableAttribute annotation provides a way to control how Content Integration Framework generates object

schema from the respective Java type. Use of @MappableAttribute is not mandatory. If it is not used, Content

Integration Framework automatically figures out property metadata. If required, this annotation should be placed on

top of desired class properties. Following annotation attributes can be used to control the schema generation:

◦ hidden – Set this to true to explicitly exclude certain property from object schema (@JsonIgnore is presently

not considered by Content Integration Framework. Hence, any property excluded from JSON representation

using @JsonIgnore must be explicitly excluded from schema)

◦ id – Supply unique identifier for the property. Content Integration Framework needs unique identifier for

each mappable class property. If @MappableAttribute is not used, or id is not specified, it generates one

automatically based on the location of property inside the class.

Automatic generation of attribute identifier is subject to the name and the hierarchical location of class

property inside the domain object graph. It implies that if the property name is changed and/or moved up

Chapter 3. Plugin Development SDK

or down the object graph hierarchy, it will change the identifier associated with it. Such refactoring can

mislead Content Integration Framework while reading the values of refactored attributes and may lead to

undesired data in mapped contents (such as Offers in COM). Hence, to avoid such inadvertent changes in

attribute identifiers, we recommend you to assign unique attribute identifiers manually, which remain constant

regardless of the name and location of class properties.

◦ title – Display title/label for the property. If omitted, Content Integration Framework generates one using

property name.

◦ type – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeType. If omitted, Content

Integration Framework automatically figures out the appropriate type. For numeric properties holding dates as

Unix timestamp (seconds since epoch), type must be set to AttributeType.INTEGER, and format must be set to

AttributeFormat.DATETIME.

◦ format – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeFormat. Content Integration

Framework can automatically identify standard java temporal types (Date, LocalDateTime, Instant) and set the

attribute type to DATETIME. Other formats, such as URL, HTML, EMAIL should be explicitly declared.

◦ implementation – Should be used for polymorphic references to explicitly declare the Java type to be

considered for automatic schema generation.

◦ hiddenProperties - @MappableAttribute annotation can be used at the class level to hide multiple properties

at single place. hiddenProperties takes an array of Strings containing the names of properties (direct as well

as inherited ones) to be excluded from automatically generated schema. It is particularly useful for hiding

properties inherited from third party parent class.

◦ pattern – Content Integration Framework supports certain temporal types for representing date &

timestamps, viz. Date, LocalDateTime, Instant. If certain date properties are maintained in String format,

then pattern can be used to declare the pattern of date strings.type for such attributes can be String,

the format however must be set to AttributeFormat.DATETIME.pattern must contain valid pattern string

supported by Java’s DateTimeFormatter.

◦ maxItems – Content Integration Framework supports schema generation & related use cases for arrays

of scalers & arrays of objects from release 12.1.2. If certain attribute is an array or collection of scalers

(primitives & their wrapper types, Strings) or other custom Java type, then framework automatically identifies

it and sets the type of such property to AttributeType.ARRAY. By default, framework considers maximum 1

item in the given array. maxItems can be used to explicitly override maximum number of items such attribute

can carry. maxItems expects and array of integers. For now, only one -dimensional arrays are supported by

Content Integration Framework. Hence, the maximum items must be specified as first element of array

supplied against maxItems. For example, maxItems = {5}. This example denotes that specified property can

carry at most 5 items. It may not always carry those many items, but if it ever does, plugin doesn’t expect

more than specified number items in it. The maxItems value helps to limit the number of individual array

element shown on UI at the time of Content/Object mappings.

◦ serialization – By default, properties declared as Collection<String> (List/Set) are serialized or resolved as

comma separated values (CSV). This default behavior is intact even after the support for arrays in release

12.1.2. However, one can switch off this default consideration for List<String> by setting serialization to

51

Unica Content Integration V12.1.8 Developer Guide

52

AttributeSerialization.AUTO. Thus, serialization property lets the developer control whether List<String>

should be considered as CSV or as an array of strings. Future releases may use serialization for controlling

other aspects of attributes.

External management of attribute mappability

In addition to controlling mappability of attributes by placing @MappableAttribute annotation directly on top of class

properties, Content Integration Framework also allows to control each attribute externally using @MappableObjects

& @MappableObject annotations placed on top of your domain type/class. If you don’t have access to the source

of your domain class or it is an auto generated class, you can create a subclass extending from it, and place

@MappableObjects annotation on top of your subclass & control each individual property inherited from parent

class. Refer to com.example.model.mapping.SubType & com.example.model.mapping.SuperType classes from asset-

integration-starter project to learn more about these annotations. If your super class uses some other nested

types/classes, properties of those types can also be controlled using this approach. @MappableObjects is an array of

@MappableObject, which allows to specify the Java type & associated array of properties (@Property). The @Property

annotation in turn carries name of the property & @MappabileAttribute declaration for that property. All capabilities of

@MappabileAttribute are available using this approach as well.

• Java Type to AttributeType Mapping

Following table summarizes the mapping between Java type and AttributeType/AttributeFormat used by the Content

Integration Framework for automatic schema generation:

Java Type AttributeType AttributeFormat

◦ String

◦ Character

◦ Char

◦ CharSequence

◦ LocalDate

◦ LocalTime

◦ ZonedDateTime

◦ OffsetDateTime

◦ OffsetTime

◦ ZoneId

◦ Calendar

◦ UUID

STRING

◦ Boolean

◦ boolean

BOOLEAN

◦ BigInteger

◦ Integer

◦ Int

◦ Long

◦ Long

INTEGER

Chapter 3. Plugin Development SDK

Java Type AttributeType AttributeFormat

◦ Short

◦ Short

◦ Byte

◦ byte

◦ BigDecimal

◦ Number

◦ Double

◦ Double

◦ Float

◦ float

NUMBER

◦ Date

◦ LocalDateTime

◦ Instant

Content Integration Framework

expects date values be expressed

in UTC standard time. Temporal

values expressed in any other

timezone can lead to inaccurate

temporal calculations in further use

cases.

INTEGER DATETIME

Collection<String> is resolved as comma separated list of strings. If any string element in the collection contains

comma, it is enclosed in double quotes. If the enclosed string contains any double quote of its own, then its double

quote is escaped by another double quote.

For example, a list of strings like [“string 1”,”string 2”,”string, 3”,”string,\”4”,”string\”5”] is resolved as follows –

string 1,string 2,”string, 3”,”string,””4”,string”5

Notice that string”5 is not enclosed in double quotes since it does not contain any comma.

• com.hcl.unica.system.model.Mappable

Contents from content repositories are linked to Unica objects using content URLs. Once any content URL is

referenced inside Unica objects, Content Integration Framework allows showing preview of already linked content

by making use of get-content-details service. To achieve such content previews at later point of time, Content

Integration Framework & Unica products store the system identifier, category/type & identifier of the linked content.

By default, any attribute declared as AttributeType.STRING & AttributeFormat.URL using @MappableAttribute

annotation will be considered as an URL belonging to the main content. If such URL attribute value is referenced in

Unica objects, then the preview for such reference will show the details of content it belongs to. However, the URL

attribute may not necessarily represent the content object it is wrapped in. It may be a separate entity managed

inside target content repository. For example, a Book object may include two different image URL attributes, called

53

Unica Content Integration V12.1.8 Developer Guide

54

bookCover & authorPhoto. While preview for bookCover should certainly show the details of the book it represents,

authorPhoto however should show the brief bio about book’s author.

With the default arrangement, Content Integration Framework continues to show the book details for authorPhoto’s

preview unless explicitly overridden by the plugin. The Mappable interface provides an opportunity to override this

default behavior for desired attribute. To override the content preview for any attribute, domain class must implement

the Mappable interface and override following method –

ObjectIdentity overrideObjectReference(String attributeId, ObjectIdentity defaultReference)

The overrideObjectReference method accepts the attribute identifier whose real content identity needs to be

established. It also receives the default identity assumed by Content Integration Framework as second argument.

Plugin can conditionally override the content identity by matching the attributeId with desired attribute’s identifier.

The ObjectIdentity returned from this method essentially tells the real system (applicationId), category (objectType)

& identifier (objectId) of the respective attribute. Returning null from this method turns the content preview off. In

other circumstances, plugin should respond with defaultReference value to let the Content Integration Framework

function normally.

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for get-cognitive-analysis service:

• com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService

Plugin can alternatively choose Functional approach to implement get-cognitive-analysis service by extending

the implementation from CognitiveAnalysisService class. The CognitiveAnalysisService class implements

the FunctionalService interface and mandates the CognitiveAnalysisRequest and the CognitiveAnalysis

classes to be the type arguments RQ and RS respectively for the FunctionalService. Thus, the object of

the CognitiveAnalysisRequest becomes an input to the get-cognitive-analysis service and the object of

CognitiveAnalysis type is expected as an output on completion of the service.

• The plugin must extend its get-cognitive-analysis implementation from the

com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService class to be recognized

as a valid get-cognitive-analysis service by the Content Integration Framework (RESTful counterpart discussed in

earlier section is also a valid choice to extend from).

CognitiveAnalysisService extends from AbstractCognitiveAnalysisService class. Details of

AbstractCognitiveAnalysisService class are covered in the Derivatives of RestService on page 31 topic.

Object extension service

The following are the specialized interfaces and classes available for object extension service:

• com.hcl.unica.system.integration.service.object.extension.ObjectExtensionService

Plugin can alternatively choose Functional approach to implement object extension service by extending

the implementation from ObjectExtensionService class. The ObjectExtensionService class implements the

FunctionalService interface and mandates the ObjectExtensionRequest and the Object classes to be the type

Chapter 3. Plugin Development SDK

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the ObjectExtensionRequest

becomes an input to the object extension service and expects any type of as an output on completion of the service.

ObjectExtensionRequest is covered in more detail under RESTful section of object extension service.

• The plugin must extend its object extension service implementation from the

com.hcl.unica.system.integration.service.object.extension.ObjectExtensionService class to be recognized as a valid

object extension service by the Content Integration Framework (RESTful counterpart discussed in earlier section is

also a valid choice to extend from).

ObjectExtensionService extends from AbstractObjectExtensionService class. Details of

AbstractObjectExtensionService class are covered in the Derivatives of RestService topic.

Collaboration services

Please refer the example services from com.example.service.functional.collaboration package in asset-integration-

starter project. Like any other Functional counterpart of RESTful service implementation, the request & response contract

for Functional collaboration services remain same as their RESTful counterparts. Please refer Derivatives of RestService on

page 31 section for complete list of collaboration services.

Derivatives of InboundHttpService
Derivatives of InboundHttpService facilitates exposing RESTful endpoints coupled with certain predefined features in

Content Integration Framework. As of release 12.1.2, Content Integration Framework allows exposing RESTful endpoints

(webhooks) to receive & process content lifecycle events.

Object event interpreter service (Webhook)

The following are the specialized interfaces and classes available for the object event interpreter service:

• com.hcl.unica.system.integration.service.object.event.ObjectEventInterpreterService

The com.example.service.rest.ExampleEventInterpreterService class in asset-integration-starter project is a quick

starter implementation for an object event interpreter service. It extends from ObjectEventInterpreterService class.

Implementing an object event interpreter service by extending standard ObjectEventInterpreterService exposes a

webhook which can be invoked by the respective content repository to send content lifecycle event notifications.

The ObjectEventInterpreterService class has a type parameter T, which represents the type of request (post

deserialization) received from the client of webhook. In case of ExampleEventInterpreterService, request body is

expected in String format. The type parameter T can be any valid Jackson or JAXB annotated class if JSON or XML

is expected in the request body. Deserialization of JSON & JAXB happens based on the Content-Type request header.

Having said that, Content Integration Framework supports only application/json & text/xml or application/xml type of

request body if automatic deserialization is desired.

Object event interpreter service does not directly respond to the client. Instead, it helps to interpret the incoming

event information and shares the necessary details with Content Integration Framework for further processing.

Content Integration Framework responds to the client accordingly. It responds with 200 HTTP response if

interpretation succeeds. If event interpreter service cannot understand the event and fails to figure out necessary

details about the event, Content Integration Framework responds with appropriate 4xx HTTP error response.

55

Unica Content Integration V12.1.8 Developer Guide

56

ObjectEventInterpreterService class mandates the event interpreter service to implement following methods:

◦ ObjectEventListenerRequestSpec getRequestSpec(ServiceConfig serviceConfig)

This method accepts an object of ServiceConfig class and returns an object of type

ObjectEventListenerRequestSpec. The ObjectEventListenerRequestSpec is essentially the partial specification

of webhook’s signature. The ObjectEventListenerRequestSpec wraps an object of InboundHttpRequestSpec,

which comprises the relative endpoint URL of the webhook, and the HTTP methods supported by the

webhook being exposed. The relative URL can contain path variables enclosed in curly braces. Refer to the

getRequestSpec implementation in ExampleEventInterpreterService. Runtime values for these path variables

can be obtained from InboundHttpRequestContext. See InoundHttpRequestContext<T> on page 26 section

for more details.

Avoiding webhook conflicts

If plugin implements more than one event interpreter services, then it is important to note that no two

interpreter services should expose webhooks with conflicting signatures. For example, if one interpreter

service exposes a webhook with relative URL as /wh/{contentId}, supporting POST method, then another

interpreter service must use different relative URL and/or different HTTP method to form a different signature.

Thus, another webhook for supporting PUT method for the same relative URL /wh/{contentId} would be

completely valid. (Note that single interpreter service can support multiple HTTP methods for same relative

URL.)

◦ Optional<ObjectEventDetails> interpret(InboundHttpRequestContext<T> executionContext)

This method accepts an object of InboundHttpRequestContext<T>, wherein T represents the type

of request body. As explained in InoundHttpRequestContext<T> on page 26 section section,

InboundHttpRequestContext can be used to obtain contextual information, including request payload,

path variables, request parameters & request headers. In response, it is expected to return an object of

ObjectEventDetails comprising the details of the event received via exposed webhook. Return value is

wrapped in Optional since interpreter may not always be able to interpret the incoming event because of

incorrect invocations. In such case, empty Optional should be returned. On successful interpretation, this

method should return an Optional containing an instance of ObjectEventDetails comprising following details

–

◦ IdentifiableObject object- The domain object for which event has been received. The class

corresponding to domain object must implement IdentifiableObject interface and provide object ID &

type accordingly.. In case of deletion events, fully populated object is not desired. Hence, an object of

com.hcl.unica.system.model.DeletedEntity containing the identifier & type of deleted object can be returned.

Refer to the implementation of interpret method in ExampleEventInterpreterService.

◦ ObjectEventType eventType – The type of event.

◦ ObjectState transitionedState – Current relevant state of the object. (As of release 12.1.2, transitionedState

is ignored. It may be used in subsequent releases)

Plugin must extend its event interpreter service from the

com.hcl.unica.system.integration.service.object.event.ObjectEventInterpreterService class for the successful

exposure of webhook by the Content Integration Framework. On successful creation of event interpreter service,

Chapter 3. Plugin Development SDK

Content Integration Framework exposes an endpoint URL in following format relative to the application context root.

The HTTP methods supported by this URL are guided by the getRequestSpec method -

/api/AssetPicker/webhook/{SYSTEM_ID}/events/{eventName}/{contentId}

Wherein,

• {SYSTEM_ID} represents the identifier of the respective system.

• /{eventName}/{contentId} represents the relative URL configured in getRequestSpec method. eventName & contentId

forms the path variables in this example.

Webhook security

All the webhooks exposed in Content Integration Framework are protected by default. See API Security Filter (link to See API

Security Filter configuration in Unica Platform Admin Guide to learn more about API security. If none of the authentication

mechanisms suites the need of Plugin, then event interpreter service can override validate method to perform custom

authentication & authorization. Refer the implementation of validate method in ExampleEventInterpreterService class to

get a brief idea about custom authentication. It demonstrates the use of Platform’s user data source for maintaining API

credentials. The USERNAME & PASSWORD constants represent the authentication information received in webhook request,

either by means of request headers or embedded in the request body itself.

Derivatives of KafkaConsumerService
Derivatives of KafkaConsumerService facilitates receiving messages from Kafka topics. As of release 12.1.2, Content

Integration Framework leverages Kafka consumer service to receive domain object events & subsequently process those

events based on the object attribute mappings.

Object event interpreter service (Kafka listener)

Just like Webhook support can facilitate event receipt over HTTP, Kafka listeners can help to receive events via topics. It is

important to note that, regardless of event channel (HTTP/Kafka), the subsequent event processing is always done based on

the object attribute mapping. The following are specialized classes & interfaces available for implementation of Kafka based

event receivers.

• com.hcl.unica.system.integration.service.object.event.AbstractKafkaEventInterpreterService<K, V extends

IdentifiableObject>

The K & V type parameters to AbstractKafkaEventInterpreterService represent the type of Key & Value components

of the message received from Kafka topic. As of release 12.1.2, only String type of keys are supported, whereas value

type must be subtype of IdentifiableObject. IdentifiableObject’s contract helps Content Integration Framework

identify the type/category & identifier of the domain object corresponding to the event. If null is returned from

getObjectType() implementation, then Content Integration Framework uses {service-name}.request as the category

of corresponding domain object. Wherein, {service-name} is the actual name of the service declared in custom-

plugin-services.yml file for respective event receiver/interpreter service. There is no standard service name for Kafka

based event receiver/interpreter services. The service declaration should also include the eventProfile standard

parameter –

{service-name}
 params:

57

Unica Content Integration V12.1.8 Developer Guide

58

 eventProfile:
 label: Credit Card Transaction

The label parameter works as the title for respective domain object whenever it is shown on the object mapping screen.

Refer the com.example.service.kafka.events.consumer.ExampleKafkaEventInterpreterService class from asset-integration-

starter project for additional clarity.

AbstractKafkaEventInterpreterService declares following methods which service implementation must define –

1. Optional<ObjectEventDetails> interpret(ExecutionContext<KafkaMessage<String, DomainEntity>>

executionContext)This method should interpret the event received via Kafka and possibly provide event details by

means of ObjectEventDetails. The semantics of this method are exactly same as the semantics of interpret method

required for Webhooks.

2. boolean accept(ExecutionContext<KafkaMessage<String, DomainEntity>> executionContext)This is an optional

method. If implemented, this method can determine the acceptance or rejection of the received event. By default,

Content Integration Framework processes all the events successfully interpreted by interpret method. accept

method is called prior to the interpretation. If certain event is not suitable for further consideration, this method can

return false, thereby skipping its interpretation as well as processing.

• com.hcl.unica.system.integration.service.kafka.KafkaMessage<K, V>

KafkaMessage is supplied as request object to previously mentioned methods in

AbstractKafkaEventInterpreterService. It encapsulates the key & value corresponding to the message received via

Kafka topic.

• com.hcl.unica.system.integration.service.object.event.GenericKafkaEventInterpreterServiceKafka

based object event receipt & interpretation can also be done without creating any explicit

service using AbstractKafkaEventInterpreterService. Content Integration Framework provides

GenericKafkaEventInterpreterService for receiving and interpreting object events based on certain

default assumptions. The service declaration in custom-plugin-services.yml file can be pointed to

GenericKafkaEventInterpreterService and fully qualified Java type of associated event object can be declared as

shown below

systemId: Foo
 serviceName: transaction-event-receiver
 factoryClass: c.h.u.s.i.s.object.event.GenericKafkaEventInterpreterService
 params:
 eventProfile:
 class: com.example.service.kafka.events.consumer.DomainEntity
 label: Credit Card Transaction

Wherein, class under the eventProfile service parameter should contain fully qualified name of the class representing domain

object and/or event received via Kafka. The classes specified herein must implement IdentifiableObject. Presently there is no

way to determine acceptance or rejection of events using this approach though.

Platform configuration

Each Kafka consumer service needs certain additional properties to be set in Platform configuration of corresponding

system. Given below is the list of such additional properties. These properties must be listed in “Additional properties”

Chapter 3. Plugin Development SDK

section for respective system configuration. Note that Kafka connectivity details are obtained from Kafka configuration

settings made for the respective system –

Parameter Description

{service-name}.kafka.topics Comma separated list of source topic names

{service-name}.kafka.topics.{topic-name}.value.format Expected message format. Supported formats are Avro &

Json.

{service-name}.kafka.max-consumers Number of required concurrent consumers for the given

service (inclusive of all the topics service would listen to)

{service-name}.kafka.fetch.max.wait.ms Same as standard fetch.max.wait.ms property used for

Apache Kafka consumers

{service-name}.kafka.fetch.min.bytes Same as standard fetch.min.bytes property used for

Apache Kafka consumers

{service-name}.kafka.fetch.max.bytes Same as standard fetch.max.bytes property used for

Apache Kafka consumers

{service-name}.kafka.max.partition.fetch.bytes Same as standard max.partition.fetch.bytes property used

for Apache Kafka consumers

{service-name}.kafka.max.poll.records Same as standard max.poll.records property used for

Apache Kafka consumers

{service-name}.kafka.max.poll.interval.ms Same as standard max.poll.interval.ms property used for

Apache Kafka consumers

{service-name}.kafka.heartbeat.interval.ms Same as standard heartbeat.interval.ms property used for

Apache Kafka consumers

{service-name}.kafka.session.timeout.ms Same as standard session.timeout.ms property used for

Apache Kafka consumers

Note: Refer https://kafka.apache.org/documentation/#consumerconfigs for standard Kafka consumer

configurations.

{service-name} represents the name of service declared in custom-plugin-services.yml file.

For example,

transaction-event-receiver.kafka.topics: topic1, topic2

transaction-event-receiver.kafka.topics.topic1.value.format: Avro

transaction-event-receiver.kafka.topics.topic2.value.format: Json

transaction-event-receiver.kafka.max-consumers: 20

59

https://kafka.apache.org/documentation/#consumerconfigs

Unica Content Integration V12.1.8 Developer Guide

60

transaction-event-receiver.kafka.fetch.max.wait.ms: 500

transaction-event-receiver.kafka.fetch.min.bytes: 26124

transaction-event-receiver.kafka.fetch.max.bytes: 31240

transaction-event-receiver.kafka.max.partition.fetch.bytes: 51124

transaction-event-receiver.kafka.max.poll.records: 200

transaction-event-receiver.kafka.heartbeat.interval.ms: 2000

transaction-event-receiver.kafka.session.timeout.ms: 9000

SASL prerequisites

For SASL connectivity with Kafka, provide appropriate authorization to consumer groups. Content Integration Framework

creates consumer group for each configuration of respective system & assigns identifier to it as per below format -

ci-consumer-{Unica-product-platform-config-node}-{partition-name}-{system-id}-{service-name}

For example, for the event-receiver service in system Foo, following consumer groups will be created if Foo is configured in

partition1 of Unica Centralized Offer Management (Offer) as well as in Unica Journey (Journey).

ci-consumer-offer-partition1-foo-event-receiver (for system configured under Affinium|Offer|partitions|partition1|

assetPicker|dataSources|Foo node in Platform configuration)

ci-consumer-journey-foo-event-receiver (for system configured under Affinium|Journey|assetPicker|dataSources|Foo node

in Platform configuration)

Note: Spaces in system identifier are replaced with dash(-) for composing Kafka consumer group ID.

Derivatives of KafkaProducerService
KafkaProducerService lets publishing messages/records onto Kafka topics. Following are the specialized types available for

creating Kafka publisher service –

• com.hcl.unica.system.integration.service.kafka.AbstractKafkaProducerService<K, V>The type

parameter K & V represents the key & value of the message to be sent onto target Kafka topic. Refer the

com.example.service.kafka.events.producer.ExampleKafkaProducerService from asset-integration-starter

project for a typical service definition. In addition to declaring type arguments, this service must implement the

getServiceInterface() method to be able to invoke Kafka producer service programmatically. Apart from these

declarations, AbstractKafkaProducerService requires no other business logic.

Platform configuration

Once Kafka producer service is defined & declared in custom-plugin-services.yml, certain additional parameters must be

set up to be able to publish to any Kafka topic. Note that Kafka connectivity details are obtained from Kafka configuration

settings made for the respective system. Following additional parameters must be configured in “Additional parameters”

section of respective system configuration –

Chapter 3. Plugin Development SDK

Parameter Description

{service-name}.kafka.topics Comma separated list of target topic names.

{service-name}.kafka.topics.{topic-name}.value.format Expected message format. Supported formats are Avro &

Json.

{service-name}.kafka.batch.size Same as standard batch.size property used for Apache

Kafka producers.

{service-name}. kafka.linger.ms Same as standard linger.ms property used for Apache

Kafka producers.

Note: Refer https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html for standard

Kafka producer configurations.

{service-name} represents the name of service declared in custom-plugin-services.yml file.

For example,

message-publisher-service.kafka.topics: topic1, topic2

message-publisher-service.kafka.topics.topic1.value.format: Json

message-publisher-service.kafka.topics.topic2.value.format: Avro

message-publisher-service.kafka.batch.size: 16900

message-publisher-service.kafka.linger.ms: 10

Invocation of KafkaProducerService

Content Integration Framework does not directly invoke any Kafka producer service. Plugin can define & use such service

if required. Refer com.example.service.client.ExampleKafkaProducerClient from asset-integration-starter project to get

clarity on how already defined Kafka producer service can be invoked from inside any other service. By default, Content

Integration Framework publishes the message onto the topic configured in Platform configuration. As demonstrated in

ExampleKafkaProducerClient, it is important to note that, caller of the service can completely override the target topic

specifications if required.

AbstractEntity
The com.hcl.unica.system.model.AbstractEntity class represents a general domain entity. For the current release, this

abstract class does not contain any implementation.

However, for the Content Integration Framework, plugins must extend their domain entities from the

com.hcl.unica.system.model.AbstractEntity class. This ensures that AbstractEntity is the base for dealing with domain

entities within Content Integration Framework.

As for the plugin implementations, the class used to represent an individual content returned by the simple-search, list-

contents, and get-content-details services must extend from AbstractEntity class.

61

https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html

Unica Content Integration V12.1.8 Developer Guide

62

Presentable
To be able to render an individual content returned by the simple-search, list-contents & get-content-details services , the

domain entity class used by these services must implement the com.hcl.unica.system.model.presentation.Presentable

interface and override the getPresentationDetails() method. The com.hcl.unica.system.model.presentation.Presentable

$PresentationDetails object returned by the getPresentationDetails() method must provide the TextualPresentation as

well as MultimediaPresentation details.

TextualPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide details, if available.

• heading – Title of the content

• subheadings – List of subheadings for the content

• summary – Summary or description of the content

• name – Should be used for filename associated with the content

• tags – Tags associated with the content (out of the box plugins use this to convey MIME type or category of the

content)

Whereas MultimediaPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide details, if available.

• id - Unique identifier of the content

• folderId - Unique identifier of the folder respective content belongs to

• mimeType - MIME type of the original content

• size - Size of original content in bytes

• resourceUrl - Absolute URL to the original content

• thumbnailUrl - Absolute URL to the content thumbnail, if available

• fileName - File name associated with the original content

• type – Type/category identifier of the content (must be one of the values from supported content types set up using

any of the applicable alternatives provided by Content Integration framework)

• list of variants – Each variant supports almost same details as the primary MultimediaPresentation details except

thumbnailUrl (it can only have its own resourceUrl), folderId and variants (variant cannot have any further variants)

Builder API
Almost all the standard types discussed in previous sections provide the builder API for the ease of constructing objects.

For example, TextualPresentation can be built using following syntax instead of splitting it into constructor and setter

operations:

TextualPresentation.builder()
 .heading("Content title")
 .subheadings(Collections.emptyList())
 .name("photo.jpg")

Chapter 3. Plugin Development SDK

 .tags(Collections.singletonList("Image"))
 .build();

It is not mandatory to use builder API for creating standard objects. However, it certainly keeps plugin implementations clean

while dealing with complex objects.

Request Validation
The AbstractService<RQ, RS> interface declares a method to support request validation in service implementations.

RESTful as well as Functional services implement AbstractService. Hence, services implemented using either of the

approaches can override void validateRequest(ExecutionContext<RQ> executionContext) method to perform any

validation on incoming request before serving it. Refer to the com.example.service.rest.ExampleObjectExtensionService

class from asset-integration-starter project to learn how validateRequest method performs basic checks and throws

InvalidServiceRequestException to convey validation failure. Validation failures can be conveyed using localized error

messages. Please refer to the I18n Support section to learn about localization support.

Standard exceptions
Standard exceptions include exceptions provided by the Content Integration SDK, which can be used by the plugins to convey

different failure conditions during service execution.

RESTful approach
Content Integration Framework handles error conditions, arising from services implemented using RESTful approach.

Additionally, Content Integration Framework initiates and handles the execution of remote API call for RESTful integrations,

so that it can keep track of the success of all the HTTP operation. Thus, the plugins do not require any special exception to

convey the failure of the REST call. If something goes wrong inside the service implementation; any appropriate unchecked

exception is sufficient to convey the operation failure. Such exceptions are further conveyed as 502 HTTP response to the

client.

Functional approach
Since Content Integration Framework does not initiate and manage the outgoing connections in case of Functional services,

it cannot keep track of end to end success.

Hence, it provides certain standard exceptions, which the service implementations can throw to convey relevant

failure conditions. These exceptions are related to communication with the target system and are present within the

com.hcl.unica.system.integration.exception package.

• SystemNotFoundException

This exception must be used when the target system or content repository cannot be located. Alternatively,

java.net.UnknownHostException can also be used. This exception is conveyed as 404 HTTP response to the client.

• ServiceNotFoundException

This exception must be used when the remote endpoint returns 404, or if the target service no longer exists.

Absence of the target system and the absence of the required service are considered as different things. Hence, the

63

Unica Content Integration V12.1.8 Developer Guide

64

ServiceNotFoundException conveys presence of the target system and the absence of the required service, or feature,

on the target system. For example, in case of content fetched from the database, the absence of the required table

(or the absence of the permission to access it) can be conveyed using this exception. This exception is conveyed as

404 HTTP response to the client.

• UnreachableSystemException

This exception must be used to convey unreachable or inaccessible target systems, such as connection timeout.

Alternatively, java.net.ConnectException can also be used. This exception is conveyed as 503 HTTP response to the

client.

• SluggishSystemException

When the response from the target system is not received within expected time, this exception must be used to

convey the slowness of the target system. Alternatively, java.net.SocketTimeoutException can also be used. This

exception is conveyed as 504 HTTP response to the client.

• InternalSystemError

This exception must be used if the plugin receives a temporary, or unexpected, error from the target system to convey

the problems in it. This exception is conveyed as 502 HTTP response to the client.

Any other exceptions are conveyed as 502 HTTP response to the client. In any case, the message in the exception is never

returned to the client. Each HTTP response code carries a fixed, generic, and localized message.

Content Integration Framework wraps the exceptions received from service implementations

into com.hcl.unica.system.integration.exception.ServiceExecutionException or its subtype.

Exceptions received from REST-based services or HTTP-based services are wrapped in

com.hcl.unica.system.integration.exception.HttpServiceExecutionException, whereas the ones received from Functional

services are wrapped in com.hcl.unica.system.integration.exception.ServiceExecutionException.

As explained in Service invocation on page 23, HttpServiceExecutionException provides a method to obtain an

Optional<HttpResponse> object. If the service execution fails before initiating an HTTP call, then this Optional object will not

contain any HttpResponse.

Loggers
Content Integration Framework provides logging interface using the slf4j library. By adding dependency for the slf4j library,

the plugins can use its API for adding loggers inside service implementations.

The starter as well as reference projects included in dev-kits manage their dependencies using Apache Maven. The

following entry is found in the POM file:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.30</version>
 </dependency>

Use 1.7.30 or higher version of slf4j-api to avoid conflict. Once the required dependency is added, the logger object can be

obtained by directly accessing the slf4j API.

Logger log = LoggerFactory.getLogger(YOUR_CLASS.class);

Chapter 3. Plugin Development SDK

Alternatively, project Lombok can also be used to get the logger object for your class. Lombok provides @Slf4j annotation,

which can be used to inject the earlier mentioned property inside the annotated class. For more information on project

Lombok, please visit its official web page.

Additionally, the application logs can be found in AssetPicker/logs directory under platform home. By default, all the

loggers from your plugin will reside in the common log file configured in AssetPicker/conf/logging/log4j2.xml

file. You can alter the log4j2.xml configuration file to route your loggers to a different file, for troubleshooting during

development. Configuration of log4j2 is not part of the scope of this guide. Please refer to the official documentation of

Apache Log4j2 for more information.

65

66

Chapter 4. Setting up the development environment
Set up the development environment in Eclipse IDE for writing your plugins. Use any Java EE IDE of your choice and make the

required configurations mentioned in this topic. You need certain artifacts from <ASSET_PICKER_HOME> to complete the

environment setup. This topic will provide information about project building and packaging using Apache Maven so ensure

that you have Apache Maven installed.

About this task

To set up the development environment, complete the following steps:

1. From the <ASSET_PICKER_HOME>/dev-kits/ location, copy the asset-integration-starter project and

place it in your development workspace.

2. Open the Eclipse IDE.

3. Select File > Import.

Result

The Select dialog appears.

4. Select WAR file and click Next.

Result

The WAR Import dialog appears.

5. Click Browse, navigate to <ASSET_PICKER_HOME>, and select asset-viewer.war file.

6. Click Finish.

Result

The WAR Import: Web libraries dialog appears.

7. Click Finish.

8. Select Window > Show View > Other.

Result

The Show View dialog appears.

9. Select Servers and click Open.

As an example, we will illustrate the use of Apache Tomcat 9.0 for running Content Integration. You can use any

supported application server and make the required configurations.

a. Open the conf/server.xml file from your Apache Tomcat 9.0 installation directory and add the following

entry, with appropriate database details, inside the <GlobalNamingResources> element. Please replace

<DRIVER_CLASS_NAME>, <URL_TO_YOUR_PLATFORM_DATABASE>, <DATABASE_USERNAME>, and

<DATABASE_PASSWORD> with Platform database details:

<Resource auth="Container" driverClassName="{DRIVER_CLASS_NAME}"
 maxActive="20"
 maxIdle="0"
 maxWait="10000"
 name="UnicaPlatformDS"
 password="{DATABASE_PASSWORD}"
 username="{DATABASE_USERNAME}"
 type="javax.sql.DataSource"
 url="{URL_TO_YOUR_PLATFORM_DATABASE}"/>

Chapter 4. Setting up the development environment

b. Open the conf/context.xml file from your Apache Tomcat 9.0 installation directory and add the following

entry inside the <Context> element:

<ResourceLink auth="Container" global="UnicaPlatformDS" name="UnicaPlatformDS"
type="javax.sql.DataSource"/>

10. To add Apache Tomcat 9.0 as a new server in Eclipse, complete the following steps:

a. In the Servers tab, click the link to create a new server.

Result

The Define a New Server dialog opens.

b. Select Tomcat v9.0 Server and provide values for Server host name and Server name.

c. Click Next.

Result

The server is successfully added.

d. In the Servers tab, double-click the newly added server entry.

Result

The Overview dialog appears.

e. Click the link Open launch configuration.

Result

The Edit launch configuration properties dialog appears.

f. Edit the launch configurations to the add following JVM arguments

-DASSET_PICKER_HOME=<Point this to <ASSET_PICKER_HOME> directory>
-Dspring.profiles.active=platform-disintegrated

g. Click OK.

11. To run the imported asset-viewer.war file on Apache Tomcat 9.0, right click the asset-viewer.war file and

select Run As > Run on Server.

Result

The Run on Server dialog appears.

12. Click Finish.

Result

The asset-viewer.war will start executing on Apache Tomcat. After the setup is verified, stop the server and

import the plugin development starter project.

13. To install Content Integration SDK, complete the following steps:

a. In the following directories, delete the SDKs that are already installed:

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\integration-api\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\standard-integrations \0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\asset-integration-api\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\entity-mapper-api\0.0.1-SNAPSHOT

67

Unica Content Integration V12.1.8 Developer Guide

68

On UNIX or Mac OS X, <LOCAL_M2_REPOSITORY> refers to the ~/.m2/repository directory.

On Microsoft Windows, <LOCAL_M2_REPOSITORY> refers to the C:\Users\{your-

username}\.m2\repository directory.

b. Use the following commands to install Content Integration SDKs into your local Maven repository. Find

asset-integration-api.jar, integration-api.jar, standard-integrations.jar and

entity-mapper-api.jar inside the <ASSET_PICKER_HOME>/dev-kits/sdk directory.

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/asset-integration-api.jar
 -DgroupId=com.hcl.unica -DartifactId=asset-integration-api -Dversion=0.0.1-SNAPSHOT
 -Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/integration-api.jar
 -DgroupId=com.hcl.unica -DartifactId=integration-api -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/standard-integrations.jar
 -DgroupId=com.hcl.unica -DartifactId=standard-integrations -Dversion=0.0.1-SNAPSHOT
 -Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/entity-mapper-api.jar
 -DgroupId=com.hcl.unica -DartifactId=entity-mapper-api -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

14. To import the plugin development starter project, select File > Import.

Result

The Select dialog appears.

15. Select Existing Maven Projects and click Next.

Result

The Maven Projects dialog appears.

16. Click Browse to select the project and click Finish.

17. To update Maven dependencies of the asset-integration-starter project, right-click the asset-

integration-starter project and select Maven > Update Project.

18. Ensure that newly imported project is using Java 8 to compile sources. Open project properties and complete the

following steps to setup the compiler:

a. Select Java Compiler.

b. If Compiler compliance level is non-editable, select Enable project specific settings.

c. Change the Compiler compliance level to 1.8.

d. Click Apply and Close.

19. To ensure that the right Java library is set up in the build path, complete the following steps:

a. Select Java Build Path > Libraries.

b. Select JRE System Library (J2SE-1.5).

c. Click Remove.

d. Click Add Library.

Result

The Add Library dialog opens.

Chapter 4. Setting up the development environment

e. Select JRE System Library > Next.

Result

The JRE System Library appears.

f. Select an appropriate library and click Finish.

20. To enable annotation processing, complete the following steps:

a. Select Java Compiler > Annotation Processing.

b. Select Enable project specific settings.

c. Select Apply and Close.

21. To install Lombok, complete the following steps:

a. Double-click the LOCAL_M2_REPOSITORY\org\projectlombok\lombok

\1.18.16\lombok-1.18.16.jar.

Result

The installer dialog appears.

b. To specify the installation location of your IDE, click Specify location.

c. To complete the installation, click Install / Update.

d. Post installation of Lombok, restart the IDE.

22. To change the project name, complete the following steps:

a. Open the file pom.xml and change its Maven project properties.

b. Right-click the asset-integration-starter project and select Refactor > Rename.

23. In the <ASSET_PICKER_HOME>/conf/custom-plugin-services.yml file, declare the plugin services. You can

access this file later to add declarations when you introduce services for your plugins.

24. To add plugin project to the deployment assembly of the asset-viewer.war project, complete the following steps:

a. Right-click the asset-viewer.war project and select Properties.

Result

The Properties for asset-viewer dialog opens.

b. Select Deployment Assembly.

c. Select Add.

Result

The Select Directive Type dialog opens.

d. Select Project and click Next.

e. Select the asset-integration-starter plugin project you imported in previous steps and click Finish.

25. If necessary, clean the projects.

26. Make the appropriate configuration for your system in <ASSET_PICKER_HOME>/conf/systems.properties

(refer sample-systems.properties file available in the <ASSET_PICKER_HOME>/dev-kits/asset-

69

Unica Content Integration V12.1.8 Developer Guide

70

integration-starter project). All the system onboarding configurations mentioned in Unica Content Integration

Administration Guide are supported in systems.properties using relevant properties.

27. As you develop your plugin, check it by running the asset-viewer.war project on a previously configured

application server. Since the project would already be added to the Deployment Assembly of asset-viewer.war,

changes to your plugin project will be deployed whenever you run the asset-viewer.war project.

28. As you develop your plugin, by adding services to it, use a tool of your choice to hit the following REST endpoints

(change the context root to match your setup) to verify the accuracy of your implementation:

a. Ensure system onboarding

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/instances

Request Method GET

b. Verify simple-search service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/assets?query=mountain&page=0&siz

e=10&types=Phto

where,

• mysystem represents the system identifier

chosen by plugin implementation.

• query contains the search keyword to

lookup the content for.

• page & size contains pagination details,

where page is the serial number of pages

to be retrieved and size is the total search

items on a single page.

• types is one of the supported content

categories (types) to filter the search items

against.

Request Method GET

When you hit the URL, ensure that the response JSON contains the expected result. Only presentation

details are included for every search items. Other content properties are excluded for the sake of brevity and

performance.

c. Verify resource-loader service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/download?resource=

Chapter 4. Setting up the development environment

http://repository_base_url/contents/sample_ima

ge.jpg%26resourceId=12345"

where

• mysystem represents the system identifier

chosen by plugin implementation.

• resource contains the absolute URL

content to be downloaded.

• resourceId contains the identifier of the

content to be downloaded.

(Plugin can choose to utilize either resource or

resourceId or both to load the content.)

Request Method GET

d. Verify list-folders service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/folders?parentFolderId=1234

where:

• mysystem represents the system identifier

chosen by plugin implementation.

• parentFolderId contains the identifier

of the parent folder whose immediate

subfolders are expected in response. This

query parameter is optional & not supplied

while listing the top/root level folders.

Request Method GET

e. Verify list-contents service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/folders/1234/contents

where:

• mysystem represents the system identifier

chosen by plugin implementation.

• 1234 represents the identifier of the folder

whose immediate contents are expected in

response.

Request Method GET

Only presentation details are included for every content listed by the list-contents service. Other content

properties are excluded for the sake of brevity and performance.

71

Unica Content Integration V12.1.8 Developer Guide

72

f. Verify get-content-details service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/assets/Images/1234

where:

• mysystem represents the system identifier

chosen by plugin implementation.

• Images represents the category ID of the

content whose details are expected in

response.

• 1234 represents the identifier of the content

whose details are expected in response.

Request Method GET

The JSON response produced by get-content-details service includes all the content properties, in addition

to the presentation details.

g. Verify get-object-schema service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/object-mapping/application/mysystem/objec

t/Images/1234/schema

where:

• mysystem represents the system identifier

chosen by plugin implementation.

• Images represents the category of the

reference content being used for schema

generation.

• 1234 represents the identifier of the

reference content being used for schema

generation.

As of 12.1.0.4, content identifier and category are

not much relevant since the schema is expected

to include attributes for all the supported content

categories.

Request Method GET

The JSON response must contain the flattened list of all mappable attributes and their metadata.

h. Verify list-content-categories service

Chapter 4. Setting up the development environment

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/mysystem/categories

where:

• mysystem represents the system identifier

chosen by plugin implementation.

Request Method GET

i. Verify get-cognitive-analysis service

Endpoint URL http://localhost:8888/asset-viewer/api/AssetPi

cker/actions/cognize?url=absolute_image_url

where:

• url contains absolute URL of the image to

fetch the cognitive analysis for

Request Method GET

73

74

Chapter 5. Verification and troubleshooting
To verify end-to-end integration, place the JAR file, containing the plugin implementation, in the class path of the application

server where the Content Integration is deployed. Additionally, configure the corresponding content repository in

<ASSET_PICKER_HOME>/conf/systems.properties file (you can refer to the sample-systems.properties file

within the <ASSET_PICKER_HOME>/dev-kits/asset-integration-starter project).

All the system onboarding configurations, mentioned in Unica Content Integration Administration Guide, are supported in

the systems.properties using relevant properties. You must provide -Dspring.profiles.active=platform-disintegrated

JVM argument for systems.properties to come into effect (you can always use Platform’s configurations instead of

systems.properties by removing -Dspring.profiles.active=platform-disintegrated JVM argument).

Note: Currently, only Unica Centralized Offer Management and Unica Plan can access Content Integration.

After the plugin is deployed, and the system configurations are made, restart the Content Integration application.

Although, you can verify Content Integration using REST endpoints mentioned in previous section, we recommend you to

check end-to-end integration by running through the relevant user interface in Unica Centralized Offer Management and

Unica Plan. Please refer to the corresponding user guides to learn how to access Content Integration features in respective

products.

Use developer tools provided by the supported browsers to troubleshoot the API calls, if required.

Overview of loggers
As mentioned in Verification of integration, the logging configuration for Content Integration is available in thelog4j2.xml

file, placed in the AssetPicker/conf/logging folder within Platform home.

Content Integration uses Apache Log4j2 for log management. The RandomAccessFilePlatform appender along with com.unica

logger configured in log4j2.xml controls the logs produced by Platform's unica-common.jar and unica-helper.jar

used in Content Integration. The remaining settings control logging for other core activities of Content Integration.

The default log level is set to WARN in both cases, which should be sufficient for the troubleshooting needs for plugin

development. Most of the loggers, produced by the Content Integration at INFO & DEBUG level, are not extremely relevant for

plugin development & integration. The following topics elaborate only the relevant loggers. These loggers are already present

in log4j2.xml file and need to be uncommented, if required. Please ensure that log level is never set to DEBUG or TRACE for

these loggers in production since they can generate sensitive information.

The log4j2.xml file also contains necessary configurations to route all the loggers for a specific user to a dedicated log

file. By default, these configurations are commented. Appropriate description is added in log4j2.xml at the top of each

configuration element to help activate the dedicated log file.

Useful loggers in log4j2.xml file
The following table lists the useful loggers in the log4j2.xml file:

Chapter 5. Verification and troubleshooting

Table 2. Useful loggers in log4j2.xml file

Loggers Information

org.springframework.web Setting this logger to TRACE level produces HTTP request

and response details for all the incoming HTTP requests

to Content Integration. This logger can be useful if you

want to see what is being exchanged between frontend

and backend.

com.hcl.unica.cms.integration

.flow.interceptor.logger

This logger is most useful for plugin development. It

logs the HTTP interaction between Content Integration

Framework and the target repository. For any service

implemented using RESTful approach (by implementing

RestService, HTTPService or their specialized derivatives),

this logger will write HTTP request and response details

for all the outbound HTTP interactions with target system.

To prevent security vulnerability, values of confidential

headers are masked before logging. Only the last four

characters are left unmasked for troubleshooting. Such

headers include standard header Authorization, or any

non-standard custom headers set in request or received in

response.

org.springframework.retry Setting this logger to TRACE level adds information related

to retrial attempts while making HTTP calls to the target

repository. This is useful to verify Retry Policy set up

under QOS section for the respective system in Platform

Configuration.

com.hcl.unica.system.integration.flow.object.event &

com.hcl.unica.system.integration.service.object.event

Setting this logger to INFO level produces logs

pertaining to the content event processing. Each

content event received via webhook is assigned a

unique identifier. Every logger thus produced contains

the unique identifier to help tracing end to end

processing of each event. Every log line begins with

“Event#aa09af83-0f52-4d0c-82de-370e96a0f4c2”,

wherein the part after hash sign is unique event

identifier. These event processing logs are recorded in

a separate file named asset-picker-webhook.log under

<ASSET_PICKER_HOME>/logs directory.

75

Unica Content Integration V12.1.8 Developer Guide

76

Other important loggers
Other important loggers are useful in troubleshooting Content Integration. Along with spotting warnings and errors, these

loggers provide information that is useful from a functional point of view.

The following table lists the other important loggers:

• Client applications - If root logger level is set to INFO level, the following lines tells you the number of client

applications, and which client applications Content Integration can identify:

SupportedClientApplications: Found {1} supported client applications.
SupportedClientApplications: Registered {Offer} as supported client application.

• CORS - If root logger is set to INFO level, the following lines can provide information about Content Integration’s

support for Cross Origin Resource Sharing:

RegexCorsConfig: CORS: Enabling CORS for {hcl.com} & its subdomains. Allowed HTTP methods - {[GET,
 POST]}, allowed headers - {[*]}
RegexCorsConfig: CORS: Allowed origins set to {[http(s)?://([^\.]+\.)*hcl.com(:[0-9]+)?]}

• Platform configuration - Content repositories - Setting the root logger level to INFO tells us about the content

repositories that are identified by Content Integration Framework.

PlatformConfigurationCategoryResolver: Platform configuration: Reading list of entries for path
 {Affinium|Offer|partitions|partition1|Content Integration|dataSources}...
PlatformCmsConfigurationReader: Platform configuration: Imported settings for {AEM#119[partition1]}
PlatformCmsConfigurationReader: Platform configuration: Imported settings for {WCM#119[partition1]}
PlatformCmsConfigurationReader: Platform configuration: Imported settings for {Bing#119[partition1]}

• Service meta information files - The following lines are also logged at INFO level to tell how many service meta

information files have been identified by Content Integration Framework:

c.h.u.s.c.s.PluginServicesYamlConfigReader: Scanning & parsing service configuration files.
c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at
 {<ASSET_PICKER_HOME>\conf\plugin-services.yml}.
c.h.u.s.c.s.PluginServicesYamlConfigReader: Found service config file at
 {<ASSET_PICKER_HOME>/conf/plugin-services.yml}
c.h.u.s.c.s.PluginServicesYamlConfigReader: Parsing service configuration file (YAML):
 {<ASSET_PICKER_HOME>/conf/plugin-services.yml}...
c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at
 {<ASSET_PICKER_HOME>\conf\custom-plugin-services.yml}.
c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s) found for {COM} -
 {[COM:get-object-schema]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {12} service declaration(s) found for {WCM} -
 {[WCM:item-details, WCM:simple-search, WCM:content-list, WCM:logon-service, WCM:list-contents,
 WCM:library-list, WCM:get-content-details, WCM:folder-list, WCM:get-object-schema, WCM:list-folders,
 WCM:library-by-id, WCM:resource-loader]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {31} service declaration(s) found for {Deliver} -
 {[Deliver:update-folder, Deliver:simple-search, Deliver:list-by-ids, Deliver:zip-file-upload,
 Deliver:delete-content, Deliver:move-folder, Deliver:create-content, Deliver:list-folders,
 Deliver:zip-upload-template-unknown, Deliver:move-content, Deliver:list-sub-folders,
 Deliver:download-content-variant, Deliver:download-file-attachment, Deliver:get-user-entitlements,
 Deliver:list-top-folders, Deliver:update-dynamic-content, Deliver:create-folder,
 Deliver:find-libraries-by-name, Deliver:resource-loader, Deliver:zip-upload-content,
 Deliver:adopt-dynamic-content, Deliver:get-folder, Deliver:create-dynamic-content,
 Deliver:list-contents, Deliver:get-content-details, Deliver:patch-content, Deliver:delete-folder,
 Deliver:get-library, Deliver:update-content, Deliver:get-library-file, Deliver:adopt-content]}

Chapter 5. Verification and troubleshooting

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s) found for {Azure} -
 {[Azure:get-cognitive-analysis]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s) found for {DX-CORE} -
 {[DX-CORE:logon-service]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s) found for {DX}
 - {[DX:simple-search, DX:list-contents, DX:get-content-details, DX:rendition-details,
 DX:get-object-schema, DX:list-folders, DX:resource-loader]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s) found for {Commerce}
 - {[Commerce:simple-search, Commerce:list-contents, Commerce:get-content-details,
 Commerce:get-search-query-suggestions, Commerce:list-content-categories, Commerce:get-object-schema,
 Commerce:list-folders]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s) found for {AEM} -
 {[AEM:simple-search, AEM:list-contents, AEM:get-content-details, AEM:get-object-schema,
 AEM:get-content-fragment-model, AEM:list-folders, AEM:sample-inbound-service]}
c.h.u.s.c.s.PluginServicesYamlConfigReader: {2} service declaration(s) found for {Bing} -
 {[Bing:simple-search, Bing:get-content-details]}

• Authentication protocols - The following lines, logged at INFO level, confirms the authentication protocol is identified

for the given content repository:

AssetPickerRestTemplate: Setting up {BASIC} authentication for {Offer[partition1].WCM:simple-search}
 service...

• Platform configuration cache invalidation and service re-initializations - All the Platform configurations for Content

Integration are cached during application startup. These configurations are refreshed after certain interval (every

30 mins by default unless configured to use some other interval). The following logger is produced at INFO level,

whenever configuration refresh begins:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initializing services...

Similarly, the following lines are generated at INFO level whenever it is over:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Finished service initializations.
INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initialization completed in 3692 milliseconds.
 YAML read time: 15 milliseconds, DB Read Time: 3608 milliseconds, Service initialization time: 68
 milliseconds

77

	Unica Content Integration V12.1.8 Developer Guide
	Contents
	Chapter 1. Overview
	Plugins
	Integration support and plugin development approach
	RESTful content search flow
	Non-RESTful content search flow

	Chapter 2. Plugin development overview
	Components of plugin
	Service declarations
	Service declaration file

	Standard services
	Service implementations
	RESTful approach
	Functional approach
	Common methods

	Best approach selection

	Chapter 3. Plugin Development SDK
	Generic type parameters
	RestService<RQ, RS>
	FunctionalService<RQ, RS>
	ServiceGateway<RQ, RS>
	ObjectEventInterpreterService<T>
	KafkaConsumerService<K, V, RS>
	AbstractKafkaProducerService<K, V>

	I18n support
	Service invocation
	Multi-partitioned clients

	Execution context
	User data source

	Standard services and specialized types
	Invocation of standard services
	Specialized types
	Derivatives of RestService
	Simple search (simple-search)
	List content categories (list-content-categories)
	List folders (list-folders)
	List category folders (list-category-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get cognitive analysis (get-cognitive-analysis)
	Object extension service
	Collaboration services

	Derivatives of HttpService
	Resource loader (resource-loader)

	Derivatives of FunctionalService
	Simple search (simple-search)
	Resource loader (resource-loader)
	List content categories (list-content-categories)
	List folders (list-folders)
	List category folders (list-category-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get object schema (get-object-schema)
	Get cognitive analysis (get-cognitive-analysis)
	Object extension service
	Collaboration services

	Derivatives of InboundHttpService
	Webhook security

	Derivatives of KafkaConsumerService
	SASL prerequisites

	Derivatives of KafkaProducerService
	AbstractEntity
	Presentable
	Builder API

	Request Validation
	Standard exceptions
	RESTful approach
	Functional approach

	Loggers

	Chapter 4. Setting up the development environment
	Chapter 5. Verification and troubleshooting
	Overview of loggers
	Useful loggers in log4j2.xml file
	Other important loggers

