
Unica Content Integration
V12.1 Developer Guide

Contents

Chapter 1. Overview.. 1

Plugins.. 1

Integration support and plugin development approach... 1

RESTful content search flow.. 2

Non-RESTful content search flow.. 3

Chapter 2. Plugin development overview.. 4

Components of plugin...4

Service declarations...5

Standard services.. 11

Service implementations...17

Chapter 3. Plugin Development SDK... 24

Generic type parameters.. 24

Service invocation... 27

Execution context..31

User data source... 33

Standard services and specialized types.. 33

Invocation of standard services... 34

Specialized types... 37

Standard exceptions... 63

RESTful approach.. 63

Functional approach..63

Loggers...65

Chapter 4. Setting up the development environment... 67

Contents | iii

Chapter 5. Verification and troubleshooting.. 79

Overview of loggers.. 80

Useful loggers in log4j2.xml file...80

Other important loggers..82

Chapter 1. Overview

Unica Content Integration facilitates easy integration with Content Management Systems

and enables searching content from them.

The fetched content can be used by the client of Unica Content Integration for various

content-oriented business use cases. A Unica Content Integration client is any product from

Unica Suite which integrates with it to consume the content from the target systems.

Plugins
To integrate with different CMS, Unica Content Integration uses REST APIs. Since each CMS

has a unique programming interface, Unica Content Integration uses custom plugins or

modules written specifically for the target CMS.

You can implement plugins using Java programming language. Unica Content Integration

does not enforce any dependency of any third-party library for developing such plugins. You

can customize plugins to utilize any third-party library for its implementation. Plugins can be

used to fill in the logical gaps related to the target system.

Plugins non-intrusively augment Unica Content Integration to fetch desired content from

external content store.

Integration support and plugin development approach
Unica Content Integration provides out-of-the-box support for easy integration with RESTful

interfaces. It also facilitates alternative approach of plugin development to integrate with

non-RESTful systems such as database, file systems, or any other content repository.

A typical plugin written for REST API integration does not contain any logic to establish

connection with the target system, and to handle protocol level success and failure

conditions. Such responsibilities are handled by the Content Integration Framework. Plugins

provide only system-specific pieces of information, such as:

Unica Content Integration V12.1 Developer Guide | 1 - Overview | 2

• absolute location of the target API

• HTTP method to be used

• headers to be supplied

• request body to be sent

• type of the response to be expected

• transformer for the received response

An alternate plugin development approach for non-RESTful integration involves thorough

implementation. For example, a plugin written for fetching content from database needs to

address everything involved in making DB connection, executing SQLs, closing connections,

result set hydration, failure handling etc.

Plugins do not initiate the content search. Content Integration Framework first receives the

search request, which is delegated to the respective plugin. In case of RESTful integrations,

Content Integration Framework initiates the HTTP interaction and gathers the necessary

information from the plugin, when required.

RESTful content search flow
The following figure shows the end-to-end execution flow for RESTful content search:

Figure 1. RESTful content search flow

When Content Integration Framework receives content search request from user for the

target system, it consults with the respective plugin to gather request specific logical

Unica Content Integration V12.1 Developer Guide | 1 - Overview | 3

information and makes an API call to the target system. It consults with the plugin once

again to transform the API response into an expected format and responds to the user.

Non-RESTful content search flow
The following figure shows the end-to-end execution flow for Non-RESTful content search:

Figure 2. Non-RESTful content search flow

Non-RESTful plugins interact with the content repository and provides the search results to

Content Integration Framework. Unlike RESTful repositories, Content Integration Framework

will not know the type, architecture, protocol and the authentication mechanism used for

communicating with the target repository.

Chapter 2. Plugin development overview

Unica Content Integration facilitates easy integration with new content repositories without

having to alter the core Content Integration framework.

Unica Content Integration seamlessly integrates with system-specific, independent

plugins. Once the plugin is developed and dropped under the <ASSET_PICKER_HOME>/

plugins/custom directory on the application server hosting Content Integration, the

corresponding content repository can be onboarded in the Unica product suite by updating

a few configurations in Unica Platform. For more information, see Unica Content Integration

Administrator's Guide

Note: <ASSET_PICKER_HOME> refers to the base installation directory of

Unica Content Integration placed within Platform home. Hence, any further use of

<ASSET_PICKER_HOME> in this guide should be considered as a path to the Content

Integration directory within Platform home.

Unica Content Integration is shipped with a development kit containing the dependencies,

reference projects, and a starter project to quick start the plugin development. Development

kit is placed within the <ASSET_PICKER_HOME>/dev-kits directory. Four reference

projects, named aem-integration, wcm-integration, dx-integration, and commerce-

integration are available for Adobe Experience Manager (AEM), IBM Web Content

Manager (WCM), HCL Digital Experience and HCL Commerce, respectively.

Components of plugin
A typical plugin contains the following components:

• Service declarations (on page 5)

• Service implementations (on page 17)

The term Service represents a Java class, which either indirectly aids in consuming an

external REST service, or directly interacts with external web service(s) or system(s) for a

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 5

designated purpose. External system need not be a standard Content Management System

and external services need not belong to any standard CMS. It can be any system or an API.

Any service implemented by the plugin must be declared in a centrally managed service

declaration file. A service declaration file is an YML configuration file containing the

list of services implemented by all the available plugins. The service declaration file

must be named custom-plugin-services.yml. It should be available within the

<ASSET_PICKER_HOME>/conf directory. Structure of custom-plugin-services.yml

file must be similar to the plugin-services.yml file, which exists in the same directory.

The plugin-services.yml file contains service declarations for out-of-the-box system

integrations. A service can either be a standard service or a custom service.

Standard services carry special semantics and purpose in Unica Content Integration.

Implementation of certain standard services is mandatory for Content Integration

Framework to work with the content repository.

Service declarations
Reference service declarations can be found inside asset-integration-starter

project within dev-kits\asset-integration-starter\src\main\resources

\META-INF directory.

The following are example service declarations from asset-integration-starter

project:

services:

 -

 systemId: Foo

 serviceName: simple-search

 factoryClass: com.example.service.rest.SimpleSearchService

 params:

 supportedContentTypes: # Standard parameter, applicable only for

 simple-search service

 Images: Images

 customParam1: p1Value # String parameter

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 6

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: resource-loader

 factoryClass: com.example.service.rest.ResourceLoaderService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: asset-selection-callback

 factoryClass: com.example.service.rest.ContentSelectionCallbackService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 7

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

 -

 systemId: Foo

 serviceName: custom-service

 factoryClass: com.example.service.rest.CustomService

 params:

 customParam1: p1Value # String parameter

 customParam2: 1234.56 # Numeric parameter

 customParam3: # Key-value/Dictionary/Map parameter

 p3Key1: p3Value1

 p3Key2: p3Value2

 p3Key3: p3Value3

 customParam4: # Array parameter

 - p4Value1

 - p4Value2

 - p4Value3

Service declaration file

Service declaration file contains services element, which is an array of individual service

declarations. A service declaration is a dictionary containing three mandatory elements

named systemId, serviceName, and factoryClass, and one optional element named

params. Details of the elements are as follows:

• systemId

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 8

This string value uniquely identifies a target content repository. This identifier should

preferably contain only English alphanumeric characters. Use dots, dashes, and

underscores to enhance readability. Avoid any other special characters and unicode

characters. Identifier once chosen for the target system must remain consistent across

all service declarations for the same system. This identifier is also used in Unica

Platform configuration for onboarding the respective system.

The following are some examples of valid system identifiers:

WCM

AEM

Example

WCM_1.0

AEM_1_1

DX-CORE

DX

You can write different plugins for different versions of the same system. In such case,

different identifiers must be used to identify each version distinctly. Alternatively, the

same plugin may contain different versions of service implementations specific to

different versions of the corresponding system. In such case, different systemIds must

be carefully assigned to the respective service declarations. For example, two different

versions of WCM, namely 1.0 and 2.0 may contain different APIs for content search

service, thereby causing following service entries for respective versions:

 -

 systemId: WCM_1.0

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_1_0.WcmSimpleSearchService

 -

 systemId: WCM_2.0

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_2_0.WcmSimpleSearchService

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 9

The two entries may belong to the same plugin or may be placed in two different

plugins for the sake of implementation clarity. Content Integration Framework does not

impose any restrictions.

• serviceName

This string value uniquely identifies the given service for corresponding system. It can

either be a name of Standard service, or an appropriately chosen name for the custom

service. The following is the list of standard service names:

◦ simple-search

◦ resource-loader

• factoryClass

This is a fully qualified path to the Java class providing service implementation.

• params

Provides a way to supply static parameters to the service to control, or modify, service

behavior according to the parameter values. In short, params can be used to hold static

key-value configuration for service implementations. This can include certain standard

service parameters as well as any custom parameters that a service might want to use.

Parameter values are converted into the objects of closest matching primitive wrapper

classes, such as Integer, Long, Double, String etc. A parameter value can also be a map,

array, or list of other values (plugins must verify the runtime-type of these values before

using them).

Service declaration file also contains certain properties pertaining to the target content

repository. These properties are covered under systems root element. The following is an

example of such entry containing all the supported properties:

systems:

YOUR_SYSTEM_ID:

 params:

 param1: value1

 param2:

 k1: v1

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 10

 k2: v2

 param3: 100

 additionalFeatures:

 securityPolicy: false

 content:

 paginatedSearch: true

 paginatedList: true

 anonymousContent: true

This example entry shows the default values considered for each property mentioned herein

in case no such entry is present for the given target repository. Thus, this entry is optional

unless one or more of these default considerations do not hold true for the target content

repository. Below section briefs the significance of each property:

params - Provides a way to supply static parameters to the respective plugin to control or

alter plugin behavior according to the parameter values. In short, params can be used to

hold static key-value configuration for plugin implementations. This can include predefined

standard system parameters as well as any custom parameters that a respective plugin

might want to use. Parameter values are converted into the objects of closest matching

primitive wrapper classes, such as Integer, Long, Double, String etc. A parameter value can

also be a map, array, or list of other values (plugins must verify the runtime-type of these

values before using them).

additionalFeatures | securityPolicy - This setting must be set to true when content is

protected inside respective system using Unica's security policies.

additionalFeatures | content | paginatedSearch - This feature flag is used to

convey whether content repository supports paginated content search results or not. User

experience is altered accordingly for showing content search result.

additionalFeatures | content | paginatedList - This feature flag is used to convey

whether content repository supports paginated content listing or not. User experience is

altered accordingly for showing content list.

additionalFeatures | content | anonymousContent - This feature flag is used to convey

whether publicly accessible content should be expected from the content repository or not.

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 11

If it is set to true, plugin must return publicly accessible URL for each content. If contents

cannot be made publicly accessible using HTTP(S) URL, plugin developer must set this flag

to false. In such case, users will not be able to see or download the contents fetched from

the repository. If the target system does not provide anonymously-accessible URL for the

content, you must execute the resource-loader service to allow download of protected

content.

Standard services
The following table introduces the standard services of Unica Content Integration.

Hence, none of the service names listed herein should be used for any custom service

implementation. Content Integration SDK provides standard interfaces and types to

implement these standard services. These interfaces and types are discussed in more

detail in subsequent sections.

Table 1. Standard services and their description

Standard service name Description

simple-search Simple search service responds to the

content search requests received by

Content Integration Framework. This

service accepts the search query string

along with required result pagination

details. Based on the success of search

operation, it returns the search result for

given search query and according to the

required pagination. This is a mandatory

service for the plugin.

list-folders This is an optional service. Folder is

a general term used to represent a

container object used in target system

to hierarchically organize the contents.

This service is invoked to render the list of

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 12

Standard service name Description

folders & sub-folders to facilitate navigation

through such hierarchically organized

contents.

Note: list-folders and list-

contents are correlated services.

Implementation for both services must exist

for content navigation to function properly.

list-contents This is an optional service. This service is

invoked for listing the contents belonging to

a particular folder.

Note: list-folders and list-

contents are correlated services.

Implementation for both services must exist

for content navigation to function properly.

get-content-details Implementation of this service is useful

for retrieving the details of an individual

content. Contents obtained using simple-

search & list-contents services are

referenced further in other Unica products.

Users might want to see the details of

already referenced content at later point of

time. Therefore, we encourage to implement

this service to facilitate users to see the

content details on demand.

get-object-schema This is an optional service. Implementation

of this service is useful for allowing

Centralized Offer Management users to

map content attributes with offer attributes.

And subsequently derive the values for

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 13

Standard service name Description

mapped offer attributes from corresponding

content attributes by selecting the desired

content from Content Picker. Thus, if

implemented, this service facilitates usage

of other content attributes in addition to the

content URL for offer creation.

resource-loader This service is useful when direct download

of the content from target system is not

feasible. This service is not mandatory and

should be implemented only when following

challenges are encountered:

• If no direct web link exists to download

the contents

Contents returned by the simple-

search and list-contents services

must include an absolute URL to the

respective content so that Content

Integration client can download it

directly over the web. If no such direct

web link to the content is present,

then it is necessary to implement the

resource-loader service by overriding

the default implementation provided

by Content Integration Framework. For

example, if the contents are maintained

in a database table, then the simple-

search and list-contents services

will fetch records from the database.

Since the items are loaded from the

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 14

Standard service name Description

database, there may not be any URL

directly pointing to each record. In such

case, the resource-loader service

can make use of the content identifier

to locate and provide the appropriate

data whenever content download

is requested. All content download

requests will go through the Content

Integration Framework, which will

delegate the downloading task to the

resource-loader service by providing

it the content URL and its identifier.

• If web links to the contents are

protected

Certain systems may not provide

anonymous access to the contents

despite of the availability of direct

web links. In such cases, access

is generally provided only after

supplying required authentication

details. By default, Content Integration

Framework registers an out of the

box implementation of resource-

loader service for each plugin. This

default implementation makes use

of the real content URL to download

the content from remote system by

supplying appropriate authentication

details subject to the configurations in

Unica Platform. (For more information

on system onboarding configurations,

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 15

Standard service name Description

see Unica Content Integration

Administrator's Guide).

Alternatively, plugins can override the

default resource-loader implementation

to alter the content downloading

behavior (using content URL or

content identifier). If the resource-

loader service is overridden using

RESTful approach, Content Integration

Framework will continue to take care of

supplying authentication details based

on the Platform configuration.

Note: Content must be made

anonymously accessible if it is

expected to be seen/accessed by

the external audience. In such case,

usage of resource-loader service is not

encouraged in production systems.

Usage of resource-loader service can

be turned off any time by setting the

Anonymous Content property to Yes

in Platform configuration. Likewise, it

can be turned on by setting the same

property to No.

list-content-categories Content can be logically categorized by

its natural classification. For example,

Digital content can be categorized into

Images, Documents, Multimedia (audios

and videos), Archives etc. Similarly, E-

commerce products can be categorized

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 16

Standard service name Description

into several broad categories, such as

Electronics, Healthcare, Books, Furniture

etc. Content Integration Framework allows

following ways of conveying such content

categorization to facilitate searching

contents within specific category.

• supportedContentTypes service

parameter

A standard service level parameter,

supportedContentTypes, can be used

to statically supply a dictionary of

supported content types under simple-

search service declaration.

• getSupportedContentTypes() method

in search service implementation

getSupportedContentTypes() method

can be overridden to dynamically

generate a map of supported content

types, wherein key serves as the

category identifier and value serves

for the label displayed on the UI.

This method is executed during the

application startup, hence no remote

API call can be made using Content

Integration Framework’s capabilities

since application might be in partially

initialized state when this method is

invoked.

• list-content-categories service

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 17

Standard service name Description

Optionally, list-content-categories

service can be implemented

to address the limitation of

getSupportedContentTypes() method.

It enables remote API calls to be made

for fetching the content categories

even more dynamically. If implemented,

this service overrides the earlier

mentioned approaches. Content

Integration Framework invokes this

service whenever content search

popup is rendered.

get-cognitive-analysis This is an optional service. If implemented,

it is used to fetch cognitive details

associated with the given image, subject to

the "Preferred cognitive service provider"

configuration in Unica Platform.

Service implementations
For each service declared in the service declaration file, there must be an implementation

present inside the respective factoryClass.

The Content Integration Framework provides an SDK to streamline the service

implementation and facilitates rapid development of plugins. The Content Integration SDK

allows two different approaches for service implementations: RESTful and Functional.

This section will provide a brief introduction to these approaches. For additional

information, refer the asset-integration-starter project.

This topic also introduces certain types, interfaces, their generic type parameters, and

enums from Content Integration SDK. For additional details, see Plugin Development SDK

(on page 24).

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 18

RESTful approach

The com.example.service.rest.CustomService class helps you understand REST based

service implementation.

This class is an implementation of RestService interface, and thus represents a REST

based service. Since REST is completely based on HTTP standards, the RestService

interface in Content Integration SDK is extended from HttpService interface and is defined

as a marker interface. The RestService interface does not declare any additional method

of its own. Listed below are the methods declared in HttpService interface, which REST

based service implementation must implement. Not all methods are mandatory. All

methods accept ExecutionContext object, which contains all the contextual information

necessary for every method to perform its designated task. The generic type parameter to

the ExecutionContext class represents the type of input required for the respective service

on its invocation.

• HttpRequest buildRequest(ExecutionContext<RQ> executionContext)

This is a mandatory method. It returns an object of type

com.hcl.unica.cms.model.request.HttpRequest. The HttpRequest class provides

builder API to construct the object with applicable details. This object comprises all

the required details for making an HTTP request, such as endpoint URL, HTTP method,

HTTP headers, and HTTP request body. The HttpRequest builder API accepts the

following arguments:

◦ String endpointUrl

An absolute URL to target API.

◦ HttpMethod httpMethod

HTTP method to be used for making API call. Must be one of the values from

com.hcl.unica.system.integration.service.HttpMethod enum.

◦ Optional<Map<String, Object>> headers

An optional Map of HTTP headers. It can include standard as well as custom

HTTP headers. Header names must be specified in terms of Map keys, and header

values must be supplied as corresponding values in the Map. In the absence of

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 19

this optional value, no custom headers will be sent along with the outgoing HTTP

request.

Note: Although the header Map accepts values of type Object (or its subtypes),

only String objects are supported as of current implementation of Content

Integration Framework. Any other type of value will be ignored, and following

warning will be logged:

Header '{HEADER_NAME}' with value ‘{TO_STRING_REPRESENTATION}'

 will not be set since it is not a String and no Converter is

 available.

◦ Optional<?> payload

If the target service expects any request body, then this argument can be

supplied with the desired HTTP request body. It can be any valid object so long as

appropriate Content-Type header is supplied in the headers Map. In the absence

of this argument, empty request body will be sent along with the outgoing HTTP

request.

Note: Jackson and JAXB Support: Object serialization using Jackson and

JAXB is completely supported by the Content Integration Framework. Thus,

appropriately decorated object with Jackson or JAXB annotations can be set as

the request payload. In such case, appropriate Content-Type header must be

specified in headers Map. Serialization of supplied object into the request body is

handled by the Content Integration Framework, hence no explicit serialization is

required.

• Object transformResponse(HttpResponse<RS> response, ExecutionContext<RQ>

executionContext)

This optional method transforms the HTTP response into a desired format. The first

argument, com.hcl.unica.system.model.response.HttpResponse, to this method,

represents the response received from the target system. The generic type parameter

to the HttpResponse class represents the type of response body, or response payload,

expected from the remote API. Response payload can be of any type, such as a String

containing the entire text as received from the service, a byte array containing the

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 20

response body, or a deserialized POJO representing the response JSON/XML. In

addition to the response payload, HttpResponse object can be used to obtain response

headers, status code, and cookies.

Note: Jackson and JAXB Support: Object deserialization using Jackson and

JAXB is completely supported by Content Integration Framework. Thus, appropriately

decorated object with Jackson or JAXB annotations can be accepted as an argument

to this method. Deserialization of response body into specified type is handled by

Content Integration Framework, hence no explicit deserialization is required during

response transformation inside this method.

In the absence of this implementation, no implicit transformation is performed by the

Content Integration Framework.

In addition to these methods, there is one more method the getServiceInterface

inherited from com.hcl.unica.system.integration.service.AbstractService

interface, that needs to be implemented by the service. But its implementation is

more relevant to the service invocation rather than service implementation.

Content Integration Framework takes care of real HTTP interaction with target system

and simply consults with service object to obtain earlier mentioned details.

Error Handling: Errors or exceptions received during HTTP call are handled by the

Content Integration Framework. Methods listed earlier must not throw any checked

exception. Unchecked exceptions can be thrown if required.

Functional approach

Refer to the com.example.service.functional.CustomService class to understand the

functional service implementation.

This class is an implementation of FunctionalService interface. Unlike REST based service,

there are no HTTP specific callback methods in this type of service implementation. In

fact, functional service may not necessarily be related to any HTTP invocation. This type

of service can include any operation which has no out of the box support from Content

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 21

Integration Framework. It can talk to the database, invoke third party web service, do the file

system operation etc.

Implement the following method for a functional service. This method also accepts an

argument of type ExecutionContext, containing the contextual information required for

completing the desired task. The generic type parameter to the ExecutionContext class

represents the type of input required for the respective service on its invocation.

• RS execute(ExecutionContext<RQ> executionContext)

This method performs its designated task using the contextual information passed

to it. In return, it gives the desired value after finishing its operation. The return

value shown in this signature is a generic type and is based on the type used while

implementing FunctionalService interface.

Error Handling

Above method must not throw any checked exception. Unchecked exceptions can be

thrown if required.

Common methods

The following are the common methods applicable for RESTful

as well as Functional services. These methods are inherited from

com.hcl.unica.system.integration.service.AbstractService interface.

• Class<? extends ServiceGateway<RQ, ?>> getServiceInterface()

Implementation of this method is more relevant to the service invocation rather than

service implementation. For more information, see Plugin Development SDK (on page

24).

• void init(SystemConfig systemConfig, ServiceConfig serviceConfig)

Override this optional method to perform one-time initialization (after service

object construction), prior to serving any request. Use the SystemConfig object

and the ServiceConfig object, passed to this method, to obtain system and service-

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 22

specific details respectively to make necessary initializations, such as obtaining

a DB connection, opening a file handle etc. A separate object of your service

class is created for each individual system configuration in Unica Platform.

Thus, if the same target system is configured for two different partitions in Unica

Centralized Offer Management, then two different objects of your service class

will be created for each partition. Likewise, if the same target system is configured

for any other Unica product, a separate object for that configuration will exist. The

com.hcl.unica.system.integration.config.SystemConfig object encapsulates

all the system configurations made in Unica Platform Configuration section, whereas

com.hcl.unica.system.integration.config.ServiceConfig object holds all the

configurations made for the corresponding service in <ASSET_PICKER_HOME>/conf/

plugin-services.yml and <ASSET_PICKER_HOME>/conf/custom-plugin-

services.yml files. These objects are also accessible using ExecutionContext in all

the methods discussed earlier.

Note: Content Integration Framework does not provide any special end-of-lifecycle

method for services to clean up the things initialized inside the init method. We

recommend you to use the standard Java approach by implementing the finalize

method, if necessary.

Best approach selection

Although, it is possible to implement a service using either approaches, each approach has

some advantages and limitations when it comes to the capabilities.

1. RESTful approach

a. Advantages

• Less verbose & reads closer to the typical HTTP interaction

• Out of the box transport level error handling

• Out of the box support for retrial in case of temporary outages

• Out of the box support for proxied connectivity

• Out of the box support for future enhancements in Content Integration

Framework

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 23

b. Limitations

• Cannot be used for non-RESTful or non-HTTP integrations, such as database

or file system interactions

2. Functional approach

a. Advantages

• Can be used for non-RESTful or non-HTTP integrations, such as database or

file system interactions

b. Limitations

• No out-of-the-box support available for transport level error handling, retrials,

proxied connectivity, and any future enhancements from Content Integration

Framework.

• If required, the explicit implementation of missing out-of-the-box capabilities

can make service implementations very verbose.

You can see that the Functional approach is well suited for non-RESTful or non-HTTP based

integrations. Any service implemented using RESTful approach can also be implemented

using Functional approach by taking care of all the necessary out-of-the-box capabilities

provided by Content Integration Framework. While Functional approach gives flexibility in

terms of implementation design, it takes away a few useful capabilities.

Chapter 3. Plugin Development SDK

This topic provides information about the various classes, interfaces, and enums from

the Content Integration SDK, with the help of corresponding logical units in asset-

integration-starter, aem-integration, and wcm-integration reference projects that are

included as a part of development kit along with the Content Integration feature.

Content Integration SDK for plugin development can be found under

<ASSET_PICKER_HOME>/dev-kits/sdk/ directory on your application server. The

following jars can be found inside the sdk directory:

• integration-api.jar

• entity-mapper-api.jar

• standard-integrations.jar

These jars contain all the SDK classes, interfaces & enums discussed in this section. Check

out the relevant classes from these jars whenever you come across the respective topic in

this guide.

Generic type parameters
Generic type parameters are used for implementing service interfaces. For more

information on service interfaces, see Service implementations (on page 17).

A service that resides in a plugin is just a programming unit, which takes some input and

returns the expected output. Similarly, the REST API, wrapped by our service, asks for

the required input (request body, headers, cookies, and query parameters) and produces

the desired response (response body, headers, and cookies). It requires certain generic

notations for the inputs and outputs exchanged during end-to-end logical flow.

Content Integration Framework uses RQ type parameter to denote the type of input supplied

to the service on its invocation. Here, the RS type parameter is used to denote either the

type of object returned by the Functional service or the type of response body returned by

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 25

the remote REST API invoked using RESTful approach. The purpose of RS might change

based on where it is used, but it always indicates the return value of something.

RestService<RQ, RS>

Refer the com.example.service.rest.CustomService class from the asset-

integration-starter project to understand the type parameters used in the

RestService inteface. RestService is just a marker interface extended from HttpService.

The definition of these type parameters is similar for the HttpService too.

• RQ

A service requires an input to perform its operation. RQ corresponds

to the type of input, or request, the service requires when invoked. The

com.example.service.rest.CustomService takes an input of type ServiceInput. The

same type parameter is used in the ExecutionContext object passed to all methods

in the RestService or the HttpService interface. The input, or the request, object

passed to the service, when invoked, is obtained by calling the getRequest method in

the ExecutionContext object.

@Override

 public HttpRequest buildRequest(ExecutionContext<ServiceInput>

 executionContext) {

 ServiceInput input = executionContext.getRequest();

 // Remaining implementation omitted for brevity

 }

• RS

This parameter type corresponds to the type of response (post deserialization)

received from the remote REST API. Service implementation chooses this

parameter based on the kind of object it wants to work with in transformResponse

method. If you look at the signature of the transformResponse method in the

com.example.service.rest.CustomService class, you will see that the ApiResponse is

supplied as the type argument to the HttpResponse class, which corresponds to the RS

type parameter of the RestService interface.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 26

Note: Deserialization occurs according to the Content-Type header present

in HTTP response received from REST API. The type used as the second generic

argument to RestService, or the HttpService, must be appropriately annotated if

Jackson or JAXB deserialization is expected.

FunctionalService<RQ, RS>
FunctionalService interface is analogous to the java.util.function.Function interface

from the Standard Java Library. The type parameters of FunctionalService have similar

semantics as the type parameters of java.util.function.Function interface.

• RQ

Represents the type of input given to the service upon invocation.

• RS

Represents the type of value returned by the service upon completion.

ServiceGateway<RQ, RS>

This interface is used for implementing the getServiceInterface method

from AbstractService<RQ, RS> interface. AbstractService is an important

interface of RestService, or HttpService, and the FunctionalService.

Semantics for RQ and RS for AbstractService are same as RestService, or

HttpService. It declares the getServiceInterface method, which must be

implemented by a service. The getServiceInterface method must return the

class object of the derivative (child interface) of ServiceGateway. The definition of

com.hcl.unica.system.integration.service.gateway.ServiceGateway is as follows:

public interface ServiceGateway<RQ, RS> {

 public RS execute(RQ request) throws ServiceExecutionException;

 }

Semantics for the type parameter RQ is the same as mentioned earlier. The other type

parameter, RS represents the output of the service that resides in the plugin. It does not

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 27

represent the response received from remote REST API or any other target systems. For the

com.example.service.rest.CustomService class, the CustomServiceGateway is defined

as the child interface of ServiceGateway by using ServiceInput and ServiceOutput type

arguments because the service receives an input of type ServiceInput and returns the

value of type ServiceOutput on completion.

Note:

• getServiceInterface method in com.example.service.rest.CustomService class

returns the class object of CustomServiceGateway. ServiceGateway interface (or

its child interface) provides information about the input and the output of service

implementation. ServiceGateway interface is further used to contain the reference of

service instance and invoke its execution.

• By obtaining reference to the ServiceGateway instance of any service thus

implemented, execute(RQ request) method can be invoked to execute the service. Note

that the execute method may throw the ServiceExcecutionException if anything goes

wrong during service execution. Details on service invocation and exception handling

will be provided in topics that follow.

Service invocation
The asset-integration-starter project contains a

com.example.service.client.CustomServiceClient class to illustrate the service

invocation.

The CustomServiceClient class obtains reference to the SystemGateway

object for the system represented by an identifier Foo by calling

SystemGatewayFactory.getSystemGateway method with Foo as an argument.

SystemGatewayFactory.getSystemGateway method thus gives a handle to any target

system by specifying its systemId. Once the handle is obtained in terms of SystemGateway

object, it can be used to invoke any service on the respective target system. The following is

the corresponding code snippet from CustomServiceClient class:

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 28

private SystemGateway systemGateway =

 SystemGatewayFactory.getSystemGateway("Foo");

SystemGateway

The com.hcl.unica.system.integration.service.gateway.SystemGateway provides

an overloaded method executeService, for executing any service on the target system.

One version of this method offers a way to execute any service declared in service

declaration files (<ASSET_PICKER_HOME>/conf/custom-plugin-services.yml and

<ASSET_PICKER_HOME>/conf/plugin-services.yml) for the respective system. And

the other version offers a way to execute an ad hoc HTTP call on the target system without

declaring any explicit service for it in the service declaration file. The following are the two

versions of the executeService method with their signatures:

• <RQ, RS> RS executeService(String serviceName, RQ serviceInput, Class<? extends

ServiceGateway<RQ, RS>> gatewayClass) throws ServiceExecutionException

This is a generic method and works with the type parameters RQ & RS. The significance

of RQ & RS is same as mentioned earlier. This method helps to execute an already

declared service. The invocationDemo method in CustomServiceClient class

demonstrates the use of this method. It accepts the following arguments:

◦ String serviceName

This must be the name of service to be executed. Name of the service must

exactly match with its corresponding declaration in service declaration file.

◦ RQ serviceInput

This is an input to the service being executed. The type parameter RQ represents

the type of input required for the service being invoked.

◦ Class<? extends ServiceGateway<RQ, RS>> gatewayClass

It must be same as the return value of getServiceInterface method in

corresponding service implementation. It helps the Content Integration Framework

to identify the right input for the service being executed and returns the output of

desired type. The RQ and RS type parameters used for gatewayClass argument

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 29

represents the type of input supplied on service invocation and the type of

response returned by the service on completion, respectively.

On successful completion, this method returns the object of type represented by

the type parameter RS. Thus, the third argument to the executeService method,

gatewayClass, governs the type of input that goes into the service and the type of value

that service returns.

• <T> HttpResponse<T> executeService(HttpRequest request, Class<T>

expectedResponse) throws ServiceExecutionException

This is also a generic method, where the type parameter T represents the type

of response expected out of the remote HTTP call. It helps to make an ad-hoc

HTTP call to the target system without declaring an explicit service for it in service

declaration file. The adHocInvocationDemo method in the CustomServiceClient class

demonstrates the use of this method. It accepts the following listed arguments:

◦ HttpRequest request

This must be an object of com.hcl.unica.system.model.request.HttpRequest

class. HttpRequest provides a builder interface for constructing the object with

required details. This object essentially encapsulates the details required for

making an HTTP call, such as absolute URL, HTTP request method, HTTP request

headers & HTTP request body or HTTP request payload.

◦ Class<T> expectedResponse

This must tell the type of response expected from remote URL. Jackson and JAXB

types can also be used. Deserialization of JSON/XML will happen automatically in

such case.

On successful completion, this method returns the object

com.hcl.unica.system.model.response.HttpResponse, encapsulating the response

object from the remote call. The type of response encapsulated by the HttpResponse

will be the same as the expectedResponse argument to the executeService method.

The HttpResponse object gives access to the HTTP response status code, response

headers, and response cookies, in addition to the response payload.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 30

Both versions of the executeService method can throw the

com.hcl.unica.system.integration.exception.ServiceExecutionException or

one of its subtypes if anything goes wrong during service execution. The object of this

exception can be consulted for the immediate cause of service execution failure. Likewise,

if the invoked service represents a REST/HTTP service (ad-hoc service invocations

are always HTTP calls), and the failure occurs out of HTTP interaction, an optional

HttpResponse object can also be obtained from the exception. In such cases, the

HttpServiceExecutionException is thrown by the executeService methods. The

presence of HttpResponse depends on whether the HTTP interaction happened or not. The

HttpServiceExecutionException might be received because of an exception in any logic

executed prior to the actual HTTP call, such as buildRequest method in a declared service.

The executeService method can also throw a SystemNotFoundException if the plugin for

the specified target system is not present, or the corresponding system is not onboarded in

Unica Platform. Similarly, it can throw a ServiceNotFoundException if the specified service

is either not declared in service declaration file or not implemented by the plugin.

Note:

• You will observe that the type of the input to the custom-service is same as the type

used for service implementation in the com.example.service.rest.CustomService

class or the com.example.service.functional.CustomService class. The type of

output is same as the one used for defining CustomServiceGateway interface whose

class object is returned from getServiceInterface method in both versions of

CustomService implementations.

• The com.example.service.rest.CustomService class and the

com.example.service.functional.CustomService class represents the same

service implemented with two different approaches. The service declaration files

in asset-integration-starter project namely the META-INF/rest-content-

services.yml and the META-INF/functional-content-services.yml have

an entry for custom-service pointing to the respective versions of the factoryClass.

These two versions are provided only for illustration purpose. For all practical purposes,

only one version of the service implementation is expected by the Content Integration

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 31

Framework. Irrespective of the approach used for service implementation, the method

for service invocation remains the same.

Multi-partitioned clients

From the perspective of service implementation, the ExecutionContext and SystemConfig

objects, passed to various callback methods, contain client application and partition

specific information. And from the perspective of service invocation, services executed

using executeService method, from the SystemGateway class, runs against the system

configured for the right client application and the partition of the user accessing Unica

Content Integration. Hence, neither the implementation nor the invoker need to work with

partitioning and other contextual details, explicitly. Content Integration Framework handles

it automatically.

Execution context
Almost every method in service implementation contract receives an instance of

com.hcl.unica.system.model.request.ExecutionContext class.

This object contains all the contextual information that is necessary for a service to perform

its operation. The following are the methods in ExecutionContext class, which can be used

to obtain various types of information during service execution:

• T getRequest()

This method can be used to obtain the input, or request, object passed to the service

when it is executed using executeService method discussed in Service invocation

(on page 27) (The T return type is the type parameter corresponding to the generic

argument used for defining the service).

• Map<String, Object> getAttributes()

Returns a Map which can be used to store and retrieve custom attributes during service

execution. It is useful for carrying execution specific temporary information across

multiple callbacks. For example, if the implementation of buildRequest method from

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 32

the RestService interface or HttpService interface needs to share some information

with transformResponse method, it can share it using this attribute Map.

It is important to note that Content Integration Framework creates a separate instance

of ExecutionContext for each individual service invocation. Hence, context attributes

cannot be shared across multiple service executions. Their scope is limited to

individual service execution.

• ServiceConfig getServiceConfig()

This method returns an instance of

com.hcl.unica.system.integration.config.ServiceConfig class. ServiceConfig

object holds the configurations made in service declaration file for the respective

service.

• SystemConfig getSystemConfig()

This method returns an instance of

com.hcl.unica.system.integration.config.SystemConfig class. SystemConfig

object contains all the configurations made in Unica Platform for the target system.

In case of multi-partitioned configurations, this object will be appropriately populated

by Content Integration Framework to hold partition-specific configuration for the

concerned client application. To know the various system configuration settings in

Unica Platform, see Unica Content Integration Administrator's Guide.

• void setAttributes(Map<String, Object>)

This method can be used to set attributes in ExecutionContext, which can be then

be obtained in other areas of the service implementation. This is useful for sharing

custom contextual information during service execution. Scope of the attributes stored

in execution context is limited to the current execution flow only. Attributes cannot be

shared across multiple execution flows of the same service.

◦ Locale getUserLocale ()

This method can be used to obtain signed in user’s locale.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 33

User data source
Unica Platform uses user data sources to store sensitive information, such as API

credentials, security tokens, database user credentials, etc. Plugins often need to store such

configuration details. Content Integration provides the relevant configuration to specify the

name of user data source and the associated Unica user while oboarding systems using

Unica Platform configuration.

Use the ExecutionContext to obtain applicable user data source (credentials) by navigating

through SystemConfig object:

executionContext.getSystemConfig().getDataSourceCredentials()

The DataSourceCredentials object returned by the getDataSourceCredentials method

contains the selected data source based on the strategy set up for User credentials in

Platform configuration. Hence, plugins need not make any logical decision pertaining to the

right selection of the user data source.

Similarly, the getUnicaToken method called on SystemConfig object returns an UnicaToken

object containing the Unica Token required for invoking APIs of Unica applications.

Standard services and specialized types
The plugin developer needs to implement RestService/HttpService or FunctionalService

interface to create an individual service.

The Content Integration Framework leverages this design and defines certain standard

service classes for Simple Search (simple-search), List Content Categories (list-

content-categories), List Folders (list-folders), List Contents (list-contents),

Get Content Details (get-content-details), Get Object Schema (get-object-schema)

and Get Cognitive Analysis (get-cognitive-analysis) services. The standard-

integrations.jar provided as part of Content Integration SDK provides specialized versions of

RestService and FunctionalService for each of these standard services to facilitate their

implementation using RESTful or Functional approach.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 34

Invocation of standard services
Once declared in service declaration file, and implemented using either RESTful or

Functional approach, Content Integration Framework invokes the standard services in

following scenarios:

• Simple Search (simple-search)

Whenever Content Integration Framework receives content or asset search request

from its client application against target system, it invokes the simple-search service

implemented for respective system. Content Integration Framework provides necessary

input to the simple-search service upon invocation. Search items received from

simple-search service are then returned to the client application. Identification of the

target system happens based on the systemId property used in the service declaration

file and the corresponding System Identifier setting in Unica Platform that is populated

during the target system onboarding. This service must be implemented by the plugin,

else the content search request ends up in 404 response to the client application.

The search result produced by this service can be either paginated or unpaginated.

Presence or absence of support for paginated result should be clearly indicated

using paginatedSearch property under systems section in service declaration file as

explained in the Service declaration file (on page 7) topic.

• Resource Loader (resource-loader)

The resource-loader service is executed by the Content Integration Framework

only when indirect (or authenticated) access needs to be made to the search item on

the target system. Configuration can be made in Unica Platform to indicate whether

contents can be accessed directly (anonymously) from the target system or not.

For more information about system configurations, see Unica Content Integration

Administration Guide. Content Integration Framework provides a default resource-

loader service to each system. The default resource-loader service simply loads the

web resources from the target system by supplying necessary authorization details,

if applicable. Plugins may choose to override the default resource-loader service

and include their own implementation by extending the out-of-the-box implementation.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 35

Content download and content rendition might fail if the required overridden resource-

loader implementation is missing

• List Content Categories (list-content-categories)

If implemented, this service is invoked for fetching the list of supported content

categories, eventually used for populating the content type's drop down on Content

Picker UI. These categories are used to narrow down the content search within a

particular category. There may be other use cases pertaining to these categories in

future releases of Unica Content Integration.

This is an optional service and absence of its implementation does not impact

content searchability in Content Picker. Other alternatives are used instead to

generate the list of supported content categories in the absence of this service, that

is supportedContentTypes standard parameter for simple-search service in service

declaration file or getSupportedContentTypes() method in simple-search service

implementation.

• List Folders (list-folders)

This service is used to facilitate content navigation along with the list-contents

service. In addition to the content search, content can also be located by navigating

through the hierarchy of folders (or any other similar concept in respective system).

If this service is implemented, it is expected to provide top/root level folders as well

as sub-folders of a particular parent folder as and when requested during content

navigation. Only one level of folder list is expected in single execution. Entire folder

hierarchy need not be provided. If this service is implemented, it is imperative to

implement the list-contents service as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact content

searchability in Content Picker. However, content navigation is disabled in Content

Picker UI if this service is not implemented.

• List Contents (list-contents)

This service is used to facilitate content navigation along with the list-folders

service. If implemented, this service is expected to provide the list of contents

belonging to a particular folder. List can be either paginated or unpaginated.

Presence or absence of support for paginated list should be clearly indicated using

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 36

paginatedList property under systems section in service declaration file as explained

in the Service declaration file (on page 7) topic.

If this service is implemented, it is imperative to implement the list-folders service

as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact content

searchability in Content Picker. However, content navigation is disabled in Content

Picker UI if this service is not implemented.

• Get Content Details (get-content-details)

Any content searched using simple-search service or listed using list-contents

service can be selected and used for various use cases in Unica applications. Such use

cases might demand the details of already chosen content at later point of time. One

such example is Content Preview feature in Centralized Offer Management, wherein

details of already linked content with offer attribute are shown. Whenever Unica

applications need details of any individual content, the get-content-details service is

invoked by supplying the unique identifier of the required content.

This is an optional service and absence of its implementation does not impact content

searchability in Content Picker. However, subsequent user requests for fetching details

of a content will not be served if this service is not implemented.

• Get Object Schema (get-object-schema)

This service is invoked by Unica applications to fetch the details of various attributes

present in the content. The entire master schema of all the contents is expected from

this service, which should include the details about each content attribute, such as

the type and format of the value it holds and a unique identifier to uniquely identify

that attribute for the given system. As of current release of Unica Content Integration

and Unica Centralized Offer Management, this information is used to map content

attributes with offer attributes, and subsequently auto populate offer attribute values

by selecting the content from Content Picker. For more information about this feature,

please see Unica Centralized Offer Management User Guide.

This is an optional service and absence of its implementation does not impact content

searchability in Content Picker. However, the Content Integration feature in Centralized

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 37

Offer Management becomes unavailable for the respective system if this service is not

implemented.

• Get Cognitive Analysis (get-cognitive-analysis)

This service is invoked to attempt cognitive analysis of an image and fetch the

cognitive details accordingly. It is invoked only if respective system is configured as the

Preferred cognitive service provider in Platform Configuration. For more information,

see Unica Content Integration Installation and Configuration Guide.

This is an optional service and absence of its implementation does not impact content

searchability or any other feature in Content Picker. However, cognitive tagging feature

is disabled in Centralized Offer Management if this service is not available.

Specialized types
The following are the specialized derivatives of RestService, HttpService, and

FunctionalService interfaces, and their related types for all the standard services. Use the

asset-integration-starter project to implement the details mentioned in the following

topics:

• Derivatives of RestService (on page 37)

• Derivatives of HttpService (on page 47)

• Derivatives of FunctionalService (on page 49)

• AbstractEntity (on page 61)

• Presentable (on page 61)

Derivatives of RestService

Derivatives of RestService interface facilitates creation of RESTful implementation of

standard services.

Simple search (simple-search)
The following are the specialized interfaces and classes available for the simple-search

service:

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 38

• com.hcl.unica.system.integration.service.search.RestSearchService

The com.example.service.rest.SimpleSearchService class

in asset-integration-starter project is a quick starter

implementation for RESTful simple-search service. Its parent is

com.hcl.unica.system.integration.service.search.RestSearchService class.

The RestSearchService class has a type parameter RS, which represents the type of

response (post deserialization) received from the remote REST API. In this case it is

SimpleSearchResponse class defined inside the asset-integration-starter project.

RestSearchService class implements RestService interface and defines the

SearchRequest class as the type argument RQ for RestService. Thus, the object of

SearchRequest becomes input to all the simple-search services (same input is used

for Functional counterpart of simple-search as well). SearchRequest class is part of the

Content Integration SDK.

In addition to defining the input type for the simple-search service,

RestSearchService class also overrides the transformResponse method and defines

return value of this method to be of ContentPage type. ContentPage is also part of the

Content Integration SDK and encapsulates the search result and associated pagination

details.

The plugin must extend its simple-search implementation from the service

com.hcl.unica.system.integration.service.search.RestSearchService to

be recognized as a simple-search service by the Content Integration Framework

(Functional counterpart, discussed later, is also a valid choice to extend from, for the

simple-search services implemented using the Functional approach).

RestSearchService extends from

com.hcl.unica.system.integration.service.search .AbstractSearchService

abstract class.

We recommend looking at com.aem.service.AemSimpleSearchService class from the

aem-integration project to know more about how the SearchRequest class and the

ContentPage class are used during service implementation.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 39

Adhering to the contract of Presentable interface while populating list of contents in

ContentPage is a crucial part of this service implementation. Presentable interface is

covered in more detail in subsequent section.

• com.hcl.unica.system.integration.service.search.AbstractSearchService

This is a common base class for RESTful as well as Functional simple-search

implementations. So, the details of this class also apply to the Functional

implementation of simple-search.

This class defines the

com.hcl.unica.system.integration.service.gateway.SimpleSearchServiceGateway

interface as the service gateway for the simple-search service. ServiceGateways are

the means to programmatically define input and output types of the service and the

work with the service. A closer look at this interface tells us that the simple-search

takes the SearchRequest object and returns the ContentPage object.

In addition to defining the service interface for simple-search, it introduces one more

method for the simple-search service, named getSupportedContentTypes. Every

simple-search implementation can optionally override and implement this method.

Please note that this method is very simple-search specific and has nothing to do with

other standard and custom services. The signature of this method is as follows:

public Map<String, String> getSupportedContentTypes();

Implementation of this method returns a Map<String, String> representing the

supported categories of contents that can be searched in the target system. There is

no specific semantic associated with the entries in this Map. It can be any meaningful

key-value pair. It acts as a filter for client application during the search operation. As

of current implementation of Unica Content Integration, this Map is used to populate

entries in a drop down, wherein keys of the Map become values of the options, and

values of the Map become display labels for the options. Thus, keys can carry internal

names, or identifiers, and values should be readable and meaningful texts. If the user

needs to search any specific type of content, he can choose one or more options

from the supported types. In such case, simple-search service receives a set of

keys corresponding to the values chosen by the user. Set of keys received from the

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 40

client application can be obtained from ExecutionContext object by navigating

through the getRequest method and then calling getTypes() on it. The simple-search

implementation deals with these set of keys, as per the target system’s programming

interface, and filters the search items accordingly.

Standard service parameter - supportedContentTypes

Overriding getSupportedContentTypes method is recommended only if the Map needs

to be generated dynamically. Content Integration Framework provides an alternate

approach to statically define this Map using a standard service parameter called

supportedContentTypes, configured under params element in the service declaration

file. For example, refer the simple-search service declaration for AEM and WCM inside

<ASSET_PICKER_HOME>/conf/plugin-services.yml file.

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for the list-content-

categories service:

• com.hcl.unica.system.integration.service.content.categories.list.

 RestContentCategoriesListService

The com.example.service.rest. ExampleContentCategoryListingService class

in asset-integration-starter project is a quick starter for RESTful list-content-

categories service. ExampleContentCategoryListingService class extends from

RestContentCategoriesListService class.

The RestContentCategoriesListService class has a type parameter RS, which

represents the type of response (post deserialization) received from the remote REST

API. In this case it is specified as List<ContentCategoryDetails> for the sake of

example.

RestContentCategoriesListService class implements RestService interface and

defines the

com.hcl.unica.system.model.request.content.categories.ContentCategoryListRequest

class as the type argument RQ for RestService. Thus, the object of

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 41

ContentCategoryListRequest becomes input to all the list-content-categories services

(same input is used for Functional counterpart of list-content-categories as well).

In addition to defining the input type for the list-content-categories service,

RestContentCategoriesListService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

List<ContentCategory> type. ContentCategory class is part of Content Integration

SDK.

The plugin must extend the implementation of list-content-categories service

from com.hcl.unica.system.integration.service.content.categories.list.

RestContentCategoriesListService class to be recognized as a valid list-content-

categories service by the Content Integration Framework (Functional counterpart,

discussed later, is also a valid choice to extend from).

RestContentCategoriesListService extends from

com.hcl.unica.system.integration.service.content.categories.list.AbstractContentCategoriesListService

 class

.

• com.hcl.unica.system.integration.service.content.categories.list.AbstractContentCategoriesListService

This is a common base class for RESTful as well as Functional implementations of

list-content-categories service. So, the details covered herein applies to Functional

version of list-content-categories as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentCategoriesListServiceGateway

interface as the service gateway for the list-content-categories service. This

interface extends from com.hcl.unica.system.integration.service.gateway.

ServiceGateway interface and mandates the ContentCategoryListRequest &

List<ContentCategory> objects to be the input and output types for the list-

content-categories service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 42

List folders (list-folders)

The following are the specialized interfaces and classes available for the list-folders

service:

• com.hcl.unica.system.integration.service.folder.list.RestFolderListService

The com.aem.service.AemFolderListService class in aem-integration project is a

reference implementation for RESTful list-folders service. AemFolderListService class

extends from RestFolderListService class.

The RestFolderListService class has a type parameter RS, which represents the type

of response (post deserialization) received from the remote REST API. In this case it is

SimpleSearchResponse class defined inside the aem-integration project.

RestFolderListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.folder.list.FolderListRequest class

as the type argument RQ for RestService. Thus, the object of FolderListRequest

becomes input to all the list-folders services (same input is used for Functional

counterpart of list-folders as well).

In addition to defining the input type for the list-folders service,

RestFolderListService class also overrides the transformResponse method and

mandates the return value of this method to be an object of List<Folder> type. Folder

is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of list-folders service from

com.hcl.unica.system.integration.service.folder.list.RestFolderListService

class to be recognized as a valid list-folders service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

RestFolderListService extends from

com.hcl.unica.system.integration.service.folder.list.AbstractFolderListService

class.

• com.hcl.unica.system.integration.service.folder.list.

AbstractFolderListService

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 43

This is a common base class for RESTful as well as Functional implementations of

list-folders service. So, the details covered herein applies to Functional version of

list-folders as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.FolderListServiceGateway

interface as the service gateway for the list-folders service. This interface extends

from com.hcl.unica.system.integration.service.gateway.ServiceGateway

interface and mandates the FolderListRequest and List<Folder> objects to be the

input and output types for the list-folders service.

List contents (list-contents)

The following are the specialized interfaces and classes available for the list-contents

service:

• com.hcl.unica.system.integration.service.content.list.RestContentListService

The com.aem.service.AemContentListServiceclass in aem-integration

project is a reference implementation for RESTful list-contents service.

AemContentListServiceclass class extends from RestContentListService class.

The RestContentListService class has a type parameter RS, which represents the

type of response (post deserialization) received from the remote REST API. In this case

it is SimpleSearchResponse class defined inside the aem-integration project.

RestContentListService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.list.ContentListRequest class

as the type argument RQ for RestService. Thus, the object of ContentListRequest

becomes input to all the list-contents services (same input is used for Functional

counterpart of list-contents as well).

In addition to defining the input type for the list-contents service,

RestContentListService class also overrides the transformResponse method and

mandates the return value of this method to be an object of ContentPage type. This

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 44

return type is same as the one used for simple-search service. ContentPage is a

standard type defined in Content Integration SDK.

The plugin must extend the implementation of list-contents service from

com.hcl.unica.system.integration.service.content.list.RestContentListService

class to be recognized as a valid list-contents service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

RestContentListService extends from

com.hcl.unica.system.integration.service.content.list.AbstractContentListService

class.

• com.hcl.unica.system.integration.service.content.list.AbstractContentListService

This is a common base class for RESTful as well as Functional implementations of

list-contents service. So, the details covered herein applies to Functional version of

list-contents as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentListServiceGateway

interface as the service gateway for the list-contents service. This interface extends

from com.hcl.unica.system.integration.service.gateway.ServiceGateway

interface and mandates the ContentListRequest and ContentPage objects to be the

input and output types for the list-contents service.

Get content details (get-content-details)

The following are the specialized interfaces and classes available for the get-content-details

service:

• com.hcl.unica.system.integration.service.content.details.RestContentDetailsService

The com.aem.service.AemObjectDetailsService class in aem-integration

project is a reference implementation for RESTful get-content-details service.

AemObjectDetailsService class extends from RestContentDetailsService class.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 45

The RestContentDetailsService class has a type parameter RS, which represents the

type of response (post deserialization) received from the remote REST API. In this case

it is SimpleSearchResponse class defined inside the aem-integration project.

RestContentDetailsService class implements RestService interface and defines the

com.hcl.unica.system.model.request.content.details.ContentDetailsRequest

class as the type argument RQ for RestService. Thus, the object of

ContentDetailsRequest becomes input to all the get-content-details services

(same input is used for Functional counterpart of get-content-details as well).

In addition to defining the input type for the get-content-details service,

RestContentDetailsService class also overrides the transformResponse method and

mandates the return value of this method to be an object of Presentable type.

The plugin must extend the implementation of get-content-details service from

com.hcl.unica.system.integration.service.content.details.RestContentDetailsService

class to be recognized as a valid get-content-details service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

RestContentDetailsService extends from the

com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService

class.

• com.hcl.unica.system.integration.service.content.details.AbstractContentDetailsService

This is a common base class for RESTful as well as Functional implementations of

get-content-details service. So, the details covered herein applies to Functional

version of get-content-details as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.ContentDetailsServiceGateway

interface as the service gateway for the get-content-details service.

ServiceGateways are the means to programmatically define input and output types of

the service and facilitate invocation of the services. A closer look at this interface tells

us that the get-content-details service accepts the ContentDetailsRequest object

and returns a Presentable object.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 46

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for the get-cognitive-

analysis service:

• com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService

The com.example.service.rest.ExampleCognitiveAnalysisService in asset-

integration-starter project is a quick starter implementation for RESTful get-

cognitive-analysis service. ExampleCognitiveAnalysisService in class extends

from RestCognitiveAnalysisService class.

The RestCognitiveAnalysisService class has a type parameter RS, which represents

the type of response (post deserialization) received from the remote REST API. In this

case it is CognitiveDetails class defined inside the asset-integration-starter

project.

RestCognitiveAnalysisService class implements RestService interface and defines

the

com.hcl.unica.system.model.request.cognitive.analysis.CognitiveAnalysisRequest

class as the type argument RQ for RestService. Thus, the object of

CognitiveAnalysisRequest becomes input to all the get-cognitive-analysis

services (same input is used for Functional counterpart as well).

In addition to defining the input type for the get-cognitive-analysis service,

RestCognitiveAnalysisService class also overrides the transformResponse

method and mandates the return value of this method to be an object of

com.hcl.unica.system.model.response.cognitive.analysis.CognitiveAnalysis

type. CognitiveAnalysis is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of get-cognitive-analysis service from

com.hcl.unica.system.integration.service.cognitive.analysis.RestCognitiveAnalysisService

class to be recognized as a valid get-cognitive-analysis service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 47

RestCognitiveAnalysisService extends from

com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService

class.

• com.hcl.unica.system.integration.service.cognitive.analysis.AbstractCognitiveAnalysisService

This is a common base class for RESTful as well as Functional implementations of

get-cognitive-analysis service. So, the details covered herein applies to Functional

version of get-cognitive-analysis as well.

This class defines the

com.hcl.unica.system.integration.service.gateway.CognitiveAnalysisServiceGateway

interface as the service gateway for the get-cognitive-analysis service. This

interface extends from

com.hcl.unica.system.integration.service.gateway.ServiceGateway interface

and mandates the CognitiveAnalysisRequest and CognitiveAnalysis objects to be

the input and output types for the get-cognitive-analysis service.

Derivatives of HttpService

Only resource-loader standard service is implemented as an HttpService as it relates

to the standard HTTP GET operation. You can also use RestService without losing any

capability.

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for resource-loader

service:

• com.hcl.unica.system.integration.service.resourceloader.DefaultWebResourceLoaderService

The com.example.service.rest.ResourceLoaderService class in asset-

integration-starter project is a quick starter implementation for the resource-

loader service and extends from the following class:

com.hcl.unica.system.integration.service.resourceloader

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 48

.DefaultWebResourceLoaderService

DefaultWebResourceLoaderService class is the default implementation of resource-

loader service provided by the Content Integration SDK. If the plugin does not

implement its own resource-loader service, Content Integration Framework falls back

on this default implementation. Default implementation of resource-loader provided

by Content Integration SDK simply follows the given resource URL and retrieves the

web resource from target system. It encapsulates the standard HTTP GET operation.

If the plugin needs to have its own resource-loader implementation which

slightly modifies the standard HTTP GET, we recommend extending it from the

DefaultWebResourceLoaderService class. It is not necessary to extend resource-

loader implementation from the DefaultWebResourceLoaderService if the

plugin must use a completely different approach for loading contents, such

as reading from file system, database, FTP server etc. In such a case, it must

extend from either HttpWebResourceLoaderService for HTTP-based approach or

WebResourceLoaderService for functional approach.

• com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService

The DefaultWebResourceLoaderService class discussed earlier extends from the

HttpWebResourceLoaderService abstract class. This class defines the input type and

the type of HTTP response received from target URL for resource-loader service

as com.hcl.unica.system.model.request.resourceloader.ResourceRequest and

byte[] respectively. ResourceRequest class encapsulates the resource URL and

system identifier. Similarly, resource-loader works with a byte array when the content

from remote HTTP URL is successfully read.

If the plugin does not extend its resource-loader implementation from

the DefaultWebResourceLoaderService class, it must at least extend from

com.hcl.unica.system.integration.service.resourceloader.HttpWebResourceLoaderService

class to be recognized as a resource-loader service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from for the resource-loader services implemented using the Functional approach).

• com.hcl.unica.system.integration.service.resourceloader.AbstractWebResourceLoaderService

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 49

The HttpWebResourceLoaderService class discussed in previous point extends from

AbstractWebResourceLoaderService abstract class. This class defines the following

service gateway interface for the resource-loader service:

com.hcl.unica.system.integration.service.gateway

.ResourceLoaderServiceGateway

To know the role of service gateways in service invocation, see Service invocation (on

page 27). ResourceLoaderServiceGateway interface defines ResourceRequest

and HttpResponse<?> as input and output types for the resource-loader service.

HttpResponse is an interface, implemented by the WebResource class. It encapsulates

the HTTP response headers, body, or payload, and cookies received from the remote

URL. Even if the customized resource-loader service does not fetch the content

over web, it must return the object of the WebResource (or any other implementation

of HttpResponse) populated with the appropriate details. Failing to populate the

WebResource appropriately may lead to content loading issues for client applications.

The WebResource provides a builder API to create an object with necessary details. The

most important thing is to populate the Content-Type header so that client application

can deal with the payload accordingly. Similarly, Content-Disposition header must

also be populated appropriately containing the filename associated with the content.

Derivatives of FunctionalService

Derivatives of FunctionalService interface facilitates creation of functional implementation

of standard services. Functional service is just an object with a public method which takes a

certain input and generates the desired output.

Simple search (simple-search)

The following are the specialized interfaces and classes available for simple-search service:

• com.hcl.unica.system.integration.service.search.SearchService

The com.example.service.functional.SimpleSearchService class in

the asset-integration-starter project is a quick starter implementation

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 50

for the Functional simple-search service. It extends from the

com.hcl.unica.system.integration.service.search.SearchService class.

The SearchService class implements the FunctionalService interface and defines

the SearchRequest class and the ContentPage class to be the type arguments RQ & RS

respectively for the FunctionalService. Thus, the object of the SearchRequest becomes

an input to all the simple-search services and the ContentPage is expected as an

output on completion of the service.

The plugin must extend its simple-search implementation from the

com.hcl.unica.system.integration.service.search.SearchService class to be

recognized as a simple-search service by the Content Integration Framework (RESTful

counterpart discussed in earlier section is also a valid choice to extend from for the

simple-search services implemented using RESTful approach).

The SearchService extends from the

com.hcl.unica.system.integration.service.search.AbstractSearchService

abstract class. It introduces one more method, named getSupportedContentTypes. For

more information on the method, see Derivatives of RestService (on page 37).

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for the resource-loader

service:

• com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

The com.example.service.functional.ResourceLoaderService class in asset-

integration-starter project is a quick starter implementation for Functional

resource-loader service. It extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

The WebResourceLoaderService class implements the FunctionalService interface

and defines the ResourceRequest and the HttpResponse types to be the type

arguments RQ & RS, respectively, for the FunctionalService. Thus, the object of the

ResourceRequest becomes an input to all the resource-loader services and the

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 51

HttpResponse is expected as an output on completion of the service (the same input

and output types are used for RESTful counterpart of the resource-loader). For more

information on ResourceRequest & HttpResponse types, see Derivatives of RestService

(on page 37).

The plugin must extend its resource-loader implementation from the

com.hcl.unica.system.integration.service.resourceloader.WebResourceLoaderService

service to be recognized as a resource-loader service by the Content Integration

Framework (HTTP counterpart discussed in the earlier section is also a valid choice

to extend from for the resource-loader services implemented using the HTTP

approach).

The WebResourceLoaderService extends from the following class:

com.hcl.unica.system.integration.service.resourceloader.

AbstractWebResourceLoaderService

For more information about this class, see Derivatives of RestService (on page 37).

List content categories (list-content-categories)

The following are the specialized interfaces and classes available for list-content-categories

service:

• com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService

Plugin can alternatively choose Functional approach to implement list-

content-categories service by extending the implementation from

ContentCategoriesListService class. The ContentCategoriesListService

class implements the FunctionalService interface and mandates the

ContentCategoryListRequest and the List<ContentCategory> classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentCategoryListRequest becomes an input to the list-content-categories

service and the object of List<ContentCategory> type is expected as an output on

completion of the service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 52

• The plugin must extend its list-content-categories implementation from the

com.hcl.unica.system.integration.service.content.categories.list.ContentCategoriesListService

class to be recognized as a valid list-content-categories service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

ContentCategoriesListService extends from

AbstractContentCategoriesListService class. Details of

AbstractContentCategoriesListService class are covered in the Derivatives of

RestService (on page 37) topic.

List folders (list-folders)

The following are the specialized interfaces and classes available for list-folders service:

• com.hcl.unica.system.integration.service.folder.list.FolderListService

Plugin can alternatively choose Functional approach to implement list-folders

service by extending the implementation from FolderListService class. The

FolderListService class implements the FunctionalService interface and

mandates the FolderListRequest and the List<Folder> classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

FolderListRequest becomes an input to the list-folders service and the object of

List<Folder> type is expected as an output on completion of the service.

• The plugin must extend its list-folders implementation from the

com.hcl.unica.system.integration.service.folder.list.FolderListService

class to be recognized as a valid list-folders service by the Content Integration

Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

FolderListService extends from AbstractFolderListService class. Details of

AbstractFolderListService class are covered in the Derivatives of RestService (on

page 37) topic.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 53

List contents (list-contents)

The following are the specialized interfaces and classes available for list-contents service:

• com.hcl.unica.system.integration.service.content.list.ContentListService

Plugin can alternatively choose Functional approach to implement list-contents

service by extending the implementation from ContentListService class. The

ContentListService class implements the FunctionalService interface and

mandates the ContentListRequest and the ContentPage classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentListRequest becomes an input to the list-contents service and the object of

ContentPage type is expected as an output on completion of the service.

• The plugin must extend its list-contents implementation from the

com.hcl.unica.system.integration.service.content.list.ContentListService

class to be recognized as a valid list-contents service by the Content Integration

Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

ContentListService extends from AbstractContentListService class. Details of

AbstractContentListService class are covered in the Derivatives of RestService (on

page 37) topic.

Get content details (get-content-details)

The following are the specialized interfaces and classes available for get-content-details

service:

• com.hcl.unica.system.integration.service.content.details.ContentDetailsService

Plugin can alternatively choose Functional approach to implement get-content-

details service by extending the implementation from ContentDetailsService class.

The ContentDetailsService class implements the FunctionalService interface and

mandates the ContentDetailsRequest and the Presentable classes to be the type

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 54

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ContentDetailsRequest becomes an input to the get-content-details service and

the object of Presentable type is expected as an output on completion of the service.

The plugin must extend its get-content-details implementation from the

com.hcl.unica.system.integration.service.content.details.ContentDetailsService

class to be recognized as a valid get-content-details service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

ContentDetailsService extends from AbstractContentDetailsService class.

Details of AbstractContentDetailsService class are covered in the Derivatives of

RestService (on page 37) topic.

Get object schema (get-object-schema)

get-object-schema service is used to generate the master schema of domain object or

entity used by the respective system to represent the content. Master schema in simplest

form is just a hierarchical metadata of each mappable content attribute. Attribute hierarchy

and metadata is expected to match the JSON representation of the domain object. Attribute

metadata mainly includes the data type of the attribute, format of the value held in the

attribute, unique identifier of the attribute and display title or label for the attribute.

The following are the specialized interfaces and classes available for get-object-schema

service:

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService

The ObjectSchemaProviderService class implements the FunctionalService

interface and mandates the com.hcl.unica.system.model.ObjectSchemaRequest and

the com.hcl.unica.system.model.json.schema.ObjectSchema classes to be the type

arguments RQ and RS respectively for the FunctionalService. Thus, the object of the

ObjectSchemaRequest becomes an input to the get-object-schema service and the

object of ObjectSchema type is expected as an output on completion of the service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 55

Plugin however need not build the ObjectSchema by itself. It should just override and

implement following abstract method from ObjectSchemaProviderService class.

ObjectProfile getObjectProfile(ObjectSchemaRequest objectSchemaRequest)

The getObjectProfile() method accepts ObjectSchemaRequest and returns

ObjectProfile. (These types are discussed in subsequent section.)

The plugin must extend get-object-schema implementation from the

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaProviderService

class to be recognized as a valid get-object-schema service by the Content Integration

Framework. There is no RESTful counterpart of this standard super class since object

schema generation does not include any HTTP interaction. Plugins can implement

custom RESTful service and invoke it internally from within get-object-schema service

if required.

• com.hcl.unica.system.model.ObjectSchemaRequest

Object of this class is supplied as an input to the get-object-schema service. The most

important method of this class is getObjectIdentity() which returns an object of

type com.hcl.unica.system.model.ObjectIdentity encapsulating the details of the

content chosen by the user to request the master schema. It includes applicationId

(the system identifier), objectType (content type/category identifier) and objectId

(unique identifier of the selected content). Regardless of the category and/or content

chosen by the user at the time of setting up content mapping, the generated schema

must include attributes of all kinds of contents supported by the respective system.

In other words, only one master schema is used for mapping all types of contents

provided by the given system.

The getEnrichmentObjectJson() method in ObjectSchemaRequest class can be

ignored as of current release.

• com.hcl.unica.system.integration.service.object.schema.ObjectProfile

This is a return type of getObjectProfile() method in get-object-schema service.

It carries the Java type corresponding to the domain entity/object for the respective

system. Content Integration Framework consults this Java type to generate the

schema for public and non-public non static class properties (inclusive of Enums

& Optionals). @MappableAttribute annotation can be used to configure each

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 56

individual class property to control the schema generated by Content Integration

Framework. Refer to the com.aem.model.response.simplesearch.SimpleSearchItem

domain object in aem-integration reference project to get an idea about

how this annotation is used. More details are provided on @MappableAttribute

in next section. ObjectProfile can optionally include an instance of

com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher

to dynamically add/modify/remove attributes from the schema thus generated. Next

section explains ObjectSchemaEnricher in detail.

• com.hcl.unica.system.integration.service.object.schema.ObjectSchemaEnricher

ObjectSchemaEnricher is an abstract class. Plugin should extend it to have desired

implementation. The type parameter to ObjectSchemaEnricher class represents

the Java type containing the additional details required for enriching the statically

generated object schema. These additional details might be provided by the client

applications of Unica Content Integration. As of current release, no additional

details are provided, hence it should be set to Void while implementing the schema

enricher. ObjectSchemaEnricher declares only one abstract method which should be

implemented by the plugin:

abstract public ObjectSchema enrich(

 ObjectSchema objectSchema,

 ObjectSchemaEnrichmentRequest<T> objectSchemaEnrichmentRequest

)

The first argument to this method is an instance of

com.hcl.unica.system.model.json.schema.ObjectSchema class. It contains the

automatically generated domain object schema derived from the Java type supplied in

ObjectProfile. At its core, ObjectSchema is just a Map<String, AttributeSchema>,

wherein class property names forms the keys of this map and property metadata

ends up as an object of AttributeSchema. If the class property in turn refers to

another object, the corresponding AttributeSchema will have another Map<String,

AttributeSchema> containing the attributes of that object type and so on.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 57

Note: It is important to note that attribute names used as the keys in attribute

map correspond to the JSON properties which ends up in the JSON representation

of the domain object. Hence, if @JsonProperty annotation is used to override the

JSON property name for certain class attribute, then Content Integration Framework

automatically detects it and use the overridden property name.

ObjectSchema as well as AttributeSchema extend from

com.hcl.unica.system.model.json.schema.AttributeContainer abstract

class. AttributeContainer provides convenience methods to ObjectSchema and

AttributeSchema classes for navigating through attribute hierarchy as well as for

adding, modifying and removing attributes at any level in the hierarchy to ease the

schema enrichment. Attributes at any level in the hierarchy can be accessed and

manipulated using their names as appearing in JSON representation.

• com.hcl.unica.system.model.json.schema.generator.annotations.MappableAttribute

@MappableAttribute annotation provides a way to control how Content Integration

Framework generates object schema from the respective Java type. Use of

@MappableAttribute is not mandatory. If it is not used, Content Integration Framework

automatically figures out property metadata. If required, this annotation should be

placed on top of desired class properties. Following annotation attributes can be used

to control the schema generation:

◦ hidden – Set this to true to explicitly exclude certain property from object schema

(@JsonIgnore is presently not considered by Content Integration Framework.

Hence, any property excluded from JSON representation using @JsonIgnore must

be explicitly excluded from schema)

◦ id – Supply unique identifier for the property. Content Integration Framework needs

unique identifier for each mappable class property. If @MappableAttribute is not

used, or id is not specified, it generates one automatically based on the location of

property inside the class.

Automatic generation of attribute identifier is subject to the name and the

hierarchical location of class property inside the domain object graph. It implies

that if the property name is changed and/or moved up or down the object graph

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 58

hierarchy, it will change the identifier associated with it. Such refactoring can

mislead Content Integration Framework while reading the values of refactored

attributes and may lead to undesired data in mapped contents (such as Offers

in COM). Hence, to avoid such inadvertent changes in attribute identifiers, we

recommend you to assign unique attribute identifiers manually, which remain

constant regardless of the name and location of class properties.

◦ title – Display title/label for the property. If omitted, Content Integration Framework

generates one using property name.

◦ type – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeType.

If omitted, Content Integration Framework automatically figures out the

appropriate type.

◦ format – One of the values from

com.hcl.unica.system.model.json.schema.generator.annotations.AttributeFormat.

Content Integration Framework can automatically identify standard java temporal

types (Date, LocalDateTime, Instant) and set the attribute type to DATETIME. Other

formats should be explicitly declared.

◦ implementation – Should be used for polymorphic references to explicitly declare

the Java type to be considered for automatic schema generation.

◦ hiddenProperties - @MappableAttribute annotation can be used at the class level

to hide multiple properties at single place. hiddenProperties takes an array of

Strings containing the names of properties (direct as well as inherited ones) to be

excluded from automatically generated schema. It is particularly useful for hiding

properties inherited from third party parent class.

Java Type to AttributeType Mapping

Following table summarizes the mapping between Java type and AttributeType/

AttributeFormat used by the Content Integration Framework for automatic schema

generation:

Java Type AttributeType AttributeFormat

◦ String

◦ Character

STRING

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 59

Java Type AttributeType AttributeFormat

◦ Char

◦ CharSequence

◦ LocalDate

◦ LocalTime

◦ ZonedDateTime

◦ OffsetDateTime

◦ OffsetTime

◦ ZoneId

◦ Calendar

◦ UUID

◦ Boolean

◦ boolean

BOOLEAN

◦ BigInteger

◦ Integer

◦ Int

◦ Long

◦ Long

◦ Short

◦ Short

◦ Byte

◦ byte

INTEGER

◦ BigDecimal

◦ Number

◦ Double

◦ Double

◦ Float

◦ float

NUMBER

◦ Date

◦ LocalDateTime

INTEGER DATETIME

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 60

Java Type AttributeType AttributeFormat

◦ Instant

Content Integration

Framework expects date

values be expressed

in UTC standard time.

Temporal values expressed

in any other timezone can

lead to inaccurate temporal

calculations in further use

cases.

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for get-cognitive-analysis

service:

• com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService

Plugin can alternatively choose Functional approach to implement get-cognitive-

analysis service by extending the implementation from CognitiveAnalysisService

class. The CognitiveAnalysisService class implements the FunctionalService

interface and mandates the CognitiveAnalysisRequest and the CognitiveAnalysis

classes to be the type arguments RQ and RS respectively for the FunctionalService.

Thus, the object of the CognitiveAnalysisRequest becomes an input to the get-

cognitive-analysis service and the object of CognitiveAnalysis type is expected as

an output on completion of the service.

• The plugin must extend its get-cognitive-analysis implementation from the

com.hcl.unica.system.integration.service.cognitive.analysis.CognitiveAnalysisService

class to be recognized as a valid get-cognitive-analysis service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 61

CognitiveAnalysisService extends from AbstractCognitiveAnalysisService class.

Details of AbstractCognitiveAnalysisService class are covered in the Derivatives of

RestService (on page 37) topic.

AbstractEntity

The com.hcl.unica.system.model.AbstractEntity class represents a general domain

entity. For the current release, this abstract class does not contain any implementation.

However, for the Content Integration Framework, plugins must extend their domain

entities from the com.hcl.unica.system.model.AbstractEntity class. This ensures that

AbstractEntity is the base for dealing with domain entities within Content Integration

Framework.

As for the plugin implementations, the class used to represent an individual content

returned by the simple-search, list-contents, and get-content-details services must

extend from AbstractEntity class.

Presentable

To be able to render an individual content returned by the simple-search, list-contents

& get-content-details services , the domain entity class used by these services

must implement the com.hcl.unica.system.model.presentation.Presentable

interface and override the getPresentationDetails() method. The

com.hcl.unica.system.model.presentation.Presentable$PresentationDetails

object returned by the getPresentationDetails() method must provide the

TextualPresentation as well as MultimediaPresentation details.

TextualPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide details, if

available.

• heading – Title of the content

• subheadings – List of subheadings for the content

• summary – Summary or description of the content

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 62

• name – Should be used for filename associated with the content

• tags – Tags associated with the content (out of the box plugins use this to convey

MIME type or category of the content)

Whereas MultimediaPresentation contains following particulars:

• Note: The highlighted fields are mandatory. For the other fields, provide details, if

available.

• id - Unique identifier of the content

• folderId - Unique identifier of the folder respective content belongs to

• mimeType - MIME type of the original content

• size - Size of original content in bytes

• resourceUrl - Absolute URL to the original content

• thumbnailUrl - Absolute URL to the content thumbnail, if available

• fileName - File name associated with the original content

• type – Type/category identifier of the content (must be one of the values from

supported content types set up using any of the applicable alternatives provided by

Content Integration framework)

• list of variants – Each variant supports almost same details as the primary

MultimediaPresentation details except thumbnailUrl (it can only have its own

resourceUrl), folderId and variants (variant cannot have any further variants)

Builder API

Almost all the standard types discussed in previous sections provide the builder API for the

ease of constructing objects.

For example, TextualPresentation can be built using following syntax instead of splitting it

into constructor and setter operations:

TextualPresentation.builder()

 .heading("Content title")

 .subheadings(Collections.emptyList())

 .name("photo.jpg")

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 63

 .tags(Collections.singletonList("Image"))

 .build();

It is not mandatory to use builder API for creating standard objects. However, it certainly

keeps plugin implementations clean while dealing with complex objects.

Standard exceptions
Standard exceptions include exceptions provided by the Content Integration SDK, which can

be used by the plugins to convey different failure conditions during service execution.

RESTful approach
Content Integration Framework handles error conditions, arising from services implemented

using RESTful approach.

Additionally, Content Integration Framework initiates and handles the execution of remote

API call for RESTful integrations, so that it can keep track of the success of all the HTTP

operation. Thus, the plugins do not require any special exception to convey the failure of

the REST call. If something goes wrong inside the service implementation; any appropriate

unchecked exception is sufficient to convey the operation failure. Such exceptions are

further conveyed as 502 HTTP response to the client.

Functional approach
Since Content Integration Framework does not initiate and manage the outgoing

connections in case of Functional services, it cannot keep track of end to end success.

Hence, it provides certain standard exceptions, which the service implementations

can throw to convey relevant failure conditions. These exceptions are

related to communication with the target system and are present within the

com.hcl.unica.system.integration.exception package.

• SystemNotFoundException

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 64

This exception must be used when the target system or content repository cannot

be located. Alternatively, java.net.UnknownHostException can also be used. This

exception is conveyed as 404 HTTP response to the client.

• ServiceNotFoundException

This exception must be used when the remote endpoint returns 404, or if the target

service no longer exists. Absence of the target system and the absence of the required

service are considered as different things. Hence, the ServiceNotFoundException

conveys presence of the target system and the absence of the required service,

or feature, on the target system. For example, in case of content fetched from the

database, the absence of the required table (or the absence of the permission to

access it) can be conveyed using this exception. This exception is conveyed as 404

HTTP response to the client.

• UnreachableSystemException

This exception must be used to convey unreachable or inaccessible target systems,

such as connection timeout. Alternatively, java.net.ConnectException can also be

used. This exception is conveyed as 503 HTTP response to the client.

• SluggishSystemException

When the response from the target system is not received within expected time, this

exception must be used to convey the slowness of the target system. Alternatively,

java.net.SocketTimeoutException can also be used. This exception is conveyed as

504 HTTP response to the client.

• InternalSystemError

This exception must be used if the plugin receives a temporary, or unexpected, error

from the target system to convey the problems in it. This exception is conveyed as 502

HTTP response to the client.

Any other exceptions are conveyed as 502 HTTP response to the client. In any case, the

message in the exception is never returned to the client. Each HTTP response code carries

a fixed, generic, and localized message.

Content Integration Framework wraps the exceptions received from service

implementations into

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 65

com.hcl.unica.system.integration.exception.ServiceExecutionException or its

subtype. Exceptions received from REST-based services or HTTP-based services are

wrapped in

com.hcl.unica.system.integration.exception.HttpServiceExecutionException,

whereas the ones received from Functional services are wrapped in

com.hcl.unica.system.integration.exception.ServiceExecutionException.

As explained in Service invocation (on page 27), HttpServiceExecutionException

provides a method to obtain an Optional<HttpResponse> object. If the service execution

fails before initiating an HTTP call, then this Optional object will not contain any

HttpResponse.

Loggers
Content Integration Framework provides logging interface using the slf4j library. By adding

dependency for the slf4j library, the plugins can use its API for adding loggers inside

service implementations.

The starter as well as reference projects included in dev-kits manage their dependencies

using Apache Maven. The following entry is found in the POM file:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.26</version>

 </dependency>

Use 1.7.26 or higher version of slf4j-api to avoid conflict. Once the required dependency

is added, the logger object can be obtained by directly accessing the slf4j API.

Logger log = LoggerFactory.getLogger(YOUR_CLASS.class);

Alternatively, project Lombok can also be used to get the logger object for your class.

Lombok provides @Slf4j annotation, which can be used to inject the earlier mentioned

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 66

property inside the annotated class. For more information on project Lombok, please visit

its official web page.

Additionally, the application logs can be found in AssetPicker/logs directory under

platform home. By default, all the loggers from your plugin will reside in the common log

file configured in AssetPicker/conf/logging/log4j2.xml file. You can alter the

log4j2.xml configuration file to route your loggers to a different file, for troubleshooting

during development. Configuration of log4j2 is not part of the scope of this guide. Please

refer to the official documentation of Apache Log4j2 for more information.

Chapter 4. Setting up the development
environment

Set up the development environment in Eclipse IDE for writing your plugins. Use any Java EE

IDE of your choice and make the required configurations mentioned in this topic. You need

certain artifacts from <ASSET_PICKER_HOME> to complete the environment setup. This

topic will provide information about project building and packaging using Apache Maven so

ensure that you have Apache Maven installed.

To set up the development environment, complete the following steps:

1. From the <ASSET_PICKER_HOME>/dev-kits/ location, copy the asset-

integration-starter project and place it in your development workspace.

2. Open the Eclipse IDE.

3. Select File > Import.

The Select dialog appears.

4. Select WAR file and click Next.

The WAR Import dialog appears.

5. Click Browse, navigate to <ASSET_PICKER_HOME>, and select asset-

viewer.war file.

6. Click Finish.

The WAR Import: Web libraries dialog appears.

7. Click Finish.

8. Select Window > Show View > Other.

The Show View dialog appears.

9. Select Servers and click Open.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 68

As an example, we will illustrate the use of Apache Tomcat 9.0 for running Content

Integration. You can use any supported application server and make the required

configurations.

a. Open the conf/server.xml file from your Apache Tomcat 9.0 installation

directory and add the following entry, with appropriate database details, inside the

<GlobalNamingResources> element. Please replace <DRIVER_CLASS_NAME>,

<URL_TO_YOUR_PLATFORM_DATABASE>, <DATABASE_USERNAME>, and

<DATABASE_PASSWORD> with Platform database details:

<Resource auth="Container" driverClassName="{DRIVER_CLASS_NAME}"

 maxActive="20"

 maxIdle="0"

 maxWait="10000"

 name="UnicaPlatformDS"

 password="{DATABASE_PASSWORD}"

 username="{DATABASE_USERNAME}"

 type="javax.sql.DataSource"

 url="{URL_TO_YOUR_PLATFORM_DATABASE}"/>

b. Open the conf/context.xml file from your Apache Tomcat 9.0 installation

directory and add the following entry inside the <Context> element:

<ResourceLink auth="Container" global="UnicaPlatformDS"

 name="UnicaPlatformDS"

type="javax.sql.DataSource"/>

10. To add Apache Tomcat 9.0 as a new server in Eclipse, complete the following steps:

a. In the Servers tab, click the link to create a new server.

The Define a New Server dialog opens.

b. Select Tomcat v9.0 Server and provide values for Server host name and Server

name.

c. Click Next.

The server is successfully added.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 69

d. In the Servers tab, double-click the newly added server entry.

The Overview dialog appears.

e. Click the link Open launch configuration.

The Edit launch configuration properties dialog appears.

f. Edit the launch configurations to the add following JVM arguments

-DASSET_PICKER_HOME=<Point this to <ASSET_PICKER_HOME> directory>

-Dspring.profiles.active=platform-disintegrated

g. Click OK.

11. To run the imported asset-viewer.war file on Apache Tomcat 9.0, right click the

asset-viewer.war file and select Run As > Run on Server.

The Run on Server dialog appears.

12. Click Finish.

The asset-viewer.war will start executing on Apache Tomcat. After the setup is

verified, stop the server and import the plugin development starter project.

13. To install Content Integration SDK, complete the following steps:

a. In the following directories, delete the SDKs that are already installed:

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\integration-api

\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\standard-integrations

\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\asset-integration-api

\0.0.1-SNAPSHOT

• <LOCAL_M2_REPOSITORY>\com\hcl\unica\entity-mapper-api

\0.0.1-SNAPSHOT

On UNIX or Mac OS X, <LOCAL_M2_REPOSITORY> refers to the ~/.m2/

repository directory.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 70

On Microsoft Windows, <LOCAL_M2_REPOSITORY> refers to the C:\Users

\{your-username}\.m2\repository directory.

b. Use the following commands to install Content Integration SDKs into your local

Maven repository. Find asset-integration-api.jar, integration-

api.jar, standard-integrations.jar and entity-mapper-api.jar

inside the <ASSET_PICKER_HOME>/dev-kits/sdk directory.

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-

kits/sdk/asset-integration-api.jar -DgroupId=com.hcl.unica -

DartifactId=asset-integration-api -Dversion=0.0.1-SNAPSHOT -

Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-

kits/sdk/integration-api.jar -DgroupId=com.hcl.unica -

DartifactId=integration-api -Dversion=0.0.1-SNAPSHOT -

Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-

kits/sdk/standard-integrations.jar -DgroupId=com.hcl.unica -

DartifactId=standard-integrations -Dversion=0.0.1-SNAPSHOT -

Dpackaging=jar

mvn install:install-file -Dfile=<ASSET_PICKER_HOME>/dev-kits/sdk/

entity-mapper-api.jar -DgroupId=com.hcl.unica -DartifactId=entity-

mapper-api -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar

14. To import the plugin development starter project, select File > Import.

The Select dialog appears.

15. Select Existing Maven Projects and click Next.

The Maven Projects dialog appears.

16. Click Browse to select the project and click Finish.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 71

17. To update Maven dependencies of the asset-integration-starter project, right-

click the asset-integration-starter project and select Maven > Update Project.

18. Ensure that newly imported project is using Java 8 to compile sources. Open project

properties and complete the following steps to setup the compiler:

a. Select Java Compiler.

b. If Compiler compliance level is non-editable, select Enable project specific

settings.

c. Change the Compiler compliance level to 1.8.

d. Click Apply and Close.

19. To ensure that the right Java library is set up in the build path, complete the following

steps:

a. Select Java Build Path > Libraries.

b. Select JRE System Library (J2SE-1.5).

c. Click Remove.

d. Click Add Library.

The Add Library dialog opens.

e. Select JRE System Library > Next.

The JRE System Library appears.

f. Select an appropriate library and click Finish.

20. To enable annotation processing, complete the following steps:

a. Select Java Compiler > Annotation Processing.

b. Select Enable project specific settings.

c. Select Apply and Close.

21. To install Lombok, complete the following steps:

a. Double-click the LOCAL_M2_REPOSITORY\org\projectlombok\lombok

\1.18.16\lombok-1.18.16.jar.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 72

The installer dialog appears.

b. To specify the installation location of your IDE, click Specify location.

c. To complete the installation, click Install / Update.

d. Post installation of Lombok, restart the IDE.

22. To change the project name, complete the following steps:

a. Open the file pom.xml and change its Maven project properties.

b. Right-click the asset-integration-starter project and select Refactor > Rename.

23. In the <ASSET_PICKER_HOME>/conf/custom-plugin-services.yml file,

declare the plugin services. You can access this file later to add declarations when you

introduce services for your plugins.

24. To add plugin project to the deployment assembly of the asset-viewer.war project,

complete the following steps:

a. Right-click the asset-viewer.war project and select Properties.

The Properties for asset-viewer dialog opens.

b. Select Deployment Assembly.

c. Select Add.

The Select Directive Type dialog opens.

d. Select Project and click Next.

e. Select the asset-integration-starter plugin project you imported in previous

steps and click Finish.

25. If necessary, clean the projects.

26. Make the appropriate configuration for your system in <ASSET_PICKER_HOME>/

conf/systems.properties (refer sample-systems.properties file available in

the <ASSET_PICKER_HOME>/dev-kits/asset-integration-starter project).

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 73

All the system onboarding configurations mentioned in Unica Content Integration

Administration Guide are supported in systems.properties using relevant properties.

27. As you develop your plugin, check it by running the asset-viewer.war project on a

previously configured application server. Since the project would already be added to

the Deployment Assembly of asset-viewer.war, changes to your plugin project will

be deployed whenever you run the asset-viewer.war project.

28. As you develop your plugin, by adding services to it, use a tool of your choice to hit the

following REST endpoints (change the context root to match your setup) to verify the

accuracy of your implementation:

a. Ensure system onboarding

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/instances

Request Method GET

b. Verify simple-search service

Endpoint URL http://localhost:8888/

asset-viewer/api/

AssetPicker/mysystem/assets?

query=mountain&page=0&size=10&types=Phto

where,

• mysystem represents the system

identifier chosen by plugin

implementation.

• query contains the search keyword

to lookup the content for.

• page & size contains pagination

details, where page is the serial

number of pages to be retrieved

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 74

and size is the total search items

on a single page.

• types is one of the supported

content categories (types) to filter

the search items against.

Request Method GET

When you hit the URL, ensure that the response JSON contains the expected

result. Only presentation details are included for every search items. Other content

properties are excluded for the sake of brevity and performance.

c. Verify resource-loader service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/mysystem/

download?resource=

http://repository_base_url/

contents/sample_image.jpg

%26resourceId=12345"

where

• mysystem represents the system

identifier chosen by plugin

implementation.

• resource contains the absolute

URL content to be downloaded.

• resourceId contains the identifier

of the content to be downloaded.

(Plugin can choose to utilize either

resource or resourceId or both to load

the content.)

Request Method GET

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 75

d. Verify list-folders service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/mysystem/

folders?parentFolderId=1234

where:

• mysystem represents the system

identifier chosen by plugin

implementation.

• parentFolderId contains the

identifier of the parent folder

whose immediate subfolders

are expected in response. This

query parameter is optional & not

supplied while listing the top/root

level folders.

Request Method GET

e. Verify list-contents service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/mysystem/

folders/1234/contents

where:

• mysystem represents the system

identifier chosen by plugin

implementation.

• 1234 represents the identifier

of the folder whose immediate

contents are expected in response.

Request Method GET

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 76

Only presentation details are included for every content listed by the list-

contents service. Other content properties are excluded for the sake of brevity and

performance.

f. Verify get-content-details service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/mysystem/

assets/Images/1234

where:

• mysystem represents the system

identifier chosen by plugin

implementation.

• Images represents the category ID

of the content whose details are

expected in response.

• 1234 represents the identifier of

the content whose details are

expected in response.

Request Method GET

The JSON response produced by get-content-details service includes all the

content properties, in addition to the presentation details.

g. Verify get-object-schema service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/object-

mapping/application/mysystem/

object/Images/1234/schema

where:

• mysystem represents the system

identifier chosen by plugin

implementation.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 77

• Images represents the category of

the reference content being used

for schema generation.

• 1234 represents the identifier of

the reference content being used

for schema generation.

As of 12.1.0.4, content identifier and

category are not much relevant since

the schema is expected to include

attributes for all the supported content

categories.

Request Method GET

The JSON response must contain the flattened list of all mappable attributes and

their metadata.

h. Verify list-content-categories service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/mysystem/

categories

where:

• mysystem represents the system

identifier chosen by plugin

implementation.

Request Method GET

i. Verify get-cognitive-analysis service

Endpoint URL http://localhost:8888/asset-

viewer/api/AssetPicker/actions/

cognize?url=absolute_image_url

where:

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 78

• url contains absolute URL of

the image to fetch the cognitive

analysis for

Request Method GET

Chapter 5. Verification and troubleshooting

To verify end-to-end integration, place the JAR file, containing the plugin implementation,

in the class path of the application server where the Content Integration is deployed.

Additionally, configure the corresponding content repository in <ASSET_PICKER_HOME>/

conf/systems.properties file (you can refer to the sample-systems.properties

file within the <ASSET_PICKER_HOME>/dev-kits/asset-integration-starter

project).

All the system onboarding configurations, mentioned in Unica Content Integration

Administration Guide, are supported in the systems.properties using relevant properties.

You must provide -Dspring.profiles.active=platform-disintegrated JVM argument

for systems.properties to come into effect (you can always use Platform’s configurations

instead of systems.properties by removing -Dspring.profiles.active=platform-

disintegrated JVM argument).

Note: Currently, only Unica Centralized Offer Management and Unica Plan can access

Content Integration.

After the plugin is deployed, and the system configurations are made, restart the Content

Integration application.

Although, you can verify Content Integration using REST endpoints mentioned in previous

section, we recommend you to check end-to-end integration by running through the relevant

user interface in Unica Centralized Offer Management and Unica Plan. Please refer to the

corresponding user guides to learn how to access Content Integration features in respective

products.

Use developer tools provided by the supported browsers to troubleshoot the API calls, if

required.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 80

Overview of loggers
As mentioned in Verification of integration (on page), the logging configuration for

Content Integration is available in thelog4j2.xml file, placed in the AssetPicker/conf/

logging folder within Platform home.

Content Integration uses Apache Log4j2 for log management. The

RandomAccessFilePlatform appender along with com.unica logger configured in

log4j2.xml controls the logs produced by Platform's unica-common.jar and unica-

helper.jar used in Content Integration. The remaining settings control logging for other

core activities of Content Integration.

The default log level is set to WARN in both cases, which should be sufficient for the

troubleshooting needs for plugin development. Most of the loggers, produced by

the Content Integration at INFO & DEBUG level, are not extremely relevant for plugin

development & integration. The following topics elaborate only the relevant loggers. These

loggers are already present in log4j2.xml file and need to be uncommented, if required.

Please ensure that log level is never set to DEBUG or TRACE for these loggers in production

since they can generate sensitive information.

The log4j2.xml file also contains necessary configurations to route all the loggers for

a specific user to a dedicated log file. By default, these configurations are commented.

Appropriate description is added in log4j2.xml at the top of each configuration element

to help activate the dedicated log file.

Useful loggers in log4j2.xml file
The following table lists the useful loggers in the log4j2.xml file:

Table 2. Useful loggers in log4j2.xml file

Loggers Information

org.springframework.web Setting this logger to TRACE level produces

HTTP request and response details for all

the incoming HTTP requests to Content

unique_36
unique_36
unique_36

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 81

Loggers Information

Integration. This logger can be useful if

you want to see what is being exchanged

between frontend and backend.

com.hcl.unica.cms.integration

.flow.interceptor.logger

This logger is most useful for plugin

development. It logs the HTTP interaction

between Content Integration Framework

and the target repository. For any service

implemented using RESTful approach (by

implementing RestService, HTTPService or

their specialized derivatives), this logger will

write HTTP request and response details

for all the outbound HTTP interactions

with target system. To prevent security

vulnerability, values of confidential headers

are masked before logging. Only the last

four characters are left unmasked for

troubleshooting. Such headers include

standard header Authorization, or any non-

standard custom headers set in request or

received in response.

org.springframework.retry Setting this logger to TRACE level adds

information related to retrial attempts while

making HTTP calls to the target repository.

This is useful to verify Retry Policy set

up under QOS section for the respective

system in Platform Configuration.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 82

Other important loggers
Other important loggers are useful in troubleshooting Content Integration. Along with

spotting warnings and errors, these loggers provide information that is useful from a

functional point of view.

The following table lists the other important loggers:

• Client applications - If root logger level is set to INFO level, the following lines tells you

the number of client applications, and which client applications Content Integration can

identify:

SupportedClientApplications: Found {1} supported client applications.

SupportedClientApplications: Registered {Offer} as supported client

 application.

• CORS - If root logger is set to INFO level, the following lines can provide information

about Content Integration’s support for Cross Origin Resource Sharing:

RegexCorsConfig: CORS: Enabling CORS for {hcl.com} & its subdomains.

 Allowed HTTP methods - {[GET, POST]}, allowed headers - {[*]}

RegexCorsConfig: CORS: Allowed origins set to {[http(s)?://([^\.]+

\.)*hcl.com(:[0-9]+)?]}

• Platform configuration - Content repositories - Setting the root logger level to INFO

tells us about the content repositories that are identified by Content Integration

Framework.

PlatformConfigurationCategoryResolver: Platform configuration: Reading

 list of entries for path {Affinium|Offer|partitions|partition1|Content

 Integration|dataSources}...

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {AEM#119[partition1]}

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {WCM#119[partition1]}

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 83

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {Bing#119[partition1]}

• Service meta information files - The following lines are also logged at INFO level to tell

how many service meta information files have been identified by Content Integration

Framework:

c.h.u.s.c.s.PluginServicesYamlConfigReader: Scanning & parsing service

 configuration files.

c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at

 {<ASSET_PICKER_HOME>\conf\plugin-services.yml}.

c.h.u.s.c.s.PluginServicesYamlConfigReader: Found service config file

 at {<ASSET_PICKER_HOME>/conf/plugin-services.yml}

c.h.u.s.c.s.PluginServicesYamlConfigReader: Parsing service

 configuration file (YAML): {<ASSET_PICKER_HOME>/conf/plugin-

services.yml}...

c.h.u.s.c.s.PluginServicesYamlConfigReader: Seeking file at

 {<ASSET_PICKER_HOME>\conf\custom-plugin-services.yml}.

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {COM} - {[COM:get-object-schema]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {12} service declaration(s)

 found for {WCM} - {[WCM:item-details, WCM:simple-search, WCM:content-

list, WCM:logon-service, WCM:list-contents, WCM:library-list, WCM:get-

content-details, WCM:folder-list, WCM:get-object-schema, WCM:list-

folders, WCM:library-by-id, WCM:resource-loader]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {31} service declaration(s)

 found for {Deliver} - {[Deliver:update-folder, Deliver:simple-

search, Deliver:list-by-ids, Deliver:zip-file-upload, Deliver:delete-

content, Deliver:move-folder, Deliver:create-content, Deliver:list-

folders, Deliver:zip-upload-template-unknown, Deliver:move-

content, Deliver:list-sub-folders, Deliver:download-content-

variant, Deliver:download-file-attachment, Deliver:get-user-

entitlements, Deliver:list-top-folders, Deliver:update-dynamic-

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 84

content, Deliver:create-folder, Deliver:find-libraries-by-name,

 Deliver:resource-loader, Deliver:zip-upload-content, Deliver:adopt-

dynamic-content, Deliver:get-folder, Deliver:create-dynamic-content,

 Deliver:list-contents, Deliver:get-content-details, Deliver:patch-

content, Deliver:delete-folder, Deliver:get-library, Deliver:update-

content, Deliver:get-library-file, Deliver:adopt-content]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {Azure} - {[Azure:get-cognitive-analysis]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {1} service declaration(s)

 found for {DX-CORE} - {[DX-CORE:logon-service]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s)

 found for {DX} - {[DX:simple-search, DX:list-contents, DX:get-content-

details, DX:rendition-details, DX:get-object-schema, DX:list-folders,

 DX:resource-loader]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s)

 found for {Commerce} - {[Commerce:simple-search, Commerce:list-

contents, Commerce:get-content-details, Commerce:get-search-query-

suggestions, Commerce:list-content-categories, Commerce:get-object-

schema, Commerce:list-folders]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {7} service declaration(s)

 found for {AEM} - {[AEM:simple-search, AEM:list-contents, AEM:get-

content-details, AEM:get-object-schema, AEM:get-content-fragment-model,

 AEM:list-folders, AEM:sample-inbound-service]}

c.h.u.s.c.s.PluginServicesYamlConfigReader: {2} service declaration(s)

 found for {Bing} - {[Bing:simple-search, Bing:get-content-details]}

• Authentication protocols - The following lines, logged at INFO level, confirms the

authentication protocol is identified for the given content repository:

AssetPickerRestTemplate: Setting up {BASIC} authentication for

 {Offer[partition1].WCM:simple-search} service...

• Platform configuration cache invalidation and service re-initializations - All the

Platform configurations for Content Integration are cached during application startup.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 85

These configurations are refreshed after certain interval (every 30 mins by default

unless configured to use some other interval). The following logger is produced at INFO

level, whenever configuration refresh begins:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initializing

 services...

Similarly, the following lines are generated at INFO level whenever it is over:

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Finished service

 initializations.

INFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initialization

 completed in 3692 milliseconds. YAML read time: 15 milliseconds,

 DB Read Time: 3608 milliseconds, Service initialization time: 68

 milliseconds

	Unica Content Integration V12.1 Developer Guide
	Contents
	Chapter 1. Overview
	Plugins
	Integration support and plugin development approach
	RESTful content search flow
	Non-RESTful content search flow

	Chapter 2. Plugin development overview
	Components of plugin
	Service declarations
	Service declaration file

	Standard services
	Service implementations
	RESTful approach
	Functional approach
	Common methods

	Best approach selection

	Chapter 3. Plugin Development SDK
	Generic type parameters
	RestService<RQ, RS>
	FunctionalService<RQ, RS>
	ServiceGateway<RQ, RS>

	Service invocation
	Multi-partitioned clients

	Execution context
	User data source

	Standard services and specialized types
	Invocation of standard services
	Specialized types
	Derivatives of RestService
	Simple search (simple-search)
	List content categories (list-content-categories)
	List folders (list-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get cognitive analysis (get-cognitive-analysis)

	Derivatives of HttpService
	Resource loader (resource-loader)

	Derivatives of FunctionalService
	Simple search (simple-search)
	Resource loader (resource-loader)
	List content categories (list-content-categories)
	List folders (list-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get object schema (get-object-schema)
	Get cognitive analysis (get-cognitive-analysis)

	AbstractEntity
	Presentable
	Builder API

	Standard exceptions
	RESTful approach
	Functional approach

	Loggers

	Chapter 4. Setting up the development environment
	Chapter 5. Verification and troubleshooting
	Overview of loggers
	Useful loggers in log4j2.xml file
	Other important loggers

