<L

Unica Content Integration
V12.1 Developer Guide

Contents

Chapter 1. OVEIVIEW.........ciiiiiiiiiiiiiiieiiiiereeeeeeeeeeeeeeeeeeeeenanssssssssssssssssssssssssssssnnssssssssnnns 1
PIUGINS ..ot et e e et e et e et e e et eae e et e et e et e et e e aneeenes 1
Integration support and plugin development approach.............cccooiieiiiiiiiciiicieee 1
RESTful content search floW..........coouoiiiiiiiiie e 2
Non-RESTful content search flIoW..........ccooovieiiiiiicie e 3
Chapter 2. Plugin development OVEIVIEW..........cccceueuuueuueiiiiiiiiiiniiiiiiieeeeeeeneeeeeeeneeesssnannns 4
CompoNents Of PIUGIN.....c.oooiiiiie et sneeas 4
Service decClarations.........cc.oouieiieiee e 5
StANAArd SEIVICES.eoiiiieiieieeeeee ettt ettt ettt 11
Service IMplemMENtatioNS.........c.oooiiiiiieicee e 17
Chapter 3. Plugin Development SDK...........cccuuuuiiiiiiiiiiininiiieeeeeeeenneeeeeesieessessessseeesssennes 24
GENErIC tYPE PArAMETEIS.ii ittt ettt e e e et e e st eeeesteeesnreeeessaeesnnseeenns 24
SEIVICE INVOCATION. ... ittt ettt ettt e e e e e e e aaeeaee s 27
EXECULION CONTEXT......eiiiiiii ettt 31
(LT e 1= o= T T o U o =TSSR 33
Standard services and specialized tYPES.......ccoviirieiieiiecieeeee e 33
Invocation of standard SEIVICES..........ccieieriiiieieeeeeee e 34
SPECIAlIZEA TYPES. ...t 37
Standard EXCEPLIONS.ooviieeieceeeeeeeee et 63
RESTIUl @PPrO@CK.......oieiieeeeeeeee ettt 63
Functional @pproacCh..........c..ooouiiioiieeeee e 63

[T o = F RO UURRUPPPRSP 65

Chapter 4. Setting up the development environment..............ccooirereniiiiiiiieciienineeeneceeenne 67

Contents | iii

Chapter 5. Verification and troubleshooting............ceeueeeiiiiiiiiiiiiiiiiiiiirerrceceeeeeeeeeeee 79
OVEIVIEW Of [OQQETS. ...ttt ettt et e beeae e enseenes 80
Useful loggers in 10g4j2.Xml fil€........coooiiiiiiiieeeeeeeeee e 80

Other IMmportant l0gQErsS.......cc.ooouiiiiiiee e 82

Chapter 1. Overview

Unica Content Integration facilitates easy integration with Content Management Systems

and enables searching content from them.

The fetched content can be used by the client of Unica Content Integration for various
content-oriented business use cases. A Unica Content Integration client is any product from

Unica Suite which integrates with it to consume the content from the target systems.

Plugins

To integrate with different CMS, Unica Content Integration uses REST APIs. Since each CMS
has a unique programming interface, Unica Content Integration uses custom plugins or

modules written specifically for the target CMS.

You can implement plugins using Java programming language. Unica Content Integration
does not enforce any dependency of any third-party library for developing such plugins. You
can customize plugins to utilize any third-party library for its implementation. Plugins can be

used to fill in the logical gaps related to the target system.

Plugins non-intrusively augment Unica Content Integration to fetch desired content from

external content store.

Integration support and plugin development approach

Unica Content Integration provides out-of-the-box support for easy integration with RESTful
interfaces. It also facilitates alternative approach of plugin development to integrate with

non-RESTful systems such as database, file systems, or any other content repository.

A typical plugin written for REST API integration does not contain any logic to establish
connection with the target system, and to handle protocol level success and failure
conditions. Such responsibilities are handled by the Content Integration Framework. Plugins

provide only system-specific pieces of information, such as:

Unica Content Integration V12.1 Developer Guide | 1 - Overview | 2

- absolute location of the target API

« HTTP method to be used

« headers to be supplied

* request body to be sent

- type of the response to be expected

» transformer for the received response

An alternate plugin development approach for non-RESTful integration involves thorough
implementation. For example, a plugin written for fetching content from database needs to
address everything involved in making DB connection, executing SQLs, closing connections,
result set hydration, failure handling etc.

Plugins do not initiate the content search. Content Integration Framework first receives the
search request, which is delegated to the respective plugin. In case of RESTful integrations,
Content Integration Framework initiates the HTTP interaction and gathers the necessary
information from the plugin, when required.

RESTful content search flow
The following figure shows the end-to-end execution flow for RESTful content search:

Figure 1. RESTful content search flow

Target Content Repository Plugin

- (RESTful)
wn
(7]
[- i
ﬁ
-
0
2
(1]
b §
Content Search
Request Target Content
Repository API

When Content Integration Framework receives content search request from user for the
target system, it consults with the respective plugin to gather request specific logical

Unica Content Integration V12.1 Developer Guide | 1 - Overview | 3

information and makes an API call to the target system. It consults with the plugin once

again to transform the API response into an expected format and responds to the user.

Non-RESTful content search flow

The following figure shows the end-to-end execution flow for Non-RESTful content search:

Figure 2. Non-RESTful content search flow

Target Content
Repository Plugin

(Non-RESTful)

19)21d 13SSY

Content Search

Request Target Content Repository

Non-RESTful plugins interact with the content repository and provides the search results to
Content Integration Framework. Unlike RESTful repositories, Content Integration Framework

will not know the type, architecture, protocol and the authentication mechanism used for
communicating with the target repository.

Chapter 2. Plugin development overview

Unica Content Integration facilitates easy integration with new content repositories without

having to alter the core Content Integration framework.

Unica Content Integration seamlessly integrates with system-specific, independent

plugins. Once the plugin is developed and dropped under the <ASSET Pl CKER HOVE>/

pl ugi ns/ cust omdirectory on the application server hosting Content Integration, the
corresponding content repository can be onboarded in the Unica product suite by updating
a few configurations in Unica Platform. For more information, see Unica Content Integration

Administrator's Guide

[5) Note: <ASSET_PICKER_HOME> refers to the base installation directory of
Unica Content Integration placed within Platform home. Hence, any further use of
<ASSET_PICKER_HOME> in this guide should be considered as a path to the Content

Integration directory within Platform home.

Unica Content Integration is shipped with a development kit containing the dependencies,
reference projects, and a starter project to quick start the plugin development. Development
kit is placed within the <ASSET_PI CKER_HOVE>/ dev- ki t s directory. Four reference
projects, named aem i nt egr ati on, wcm i nt egr at i on, dx-i nt egrati on, and conmer ce-

i nt egr at i on are available for Adobe Experience Manager (AEM), IBM Web Content
Manager (WCM), HCL Digital Experience and HCL Commerce, respectively.

Components of plugin

A typical plugin contains the following components:

» Service declarations (on page 5)

« Service implementations (on page 17)

The term Service represents a Java class, which either indirectly aids in consuming an

external REST service, or directly interacts with external web service(s) or system(s) for a

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 5

designated purpose. External system need not be a standard Content Management System

and external services need not belong to any standard CMS. It can be any system or an API.

Any service implemented by the plugin must be declared in a centrally managed service
declaration file. A service declaration file is an YML configuration file containing the

list of services implemented by all the available plugins. The service declaration file

must be named cust om pl ugi n-servi ces. ym . It should be available within the
<ASSET Pl CKER_HOVE>/ conf directory. Structure of cust om pl ugi n-servi ces. ym
file must be similar to the pl ugi n-servi ces. ynl file, which exists in the same directory.
The pl ugi n-servi ces. ynl file contains service declarations for out-of-the-box system

integrations. A service can either be a standard service or a custom service.

Standard services carry special semantics and purpose in Unica Content Integration.
Implementation of certain standard services is mandatory for Content Integration

Framework to work with the content repository.

Service declarations

Reference service declarations can be found inside asset -i ntegrati on-starter
project within dev- ki t s\ asset-i ntegrati on-starter\src\nmain\resources
\ META- | NF directory.

The following are example service declarations from asset -i nt egrati on-starter

project:

servi ces:

system d: Foo

servi ceNane: sinpl e-search

factoryC ass: com exanpl e. servi ce. rest. Si npl eSear chServi ce

par ans:

support edCont ent Types: # Standard paranmeter, applicable only for
si npl e-search service
| mages: | mages

cust omParaml: plValue # String paraneter

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 6

custonParan®: 1234.56 # Nuneric paraneter
cust onmPar anB: # Key-val ue/ Di cti onary/ Map par anet er
p3Keyl: p3Val uel
p3Key2: p3Val ue2
p3Key3: p3Val ue3
cust omParand: # Array paraneter
- p4Vval uel
- p4Val ue2
- p4Val ue3

systenm d: Foo
servi ceName: resource-| oader
factoryCd ass: com exanpl e. servi ce. rest. Resour ceLoader Servi ce
par ans:
cust onParaml: plValue # String paraneter
cust omParan?: 1234.56 # Nuneric paramneter
cust onmPar anB: # Key-val ue/ Di ctionary/ Map par aneter
p3Keyl: p3Val uel
p3Key2: p3Val ue2
p3Key3: p3Val ue3
custonParamd: # Array paraneter
- p4Val uel
- p4Val ue2
- p4Val ue3

system d: Foo
servi ceNanme: asset-sel ection-cal | back
factoryC ass: com exanpl e. servi ce. rest. Cont ent Sel ecti onCal | backServi ce
par ans:
custonmParanil: plValue # String paraneter

cust omParan®: 1234.56 # Nuneric paramneter

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 7

cust onParanB: # Key-val ue/ Di ctionary/ Map par anet er
p3Keyl: p3Val uel
p3Key2: p3Val ue2
p3Key3: p3Val ue3
cust omParand: # Array paraneter
- p4Val uel
- p4Vval ue2
- p4Vval ue3

system d: Foo
servi ceNane: custom service
factoryC ass: com exanpl e. servi ce. rest. Cust onfSer vi ce
par ans:
cust onParaml: plValue # String paraneter
customParan?: 1234.56 # Nuneric paraneter
cust onParanB: # Key-val ue/ Di ctionary/ Map par anet er
p3Keyl: p3Val uel
p3Key2: p3Val ue2
p3Key3: p3Val ue3
cust onParamd: # Array paraneter
- p4Val uel
- p4Val ue2
- p4Val ue3

Service declaration file

Service declaration file contains ser vi ces element, which is an array of individual service
declarations. A service declaration is a dictionary containing three mandatory elements
named syst eni d, servi ceName, and f act or yd ass, and one optional element named

par ams. Details of the elements are as follows:

esystemd

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 8

This string value uniquely identifies a target content repository. This identifier should
preferably contain only English alphanumeric characters. Use dots, dashes, and
underscores to enhance readability. Avoid any other special characters and unicode
characters. Identifier once chosen for the target system must remain consistent across
all service declarations for the same system. This identifier is also used in Unica

Platform configuration for onboarding the respective system.

The following are some examples of valid system identifiers:

V\CM
AEM
Exanpl e
WCM 1.0
AEM 1_1
DX- CORE
DX

You can write different plugins for different versions of the same system. In such case,
different identifiers must be used to identify each version distinctly. Alternatively, the
same plugin may contain different versions of service implementations specific to
different versions of the corresponding system. In such case, different systemlds must
be carefully assigned to the respective service declarations. For example, two different
versions of WCM, namely 1.0 and 2.0 may contain different APIs for content search

service, thereby causing following service entries for respective versions:

systemd: WCM 1.0
servi ceNane: sinpl e-search

factoryd ass: com hcl.wem service_1 0. WnSi npl eSear chSer vi ce

system d: WCM 2.0
servi ceNane: sinpl e-search

factoryd ass: com hcl.wem service_2 0. WnSi npl eSear chSer vi ce

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 9

The two entries may belong to the same plugin or may be placed in two different
plugins for the sake of implementation clarity. Content Integration Framework does not
impose any restrictions.
* servi ceNane

This string value uniquely identifies the given service for corresponding system. It can
either be a name of Standard service, or an appropriately chosen name for the custom
service. The following is the list of standard service names:

°si npl e-search

°resource-| oader

*factoryd ass

This is a fully qualified path to the Java class providing service implementation.

* par ams

Provides a way to supply static parameters to the service to control, or modify, service
behavior according to the parameter values. In short, par ans can be used to hold static
key-value configuration for service implementations. This can include certain standard
service parameters as well as any custom parameters that a service might want to use.
Parameter values are converted into the objects of closest matching primitive wrapper
classes, such as Integer, Long, Double, String etc. A parameter value can also be a map,
array, or list of other values (plugins must verify the runtime-type of these values before

using them).

Service declaration file also contains certain properties pertaining to the target content
repository. These properties are covered under systems root element. The following is an

example of such entry containing all the supported properties:

syst ens:
YOUR_SYSTEM | D:
par ans:
parani: val uel
par an®:
kl: vl

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 10

k2: v2
paran8: 100
addi ti onal Feat ures:
securityPolicy: false
content:
pagi nat edSearch: true
pagi nat edLi st: true

anonynousContent: true

This example entry shows the default values considered for each property mentioned herein
in case no such entry is present for the given target repository. Thus, this entry is optional
unless one or more of these default considerations do not hold true for the target content

repository. Below section briefs the significance of each property:

par ams - Provides a way to supply static parameters to the respective plugin to control or
alter plugin behavior according to the parameter values. In short, params can be used to
hold static key-value configuration for plugin implementations. This can include predefined
standard system parameters as well as any custom parameters that a respective plugin
might want to use. Parameter values are converted into the objects of closest matching
primitive wrapper classes, such as Integer, Long, Double, String etc. A parameter value can
also be a map, array, or list of other values (plugins must verify the runtime-type of these

values before using them).

addi ti onal Features | securityPolicy - This setting must be set to true when content is

protected inside respective system using Unica's security policies.

addi tional Features | content | pagi nat edSear ch - This feature flag is used to
convey whether content repository supports paginated content search results or not. User

experience is altered accordingly for showing content search result.

addi ti onal Features | content | pagi natedLi st - This feature flag is used to convey
whether content repository supports paginated content listing or not. User experience is

altered accordingly for showing content list.

addi ti onal Features | content | anonymousContent - This feature flag is used to convey

whether publicly accessible content should be expected from the content repository or not.

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 11

If it is set to true, plugin must return publicly accessible URL for each content. If contents
cannot be made publicly accessible using HTTP(S) URL, plugin developer must set this flag
to false. In such case, users will not be able to see or download the contents fetched from
the repository. If the target system does not provide anonymously-accessible URL for the
content, you must execute the r esour ce- | oader service to allow download of protected

content.

Standard services

The following table introduces the standard services of Unica Content Integration.
Hence, none of the service names listed herein should be used for any custom service
implementation. Content Integration SDK provides standard interfaces and types to
implement these standard services. These interfaces and types are discussed in more

detail in subsequent sections.

Table 1. Standard services and their description

Standard service name Description

si npl e- sear ch Simple search service responds to the
content search requests received by
Content Integration Framework. This
service accepts the search query string
along with required result pagination
details. Based on the success of search
operation, it returns the search result for
given search query and according to the
required pagination. This is a mandatory

service for the plugin.

list-folders This is an optional service. Folder is

a general term used to represent a
container object used in target system
to hierarchically organize the contents.

This service is invoked to render the list of

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 12

Standard service name

Description

folders & sub-folders to facilitate navigation
through such hierarchically organized

contents.

[5) Note: list-foldersandlist-
cont ent s are correlated services.
Implementation for both services must exist

for content navigation to function properly.

list-contents

This is an optional service. This service is
invoked for listing the contents belonging to

a particular folder.

[5) Note: list-foldersandlist-
cont ent s are correlated services.
Implementation for both services must exist

for content navigation to function properly.

get-content-details

Implementation of this service is useful

for retrieving the details of an individual
content. Contents obtained using si npl e-
search &l ist-contents services are
referenced further in other Unica products.
Users might want to see the details of
already referenced content at later point of
time. Therefore, we encourage to implement
this service to facilitate users to see the

content details on demand.

get - obj ect - schem

This is an optional service. Implementation
of this service is useful for allowing
Centralized Offer Management users to
map content attributes with offer attributes.

And subsequently derive the values for

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 13

Standard service name Description

mapped offer attributes from corresponding
content attributes by selecting the desired
content from Content Picker. Thus, if
implemented, this service facilitates usage
of other content attributes in addition to the

content URL for offer creation.

resour ce- | oader This service is useful when direct download
of the content from target system is not
feasible. This service is not mandatory and
should be implemented only when following

challenges are encountered:

« If no direct web link exists to download

the contents

Contents returned by the si npl e-
search and i st -cont ent s services
must include an absolute URL to the
respective content so that Content
Integration client can download it
directly over the web. If no such direct
web link to the content is present,

then it is necessary to implement the
resour ce- | oader service by overriding
the default implementation provided
by Content Integration Framework. For
example, if the contents are maintained
in a database table, then the si npl e-
search and i st - cont ent s services
will fetch records from the database.

Since the items are loaded from the

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 14

Standard service name

Description

database, there may not be any URL
directly pointing to each record. In such
case, the resour ce- | oader service
can make use of the content identifier
to locate and provide the appropriate
data whenever content download

is requested. All content download
requests will go through the Content
Integration Framework, which will
delegate the downloading task to the
resour ce- | oader service by providing
it the content URL and its identifier.

If web links to the contents are

protected

Certain systems may not provide
anonymous access to the contents
despite of the availability of direct
web links. In such cases, access

is generally provided only after
supplying required authentication
details. By default, Content Integration
Framework registers an out of the

box implementation of r esour ce-

| oader service for each plugin. This
default implementation makes use

of the real content URL to download
the content from remote system by
supplying appropriate authentication
details subject to the configurations in
Unica Platform. (For more information

on system onboarding configurations,

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 15

Standard service name Description

see Unica Content Integration

Administrator's Guide).

Alternatively, plugins can override the
default resource-loader implementation
to alter the content downloading
behavior (using content URL or

content identifier). If the r esour ce-

| oader service is overridden using
RESTful approach, Content Integration
Framework will continue to take care of
supplying authentication details based

on the Platform configuration.

[5) Note: Content must be made
anonymously accessible if it is
expected to be seen/accessed by

the external audience. In such case,
usage of resource-loader service is not
encouraged in production systems.
Usage of resour ce- 1 oader service can
be turned off any time by setting the
Anonymous Content property to Yes

in Platform configuration. Likewise, it
can be turned on by setting the same
property to No.

li st-content-categories Content can be logically categorized by
its natural classification. For example,
Digital content can be categorized into
Images, Documents, Multimedia (audios

and videos), Archives etc. Similarly, E-

commerce products can be categorized

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 16

Standard service name

Description

into several broad categories, such as
Electronics, Healthcare, Books, Furniture
etc. Content Integration Framework allows
following ways of conveying such content
categorization to facilitate searching

contents within specific category.

* suppor t edCont ent Types service

parameter

A standard service level parameter,
support edCont ent Types, can be used
to statically supply a dictionary of
supported content types under si npl e-

sear ch service declaration.

get Support edCont ent Types() method

in search service implementation

get Suppor t edCont ent Types() method
can be overridden to dynamically
generate a map of supported content
types, wherein key serves as the
category identifier and value serves
for the label displayed on the Ul.

This method is executed during the
application startup, hence no remote
API call can be made using Content
Integration Framework’s capabilities
since application might be in partially
initialized state when this method is
invoked.

*|ist-content-categories service

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 17

Standard service name Description

Optionally, list-content-categories
service can be implemented

to address the limitation of

get Suppor t edCont ent Types() method.
It enables remote API calls to be made
for fetching the content categories
even more dynamically. If implemented,
this service overrides the earlier
mentioned approaches. Content
Integration Framework invokes this
service whenever content search

popup is rendered.

get-cognitive-anal ysis This is an optional service. If implemented,
it is used to fetch cognitive details
associated with the given image, subject to
the "Preferred cognitive service provider"

configuration in Unica Platform.

Service implementations

For each service declared in the service declaration file, there must be an implementation

present inside the respective f act oryd ass.

The Content Integration Framework provides an SDK to streamline the service
implementation and facilitates rapid development of plugins. The Content Integration SDK

allows two different approaches for service implementations: RESTful and Functional.

This section will provide a brief introduction to these approaches. For additional

information, refer the asset -i ntegrati on-starter project.

This topic also introduces certain types, interfaces, their generic type parameters, and

enums from Content Integration SDK. For additional details, see Plugin Development SDK

(on page 24).

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 18

RESTful approach

The com exanpl e. servi ce. rest. Cust onSer vi ce class helps you understand REST based

service implementation.

This class is an implementation of Rest Ser vi ce interface, and thus represents a REST
based service. Since REST is completely based on HTTP standards, the Rest Ser vi ce
interface in Content Integration SDK is extended from Ht t pSer vi ce interface and is defined
as a marker interface. The Rest Ser vi ce interface does not declare any additional method
of its own. Listed below are the methods declared in Ht t pSer vi ce interface, which REST
based service implementation must implement. Not all methods are mandatory. All
methods accept Execut i onCont ext object, which contains all the contextual information
necessary for every method to perform its designated task. The generic type parameter to
the Execut i onCont ext class represents the type of input required for the respective service

on its invocation.

« HttpRequest buildRequest(ExecutionContext<RQ> executionContext)
This is a mandatory method. It returns an object of type
com hcl . uni ca. cns. nodel . request . Ht t pRequest . The Ht t pRequest class provides
builder API to construct the object with applicable details. This object comprises all
the required details for making an HTTP request, such as endpoint URL, HTTP method,
HTTP headers, and HTTP request body. The Ht t pRequest builder API accepts the
following arguments:

> String endpointUrl

An absolute URL to target API.
o HttpMethod httpMethod

HTTP method to be used for making API call. Must be one of the values from
com hcl . uni ca. systemintegration. service. H t pMet hod enum.

o Optional<Map<String, Object>> headers

An optional Map of HTTP headers. It can include standard as well as custom
HTTP headers. Header names must be specified in terms of Map keys, and header

values must be supplied as corresponding values in the Map. In the absence of

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 19

this optional value, no custom headers will be sent along with the outgoing HTTP

request.

[5) Note: Although the header Map accepts values of type Object (or its subtypes),
only String objects are supported as of current implementation of Content
Integration Framework. Any other type of value will be ignored, and following

warning will be logged:

Header '{HEADER _NAME}' with val ue ‘ {TO STRI NG REPRESENTATI ON}'
will not be set since it is not a String and no Converter is

avai | abl e.

o

Optional<?> payload

If the target service expects any request body, then this argument can be
supplied with the desired HTTP request body. It can be any valid object so long as
appropriate Cont ent - Type header is supplied in the headers Map. In the absence
of this argument, empty request body will be sent along with the outgoing HTTP

request.

[5) Note: Jackson and JAXB Support: Object serialization using Jackson and
JAXB is completely supported by the Content Integration Framework. Thus,
appropriately decorated object with Jackson or JAXB annotations can be set as
the request payload. In such case, appropriate Cont ent - Type header must be
specified in headers Map. Serialization of supplied object into the request body is
handled by the Content Integration Framework, hence no explicit serialization is
required.

« Object transformResponse(HttpResponse<RS> response, ExecutionContext<RQ>

executionContext)

This optional method transforms the HTTP response into a desired format. The first
argument, com hcl . uni ca. syst em nodel . r esponse. Ht t pResponse, to this method,
represents the response received from the target system. The generic type parameter
to the Ht t pResponse class represents the type of response body, or response payload,
expected from the remote API. Response payload can be of any type, such as a String

containing the entire text as received from the service, a byte array containing the

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 20

response body, or a deserialized POJO representing the response JSON/XML. In
addition to the response payload, Ht t pResponse object can be used to obtain response

headers, status code, and cookies.

[5) Note: Jackson and JAXB Support: Object deserialization using Jackson and
JAXB is completely supported by Content Integration Framework. Thus, appropriately
decorated object with Jackson or JAXB annotations can be accepted as an argument
to this method. Deserialization of response body into specified type is handled by
Content Integration Framework, hence no explicit deserialization is required during

response transformation inside this method.

In the absence of this implementation, no implicit transformation is performed by the

Content Integration Framework.

In addition to these methods, there is one more method the get Ser vi cel nterface
inherited from com hcl . uni ca. systemintegration. servi ce. Abstract Servi ce
i nt er f ace, that needs to be implemented by the service. But its implementation is

more relevant to the service invocation rather than service implementation.

Content Integration Framework takes care of real HTTP interaction with target system

and simply consults with service object to obtain earlier mentioned details.

Error Handling: Errors or exceptions received during HTTP call are handled by the
Content Integration Framework. Methods listed earlier must not throw any checked

exception. Unchecked exceptions can be thrown if required.

Functional approach

Refer to the com exanpl e. servi ce. functi onal . Cust onSer vi ce class to understand the

functional service implementation.

This class is an implementation of FunctionalService interface. Unlike REST based service,
there are no HTTP specific callback methods in this type of service implementation. In
fact, functional service may not necessarily be related to any HTTP invocation. This type

of service can include any operation which has no out of the box support from Content

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 21

Integration Framework. It can talk to the database, invoke third party web service, do the file

system operation etc.

Implement the following method for a functional service. This method also accepts an
argument of type Execut i onCont ext, containing the contextual information required for
completing the desired task. The generic type parameter to the Execut i onCont ext class

represents the type of input required for the respective service on its invocation.

* RS execute(ExecutionContext<RQ> executionContext)

This method performs its designated task using the contextual information passed
to it. In return, it gives the desired value after finishing its operation. The return
value shown in this signature is a generic type and is based on the type used while

implementing Funct i onal Ser vi ce interface.

Error Handling

Above method must not throw any checked exception. Unchecked exceptions can be

thrown if required.

Common methods

The following are the common methods applicable for RESTful
as well as Functional services. These methods are inherited from

com hcl . uni ca. system i ntegration. servi ce. Abstract Servi ce interface.

« Class<? extends ServiceGateway<RQ, ?>> getServicelnterface()

Implementation of this method is more relevant to the service invocation rather than

service implementation. For more information, see Plugin Development SDK (on page

24).

- void init(SystemConfig systemConfig, ServiceConfig serviceConfig)

Override this optional method to perform one-time initialization (after service
object construction), prior to serving any request. Use the SystemConfig object
and the ServiceConfig object, passed to this method, to obtain system and service-

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 22

specific details respectively to make necessary initializations, such as obtaining

a DB connection, opening a file handle etc. A separate object of your service

class is created for each individual system configuration in Unica Platform.

Thus, if the same target system is configured for two different partitions in Unica
Centralized Offer Management, then two different objects of your service class

will be created for each partition. Likewise, if the same target system is configured

for any other Unica product, a separate object for that configuration will exist. The

com hcl . uni ca. system i ntegrati on. confi g. Syst enConfi g object encapsulates

all the system configurations made in Unica Platform Configuration section, whereas
com hcl . uni ca. system i ntegration. config. Servi ceConfi g object holds all the
configurations made for the corresponding service in <ASSET Pl CKER HOVE>/ conf /
pl ugi n-servi ces. ym and <ASSET_PI CKER_HOVE>/ conf/ cust om pl ugi n-
servi ces. yn files. These objects are also accessible using Execut i onCont ext in all

the methods discussed earlier.

[5) Note: Content Integration Framework does not provide any special end-of-lifecycle
method for services to clean up the things initialized inside the init method. We
recommend you to use the standard Java approach by implementing the finalize

method, if necessary.

Best approach selection

Although, it is possible to implement a service using either approaches, each approach has

some advantages and limitations when it comes to the capabilities.

1. RESTful approach
a. Advantages
« Less verbose & reads closer to the typical HTTP interaction
« Out of the box transport level error handling
« Out of the box support for retrial in case of temporary outages
« Out of the box support for proxied connectivity
« Out of the box support for future enhancements in Content Integration

Framework

Unica Content Integration V12.1 Developer Guide | 2 - Plugin development overview | 23

b. Limitations
« Cannot be used for non-RESTful or non-HTTP integrations, such as database
or file system interactions
2. Functional approach
a. Advantages
« Can be used for non-RESTful or non-HTTP integrations, such as database or
file system interactions
b. Limitations
« No out-of-the-box support available for transport level error handling, retrials,
proxied connectivity, and any future enhancements from Content Integration
Framework.
« If required, the explicit implementation of missing out-of-the-box capabilities

can make service implementations very verbose.

You can see that the Functional approach is well suited for non-RESTful or non-HTTP based
integrations. Any service implemented using RESTful approach can also be implemented
using Functional approach by taking care of all the necessary out-of-the-box capabilities
provided by Content Integration Framework. While Functional approach gives flexibility in

terms of implementation design, it takes away a few useful capabilities.

Chapter 3. Plugin Development SDK

This topic provides information about the various classes, interfaces, and enums from
the Content Integration SDK, with the help of corresponding logical units in asset -
integration-starter,aemintegration, andwemintegration reference projects that are

included as a part of development kit along with the Content Integration feature.

Content Integration SDK for plugin development can be found under
<ASSET Pl CKER_HOVE>/ dev- ki t s/ sdk/ directory on your application server. The

following jars can be found inside the sdk directory:

sintegration-api.jar
eentity-nmapper-api.jar

estandard-integrations.jar

These jars contain all the SDK classes, interfaces & enums discussed in this section. Check
out the relevant classes from these jars whenever you come across the respective topic in
this guide.

Generic type parameters

Generic type parameters are used for implementing service interfaces. For more

information on service interfaces, see Service implementations (on page 17).

A service that resides in a plugin is just a programming unit, which takes some input and
returns the expected output. Similarly, the REST API, wrapped by our service, asks for
the required input (request body, headers, cookies, and query parameters) and produces
the desired response (response body, headers, and cookies). It requires certain generic

notations for the inputs and outputs exchanged during end-to-end logical flow.

Content Integration Framework uses RQ type parameter to denote the type of input supplied
to the service on its invocation. Here, the RS type parameter is used to denote either the

type of object returned by the Functional service or the type of response body returned by

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 25

the remote REST API invoked using RESTful approach. The purpose of RS might change
based on where it is used, but it always indicates the return value of something.

RestService<RQ, RS>

Refer the com exanpl e. servi ce. rest. Cust onSer vi ce class from the asset -
i ntegration-starter projectto understand the type parameters used in the
Rest Ser vi ce inteface. Rest Ser vi ce is just a marker interface extended from Ht t pSer vi ce.

The definition of these type parameters is similar for the Ht t pSer vi ce too.

*RQ

A service requires an input to perform its operation. RQ corresponds

to the type of input, or request, the service requires when invoked. The

com exanpl e. servi ce. rest. Cust onBSer vi ce takes an input of type Servi cel nput . The
same type parameter is used in the Execut i onCont ext object passed to all methods

in the Rest Ser vi ce or the Ht t pSer vi ce interface. The input, or the request, object
passed to the service, when invoked, is obtained by calling the get Request method in
the Execut i onCont ext object.

@verride
public HttpRequest buil dRequest (Executi onCont ext <Servi cel nput >
executi onContext) {
Servi cel nput i nput = executionContext.get Request ();
/1 Rermaining inplenmentation omtted for brevity

}

*RS
This parameter type corresponds to the type of response (post deserialization)
received from the remote REST API. Service implementation chooses this
parameter based on the kind of object it wants to work with in t r ansf or nResponse
method. If you look at the signature of the t r ansf or nResponse method in the
com exanpl e. servi ce. rest. Cust onBSer vi ce class, you will see that the Api Response is
supplied as the type argument to the Ht t pResponse class, which corresponds to the RS
type parameter of the Rest Ser vi ce interface.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 26

[5) Note: Deserialization occurs according to the Cont ent - Type header present
in HTTP response received from REST API. The type used as the second generic
argument to Rest Ser vi ce, or the Ht t pSer vi ce, must be appropriately annotated if

Jackson or JAXB deserialization is expected.

FunctionalService<RQ, RS>
Funct i onal Servi ce interface is analogous to the j ava. uti | . function. Functi on interface
from the Standard Java Library. The type parameters of Funct i onal Servi ce have similar

semantics as the type parameters of j ava. uti | . functi on. Funct i on interface.

oRQ

Represents the type of input given to the service upon invocation.
*RS

Represents the type of value returned by the service upon completion.

ServiceGateway<RQ, RS>

This interface is used for implementing the get Ser vi cel nt er f ace method

from Abst ract Servi ce<RQ RS> interface. Abst r act Ser vi ce is an important
interface of Rest Servi ce, or Ht t pSer vi ce, and the Functi onal Ser vi ce.
Semantics for RQ and RS for AbstractService are same as Rest Ser vi ce, or

Ht t pSer vi ce. It declares the get Ser vi cel nt er f ace method, which must be
implemented by a service. The get Ser vi cel nt er f ace method must return the
class object of the derivative (child interface) of Ser vi ceGat eway. The definition of

com hcl . uni ca. system i nt egrati on. servi ce. gat enay. Ser vi ceGat eway is as follows:

public interface ServiceGateway<RQ RS> {

public RS execute(RQ request) throws ServiceExecuti onExcepti on;

}

Semantics for the type parameter RQ is the same as mentioned earlier. The other type

parameter, RS represents the output of the service that resides in the plugin. It does not

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 27

represent the response received from remote REST API or any other target systems. For the
com exanpl e. servi ce. rest. Cust onSer vi ce class, the Cust onSer vi ceGat eway is defined
as the child interface of Ser vi ceGat eway by using Ser vi cel nput and Ser vi ceQut put type
arguments because the service receives an input of type Ser vi cel nput and returns the

value of type Ser vi ceQut put on completion.

@ Note:

e get Servi cel nt erf ace method in com exanpl e. servi ce. rest . Cust onSer vi ce class
returns the class object of Cust oner vi ceGat eway. Ser vi ceGat eway interface (or
its child interface) provides information about the input and the output of service
implementation. Ser vi ceGat eway interface is further used to contain the reference of
service instance and invoke its execution.

« By obtaining reference to the Ser vi ceGat eway instance of any service thus
implemented, execute(RQ request) method can be invoked to execute the service. Note
that the execute method may throw the Ser vi ceExcecut i onExcept i on if anything goes
wrong during service execution. Details on service invocation and exception handling

will be provided in topics that follow.

Service invocation

The asset -i nt egration-starter project contains a
com exanpl e. servi ce. cl i ent. Cust onSer vi ced i ent class to illustrate the service

invocation.

The cust onBer vi ced i ent class obtains reference to the Syst entGat eway

object for the system represented by an identifier Foo by calling

Syst enGat ewayFact ory. get Syst enGat eway method with Foo as an argument.

Syst enGat ewayFact ory. get Syst enGat eway method thus gives a handle to any target
system by specifying its systemld. Once the handle is obtained in terms of Syst enGat eway
object, it can be used to invoke any service on the respective target system. The following is

the corresponding code snippet from Cust oner vi ced i ent class:

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 28

private Systenateway systenGateway =
Syst entzat ewayFact ory. get Syst enGat eway (" Foo") ;

SystemGateway

The com hcl . uni ca. system i nt egrati on. servi ce. gat eway. Syst enGat eway provides

an overloaded method execut eSer vi ce, for executing any service on the target system.
One version of this method offers a way to execute any service declared in service
declaration files (<ASSET_PI CKER_HOVE>/ conf/ cust om pl ugi n- servi ces. yn and
<ASSET Pl CKER_HOVE>/ conf/ pl ugi n- servi ces. ynl) for the respective system. And
the other version offers a way to execute an ad hoc HTTP call on the target system without
declaring any explicit service for it in the service declaration file. The following are the two

versions of the execut eServi ce method with their signatures:

 <RQ, RS> RS executeService(String serviceName, RQ servicelnput, Class<? extends
ServiceGateway<RQ, RS>> gatewayClass) throws ServiceExecutionException
This is a generic method and works with the type parameters RQ & RS. The significance
of RQ & RS is same as mentioned earlier. This method helps to execute an already
declared service. The i nvocat i onDeno method in Cust onSer vi ced i ent class
demonstrates the use of this method. It accepts the following arguments:

o String serviceName

This must be the name of service to be executed. Name of the service must
exactly match with its corresponding declaration in service declaration file.

> RQ servicelnput

This is an input to the service being executed. The type parameter RQ represents
the type of input required for the service being invoked.

o Class<? extends ServiceGateway<RQ, RS>> gatewayClass

It must be same as the return value of get Ser vi cel nt er f ace method in
corresponding service implementation. It helps the Content Integration Framework
to identify the right input for the service being executed and returns the output of

desired type. The RQ and RS type parameters used for gat ewayd ass argument

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 29

represents the type of input supplied on service invocation and the type of

response returned by the service on completion, respectively.

On successful completion, this method returns the object of type represented by
the type parameter RS. Thus, the third argument to the execut eSer vi ce method,
gat ewayd ass, governs the type of input that goes into the service and the type of value
that service returns.
« <T> HttpResponse<T> executeService(HttpRequest request, Class<T>
expectedResponse) throws ServiceExecutionException
This is also a generic method, where the type parameter T represents the type
of response expected out of the remote HTTP call. It helps to make an ad-hoc
HTTP call to the target system without declaring an explicit service for it in service
declaration file. The adHocl nvocat i onDeno method in the Cust onSer vi ced i ent class
demonstrates the use of this method. It accepts the following listed arguments:
o HttpRequest request

This must be an object of com hcl . uni ca. syst em nodel . r equest . Ht t pRequest
class. Ht t pRequest provides a builder interface for constructing the object with
required details. This object essentially encapsulates the details required for
making an HTTP call, such as absolute URL, HTTP request method, HTTP request
headers & HTTP request body or HTTP request payload.

o> Class<T> expectedResponse

This must tell the type of response expected from remote URL. Jackson and JAXB
types can also be used. Deserialization of JSON/XML will happen automatically in

such case.

On successful completion, this method returns the object

com hcl . uni ca. syst em nodel . r esponse. H t pResponse, encapsulating the response
object from the remote call. The type of response encapsulated by the Ht t pResponse
will be the same as the expect edResponse argument to the execut eSer vi ce method.
The Ht t pResponse object gives access to the HTTP response status code, response

headers, and response cookies, in addition to the response payload.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 30

Both versions of the execut eSer vi ce method can throw the

com hcl . uni ca. systemintegration. exception. Servi ceExecuti onExcepti on or

one of its subtypes if anything goes wrong during service execution. The object of this
exception can be consulted for the immediate cause of service execution failure. Likewise,
if the invoked service represents a REST/HTTP service (ad-hoc service invocations

are always HTTP calls), and the failure occurs out of HTTP interaction, an optional

Ht t pResponse object can also be obtained from the exception. In such cases, the

Ht t pSer vi ceExecut i onExcept i on is thrown by the execut eSer vi ce methods. The
presence of Ht t pResponse depends on whether the HTTP interaction happened or not. The
Ht t pSer vi ceExecut i onExcept i on might be received because of an exception in any logic

executed prior to the actual HTTP call, such as bui | dRequest method in a declared service.

The execut eSer vi ce method can also throw a Syst emNot FoundExcept i on if the plugin for
the specified target system is not present, or the corresponding system is not onboarded in
Unica Platform. Similarly, it can throw a ServiceNotFoundException if the specified service

is either not declared in service declaration file or not implemented by the plugin.

[5) Note:

* You will observe that the type of the input to the cust om servi ce is same as the type
used for service implementation in the com exanpl e. servi ce. rest. Cust onSer vi ce
class or the com exanpl e. servi ce. functi onal . Cust oner vi ce class. The type of
output is same as the one used for defining Cust onSer vi ceGat eway interface whose
class object is returned from get Ser vi cel nt er f ace method in both versions of
Cust onSer vi ce implementations.

* The com exanpl e. servi ce. rest. Cust onServi ce class and the
com exanpl e. servi ce. functi onal . Cust onSer vi ce class represents the same
service implemented with two different approaches. The service declaration files
inasset-integration-starter project namely the META- | NF/ r est - cont ent -
servi ces. ym andthe VETA-| NF/ functi onal - cont ent - servi ces. ynl have
an entry for cust om ser vi ce pointing to the respective versions of the f act or yd ass.
These two versions are provided only for illustration purpose. For all practical purposes,

only one version of the service implementation is expected by the Content Integration

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 31

Framework. Irrespective of the approach used for service implementation, the method

for service invocation remains the same.

Multi-partitioned clients

From the perspective of service implementation, the Execut i onCont ext and Syst enConfi g
objects, passed to various callback methods, contain client application and partition
specific information. And from the perspective of service invocation, services executed
using execut eSer vi ce method, from the Syst enGat eway class, runs against the system
configured for the right client application and the partition of the user accessing Unica
Content Integration. Hence, neither the implementation nor the invoker need to work with
partitioning and other contextual details, explicitly. Content Integration Framework handles

it automatically.

Execution context

Almost every method in service implementation contract receives an instance of

com hcl . uni ca. syst em nodel . r equest . Execut i onCont ext class.

This object contains all the contextual information that is necessary for a service to perform
its operation. The following are the methods in ExecutionContext class, which can be used

to obtain various types of information during service execution:

* T getRequest()

This method can be used to obtain the input, or request, object passed to the service

when it is executed using execut eSer vi ce method discussed in Service invocation
(on page 27) (The T return type is the type parameter corresponding to the generic
argument used for defining the service).

« Map<String, Object> getAttributes()

Returns a Map which can be used to store and retrieve custom attributes during service
execution. It is useful for carrying execution specific temporary information across

multiple callbacks. For example, if the implementation of bui | dRequest method from

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 32

the Rest Ser vi ce interface or Ht t pSer vi ce interface needs to share some information
with t r ansf or nResponse method, it can share it using this attribute Map.

It is important to note that Content Integration Framework creates a separate instance
of Execut i onCont ext for each individual service invocation. Hence, context attributes
cannot be shared across multiple service executions. Their scope is limited to
individual service execution.

ServiceConfig getServiceConfig()

This method returns an instance of

com hcl . uni ca. system i ntegration. config. Servi ceConfi g class. Servi ceConfig
object holds the configurations made in service declaration file for the respective
service.

SystemConfig getSystemConfig()

This method returns an instance of

com hcl . uni ca. system i ntegration. config. Syst enConfi g class. Syst enConfi g
object contains all the configurations made in Unica Platform for the target system.
In case of multi-partitioned configurations, this object will be appropriately populated
by Content Integration Framework to hold partition-specific configuration for the
concerned client application. To know the various system configuration settings in
Unica Platform, see Unica Content Integration Administrator's Guide.

void setAttributes(Map<String, Object>)

This method can be used to set attributes in Execut i onCont ext, which can be then
be obtained in other areas of the service implementation. This is useful for sharing
custom contextual information during service execution. Scope of the attributes stored
in execution context is limited to the current execution flow only. Attributes cannot be
shared across multiple execution flows of the same service.

> Locale getUserLocale ()

This method can be used to obtain signed in user’s locale.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 33

User data source

Unica Platform uses user data sources to store sensitive information, such as API
credentials, security tokens, database user credentials, etc. Plugins often need to store such
configuration details. Content Integration provides the relevant configuration to specify the
name of user data source and the associated Unica user while oboarding systems using

Unica Platform configuration.

Use the Execut i onCont ext to obtain applicable user data source (credentials) by navigating

through Syst entConf i g object:
execut i onCont ext . get Syst entConfi g() . get Dat aSour ceCr edenti al s()

The Dat aSour ceCr edent i al s object returned by the get Dat aSour ceCr edent i al s method
contains the selected data source based on the strategy set up for User credentials in
Platform configuration. Hence, plugins need not make any logical decision pertaining to the

right selection of the user data source.

Similarly, the get Uni caToken method called on Syst enConf i g object returns an UnicaToken

object containing the Unica Token required for invoking APIs of Unica applications.

Standard services and specialized types

The plugin developer needs to implement Rest Ser vi ce/Ht t pSer vi ce or Funct i onal Servi ce

interface to create an individual service.

The Content Integration Framework leverages this design and defines certain standard
service classes for Simple Search (si npl e- sear ch), List Content Categories (1 i st -

cont ent - cat egor i es), List Folders (1i st - f ol ders), List Contents (I i st - cont ent s),

Get Content Details (get - cont ent - det ai | s), Get Object Schema (get - obj ect - schem)

and Get Cognitive Analysis (get - cogni ti ve- anal ysi s) services. The standard-
integrations.jar provided as part of Content Integration SDK provides specialized versions of
Rest Ser vi ce and Funct i onal Ser vi ce for each of these standard services to facilitate their

implementation using RESTful or Functional approach.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 34

Invocation of standard services

Once declared in service declaration file, and implemented using either RESTful or

Functional approach, Content Integration Framework invokes the standard services in

following scenarios:

Simple Search (si npl e- sear ch)

Whenever Content Integration Framework receives content or asset search request
from its client application against target system, it invokes the si npl e- sear ch service
implemented for respective system. Content Integration Framework provides necessary
input to the si npl e- sear ch service upon invocation. Search items received from

si npl e- sear ch service are then returned to the client application. Identification of the
target system happens based on the syst em d property used in the service declaration
file and the corresponding System Identifier setting in Unica Platform that is populated
during the target system onboarding. This service must be implemented by the plugin,

else the content search request ends up in 404 response to the client application.

The search result produced by this service can be either paginated or unpaginated.
Presence or absence of support for paginated result should be clearly indicated
using paginatedSearch property under systems section in service declaration file as

explained in the Service declaration file (on page 7) topic.

Resource Loader (r esour ce- | oader)

The resour ce- | oader service is executed by the Content Integration Framework

only when indirect (or authenticated) access needs to be made to the search item on
the target system. Configuration can be made in Unica Platform to indicate whether
contents can be accessed directly (anonymously) from the target system or not.

For more information about system configurations, see Unica Content Integration
Administration Guide. Content Integration Framework provides a default r esour ce-

| oader service to each system. The default r esour ce- | oader service simply loads the
web resources from the target system by supplying necessary authorization details,

if applicable. Plugins may choose to override the default r esour ce- 1 oader service

and include their own implementation by extending the out-of-the-box implementation.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 35

Content download and content rendition might fail if the required overridden r esour ce-
| oader implementation is missing

List Content Categories (1 i st - cont ent - cat egori es)

If implemented, this service is invoked for fetching the list of supported content
categories, eventually used for populating the content type's drop down on Content
Picker Ul. These categories are used to narrow down the content search within a
particular category. There may be other use cases pertaining to these categories in

future releases of Unica Content Integration.

This is an optional service and absence of its implementation does not impact
content searchability in Content Picker. Other alternatives are used instead to
generate the list of supported content categories in the absence of this service, that
is suppor t edCont ent Types standard parameter for si npl e- sear ch service in service
declaration file or get Support edCont ent Types() method in si npl e- sear ch service
implementation.

List Folders (I i st-f ol ders)

This service is used to facilitate content navigation along with the | i st-content s
service. In addition to the content search, content can also be located by navigating
through the hierarchy of folders (or any other similar concept in respective system).
If this service is implemented, it is expected to provide top/root level folders as well
as sub-folders of a particular parent folder as and when requested during content
navigation. Only one level of folder list is expected in single execution. Entire folder
hierarchy need not be provided. If this service is implemented, it is imperative to

implement the list-contents service as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact content
searchability in Content Picker. However, content navigation is disabled in Content
Picker Ul if this service is not implemented.

List Contents (1 i st-cont ents)

This service is used to facilitate content navigation along with the | i st-f ol ders
service. If implemented, this service is expected to provide the list of contents
belonging to a particular folder. List can be either paginated or unpaginated.

Presence or absence of support for paginated list should be clearly indicated using

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 36

pagi nat edLi st property under systems section in service declaration file as explained

in the Service declaration file (on page 7) topic.

If this service is implemented, it is imperative to implement the | i st - f ol der s service

as well to turn the content navigation feature on.

This is an optional service and absence of its implementation does not impact content
searchability in Content Picker. However, content navigation is disabled in Content
Picker Ul if this service is not implemented.

Get Content Details (get - cont ent - det ai | s)

Any content searched using si npl e- sear ch service or listed using | i st-content s
service can be selected and used for various use cases in Unica applications. Such use
cases might demand the details of already chosen content at later point of time. One
such example is Content Preview feature in Centralized Offer Management, wherein
details of already linked content with offer attribute are shown. Whenever Unica
applications need details of any individual content, the get-content-details service is

invoked by supplying the unique identifier of the required content.

This is an optional service and absence of its implementation does not impact content
searchability in Content Picker. However, subsequent user requests for fetching details
of a content will not be served if this service is not implemented.

Get Object Schema (get - obj ect - scherm)

This service is invoked by Unica applications to fetch the details of various attributes
present in the content. The entire master schema of all the contents is expected from
this service, which should include the details about each content attribute, such as
the type and format of the value it holds and a unique identifier to uniquely identify
that attribute for the given system. As of current release of Unica Content Integration
and Unica Centralized Offer Management, this information is used to map content
attributes with offer attributes, and subsequently auto populate offer attribute values
by selecting the content from Content Picker. For more information about this feature,

please see Unica Centralized Offer Management User Guide.

This is an optional service and absence of its implementation does not impact content

searchability in Content Picker. However, the Content Integration feature in Centralized

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 37

Offer Management becomes unavailable for the respective system if this service is not
implemented.

« Get Cognitive Analysis (get - cogni ti ve- anal ysi s)

This service is invoked to attempt cognitive analysis of an image and fetch the
cognitive details accordingly. It is invoked only if respective system is configured as the
Preferred cognitive service provider in Platform Configuration. For more information,

see Unica Content Integration Installation and Configuration Guide.

This is an optional service and absence of its implementation does not impact content
searchability or any other feature in Content Picker. However, cognitive tagging feature

is disabled in Centralized Offer Management if this service is not available.

Specialized types

The following are the specialized derivatives of Rest Ser vi ce, Ht t pSer vi ce, and
Funct i onal Servi ce interfaces, and their related types for all the standard services. Use the
asset -i ntegration-starter projecttoimplement the details mentioned in the following

topics:

« Derivatives of RestService (on page 37)

« Derivatives of HttpService (on page 47)

+ Derivatives of FunctionalService (on page 49)

» AbstractEntity (on page 61)

» Presentable (on page 61)

Derivatives of RestService

Derivatives of RestService interface facilitates creation of RESTful implementation of

standard services.

Simple search (si npl e- sear ch)
The following are the specialized interfaces and classes available for the si npl e- sear ch

service:

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 38

ecom hcl . unica.systemintegration. service. search. Rest SearchServi ce

The com exanpl e. servi ce. rest . Si npl eSear chSer vi ce class
inasset-integration-starter projectis a quick starter
implementation for RESTful si npl e- sear ch service. Its parent is

com hcl . uni ca. system i ntegration. servi ce. sear ch. Rest Sear chSer vi ce class.

The Rest Sear chSer vi ce class has a type parameter RS, which represents the type of
response (post deserialization) received from the remote REST API. In this case it is

Si npl eSear chResponse class defined inside the asset -i nt egrati on-starter project.

Rest Sear chSer vi ce class implements Rest Ser vi ce interface and defines the

Sear chRequest class as the type argument RQ for Rest Ser vi ce. Thus, the object of
Sear chRequest becomes input to all the si npl e- sear ch services (same input is used
for Functional counterpart of simple-search as well). Sear chRequest class is part of the

Content Integration SDK.

In addition to defining the input type for the si npl e- sear ch service,

Rest Sear chSer vi ce class also overrides the t r ansf or nResponse method and defines
return value of this method to be of Cont ent Page type. Cont ent Page is also part of the
Content Integration SDK and encapsulates the search result and associated pagination

details.

The plugin must extend its si npl e- sear ch implementation from the service

com hcl . uni ca. system i ntegration. servi ce. search. Rest Sear chServi ce to

be recognized as a si npl e- sear ch service by the Content Integration Framework
(Functional counterpart, discussed later, is also a valid choice to extend from, for the

si npl e- sear ch services implemented using the Functional approach).

Rest Sear chSer vi ce extends from
com hcl . uni ca. systemintegration. service.search . Abstract SearchService

abstract class.

We recommend looking at com aem ser vi ce. AenSi npl eSear chSer vi ce class from the
aem i nt egr ati on project to know more about how the Sear chRequest class and the

Cont ent Page class are used during service implementation.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 39

Adhering to the contract of Pr esent abl e interface while populating list of contents in
Cont ent Page is a crucial part of this service implementation. Pr esent abl e interface is
covered in more detail in subsequent section.

com hcl . uni ca. systemintegration. service. search. Abstract Sear chServi ce

This is a common base class for RESTful as well as Functional si npl e- sear ch
implementations. So, the details of this class also apply to the Functional

implementation of si npl e- sear ch.

This class defines the

com hcl . uni ca. system i ntegration. servi ce. gat eway. Si npl eSear chSer vi ceGat eway
interface as the service gateway for the si npl e- sear ch service. ServiceGateways are
the means to programmatically define input and output types of the service and the
work with the service. A closer look at this interface tells us that the si npl e- search

takes the Sear chRequest object and returns the Cont ent Page object.

In addition to defining the service interface for si npl e- sear ch, it introduces one more
method for the si npl e- sear ch service, named get Suppor t edCont ent Types. Every

si npl e- sear ch implementation can optionally override and implement this method.
Please note that this method is very si npl e- sear ch specific and has nothing to do with

other standard and custom services. The signature of this method is as follows:
public Map<String, String> getSupportedContent Types();

Implementation of this method returns a Map<Stri ng, Stri ng> representing the
supported categories of contents that can be searched in the target system. There is
no specific semantic associated with the entries in this Map. It can be any meaningful
key-value pair. It acts as a filter for client application during the search operation. As
of current implementation of Unica Content Integration, this Map is used to populate
entries in a drop down, wherein keys of the Map become values of the options, and
values of the Map become display labels for the options. Thus, keys can carry internal
names, or identifiers, and values should be readable and meaningful texts. If the user
needs to search any specific type of content, he can choose one or more options
from the supported types. In such case, si npl e- sear ch service receives a set of

keys corresponding to the values chosen by the user. Set of keys received from the

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 40

client application can be obtained from Execut i onCont ext object by navigating
through the get Request method and then calling get Types() onit. The si npl e- sear ch
implementation deals with these set of keys, as per the target system’s programming

interface, and filters the search items accordingly.
Standard service parameter - supportedContentTypes

Overriding get Suppor t edCont ent Types method is recommended only if the Map needs
to be generated dynamically. Content Integration Framework provides an alternate
approach to statically define this Map using a standard service parameter called
suppor t edCont ent Types, configured under par ans element in the service declaration
file. For example, refer the si npl e- sear ch service declaration for AEM and WCM inside
<ASSET_PI CKER_HOVE>/ conf/ pl ugi n-servi ces. ym file.

List content categories (I i st - cont ent - cat egori es)

The following are the specialized interfaces and classes available for the I i st - cont ent -

cat egori es service:

e com hcl . uni ca. systemintegration.service.content.categories.|ist.

Rest Cont ent Cat egori esLi st Servi ce

The com exanpl e. servi ce. rest . ExampleContentCategoryListingService class
in asset-integration-starter project is a quick starter for RESTful list-content-
categories service. ExampleContentCategoryListingService class extends from

RestContentCategoriesListService class.

The Rest Cont ent Cat egori esLi st Ser vi ce class has a type parameter RS, which
represents the type of response (post deserialization) received from the remote REST
API. In this case it is specified as Li st <Cont ent Cat egor yDet ai | s> for the sake of

example.

Rest Cont ent Cat egor i esLi st Ser vi ce class implements Rest Ser vi ce interface and
defines the
com hcl . uni ca. syst em nodel . r equest . cont ent . cat egori es.ContentCategoryListRequest

class as the type argument RQ for RestService. Thus, the object of

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 41

ContentCategoryListRequest becomes input to all the list-content-categories services

(same input is used for Functional counterpart of list-content-categories as well).

In addition to defining the input type for the list-content-categories service,
RestContentCategoriesListService class also overrides the transformResponse
method and mandates the return value of this method to be an object of

Li st <Cont ent Cat egor y> type. Cont ent Cat egor y class is part of Content Integration
SDK.

The plugin must extend the implementation of list-content-categories service
from com.hcl.unica.system.integration.service.content.categories.list.
RestContentCategoriesListService class to be recognized as a valid list-content-
categories service by the Content Integration Framework (Functional counterpart,

discussed later, is also a valid choice to extend from).

Rest Cont ent Cat egori esLi st Ser vi ce extends from

com hcl . uni ca. systemintegration. service.content.categories.|ist.Abstract Cont ent Cat e

cl ass

com hcl . uni ca. systemintegration.service.content.categories.|ist.Abstract Content Cat egol

This is a common base class for RESTf ul as well as Functional implementations of
| i st-content-categories service. So, the details covered herein applies to Functional

version of | i st-cont ent - cat egori es as well.

This class defines the

com hcl . uni ca. system i ntegration. servi ce. gat eway. Cont ent Cat egori esLi st Servi ceGat eway
interface as the service gateway for the l i st - cont ent - cat egori es service. This

interface extends from com hcl . uni ca. system i nt egr ati on. servi ce. gat eway.

Servi ceGat eway interface and mandates the Cont ent Cat egor yLi st Request &

Li st <Cont ent Cat egor y> objects to be the input and output types for the | i st -

cont ent - cat egori es service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 42

List folders (1 i st -f ol ders)

The following are the specialized interfaces and classes available for the I i st-fol ders

service:

ecom hcl . uni ca. systemintegration. service.folder.|ist.RestFol derLi st Service

The com aem servi ce. Aenfol der Li st Servi ce class in aem i nt egr ati on projectis a
reference implementation for RESTful list-folders service. Aenfol der Li st Ser vi ce class

extends from Rest Fol der Li st Ser vi ce class.

The Rest Fol der Li st Ser vi ce class has a type parameter RS, which represents the type
of response (post deserialization) received from the remote REST API. In this case it is

Si mpl eSear chResponse class defined inside the aem i nt egr at i on project.

Rest Fol der Li st Ser vi ce class implements Rest Ser vi ce interface and defines the
com hcl . uni ca. syst em nodel . request . fol der.|ist. Fol derLi st Request class
as the type argument RQ for Rest Ser vi ce. Thus, the object of Fol der Li st Request
becomes input to all the I i st - f ol der s services (same input is used for Functional

counterpart of | i st - f ol ders as well).

In addition to defining the input type for the I i st - f ol der s service,

Rest Fol der Li st Ser vi ce class also overrides the t r ansf or nResponse method and
mandates the return value of this method to be an object of Li st <Fol der > type. Folder
is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of | i st - f ol der s service from

com hcl . uni ca. systemintegration.service.folder.!|ist.RestFol derListService
class to be recognized as a valid list-folders service by the Content Integration
Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

Rest Fol der Li st Ser vi ce extends from
com hcl . uni ca. systemintegration.service.folder.!list.AbstractFol derLi st Service
class.

ecom hcl . unica.systemintegration.service.folder.list.

Abstract Fol der Li st Servi ce

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 43

This is a common base class for RESTful as well as Functional implementations of
| i st-fol ders service. So, the details covered herein applies to Functional version of

li st-fol ders as well.

This class defines the

com hcl . uni ca. system i ntegration. service. gat eway. Fol der Li st Servi ceGat eway
interface as the service gateway for thel i st - f ol der s service. This interface extends
from com hcl . uni ca. system i ntegration. servi ce. gat eway. Ser vi ceGat eway
interface and mandates the Fol der Li st Request and Li st <Fol der > objects to be the

input and output types for the | i st - f ol der s service.

List contents (| i st - cont ent s)

The following are the specialized interfaces and classes available for the list-contents

service:

ecom hcl . unica.systemintegration.service.content.|ist.RestContentListService

The com aem servi ce. AenCont ent Li st Servi cecl ass inaem i nt egrati on
project is a reference implementation for RESTful I i st - cont ent s service.

AenCont ent Li st Servi cecl ass class extends from Rest Cont ent Li st Ser vi ce class.

The Rest Cont ent Li st Ser vi ce class has a type parameter RS, which represents the
type of response (post deserialization) received from the remote REST API. In this case

it is Si npl eSear chResponse class defined inside the aem i nt egr at i on project.

Rest Cont ent Li st Servi ce class implements Rest Ser vi ce interface and defines the
com hcl . uni ca. syst em nodel . request . content . | i st. Content Li st Request class
as the type argument RQ for Rest Ser vi ce. Thus, the object of Cont ent Li st Request

becomes input to all the I i st - cont ent s services (same input is used for Functional

counterpart of | i st - content s as well).

In addition to defining the input type for the 1 i st - cont ent s service,
Rest Cont ent Li st Ser vi ce class also overrides the t r ansf or nResponse method and

mandates the return value of this method to be an object of Cont ent Page type. This

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 44

return type is same as the one used for si npl e- sear ch service. Cont ent Page is a
standard type defined in Content Integration SDK.

The plugin must extend the implementation of | i st - cont ent s service from

com hcl . uni ca. systemintegration.service.content.|ist.RestContentListService
class to be recognized as a valid | i st - cont ent s service by the Content Integration
Framework (Functional counterpart, discussed later, is also a valid choice to extend

from).

Rest Cont ent Li st Ser vi ce extends from
com hcl . uni ca. systemintegration.service.content.list.AbstractContentListService

class.

com hcl . uni ca. systemintegration.service.content.list.AbstractContentListService

This is a common base class for RESTful as well as Functional implementations of
| i st-contents service. So, the details covered herein applies to Functional version of

| i st-contents as well.

This class defines the

com hcl . uni ca. system i ntegration. servi ce. gat eway. Cont ent Li st Ser vi ceGat eway
interface as the service gateway for the i st - cont ent s service. This interface extends
from com hcl . uni ca. system i ntegration. servi ce. gat eway. Ser vi ceGat eway
interface and mandates the Cont ent Li st Request and Cont ent Page objects to be the

input and output types for the | i st - cont ent s service.

Get content details (get - cont ent - det ai | s)

The following are the specialized interfaces and classes available for the get-content-details

service:

ecom hcl . unica.systemintegration.service.content.details. RestContentDetail sService

The com aem ser vi ce. Aenbj ect Det ai | sServi ce class inaem i ntegration
project is a reference implementation for RESTful get - cont ent - det ai | s service.

Aentbj ect Det ai | sSer vi ce class extends from Rest Cont ent Det ai | sSer vi ce class.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 45

The Rest Cont ent Det ai | sSer vi ce class has a type parameter RS, which represents the
type of response (post deserialization) received from the remote REST API. In this case

itis Si npl eSear chResponse class defined inside the aem i nt egr at i on project.

Rest Cont ent Det ai | sSer vi ce class implements Rest Ser vi ce interface and defines the
com hcl . uni ca. syst em nodel . request . cont ent. detai | s. Cont ent Det ai | sRequest
class as the type argument RQ for Rest Ser vi ce. Thus, the object of

Cont ent Det ai | sRequest becomes input to all the get - cont ent - det ai | s services

(same input is used for Functional counterpart of get - cont ent - det ai | s as well).

In addition to defining the input type for the get - cont ent - det ai | s service,
Rest Cont ent Det ai | sSer vi ce class also overrides the t r ansf or nResponse method and
mandates the return value of this method to be an object of Presentable type.

The plugin must extend the implementation of get - cont ent - det ai | s service from

com hcl . uni ca. systemintegration.service.content. details. Rest ContentDetail sService
class to be recognized as a valid get - cont ent - det ai | s service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

Rest Cont ent Det ai | sSer vi ce extends from the
com hcl . uni ca. system i ntegration. service.content.details. Abstract ContentDetail sService
class.

com hcl . uni ca. systemintegration.service.content.details. Abstract Cont ent Detai | sService

This is a common base class for RESTful as well as Functional implementations of
get - cont ent - det ai | s service. So, the details covered herein applies to Functional

version of get - cont ent - det ai | s as well.

This class defines the

com hcl . uni ca. system i ntegration. servi ce. gat eway. Cont ent Det ai | sSer vi ceGat eway
interface as the service gateway for the get - cont ent - det ai | s service.

Ser vi ceGat eways are the means to programmatically define input and output types of

the service and facilitate invocation of the services. A closer look at this interface tells

us that the get - cont ent - det ai | s service accepts the Cont ent Det ai | sRequest object

and returns a Presentable object.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 46

Get cognitive analysis (get-cognitive-analysis)

The following are the specialized interfaces and classes available for the get-cognitive-

analysis service:

ecom hcl . uni ca. systemintegration. service.cognitive. anal ysi s. Rest Cogni ti veAnal ysi sServi

The com exanpl e. servi ce. rest. Exanpl eCogni ti veAnal ysi sServi ce in asset -
i ntegration-starter projectis a quick starterimplementation for RESTful get -
cogni ti ve-anal ysi s service. Exanpl eCogni ti veAnal ysi sServi ce in class extends

from Rest Cogni ti veAnal ysi sSer vi ce class.

The Rest Cogni ti veAnal ysi sSer vi ce class has a type parameter RS, which represents
the type of response (post deserialization) received from the remote REST API. In this
case it is Cogni ti veDet ai | s class defined inside the asset-integration-starter

project.

Rest Cogni ti veAnal ysi sServi ce class implements Rest Ser vi ce interface and defines

the

com hcl . uni ca. syst em nodel . request . cogni ti ve. anal ysi s. Cogni ti veAnal ysi sRequest
class as the type argument RQ for Rest Ser vi ce. Thus, the object of

Cogni ti veAnal ysi sRequest becomes input to all the get - cogni ti ve-anal ysi s

services (same input is used for Functional counterpart as well).

In addition to defining the input type for the get - cogni ti ve- anal ysi s service,

Rest Cogni ti veAnal ysi sSer vi ce class also overrides the t r ansf or nResponse
method and mandates the return value of this method to be an object of

com hcl . uni ca. syst em nodel . response. cogni tive. anal ysi s. Cogni ti veAnal ysi s

type. Cogni ti veAnal ysi s is a standard type defined in Content Integration SDK.

The plugin must extend the implementation of get - cogni ti ve- anal ysi s service from

com hcl . uni ca. systemintegration.service.cognitive. anal ysis. Rest Cogni ti veAnal ysi sServi
class to be recognized as a valid get - cogni ti ve- anal ysi s service by the Content

Integration Framework (Functional counterpart, discussed later, is also a valid choice to

extend from).

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 47

Rest Cogni ti veAnal ysi sSer vi ce extends from
com hcl . uni ca. system i ntegration. service.cognitive. anal ysis. Abstract CognitiveAnal ysisS
class.

e com hcl . uni ca. systemintegration. service.cognitive. anal ysis. Abstract Cogni tiveAnal ysi sS

This is a common base class for RESTful as well as Functional implementations of
get - cogni ti ve- anal ysi s service. So, the details covered herein applies to Functional

version of get - cogni ti ve- anal ysi s as well.

This class defines the

com hcl . uni ca. system i ntegration. service. gat eway. Cogni ti veAnal ysi sServi ceGat eway
interface as the service gateway for the get - cogni ti ve- anal ysi s service. This

interface extends from

com hcl . uni ca. system i ntegration. servi ce. gat eway. Ser vi ceGat eway interface

and mandates the Cogni t i veAnal ysi sRequest and Cogni ti veAnal ysi s objects to be

the input and output types for the get - cogni ti ve- anal ysi s service.

Derivatives of HttpService

Only resour ce- | oader standard service is implemented as an Ht t pSer vi ce as it relates
to the standard HTTP GET operation. You can also use Rest Ser vi ce without losing any

capability.

Resource loader (r esour ce- | oader)

The following are the specialized interfaces and classes available for resource-loader

service:

e com hcl . uni ca. systemintegration. service. resourcel oader. Def aul t WebResour ceLoader Ser vi c
The com exanpl e. servi ce. rest . Resour ceLoader Ser vi ce class in asset -
i ntegration-starter projectis a quick starter implementation for the r esour ce-

| oader service and extends from the following class:

com hcl . uni ca. system i ntegration. service.resourcel oader

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 48

. Def aul t WebResour ceLoader Ser vi ce

Def aul t WebResour ceLoader Ser vi ce class is the default implementation of r esour ce-

| oader service provided by the Content Integration SDK. If the plugin does not
implement its own r esour ce- | oader service, Content Integration Framework falls back
on this default implementation. Default implementation of r esour ce- | oader provided
by Content Integration SDK simply follows the given resource URL and retrieves the

web resource from target system. It encapsulates the standard HTTP GET operation.

If the plugin needs to have its own r esour ce- | oader implementation which
slightly modifies the standard HTTP GET, we recommend extending it from the

Def aul t WebResour ceLoader Ser vi ce class. It is not necessary to extend r esour ce-
| oader implementation from the Def aul t WebResour ceLoader Ser vi ce if the

plugin must use a completely different approach for loading contents, such

as reading from file system, database, FTP server etc. In such a case, it must
extend from either Ht t pvebResour ceLoader Ser vi ce for HTTP-based approach or

VebResour ceLoader Ser vi ce for functional approach.

com hcl . uni ca. system i ntegration. service.resourcel oader. Ht t pWebResour ceLoader Ser vi ce

The Def aul t WebResour ceLoader Ser vi ce class discussed earlier extends from the

Ht t pWebResour ceLoader Ser vi ce abstract class. This class defines the input type and
the type of HTTP response received from target URL for r esour ce- | oader service

as com hcl . uni ca. syst em nodel . r equest . r esour cel oader . Resour ceRequest and
byt e[] respectively. Resour ceRequest class encapsulates the resource URL and
system identifier. Similarly, r esour ce- | oader works with a byte array when the content

from remote HTTP URL is successfully read.

If the plugin does not extend its r esour ce- | oader implementation from

the Def aul t WebResour ceLoader Ser vi ce class, it must at least extend from

com hcl . uni ca. system integration. service.resourcel oader. Ht t pWebResour ceLoader Ser vi ce
class to be recognized as a resour ce- | oader service by the Content Integration

Framework (Functional counterpart, discussed later, is also a valid choice to extend

from for the r esour ce- | oader services implemented using the Functional approach).

ecom hcl . unica.systemintegration.service. resourcel oader. Abstract WebResour ceLoader Ser vi |

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 49

The Ht t pwebResour ceLoader Ser vi ce class discussed in previous point extends from
Abst r act WebResour ceLoader Ser vi ce abstract class. This class defines the following

service gateway interface for the r esour ce- | oader service:

com hcl . uni ca. system integration. servi ce. gat eway

. Resour ceLoader Ser vi ceGat eway

To know the role of service gateways in service invocation, see Service invocation (on

page 27). Resour ceLoader Ser vi ceGat eway interface defines Resour ceRequest

and Ht t pResponse<?> as input and output types for the r esour ce- | oader service.

Ht t pResponse is an interface, implemented by the WebResour ce class. It encapsulates
the HTTP response headers, body, or payload, and cookies received from the remote
URL. Even if the customized r esour ce- | oader service does not fetch the content

over web, it must return the object of the WebResour ce (or any other implementation

of Ht t pResponse) populated with the appropriate details. Failing to populate the
WebResour ce appropriately may lead to content loading issues for client applications.
The WwebResour ce provides a builder API to create an object with necessary details. The
most important thing is to populate the Cont ent - Type header so that client application
can deal with the payload accordingly. Similarly, Cont ent - Di sposi ti on header must

also be populated appropriately containing the filename associated with the content.

Derivatives of FunctionalService

Derivatives of FunctionalService interface facilitates creation of functional implementation
of standard services. Functional service is just an object with a public method which takes a

certain input and generates the desired output.

Simple search (si npl e- sear ch)

The following are the specialized interfaces and classes available for simple-search service:

ecom hcl . unica.systemintegration. service. search. SearchService

The com exanpl e. servi ce. functi onal . Si npl eSear chSer vi ce class in

the asset -i ntegration-starter projectis a quick starter implementation

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 50

for the Functional si npl e- search servi ce. It extends from the

com hcl . uni ca. system i nt egrati on. servi ce. sear ch. Sear chServi ce class.

The Sear chSer vi ce class implements the Funct i onal Servi ce interface and defines
the Sear chRequest class and the Cont ent Page class to be the type arguments RQ & RS
respectively for the FunctionalService. Thus, the object of the Sear chRequest becomes
an input to all the si npl e- sear ch services and the Cont ent Page is expected as an

output on completion of the service.

The plugin must extend its si npl e- sear ch implementation from the

com hcl . uni ca. system i nt egrati on. servi ce. sear ch. Sear chServi ce class to be
recognized as a si npl e- sear ch service by the Content Integration Framework (RESTful
counterpart discussed in earlier section is also a valid choice to extend from for the

si npl e- sear ch services implemented using RESTful approach).

The Sear chSer vi ce extends from the
com hcl . uni ca. system i ntegration. service. search. Abstract SearchServi ce
abstract class. It introduces one more method, named get Support edCont ent Types. For

more information on the method, see Derivatives of RestService (on page 37).

Resource loader (r esour ce- | oader)

The following are the specialized interfaces and classes available for the resource-loader

service:

ecom hcl . unica.systemintegration.service. resourcel oader. WebResour ceLoader Servi ce
The com exanpl e. servi ce. functi onal . Resour ceLoader Servi ce class in asset -
i ntegration-starter projectis a quick starter implementation for Functional

resour ce- | oader service. It extends from the following class:

com hcl . uni ca. systemintegration. service. resourcel oader. WebResour ceLoader Servi ce

The WebResour ceLoader Ser vi ce class implements the Funct i onal Ser vi ce interface
and defines the Resour ceRequest and the Ht t pResponse types to be the type
arguments RQ & RS, respectively, for the Functi onal Ser vi ce. Thus, the object of the

Resour ceRequest becomes an input to all the r esour ce- | oader services and the

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 51

Ht t pResponse is expected as an output on completion of the service (the same input
and output types are used for RESTful counterpart of the resource-loader). For more

information on Resour ceRequest & Ht t pResponse types, see Derivatives of RestService
(on page 37).

The plugin must extend its r esour ce- | oader implementation from the

com hcl . uni ca. system i ntegration. servi ce. resour cel oader. WebResour ceLoader Ser vi ce
service to be recognized as ar esour ce- | oader service by the Content Integration

Framework (HTTP counterpart discussed in the earlier section is also a valid choice

to extend from for the r esour ce- | oader services implemented using the HTTP

approach).

The WebResourceLoaderService extends from the following class:

com hcl . uni ca. system integration. service.resourcel oader.

Abst ract WebResour ceLoader Ser vi ce

For more information about this class, see Derivatives of RestService (on page 37).

List content categories (I i st - cont ent - cat egori es)

The following are the specialized interfaces and classes available for list-content-categories

service:

ecom hcl . unica.systemintegration.service.content.categories.!list.ContentCategoriesLi st

Plugin can alternatively choose Functional approach to implement | i st -

cont ent - cat egor i es service by extending the implementation from

Cont ent Cat egori esLi st Servi ce class. The Cont ent Cat egori esLi st Servi ce

class implements the Funct i onal Servi ce interface and mandates the

Cont ent Cat egor yLi st Request and the Li st <Cont ent Cat egor y> classes to be the type
arguments RQ and RS respectively for the Funct i onal Servi ce. Thus, the object of the
Cont ent Cat egor yLi st Request becomes an inputto thel i st-content-categories
service and the object of Li st <Cont ent Cat egor y> type is expected as an output on

completion of the service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 52

« The plugin must extend its list-content-categories implementation from the
com hcl . uni ca. systemintegration.service.content.categories.|ist.ContentCategoriesLi st
class to be recognized as a valid I i st - cont ent - cat egor i es service by the Content
Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

Cont ent Cat egori esLi st Ser vi ce extends from
Abst r act Cont ent Cat egor i esLi st Ser vi ce class. Details of
Abst r act Cont ent Cat egor i esLi st Servi ce class are covered in the Derivatives of

RestService (on page 37) topic.

List folders (| i st - f ol ders)

The following are the specialized interfaces and classes available for list-folders service:

ecom hcl . unica.systemintegration.service.folder.|ist.FolderlListService

Plugin can alternatively choose Functional approach to implement | i st - f ol ders
service by extending the implementation from Fol der Li st Servi ce class. The
Fol der Li st Ser vi ce class implements the Funct i onal Servi ce interface and
mandates the Fol der Li st Request and the Li st <Fol der > classes to be the type
arguments RQ and RS respectively for the Funct i onal Ser vi ce. Thus, the object of the
Fol der Li st Request becomes an input to theli st -f ol der s service and the object of
Li st <Fol der > type is expected as an output on completion of the service.

* The plugin must extend its list-folders implementation from the
com hcl . uni ca. systemintegration.service.folder.!|ist.FolderLi stService
class to be recognized as a valid | i st - f ol der s service by the Content Integration
Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

Fol der Li st Ser vi ce extends from Abst r act Fol der Li st Ser vi ce class. Details of

Abst r act Fol der Li st Ser vi ce class are covered in the Derivatives of RestService (on

page 37) topic.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 53

List contents (| i st - cont ent s)

The following are the specialized interfaces and classes available for list-contents service:

ecom hcl . unica.systemintegration.service.content.list.ContentlListService

Plugin can alternatively choose Functional approach to implement | i st-content s
service by extending the implementation from Cont ent Li st Ser vi ce class. The
Cont ent Li st Servi ce class implements the Funct i onal Servi ce interface and
mandates the Cont ent Li st Request and the Cont ent Page classes to be the type
arguments RQ and RS respectively for the Funct i onal Ser vi ce. Thus, the object of the
Cont ent Li st Request becomes an input to the | i st - cont ent s service and the object of
Cont ent Page type is expected as an output on completion of the service.

« The plugin must extend its list-contents implementation from the
com hcl . uni ca. systemintegration.service.content.|ist.ContentListService
class to be recognized as a valid list-contents service by the Content Integration
Framework (RESTful counterpart discussed in earlier section is also a valid choice to

extend from).

Cont ent Li st Ser vi ce extends from Abst r act Cont ent Li st Ser vi ce class. Details of
Abst r act Cont ent Li st Ser vi ce class are covered in the Derivatives of RestService (on

page 37) topic.

Get content details (get - cont ent - det ai | s)

The following are the specialized interfaces and classes available for get-content-details

service:

ecom hcl . unica.systemintegration.service.content.details. ContentDetail sService

Plugin can alternatively choose Functional approach to implement get - cont ent -

det ai | s service by extending the implementation from Cont ent Det ai | sSer vi ce class.

The Cont ent Det ai | sSer vi ce class implements the Funct i onal Servi ce interface and
mandates the Cont ent Det ai | sRequest and the Presentable classes to be the type

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 54

arguments RQ and RS respectively for the Funct i onal Ser vi ce. Thus, the object of the
Cont ent Det ai | sRequest becomes an input to the get - cont ent - det ai | s service and

the object of Presentable type is expected as an output on completion of the service.

The plugin must extend its get - cont ent - det ai | s implementation from the

com hcl . uni ca. systemintegration.service.content.details.ContentDetail sService
class to be recognized as a valid get - cont ent - det ai | s service by the Content

Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

Cont ent Det ai | sSer vi ce extends from Abst r act Cont ent Det ai | sSer vi ce class.

Details of Abst r act Cont ent Det ai | sSer vi ce class are covered in the Derivatives of

RestService (on page 37) topic.

Get object schema (get - obj ect - schens)

get - obj ect - schema service is used to generate the master schema of domain object or
entity used by the respective system to represent the content. Master schema in simplest
form is just a hierarchical metadata of each mappable content attribute. Attribute hierarchy
and metadata is expected to match the JSON representation of the domain object. Attribute
metadata mainly includes the data type of the attribute, format of the value held in the

attribute, unique identifier of the attribute and display title or label for the attribute.

The following are the specialized interfaces and classes available for get - obj ect - schema

service:

ecom hcl . uni ca. systemintegration. service. obj ect.schema. Obj ect SchermaPr ovi der Ser vi ce

The oj ect SchemaPr ovi der Ser vi ce class implements the Functi onal Servi ce
interface and mandates the com hcl . uni ca. syst em nodel . Obj ect SchemaRequest and
the com hcl . uni ca. syst em nodel . j son. schema. Qbj ect Schena classes to be the type
arguments RQ and RS respectively for the Funct i onal Servi ce. Thus, the object of the
bj ect SchemaRequest becomes an input to the get - obj ect - schena service and the

object of bj ect Scherma type is expected as an output on completion of the service.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 55

Plugin however need not build the oj ect Schema by itself. It should just override and

implement following abstract method from Qbj ect SchenmaPr ovi der Ser vi ce class.
ObjectProfile getObjectProfile(ObjectSchemaRequest objectSchemaRequest)

The get Obj ect Profi |l e() method accepts bj ect SchemaRequest and returns

Obj ect Profi | e. (These types are discussed in subsequent section.)

The plugin must extend get - obj ect - schema implementation from the

com hcl . uni ca. system i ntegration. service. obj ect.schema. Obj ect SchenmaPr ovi der Ser vi ce
class to be recognized as a valid get - obj ect - schema service by the Content Integration
Framework. There is no RESTful counterpart of this standard super class since object

schema generation does not include any HTTP interaction. Plugins can implement

custom RESTful service and invoke it internally from within get - obj ect - schema service

if required.

com hcl . uni ca. syst em nodel . Obj ect SchemaRequest

Object of this class is supplied as an input to the get - obj ect - schema service. The most
important method of this class is get Qbj ect | dent i t y() which returns an object of
type com hcl . uni ca. syst em nodel . Qbj ect | dent i t y encapsulating the details of the
content chosen by the user to request the master schema. It includes appl i cati onl d
(the system identifier), obj ect Type (content type/category identifier) and obj ect I d
(unique identifier of the selected content). Regardless of the category and/or content
chosen by the user at the time of setting up content mapping, the generated schema
must include attributes of all kinds of contents supported by the respective system.

In other words, only one master schema is used for mapping all types of contents

provided by the given system.

The get Enri chment Qbj ect Json() method in Obj ect SchemaRequest class can be
ignored as of current release.

com hcl . uni ca. system integration. service. obj ect.schema. ObjectProfile

This is a return type of get oj ect Profi | e() method in get - obj ect - schena service.
It carries the Java type corresponding to the domain entity/object for the respective
system. Content Integration Framework consults this Java type to generate the
schema for public and non-public non static class properties (inclusive of Enums

& Optionals). @mppabl eAt t ri but e annotation can be used to configure each

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 56

individual class property to control the schema generated by Content Integration
Framework. Refer to the com aem nodel . response. si npl esear ch. Si npl eSear chl t em
domain object in aem i nt egrati on reference project to get an idea about

how this annotation is used. More details are provided on @appabl eAttri but e

in next section. Mj ect Prof i | e can optionally include an instance of

com hcl . uni ca. system i ntegration. service. obj ect. schema. Obj ect SchemaEnri cher
to dynamically add/modify/remove attributes from the schema thus generated. Next

section explains oj ect SchemaEnri cher in detail.

com hcl . uni ca. system i ntegration. service. obj ect.schema. Obj ect SchemaEnri cher

bj ect SchemaEnri cher is an abstract class. Plugin should extend it to have desired
implementation. The type parameter to Obj ect SchemaEnri cher class represents

the Java type containing the additional details required for enriching the statically
generated object schema. These additional details might be provided by the client
applications of Unica Content Integration. As of current release, no additional

details are provided, hence it should be set to Void while implementing the schema
enricher. oj ect SchemaEnr i cher declares only one abstract method which should be

implemented by the plugin:

abstract public ObjectSchema enrich(
bj ect Schema obj ect Schens,

bj ect SchemaEnri chment Request <T> obj ect SchemaEnri chnent Request

The first argument to this method is an instance of

com hcl . uni ca. syst em nodel . j son. schema. Qbj ect Schena class. It contains the
automatically generated domain object schema derived from the Java type supplied in
bj ect Profi | e. At its core, Obj ect Schena is just a Map<String, AttributeSchenma>,
wherein class property names forms the keys of this map and property metadata
ends up as an object of At t ri but eSchena. If the class property in turn refers to
another object, the corresponding At t ri but eSchena will have another Map<St ri ng,

At t ri but eSchema> containing the attributes of that object type and so on.

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 57

[5) Note: Itis important to note that attribute names used as the keys in attribute
map correspond to the JSON properties which ends up in the JSON representation
of the domain object. Hence, if @sonPr opert y annotation is used to override the
JSON property name for certain class attribute, then Content Integration Framework

automatically detects it and use the overridden property name.

vj ect Schenma as well as At t ri but eScherma extend from

com hcl . uni ca. syst em nodel . j son. schema. Att ri but eCont ai ner abstract
class. Attri but eCont ai ner provides convenience methods to Qbj ect Scherma and
At tri but eSchema classes for navigating through attribute hierarchy as well as for
adding, modifying and removing attributes at any level in the hierarchy to ease the
schema enrichment. Attributes at any level in the hierarchy can be accessed and
manipulated using their names as appearing in JSON representation.

e com hcl . uni ca. syst em nodel . j son. schemna. gener at or. annot ati ons. Mappabl eAttri bute

@mppabl eAt t ri but e annotation provides a way to control how Content Integration
Framework generates object schema from the respective Java type. Use of

@/mppabl eAt t ri but e is not mandatory. If it is not used, Content Integration Framework
automatically figures out property metadata. If required, this annotation should be
placed on top of desired class properties. Following annotation attributes can be used

to control the schema generation:

> hidden — Set this to true to explicitly exclude certain property from object schema
(@sonl gnor e is presently not considered by Content Integration Framework.
Hence, any property excluded from JSON representation using @sonl gnor e must
be explicitly excluded from schema)

o id — Supply unique identifier for the property. Content Integration Framework needs
unique identifier for each mappable class property. If @appabl eAttri but e is not
used, or id is not specified, it generates one automatically based on the location of

property inside the class.

Automatic generation of attribute identifier is subject to the name and the
hierarchical location of class property inside the domain object graph. It implies

that if the property name is changed and/or moved up or down the object graph

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 58

hierarchy, it will change the identifier associated with it. Such refactoring can
mislead Content Integration Framework while reading the values of refactored
attributes and may lead to undesired data in mapped contents (such as Offers
in COM). Hence, to avoid such inadvertent changes in attribute identifiers, we
recommend you to assign unique attribute identifiers manually, which remain
constant regardless of the name and location of class properties.

- title — Display title/label for the property. If omitted, Content Integration Framework
generates one using property name.

o type — One of the values from
com hcl . uni ca. syst em nodel . j son. schema. gener at or. annot ati ons. Attri but eType.
If omitted, Content Integration Framework automatically figures out the
appropriate type.

o format — One of the values from
com hcl . uni ca. syst em nodel . j son. schena. gener at or. annot ati ons. Attri but eFor mat .
Content Integration Framework can automatically identify standard java temporal
types (Dat e, Local Dat eTi ne, | nst ant) and set the attribute type to DATETI ME. Other
formats should be explicitly declared.

> implementation — Should be used for polymorphic references to explicitly declare
the Java type to be considered for automatic schema generation.

- hiddenProperties - @hppabl eAtt ri but e annotation can be used at the class level
to hide multiple properties at single place. hi ddenPr operti es takes an array of
Strings containing the names of properties (direct as well as inherited ones) to be
excluded from automatically generated schema. It is particularly useful for hiding

properties inherited from third party parent class.
Java Type to AttributeType Mapping

Following table summarizes the mapping between Java type and AttributeType/

AttributeFormat used by the Content Integration Framework for automatic schema

generation:
Java Type AttributeType AttributeFormat
°String STRI NG
o Char act er

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 59

Java Type AttributeType AttributeFormat

o Char

o Char Sequence

o Local Dat e

o Local Ti ne

o ZonedDat eTi ne
o O fset Dat eTi ne
cCffsetTinme

° Zonel d

° Cal endar

°UJl D

° Bool ean BOOLEAN

o bool ean

° Bi gl nt eger | NTEGER
°| nteger
°lnt
°Long

° Long

o Short

o Shor't
°Byte
°cbyte

° Bi gDeci mal NUVBER
° Nunber
° Doubl e
° Doubl e
° Fl oat

o fl oat

cDate | NTEGER DATETI ME

o Local Dat eTi me

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 60

Java Type AttributeType AttributeFormat

o | nst ant

Content Integration
Framework expects date
values be expressed

in UTC standard time.
Temporal values expressed
in any other timezone can
lead to inaccurate temporal
calculations in further use

cases.

Get cognitive analysis (get - cogni ti ve- anal ysi s)

The following are the specialized interfaces and classes available for get-cognitive-analysis

service:

ecom hcl . unica.systemintegration.service.cognitive. analysis. CognitiveAnal ysi sService

Plugin can alternatively choose Functional approach to implement get - cogni ti ve-
anal ysi s service by extending the implementation from Cogni ti veAnal ysi sServi ce
class. The Cogni ti veAnal ysi sServi ce class implements the Funct i onal Servi ce
interface and mandates the Cogni ti veAnal ysi sRequest and the Cogni ti veAnal ysi s
classes to be the type arguments RQ and RS respectively for the Funct i onal Servi ce.
Thus, the object of the Cogni ti veAnal ysi sRequest becomes an input to the get -
cogni ti ve-anal ysi s service and the object of Cogni ti veAnal ysi s type is expected as
an output on completion of the service.

* The plugin must extend its get - cogni t i ve- anal ysi s implementation from the
com hcl . uni ca. systemintegration.service.cognitive. anal ysis. CognitiveAnal ysisService
class to be recognized as a valid get - cogni ti ve- anal ysi s service by the Content
Integration Framework (RESTful counterpart discussed in earlier section is also a valid

choice to extend from).

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 61

CognitiveAnalysisService extends from Abst r act Cogni t i veAnal ysi sSer vi ce class.
Details of Abstract CognitiveAnal ysi sServi ce class are covered in the Derivatives of

RestService (on page 37) topic.

AbstractEntity

The com hcl . uni ca. syst em nodel . Abstract Entity class represents a general domain

entity. For the current release, this abstract class does not contain any implementation.

However, for the Content Integration Framework, plugins must extend their domain
entities from the com hcl . uni ca. syst em nodel . Abst ract Enti ty class. This ensures that
Abstract Enti ty is the base for dealing with domain entities within Content Integration

Framework.

As for the plugin implementations, the class used to represent an individual content
returned by the si npl e-search, | i st-contents, and get - cont ent - det ai | s services must
extend from Abstract Entity class.

Presentable

To be able to render an individual content returned by the simple-search, list-contents
& get-content-details services, the domain entity class used by these services

must implement the com hcl . uni ca. syst em nodel . present ati on. Present abl e
interface and override the get Present ati onDet ai | s() method. The

com hcl . uni ca. syst em nodel . present ati on. Present abl e$Presentati onDetails
object returned by the get Present ati onDet ai | s() method must provide the

Text ual Present ati on as well as Mul ti medi aPr esent at i on details.

Text ual Present at i on contains following particulars:

« [5) Note: The highlighted fields are mandatory. For the other fields, provide details, if
available.

* headi ng — Title of the content

* subheadi ngs — List of subheadings for the content

 sunmary — Summary or description of the content

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 62

* name — Should be used for filename associated with the content
- t ags — Tags associated with the content (out of the box plugins use this to convey
MIME type or category of the content)

Whereas Mul t i nedi aPr esent at i on contains following particulars:

+ [§) Note: The highlighted fields are mandatory. For the other fields, provide details, if
available.

« i d - Unique identifier of the content

« f ol der I d - Unique identifier of the folder respective content belongs to

* ni meType - MIME type of the original content

* si ze - Size of original content in bytes

*resourceUr| - Absolute URL to the original content

* t humbnai | Ur|I - Absolute URL to the content thumbnail, if available

« fi | eName - File name associated with the original content

- t ype — Type/category identifier of the content (must be one of the values from
supported content types set up using any of the applicable alternatives provided by
Content Integration framework)

«list of variants — Each variant supports almost same details as the primary
MultimediaPresentation details except thumbnailUrl (it can only have its own

resourceUrl), folderld and variants (variant cannot have any further variants)

Builder API

Almost all the standard types discussed in previous sections provide the builder API for the

ease of constructing objects.

For example, Text ual Present at i on can be built using following syntax instead of splitting it

into constructor and setter operations:

Text ual Present ati on. bui | der ()
. headi ng("Content title")
. subheadi ngs(Col | ecti ons. enptyLi st())
. hanme(" phot 0. j pg")

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 63

.tags(Col | ections. singletonList("Inage"))

bui 1d();

It is not mandatory to use builder API for creating standard objects. However, it certainly

keeps plugin implementations clean while dealing with complex objects.

Standard exceptions

Standard exceptions include exceptions provided by the Content Integration SDK, which can

be used by the plugins to convey different failure conditions during service execution.

RESTful approach

Content Integration Framework handles error conditions, arising from services implemented

using RESTful approach.

Additionally, Content Integration Framework initiates and handles the execution of remote
API call for RESTful integrations, so that it can keep track of the success of all the HTTP
operation. Thus, the plugins do not require any special exception to convey the failure of
the REST call. If something goes wrong inside the service implementation; any appropriate
unchecked exception is sufficient to convey the operation failure. Such exceptions are

further conveyed as 502 HTTP response to the client.

Functional approach

Since Content Integration Framework does not initiate and manage the outgoing

connections in case of Functional services, it cannot keep track of end to end success.

Hence, it provides certain standard exceptions, which the service implementations
can throw to convey relevant failure conditions. These exceptions are
related to communication with the target system and are present within the

com hcl . uni ca. system i nt egrati on. excepti on package.

« SystemNotFoundException

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 64

This exception must be used when the target system or content repository cannot
be located. Alternatively, j ava. net . UnknownHost Except i on can also be used. This
exception is conveyed as 404 HTTP response to the client.

- ServiceNotFoundException

This exception must be used when the remote endpoint returns 404, or if the target
service no longer exists. Absence of the target system and the absence of the required
service are considered as different things. Hence, the Ser vi ceNot FoundExcept i on
conveys presence of the target system and the absence of the required service,

or feature, on the target system. For example, in case of content fetched from the
database, the absence of the required table (or the absence of the permission to
access it) can be conveyed using this exception. This exception is conveyed as 404
HTTP response to the client.

« UnreachableSystemException

This exception must be used to convey unreachable or inaccessible target systems,
such as connection timeout. Alternatively, j ava. net . Connect Except i on can also be
used. This exception is conveyed as 503 HTTP response to the client.

« SluggishSystemException

When the response from the target system is not received within expected time, this
exception must be used to convey the slowness of the target system. Alternatively,
j ava. net . Socket Ti meout Except i on can also be used. This exception is conveyed as
504 HTTP response to the client.

« InternalSystemError

This exception must be used if the plugin receives a temporary, or unexpected, error
from the target system to convey the problems in it. This exception is conveyed as 502
HTTP response to the client.

Any other exceptions are conveyed as 502 HTTP response to the client. In any case, the
message in the exception is never returned to the client. Each HTTP response code carries

a fixed, generic, and localized message.

Content Integration Framework wraps the exceptions received from service

implementations into

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 65

com hcl . uni ca. system i ntegration. exception. Servi ceExecuti onExcepti on or its
subtype. Exceptions received from REST-based services or HTTP-based services are
wrapped in

com hcl . uni ca. systemintegration. exception. Ht pServi ceExecuti onExcepti on,
whereas the ones received from Functional services are wrapped in

com hcl . uni ca. system i ntegration. exception. Servi ceExecuti onExcepti on.

As explained in Service invocation (on page 27), Ht t pSer vi ceExecut i onExcept i on
provides a method to obtain an Opt i onal <Ht t pResponse> object. If the service execution
fails before initiating an HTTP call, then this Optional object will not contain any

Ht t pResponse.

Loggers

Content Integration Framework provides logging interface using the si f 4 library. By adding
dependency for the si f 4j library, the plugins can use its API for adding loggers inside

service implementations.

The starter as well as reference projects included in dev- ki t s manage their dependencies

using Apache Maven. The following entry is found in the POM file:

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>1. 7. 26</ ver si on>

</ dependency>

Use 1.7.26 or higher version of si f 4j - api to avoid conflict. Once the required dependency

is added, the logger object can be obtained by directly accessing the sl f 4j API.

Logger | og = Logger Factory. get Logger (YOUR_CLASS. cl ass) ;

Alternatively, project Lombok can also be used to get the logger object for your class.

Lombok provides @SIf4j annotation, which can be used to inject the earlier mentioned

Unica Content Integration V12.1 Developer Guide | 3 - Plugin Development SDK | 66

property inside the annotated class. For more information on project Lombok, please visit

its official web page.

Additionally, the application logs can be found in Asset Pi cker /| ogs directory under
platform home. By default, all the loggers from your plugin will reside in the common log
file configured in Asset Pi cker/ conf/ | oggi ng/ | og4j 2. xm file. You can alter the

| og4j 2. xm configuration file to route your loggers to a different file, for troubleshooting
during development. Configuration of | og4j 2 is not part of the scope of this guide. Please

refer to the official documentation of Apache Log4j2 for more information.

Chapter 4. Setting up the development
environment

Set up the development environment in Eclipse IDE for writing your plugins. Use any Java EE
IDE of your choice and make the required configurations mentioned in this topic. You need
certain artifacts from <ASSET PI CKER HOVE> to complete the environment setup. This
topic will provide information about project building and packaging using Apache Maven so

ensure that you have Apache Maven installed.

To set up the development environment, complete the following steps:

1. From the <ASSET Pl CKER HOVE>/ dev- ki t s/ location, copy the asset -

i ntegration-starter projectand place it in your development workspace.
2. Open the Eclipse IDE.

3. Select File > Import.

The Select dialog appears.

4. Select WAR file and click Next.
The WAR Import dialog appears.

5. Click Browse, navigate to <ASSET PI CKER_HOVE>, and sel ect asset -

vi ewer . war file.

6. Click Finish.
The WAR Import: Web libraries dialog appears.

7. Click Finish.

8. Select Window > Show View > Other.
The Show View dialog appears.

9. Select Servers and click Open.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 68

As an example, we will illustrate the use of Apache Tomcat 9.0 for running Content
Integration. You can use any supported application server and make the required
configurations.

a. Openthe conf/server. xm file from your Apache Tomcat 9.0 installation
directory and add the following entry, with appropriate database details, inside the
<GlobalNamingResources> element. Please replace <DRIVER_CLASS_NAME>,
<URL_TO_YOUR_PLATFORM_DATABASE>, <DATABASE_USERNAME>, and
<DATABASE_PASSWORD> with Platform database details:

<Resource aut h="Contai ner" driverC assNane="{DRl VER_CLASS NAME}"
maxActi ve="20"
maxWai t =" 10000"
name="Uni caPl at f or nrDS"
passwor d="{ DATABASE_PASSWORD} "
user nane="{ DATABASE USERNAMNE} "
t ype="j avax. sql . Dat aSour ce"

url ="{URL_TO_YOUR_PLATFORM DATABASE} "/ >

b. Open the conf/ cont ext . xm file from your Apache Tomcat 9.0 installation

directory and add the following entry inside the <Context> element:

<Resour ceLi nk aut h="Cont ai ner" gl obal =" Uni caPl at f or nDS"
nane="Uni caPl at f or nDS"

t ype="j avax. sql . Dat aSour ce"/ >

10. To add Apache Tomcat 9.0 as a new server in Eclipse, complete the following steps:

a. In the Servers tab, click the link to create a new server.

The Define a New Server dialog opens.

b. Select Tomcat v9.0 Server and provide values for Server host name and Server

name.

c. Click Next.
The server is successfully added.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 69

d. In the Servers tab, double-click the newly added server entry.

The Overview dialog appears.

e. Click the link Open launch configuration.

The Edit launch configuration properties dialog appears.

f. Edit the launch configurations to the add following JVM arguments

- DASSET_PI CKER_HOVE=<Poi nt this to <ASSET_PI CKER_HOVE> di r ect ory>

-Dspring. profiles.active=platformdisintegrated

g. Click OK.

11. To run the imported asset - vi ewer . war file on Apache Tomcat 9.0, right click the
asset - vi ewer . war file and select Run As > Run on Server.

The Run on Server dialog appears.

12. Click Finish.
The asset - vi ewer . war will start executing on Apache Tomcat. After the setup is

verified, stop the server and import the plugin development starter project.
13. To install Content Integration SDK, complete the following steps:

a. In the following directories, delete the SDKs that are already installed:

* <LOCAL_M2_REPCSI TORY>\ com hcl \ uni ca\i nt egrati on- api
\ 0. 0. 1- SNAPSHOT

» <LOCAL_M2_REPGCSI TORY>\ com hcl \ uni ca\ st andard-i ntegrati ons
\ 0. 0. 1- SNAPSHOT

* <LOCAL_M2_REPCSI TORY>\ com hcl \ uni ca\ asset -i nt egrati on- api
\ 0. 0. 1- SNAPSHOT

* <LOCAL_M2_REPGCSI TORY>\ com hcl \uni ca\entity-nmapper - api
\ 0. 0. 1- SNAPSHOT

On UNIX or Mac OS X, <LOCAL M2 REPCSI TORY> referstothe ~/ . n2/

reposi t ory directory.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 70

On Microsoft Windows, <LOCAL M2 REPCS| TORY> refers to the C: \ User s

\ {your-usernane}\. n2\repository directory.

b. Use the following commands to install Content Integration SDKs into your local
Maven repository. Find asset -i nt egrati on-api . jar,i ntegration-
api .jar,standard-integrations.jar andentity-nmapper-api.jar
inside the <ASSET Pl CKER _HOVE>/ dev- ki t s/ sdk directory.

mvn install:install-file -Dfil e=<ASSET_PI CKER_HOVE>/ dev-
kits/sdk/asset-integration-api.jar -Dgroupld=com hcl.unica -
Dartifactl d=asset-integration-api -Dversion=0.0.1-SNAPSHOT -
Dpackagi ng=j ar

mvn install:install-file -Dfil e=<ASSET_PI CKER HOVE>/ dev-
kits/sdk/integration-api.jar -Dgroupld=com hcl.unica -
Dartifactld=integration-api -Dversion=0.0.1-SNAPSHOT -
Dpackagi ng=j ar

mvn install:install-file -Dfil e=<ASSET_PI CKER HOVE>/ dev-

kit s/ sdk/ st andard-i ntegrations.jar -Dgroupld=com hcl.unica -
Dartifactl d=standard-integrations -Dversi on=0.0. 1- SNAPSHOT -
Dpackagi ng=j ar

mvn install:install-file -Dfil e=<ASSET_PI CKER_HOVE>/ dev- ki t s/ sdk/
entity-nmapper-api.jar -Dgroupld=com hcl.unica -Dartifactld=entity-

mapper - api - Dver si on=0. 0. 1- SNAPSHOT - Dpackagi ng=j ar

14. To import the plugin development starter project, select File > Import.
The Select dialog appears.

15. Select Existing Maven Projects and click Next.

The Maven Projects dialog appears.

16. Click Browse to select the project and click Finish.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 71

17. To update Maven dependencies of the asset - i nt egr ati on- st art er project, right-

clickthe asset -i nt egrati on-starter project and select Maven > Update Project.

18. Ensure that newly imported project is using Java 8 to compile sources. Open project
properties and complete the following steps to setup the compiler:
a. Select Java Compiler.
b. If Compiler compliance level is non-editable, select Enable project specific
settings.
c. Change the Compiler compliance level to 1. 8.

d. Click Apply and Close.

19. To ensure that the right Java library is set up in the build path, complete the following

steps:
a. Select Java Build Path > Libraries.
b. Select JRE System Library (J2SE-1.5).
c. Click Remove.

d. Click Add Library.
The Add Library dialog opens.

e. Select JRE System Library > Next.
The JRE System Library appears.

f. Select an appropriate library and click Finish.

20. To enable annotation processing, complete the following steps:
a. Select Java Compiler > Annotation Processing.
b. Select Enable project specific settings.

c. Select Apply and Close.
21. To install Lombok, complete the following steps:

a. Double-click the LOCAL M2 REPOSI TORY\ or g\ pr oj ect | ombok\ | onbok
\'1.18. 16\ | onbok-1. 18. 16.j ar.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 72

The installer dialog appears.
b. To specify the installation location of your IDE, click Specify location.
c. To complete the installation, click Install / Update.
d. Post installation of Lombok, restart the IDE.

22. To change the project name, complete the following steps:
a. Open the file pom xm and change its Maven project properties.
b. Right-click the asset-integration-starter project and select Refactor > Rename.

23. In the <ASSET_PI CKER_HOVE>/ conf / cust om pl ugi n-servi ces. ym file,
declare the plugin services. You can access this file later to add declarations when you

introduce services for your plugins.

24. To add plugin project to the deployment assembly of the asset - vi ewer . war project,

complete the following steps:

a. Right-click the asset - vi ewer . war project and select Properties.

The Properties for asset-viewer dialog opens.
b. Select Deployment Assembly.

c. Select Add.
The Select Directive Type dialog opens.

d. Select Project and click Next.

e. Select the asset -i ntegrati on-starter plugin project you imported in previous

steps and click Finish.
25. If necessary, clean the projects.

26. Make the appropriate configuration for your system in <ASSET PI CKER HOVE>/
conf/systens. properties (refersanpl e- syst ens. properti es file available in
the <ASSET_PI CKER_HOME>/ dev- ki t s/ asset -i nt egrati on-starter project).

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 73

All the system onboarding configurations mentioned in Unica Content Integration

Administration Guide are supported in syst ens. properti es using relevant properties.

27. As you develop your plugin, check it by running the asset - vi ewer . war projecton a
previously configured application server. Since the project would already be added to
the Deployment Assembly of asset - vi ewer . war, changes to your plugin project will

be deployed whenever you run the asset - vi ewer . war project.

28. As you develop your plugin, by adding services to it, use a tool of your choice to hit the
following REST endpoints (change the context root to match your setup) to verify the

accuracy of your implementation:

a. Ensure system onboarding

Endpoint URL http://1 ocal host: 8888/ asset -

vi ewer/ api / Asset Pi cker/i nstances

Request Method GET

b. Verify simple-search service

Endpoint URL http://1 ocal host: 8888/
asset - vi ewer/ api /

Asset Pi cker/ mysyst enl asset s?
guer y=rmount ai n&page=0&si ze=10&t ypes=Pht o
where,

* nysyst emrepresents the system
identifier chosen by plugin
implementation.

« quer y contains the search keyword
to lookup the content for.

* page & size contains pagination
details, where page is the serial

number of pages to be retrieved

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 74

and size is the total search items
on a single page.

* t ypes is one of the supported
content categories (types) to filter

the search items against.

Request Method GET

When you hit the URL, ensure that the response JSON contains the expected
result. Only presentation details are included for every search items. Other content

properties are excluded for the sake of brevity and performance.

c. Verify resource-loader service

Endpoint URL http://1 ocal host: 8888/ asset -
vi ewer/ api / Asset Pi cker/ mysyst eni

downl oad?r esour ce=

http://repository_base url/
content s/ sanpl e_i mage. j pg

9%®6r esour cel d=12345"

where
* nysyst emrepresents the system
identifier chosen by plugin
implementation.
* r esour ce contains the absolute
URL content to be downloaded.
* resour cel d contains the identifier

of the content to be downloaded.

(Plugin can choose to utilize either
resource or resourceld or both to load

the content.)

Request Method GET

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 75

d. Verify list-folders service

Endpoint URL http://1 ocal host: 8888/ asset -

vi ewer/ api / Asset Pi cker/ nysystem
f ol der s?par ent Fol der | d=1234
where:

* nysyst emrepresents the system
identifier chosen by plugin
implementation.

e par ent Fol der | d contains the
identifier of the parent folder
whose immediate subfolders
are expected in response. This
query parameter is optional & not
supplied while listing the top/root

level folders.
Request Method GET
e. Verify list-contents service
Endpoint URL http://1 ocal host: 8888/ asset -

vi ewer / api / Asset Pi cker/ nysyst ent
fol ders/ 1234/ contents
where:

* nysyst emrepresents the system
identifier chosen by plugin
implementation.

« 1234 represents the identifier
of the folder whose immediate

contents are expected in response.

Request Method GET

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 76

Only presentation details are included for every content listed by the I i st -
cont ent s service. Other content properties are excluded for the sake of brevity and

performance.

f. Verify get-content-details service

Endpoint URL http://1 ocal host: 8888/ asset -

vi ewer/ api / Asset Pi cker/ nysyst ent
asset s/ | mages/ 1234

where:

* nysyst emrepresents the system
identifier chosen by plugin
implementation.

* | mages represents the category ID
of the content whose details are
expected in response.

« 1234 represents the identifier of
the content whose details are

expected in response.

Request Method GET

The JSON response produced by get - cont ent - det ai | s service includes all the

content properties, in addition to the presentation details.

g. Verify get-object-schema service

Endpoint URL http://1 ocal host: 8888/ asset -
vi ewer / api / Asset Pi cker/ obj ect -
mappi ng/ appl i cati on/ nysystent
obj ect/ | mages/ 1234/ schenma
where:
« mysystem represents the system
identifier chosen by plugin

implementation.

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 77

« Images represents the category of
the reference content being used
for schema generation.

* 1234 represents the identifier of
the reference content being used

for schema generation.

As of 12.1.0.4, content identifier and
category are not much relevant since
the schema is expected to include
attributes for all the supported content

categories.

Request Method GET

The JSON response must contain the flattened list of all mappable attributes and

their metadata.

h. Verify list-content-categories service

Endpoint URL http://1 ocal host: 8888/ asset -
vi ewer / api / Asset Pi cker/ nysyst ent
cat egori es
where:
* nysyst emrepresents the system
identifier chosen by plugin

implementation.

Request Method GET

i. Verify get-cognitive-analysis service

Endpoint URL http://1 ocal host: 8888/ asset -
vi ewer/ api / Asset Pi cker/ acti ons/
cogni ze?ur | =absol ut e_i nage_ur|l

where;

Unica Content Integration V12.1 Developer Guide | 4 - Setting up the development environment | 78

e ur| contains absolute URL of
the image to fetch the cognitive

analysis for

Request Method

GET

Chapter 5. Verification and troubleshooting

To verify end-to-end integration, place the JARfile, containing the plugin implementation,
in the class path of the application server where the Content Integration is deployed.
Additionally, configure the corresponding content repository in <ASSET Pl CKER_HOVE>/
conf/systens. properti es file (you can refer to the sanpl e- syst ens. properties
file within the <ASSET_PI CKER_HOVE>/ dev- ki t s/ asset-i ntegrati on-starter
project).

All the system onboarding configurations, mentioned in Unica Content Integration
Administration Guide, are supported in the syst ens. properti es using relevant properties.
You must provide - Dspri ng. profi | es. acti ve=pl at f or m di si nt egr at ed JVM argument
for syst ens. properti es to come into effect (you can always use Platform’s configurations
instead of systems.properties by removing - Dspri ng. profil es. acti ve=pl at f or m

di si nt egr at ed JVM argument).

[5) Note: Currently, only Unica Centralized Offer Management and Unica Plan can access

Content Integration.

After the plugin is deployed, and the system configurations are made, restart the Content
Integration application.

Although, you can verify Content Integration using REST endpoints mentioned in previous
section, we recommend you to check end-to-end integration by running through the relevant
user interface in Unica Centralized Offer Management and Unica Plan. Please refer to the
corresponding user guides to learn how to access Content Integration features in respective
products.

Use developer tools provided by the supported browsers to troubleshoot the API calls, if
required.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 80

Overview of loggers

As mentioned in Verification of integration (on page), the logging configuration for
Content Integration is available in thel og4j 2. xi file, placed in the Asset Pi cker/ conf/

| oggi ng folder within Platform home.

Content Integration uses Apache Log4j 2 for log management. The

RandomAccessFi | ePl at f or mappender along with com uni ca logger configured in

| og4j 2. xm controls the logs produced by Platform's uni ca- conmon. | ar and uni ca-
hel per. | ar used in Content Integration. The remaining settings control logging for other

core activities of Content Integration.

The default log level is set to WARN in both cases, which should be sufficient for the
troubleshooting needs for plugin development. Most of the loggers, produced by

the Content Integration at INFO & DEBUG level, are not extremely relevant for plugin
development & integration. The following topics elaborate only the relevant loggers. These
loggers are already presentin| og4j 2. xnl file and need to be uncommented, if required.
Please ensure that log level is never set to DEBUG or TRACE for these loggers in production

since they can generate sensitive information.

The | og4j 2. xi file also contains necessary configurations to route all the loggers for
a specific user to a dedicated log file. By default, these configurations are commented.
Appropriate description is added in | og4j 2. xnl at the top of each configuration element

to help activate the dedicated log file.

Useful loggers in log4j2.xml file

The following table lists the useful loggers in the | og4j 2. xni file:

Table 2. Useful loggers in log4j2.xml file

Loggers Information

org. spri ngframewor k. web Setting this logger to TRACE level produces
HTTP request and response details for all

the incoming HTTP requests to Content

unique_36
unique_36
unique_36

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 81

Loggers Information

Integration. This logger can be useful if
you want to see what is being exchanged

between frontend and backend.

com.hcl.unica.cms.integration This logger is most useful for plugin
flow.interceptor.logger development. It logs the HTTP interaction
between Content Integration Framework
and the target repository. For any service
implemented using RESTful approach (by
implementing RestService, HTTPService or
their specialized derivatives), this logger will
write HTTP request and response details
for all the outbound HTTP interactions

with target system. To prevent security
vulnerability, values of confidential headers
are masked before logging. Only the last
four characters are left unmasked for
troubleshooting. Such headers include
standard header Authorization, or any non-
standard custom headers set in request or

received in response.

org.springframework.retry Setting this logger to TRACE level adds
information related to retrial attempts while
making HTTP calls to the target repository.
This is useful to verify Retry Policy set

up under QOS section for the respective

system in Platform Configuration.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 82

Other important loggers

Other important loggers are useful in troubleshooting Content Integration. Along with
spotting warnings and errors, these loggers provide information that is useful from a

functional point of view.

The following table lists the other important loggers:

- Client applications - If root logger level is set to INFO level, the following lines tells you
the number of client applications, and which client applications Content Integration can

identify:

Supportedd i ent Applications: Found {1} supported client applications.
Supportedd i ent Applications: Registered {Ofer} as supported client

appl i cati on.

* CORS - If root logger is set to INFO level, the following lines can provide information

about Content Integration’s support for Cross Origin Resource Sharing:

RegexCor sConfi g: CORS: Enabling CORS for {hcl.con} & its subdomains.
Al'l oned HTTP nethods - {[GET, POST]}, allowed headers - {[*]}
RegexCorsConfig: CORS: Allowed origins set to {[http(s)?://([".]+
\.)*hcl .com(:[0-9]+)?]}

- Platform configuration - Content repositories - Setting the root logger level to INFO
tells us about the content repositories that are identified by Content Integration

Framework.

Pl at f or mConf i gur ati onCat egor yResol ver: Pl atform configurati on: Reading
list of entries for path {Affinium Offer|partitions|partitionl|Content
I nt egrati on| dat aSour ces}. ..

Pl at f or mCnsConf i gur ati onReader: Pl atform configuration: |nported
settings for {AEME119[partitionl]}

Pl at f or mCnsConf i gur ati onReader: Pl atform configuration: |nported
settings for {WCOME119[partitionl]}

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 83

Pl at f or mCnsConf i gur ati onReader: Pl atform configuration: |nported
settings for {Bing#ll1l9[partitionl]}

- Service meta information files - The following lines are also logged at INFO level to tell
how many service meta information files have been identified by Content Integration

Framework:

c.h.u.s.c.s.PluginServi cesYam Confi gReader: Scanning & parsing service
configuration files.

c.h.u.s.c.s.PluginServi cesYanm Confi gReader: Seeking file at

{ <ASSET_PI CKER_HOVE>\ conf\ pl ugi n- servi ces.ym }
c.h.u.s.c.s.PluginServi cesYam Confi gReader: Found service config file
at {<ASSET_PI CKER_HOVE>/ conf/ pl ugi n- servi ces. ym }
c.h.u.s.c.s.PluginServi cesYam Confi gReader: Parsing service
configuration file (YAM): {<ASSET_PI CKER HOVE>/ conf/ pl ugi n-
services.ym}...

c.h.u.s.c.s.PluginServi cesYan Confi gReader: Seeking file at

{<ASSET_PI CKER _HOVE>\ conf \ cust om pl ugi n- servi ces.ym }
c.h.u.s.c.s.PluginServi cesYam Confi gReader: {1} service declaration(s)
found for {COM - {[COM get-object-scheng]}
c.h.u.s.c.s.PluginServicesYam Confi gReader: {12} service declaration(s)
found for {WCM - {[WCMitem details, WCM si npl e-search, WCM cont ent -
list, WCM | ogon-service, WCM |l ist-contents, WCM | i brary-1list, WM get -
content-details, WoM fol der-1ist, WM get-obj ect-schema, WCM | i st -
folders, WCM | i brary-by-id, WCM resource-| oader]}
c.h.u.s.c.s.PluginServi cesYanm Confi gReader: {31} service declaration(s)
found for {Deliver} - {[Deliver:update-folder, Deliver:sinple-

search, Deliver:list-by-ids, Deliver:zip-file-upload, Deliver:delete-
content, Deliver:nove-folder, Deliver:create-content, Deliver:list-

fol ders, Deliver:zip-upl oad-tenpl at e-unknown, Deliver: nove-

content, Deliver:list-sub-folders, Deliver:downl oad-content -

variant, Deliver:downl oad-file-attachnent, Deliver:get-user-

entitlements, Deliver:list-top-folders, Deliver:update-dynanic-

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 84

content, Deliver:create-folder, Deliver:find-Ilibraries-by-nang,

Del i ver:resource-| oader, Deliver:zip-upload-content, Deliver:adopt-
dynani c-content, Deliver:get-folder, Deliver:create-dynanic-content,
Deliver:list-contents, Deliver:get-content-details, Deliver:patch-
content, Deliver:delete-folder, Deliver:get-library, Deliver:update-
content, Deliver:get-library-file, Deliver:adopt-content]}
c.h.u.s.c.s.PluginServi cesYam Confi gReader: {1} service declaration(s)
found for {Azure} - {[Azure:get-cognitive-analysis]}
c.h.u.s.c.s.PluginServi cesYam Confi gReader: {1} service declaration(s)
found for {DX-CORE} - {[DX-CORE:|ogon-service]}
c.h.u.s.c.s.PluginServi cesYam Confi gReader: {7} service declaration(s)
found for {DX} - {[DX sinple-search, DX |ist-contents, DX get-content-
details, DX rendition-details, DX get-object-schema, DX |ist-folders,
DX: r esour ce- | oader]}
c.h.u.s.c.s.PluginServi cesYanm Confi gReader: {7} service declaration(s)
found for {Comrerce} - {[Conmerce: sinple-search, Commerce:list-
contents, Conmerce: get-content-details, Commerce: get-search-query-
suggesti ons, Commrerce:|list-content-categories, Conmerce: get-object-
schema, Commerce:|list-fol ders]}
c.h.u.s.c.s.PluginServi cesYam Confi gReader: {7} service declaration(s)
found for {AEM - {[AEM si npl e-search, AEMIist-contents, AEM get-
content-details, AEM get-object-schema, AEM get-content-fragnment-nodel
AEM | i st-fol ders, AEM sanpl e-i nbound- servi ce]}
c.h.u.s.c.s.PluginServi cesYanm Confi gReader: {2} service declaration(s)

found for {Bing} - {[Bing:sinple-search, Bing:get-content-details]}
« Authentication protocols - The following lines, logged at INFO level, confirms the
authentication protocol is identified for the given content repository:
Asset Pi cker Rest Tenpl ate: Setting up {BASI C} authentication for

{Ofer[partitionl]. WM sinpl e-search} service..

- Platform configuration cache invalidation and service re-initializations - All the

Platform configurations for Content Integration are cached during application startup.

Unica Content Integration V12.1 Developer Guide | 5 - Verification and troubleshooting | 85

These configurations are refreshed after certain interval (every 30 mins by default

unless configured to use some other interval). The following logger is produced at INFO
level, whenever configuration refresh begins:

I NFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initializing

servi ces. ..

Similarly, the following lines are generated at INFO level whenever it is over:

I NFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Finished service
initializations.

I NFO [scheduling-1] c.h.u.s.c.s.ServiceBootstrapper: Re-initialization
completed in 3692 mlliseconds. YAML read time: 15 nmilliseconds,

DB Read Tinme: 3608 milliseconds, Service initialization tinme: 68

mlliseconds

	Unica Content Integration V12.1 Developer Guide
	Contents
	Chapter 1. Overview
	Plugins
	Integration support and plugin development approach
	RESTful content search flow
	Non-RESTful content search flow

	Chapter 2. Plugin development overview
	Components of plugin
	Service declarations
	Service declaration file

	Standard services
	Service implementations
	RESTful approach
	Functional approach
	Common methods

	Best approach selection

	Chapter 3. Plugin Development SDK
	Generic type parameters
	RestService<RQ, RS>
	FunctionalService<RQ, RS>
	ServiceGateway<RQ, RS>

	Service invocation
	Multi-partitioned clients

	Execution context
	User data source

	Standard services and specialized types
	Invocation of standard services
	Specialized types
	Derivatives of RestService
	Simple search (simple-search)
	List content categories (list-content-categories)
	List folders (list-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get cognitive analysis (get-cognitive-analysis)

	Derivatives of HttpService
	Resource loader (resource-loader)

	Derivatives of FunctionalService
	Simple search (simple-search)
	Resource loader (resource-loader)
	List content categories (list-content-categories)
	List folders (list-folders)
	List contents (list-contents)
	Get content details (get-content-details)
	Get object schema (get-object-schema)
	Get cognitive analysis (get-cognitive-analysis)

	AbstractEntity
	Presentable
	Builder API

	Standard exceptions
	RESTful approach
	Functional approach

	Loggers

	Chapter 4. Setting up the development environment
	Chapter 5. Verification and troubleshooting
	Overview of loggers
	Useful loggers in log4j2.xml file
	Other important loggers

