
Unica Asset Picker
V12.0 Developer's Guide

Contents

Chapter 1. Unica Asset Picker Developer Guide.. 1

Overview... 1

Plugins.. 1

Integration support and plugin development approach..1

Plugin development overview...4

Components of plugin...4

SDK Plugin Development.. 16

Generic type parameters...16

Service invocation..19

Execution context.. 21

Standard services and specialized types...23

Standard exceptions..32

Loggers... 34

Verification and troubleshooting..35

Verification of integration... 36

Overview of loggers...38

Chapter 1. Unica Asset Picker Developer
Guide

This guide provides information on plugin development and troubleshooting of Unica Asset

Picker.

Overview
Asset Picker facilitates easy integration with Content Management Systems and enables

searching content from the Content Management Systems.

The fetched content can be used by the client of Asset Picker for various content-oriented

business use cases. An Asset Picker client is any product from Unica Suite which integrates

with Asset Picker to consume the content from target systems.

Plugins
Asset Picker integrates with different CMS using REST APIs. It addresses the challenge

of programming interface disparity between different systems by leveraging the custom

plugins or modules written specifically for the target system.

You can implement plugins using Java programming language. Asset Picker does not

enforce any dependency of any third-party library for developing such plugins. You can

customize plugins to utilize any third-party library for its implementation. Plugins can be

used to fill in the logical gaps related to the target system.

Plugins non-intrusively augment Asset Picker to fetch desired content from external content

store.

Integration support and plugin development approach
Asset Picker provides out-of-the-box support for easy integration with RESTful interfaces.

It also facilitates alternative approach of plugin development to integrate with non-RESTful

systems such as database, file systems, or any other content repository.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 2

A typical plugin written for REST API integration does not contain any logic to establish

connection with the target system, and to handle protocol level success and failure

conditions. Such responsibilities are handled by the Asset Picker. Plugins provide only

system-specific pieces of information, such as:

• absolute location of the target API

• HTTP method to be used

• headers to be supplied

• request body to be sent

• type of the response to be expected

• transformer for the received response

An alternate plugin development approach for non-RESTful integration involves thorough

implementation. For example, a plugin written for fetching content from database needs to

address everything involved in making DB connection, executing SQLs, closing connections,

result set hydration, failure handling etc.

Plugins do not initiate the content search. Asset Picker first receives the search request,

which is delegated to the respective plugin. In case of RESTful integrations, Asset Picker

initiates the HTTP interaction and gathers the necessary information from the plugin, when

required.

RESTful content search flow

The following figure shows the end-to-end execution flow for RESTful content search:

Figure 1. RESTful content search flow

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 3

When Asset Picker receives content search request from user for the target system, it

consults with the respective plugin to gather request specific logical information and makes

an API call to the target system. It consults with the plugin once again to transform the API

response into an expected format and responds to the user.

Non-RESTful content search flow

The following figure shows the end-to-end execution flow for Non-RESTful content search:

Figure 2. Non-RESTful content search flow

Non-RESTful plugins interact with the content repository and provides the search results to

Asset Picker. Unlike RESTful repositories, Asset Picker will not know the type, architecture,

protocol and the authentication mechanism used for communicating with the target

repository.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 4

Plugin development overview
Asset Picker facilitates easy integration with new content repositories without having to

alter the core Asset Picker framework.

Asset Picker seamlessly integrates with system-specific, independent plugins. Once the

plugin is developed and included in the classpath of the application server hosting Asset

Picker, the corresponding system can be onboarded in the Unica product suite by updating

a few configurations in Unica Platform. For more information, see Unica Asset Picker

Administrator's Guide

Asset Picker is shipped with a development kit containing the dependencies, reference

projects, and a starter project to quick start the plugin development. Development kit is

placed within the AssetPicker/dev-kits directory within Platform home. Two reference

projects, named aem-integration and wcm-integration, are available for Adobe

Experience Manager (AEM) and IBM Web Content Manager (WCM) respectively. To write a

plugin for new system, we recommend you use the starter project to save writing boilerplate

code.

Components of plugin
A typical plugin contains the following components:

• Service meta information file (on page 5)

• Service implementations (on page 11)

The term Service represents a Java class, which either indirectly aids in consuming an

external REST service, or directly interacts with external web service(s) or system(s) for a

designated purpose. External system need not be a standard Content Management System

and external services need not belong to any standard CMS. It can be any system or an API.

Service meta information file is an YML configuration file containing the list of services

included in the plugin. A service can either be a standard service or a custom service.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 5

Standard services carry special semantics and purpose in Asset Picker. Implementation of

certain standard services is mandatory for Asset Picker to work with the content repository.

Service meta information file

The following are the pre-requisites for meta information file:

• Service meta information file is expected inside the META-INF directory on project

class path.

• Name of the meta information file must end with content-services.yml suffix.

Examples are:

◦ wcm-content-services.yml

◦ aem-content-services.yml

◦ example-content-services.yml

Reference files can be found inside aem-integration, wcm-integration, and asset-

integration-starter projects under the following listed locations:

• dev-kits\aem-integration\src\main\resources\META-INF

• dev-kits\wcm-integration\src\main\resources\META-INF

• dev-kits\asset-integration-starter\src\main\resources\META-INF

The following is the example content of a file from asset-integration-starter project:

services:

 -

 systemId: Foo

 serviceName: simple-search

 factoryClass: com.example.service.rest.SimpleSearchService

 -

 systemId: Foo

 serviceName: resource-loader

 factoryClass: com.example.service.rest.ResourceLoaderService

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 6

 -

 systemId: Foo

 serviceName: asset-selection-callback

 factoryClass: com.example.service.rest.ContentSelectionCallbackService

 -

 systemId: Foo

 serviceName: custom-service

 factoryClass: com.example.service.rest.CustomService

Service declarations

Meta information document begins with services key, which is an array of dictionaries

containing three elements named systemId, serviceName and factoryClass. Details of the

elements are as follows:

• systemId

This string value uniquely identifies a target content repository. This identifier should

preferably contain only alphanumeric characters. Dots, dashes, and underscores can

be used to add readability. Identifier once chosen for the target system must remain

consistent across all service declarations for the same system. This identifier is also

used in Unica Platform configuration for onboarding the respective system.

The following are some examples of valid system identifiers:

WCM

AEM

Example

WCM_1.0

AEM_1_1

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 7

You can write different plugins for different versions of the same system. In such case,

different identifiers must be used to identify each version distinctly. Alternatively, the

same plugin may contain different versions of service implementations specific to

different versions of the corresponding system. In such case, different systemIds must

be carefully assigned to the respective service declarations. For example, two different

versions of WCM, namely 1.0 and 2.0 may contain different APIs for content search

service, thereby causing following service entries for respective versions:

 -

 systemId: WCM_1.0

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_1_0.WcmSimpleSearchService

 -

 systemId: WCM_2.0

 serviceName: simple-search

 factoryClass: com.hcl.wcm.service_2_0.WcmSimpleSearchService

The two entries may belong to the same plugin or may be placed in two different

plugins for the sake of implementation clarity. Asset Picker does not impose any

restrictions. Likewise, entries for one plugin can be split into multiple meta information

files as long as file names end with the content-services.yml suffix.

• serviceName

This string value uniquely identifies the given service for corresponding system. It can

either be a name of Standard service, or an appropriately chosen name for the custom

service. The following is the list of standard service names:

◦ simple-search

◦ resource-loader

◦ asset-selection-callback

• factoryClass

This is a fully qualified path to the Java class providing service implementation.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 8

Standard services

The following table provides and introduction to the standard services of Asset Picker:

Table 1. Standard services and their description

Standard service name Description

simple-search Simple search service responds to the

content search requests received by Asset

Picker. This service accepts the search

query string along with required result

pagination details. Based on the success of

search operation, it returns the search result

for given search query and according to the

required pagination. This is a mandatory

service for the plugin.

resource-loader This service is useful whenever indirect

access to the search item is required.

This service is not mandatory and should

be implemented only when following

challenges are encountered:

1. The return value of the simple-search

service includes a URL (either relative

or absolute) to the respective search

item so that Asset Picker client can

load its contents over the web. If there

is no direct web link to the search

item, compose a URL that concerns

the search item, which will come

back to the Asset Picker whenever

the contents of that item need to

be loaded by the client. Such URL

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 9

Standard service name Description

should contain a unique identifier

for the search item, which is used by

the resource-loader service to read

the resource content. For example,

if the target repository is a database,

then the simple-search service will

fetch records from the database that

matches the given search query.

Since the items are loaded from the

database, there may not be any URL

directly pointing to each record. In

such cases, the simple-search service

composes a URL relative to the Asset

Picker context root that includes an

identifier of the item. Subsequent

requests to load individual search item

will go through Asset Picker, which will

delegate the resource loading task to

resource-loader service. Additionally,

the resource-loader service identifies

the resource, or item, based on the

identifier, the simple-search service

had supplied in the URL. This URL

allows the resource-loader service to

read the contents of search items and

respond.

2. If the target system does not provide

anonymous access to search items,

the resource-loader service is used

as a makeshift provision to fetch

the contents of individual items. The

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 10

Standard service name Description

resource-loader service authenticates

itself before fetching the resource

contents from the target repository.

If the resource-loader service is

implemented using RESTful approach,

Asset Picker will take care of the

authentication out-of-the-box, subject

to the configurations in Unica Platform.

(For more information on repository

onboarding configurations, see Unica

Asset Picker Administrator's Guide).

Note: On production, routing resource

loading requests using Asset Picker, in

either way, is not recommended. The

usage of resource-loader service

should be restricted to demonstrations

or development phase only. Content is

expected to be anonymously accessible

in the target system for seamless content

consumption.

asset-selection-callback The service is useful when the plugin

performs any action in response to the

selection of any search item by the client.

When the simple-search service returns

search results to the client, one of the

search items is chosen by the client for

further use cases. The Plugin might check

which item was chosen by the client to

perform the corresponding action (for

example, locking that item in underlying

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 11

Standard service name Description

repository so that it cannot be updated or

deleted etc.). This service is not mandatory

and should be implemented only if callback

operation is necessary.

Service implementations

For each service declared in the service meta information file, there must be an

implementation present inside the respective factoryClass.

The Asset Picker provides an SDK to streamline the service implementation and facilitates

rapid development of plugins. The Asset Picker SDK allows two different approaches for

service implementations: RESTful and Functional.

This section will provide a brief introduction to these approaches. For additional

information, refer the asset-integration-starter project.

This topic also introduces certain types, interfaces, their generic type parameters, and

enums from Asset Picker SDK. For additional details, see SDK Plugin Development (on page

16).

RESTful approach

The com.example.service.rest.CustomService class helps you understand REST based

service implementation.

This class is an implementation of RestService interface, and thus represents a REST

based service. Since REST is completely based on HTTP standards, the RestService

interface in Asset Picker SDK is extended from HttpService interface and is defined as

a marker interface. The RestService interface does not declare any additional method

of its own. Listed below are the methods declared in HttpService interface, which REST

based service implementation must implement. Not all methods are mandatory. All

methods accept ExecutionContext object, which contains all the contextual information

necessary for every method to perform its designated task. The generic type parameter

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 12

to the ExecutionContext class represents the type of the input given to the service being

implemented.

• String getEndpointUrl(ExecutionContext<RQ> executionContext)

This method returns an absolute endpoint URL of the service running on target system.

Base URL of target system is configured in Unica Platform. Hence, the plugin need

not make any provision to configure that in any way. ExecutionContext object

supplied to this method provides a way to read the base URL so that the absolute URL

of the service can be composed. Also look at how the getEndpointUrl method is

defined in com.aem.service.AemSimpleSearchService class inside aem-integration

project. As it can be noted, the base URL is obtained from ExecutionContext by

navigating through InstanceConfig object. The InstanceConfig holds all the

configurations made in Unica Platform for the very target system instance your service

will communicate with. This is a mandatory method for the service to implement.

• HttpMethod getHttpMethod()

This method should return one of the values from the HttpMethod enum supplied with

the Asset Picker SDK. As the name goes, this method tells which HTTP request method

should be used during HTTP interaction with target system. This is a mandatory

method for service to implement.

• Map<String, Object> getHeaders(ExecutionContext<RQ> executionContext)

This optional method can be overridden by the service if it wants to include any HTTP

request headers in the outgoing HTTP call. Return value must be a Map instance,

wherein HTTP header names must be specified in terms of Map keys, and header

values must be supplied as corresponding values in the Map. In the absence of this

implementation, no custom headers will be sent along with the outgoing HTTP request.

Note: Although the Map returned by this method accepts values of type Object (or

its subtypes), only String objects are supported as of current implementation of Asset

Picker. Any other type of value will be ignored, and following warning will be logged:

Header '{HEADER_NAME}' with value ‘{TO_STRING_REPRESENTATION}' will not

 be set since it is not a String and no Converter is available.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 13

◦ Content-Type HTTP header must be populated as contentType key due to special

considerations in underlying framework.

◦ application/json is the default contentType for RESTful services, if none is

supplied by the getHeaders method.

• Object buildRequest(ExecutionContext<RQ> executionContext)

This is also an optional method. If the target service expects any request body, then

this method can be overridden to build the desired HTTP request body. Return type of

this method is Object, and hence any type of valid request body can be supplied so long

as relevant Content-Type header is populated using the getHeaders method.

Note: Jackson and JAXB Support - Object serialization using Jackson and JAXB

is completely supported by Asset Picker. Thus, appropriately decorated object with

Jackson or JAXB annotations can be returned from this method. In such case, no

Content-Type header is required to be populated explicitly. Asset Picker takes care

of supplying appropriate header during HTTP invocation. Serialization of supplied

object into the request body is also handled by Asset Picker itself, hence no explicit

serialization is required.

In the absence of this implementation, empty request body will be sent along with the

outgoing HTTP request.

• Object transformResponse(RS response, ExecutionContext<RQ> executionContext)

This optional method transforms the HTTP response into a desired format. The

additional, first argument to this method is the HTTP response body received from the

target service. This argument is a generic type and is decided based on the actual type

parameter used while implementing the service. This response can be any object, either

a String containing the text as received from the service, a byte array containing the

response contents or a deserialized object representing the response JSON/XML.

Note: Jackson and JAXB Support - Object deserialization using Jackson and

JAXB is completely supported by Asset Picker. Thus, appropriately decorated object

with Jackson or JAXB annotations can be accepted as an argument to this method.

Deserialization of response body into specified type is handled by Asset Picker, hence

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 14

no explicit deserialization is required during response transformation inside this

method.

In the absence of this implementation, no implicit transformation is performed by the

Asset Picker.

In addition to these methods, there is one more method the getServiceInterface

inherited from com.hcl.unica.cms.integration.service.AbstractService

interface, that needs to be implemented by the service. But its implementation is

more relevant to the service invocation rather than service implementation.

Asset Picker takes care of real HTTP interaction with target system and simply

consults with service object to obtain earlier mentioned details.

Error Handling - Errors or exceptions received during HTTP call are handled by the

Asset Picker. Methods listed earlier must not throw any checked exception. Unchecked

exceptions can be thrown if required.

Functional approach

Refer to the com.example.service.functional.CustomService class to understand the

functional service implementation.

This class is an implementation of FunctionalService interface. Unlike REST based service,

there are no HTTP specific callback methods in this type of service implementation. In

fact, functional service may not necessarily be related to any HTTP invocation. This type of

service can include any operation which has no out of the box support from Asset Picker. It

can talk to the database, invoke third party web service, do the file system operation etc.

Implement the following method for a functional service. This method also accepts an

argument of type ExecutionContext, containing the contextual information required for

completing the desired task. The generic type parameter to the ExecutionContext class

represents the type of the input given to the service being implemented.

• RS execute(ExecutionContext<RQ> executionContext)

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 15

This method performs its designated task using the contextual information passed

to it. In return, it gives the desired value after finishing its operation. The return

value shown in this signature is a generic type and is based on the type used while

implementing FunctionalService interface.

Error Handling

Above method must not throw any checked exception. Unchecked exceptions can be

thrown if required.

Best approach selection

Although, it is possible to implement a service using either approaches, each approach has

some advantages and limitations when it comes to the capabilities.

1. RESTful approach

a. Advantages

• Less verbose & reads closer to the typical HTTP interaction

• Out of the box transport level error handling

• Out of the box support for retrial in case of temporary outages

• Out of the box support for proxied connectivity

• Out of the box support for future enhancements in Asset Picker in this regard

b. Limitations

• Cannot be used for non-RESTful or non-HTTP integrations, such as database

or file system interactions

2. Functional approach

a. Advantages

• Can be used for non-RESTful or non-HTTP integrations, such as database or

file system interactions

b. Limitations

• No out-of-the-box support available for transport level error handling, retrials,

proxied connectivity, and any future enhancements from Asset Picker

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 16

• Incorporation of logic for all the missing out of the box supports can make

functional service very verbose

You can see that the Function approach is well suited for non-RESTful or non-HTTP

based integrations. Any service implemented using RESTful approach can also be

implemented using Functional approach by taking care of all the necessary out-of-the-box

capabilities provided by Asset Picker. While Functional approach gives flexibility in terms of

implementation design, it takes away a few useful capabilities.

SDK Plugin Development
SDK plugin development provides information about the various classes, interfaces, and

enums from the Asset Picker SDK, with the help of corresponding logical units in asset-

integration-starter, aem-integration, and wcm-integration reference projects that is

embedded as a part of development kit along with the Asset Picker application.

Generic type parameters
Generic type parameters are used for implementing service interfaces. For more

information on service interfaces, see Service implementations (on page 11).

A service that resides in a plugin is just a programming unit, which takes some input and

returns the expected output. Similarly, the REST API, wrapped by our service, takes the

requested content and produces the desired response. It requires certain generic notations

for the inputs and outputs exchanged during end-to-end logical flow.

Asset Picker uses RQ to denote certain inputs to the service, and RS to denote either output

of the service or response of the remote REST API. The definition of RS might change based

on where it is used.

RestService<RQ, RS>

Refer the com.example.service.rest.CustomService class from the asset-

integration-starter project to understand the type parameters used in the

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 17

RestService inteface. RestService is just a marker interface extended from HttpService.

The definition of these type parameters is similar for the HttpService too.

• RQ

A service requires an input to perform its operation. RQ corresponds

to the type of input, or request, the service requires when invoked. The

com.example.service.rest.CustomService takes an input of type ServiceInput. The

same type parameter is used in the ExecutionContext object passed to all methods

in the RestService or the HttpService interface. The input, or the request, object

passed to the service, when invoked, is obtained by calling the getRequest method in

the ExecutionContext object.

@Override

public String getEndpointUrl(ExecutionContext<ServiceInput>

 executionContext) {

ServiceInput input = executionContext.getRequest();

// Remaining implementation omitted for brevity

}

• RS

This type parameter corresponds to the type of response (post deserialization)

received from the remote REST API. Service implementation chooses this

parameter based on the kind of object it wants to work with in transformResponse

method. If you look at the signature of the transformResponse method in

com.example.service.rest.CustomService class, you will see that the object of

ApiResponse type is supplied as the first argument, which corresponds to the RS type

parameter of RestService interface.

Note: Deserialization occurs according to the Content-Type header present

in HTTP response received from REST API. The type used as the second generic

argument to RestService, or the HttpService, must be appropriately annotated if

Jackson or JAXB deserialization is expected.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 18

FunctionalService<RQ, RS>
FunctionalService interface is analogous to the java.util.function.Function interface

from the Standard Java Library. The type parameters of FunctionalInterface have similar

semantics as the type parameters of java.util.function.Function interface.

• RQ

Represents the type of input given to the service upon invocation.

• RS

Represents the type of value returned by the service upon completion.

ServiceGateway<RQ, RS>

This interface is used for implementing the getServiceInterface method from

AbstractService<RQ, RS> interface. AbstractService is an important interface of

RestService, or HttpService, and the FunctionalService. Semantics for RQ and

RS for AbstractService are same as RestService, or HttpService. It declares the

getServiceInterface method, which must be implemented by a service. This is

the only additional method a RESTful service needs to implement and it returns the

class object of the derivative (child interface) of ServiceGateway. The definition of

com.hcl.unica.cms.integration.service.gateway.ServiceGateway is as follows:

public interface ServiceGateway<RQ, RS> {

 public RS execute(RQ request);

}

Semantics for the type parameter RQ is the same as mentioned earlier. The other type

parameter, RS represents the output of the service that resides in the plugin. It does not

represent the response received from remote REST API or any other target systems. For the

com.example.service.rest.CustomService class, the CustomServiceGateway is defined

as the child interface of ServiceGateway by using ServiceInput and ServiceOutput type

arguments because the service receives an input of type ServiceInput and returns the

value of type ServiceOutput on completion.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 19

Note: getServiceInterface method in com.example.service.rest.CustomService

class returns the class object of CustomServiceGateway. ServiceGateway interface

(or its child interface) provides information about the input and the output of service

implementation. ServiceGateway interface is further used to contain the reference of

service instance and invoke its execution.

Service invocation
The asset-integration-starter project contains a

com.example.service.client.CustomServiceClient class to illustrate the service invocation.

The invocationDemo method in this class obtains the reference to custom-service

by using getServiceGateway static method from ServiceGatewayFactory class. The

getServiceGateway method takes three arguments to return the service instance. The

arguments are as follows:

• String systemId

This system identifier is same as the one used in service meta information file to

declare the service whose instance needs to be obtained.

• String serviceName

This is name of service whose instance needs to be obtained. It must be same as the

one declared in service meta information file.

• Class<T> gatewayClass

This must be the Class object of ServiceGateway interface (or its child interface). It

must match the return value of getServiceInterface method in corresponding service

implementation.

The invocationDemo method in the com.example.service.client.CustomServiceClient class

uses CustomServiceGateway (gatewayClass) to obtain the service instance of custom-

service (serviceName) for the system Foo (systemId). The following code snippet is for your

reference:

public void invocationDemo() {

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 20

 String systemId = "Foo";

 CustomServiceGateway customService =

ServiceGatewayFactory.getServiceGateway(

 systemId,

 "custom-service",

 CustomServiceGateway.class

);

 ServiceInput input = new ServiceInput();

 ServiceOutput output = customService.execute(input);

 }

The return type of getServiceGateway is also CustomServiceGateway. Service instance

obtained can be used to execute the respective service by supplying the required input

object.

Note:

• The return type of getServiceGateway is also CustomServiceGateway. Service instance

obtained can be used to execute the respective service by supplying the required input

object. Execute method is used on ServiceGateway interface to execute the service.

You will observe that the type of the input to custom-service is same as the type

used for service implementation in the com.example.service.rest.CustomService

class or the com.example.service.functional.CustomService class. The type

of output is the same as the one used for defining CustomServiceGateway interface

whose Class object is returned from getServiceInterface method in both versions of

CustomService class.

• The com.example.service.rest.CustomService class and the

com.example.service.functional.CustomService class represents the same

service implemented with two different approaches. The service meta information

files in asset-integration-starter project using the META-INF/rest-content-

services.yml and the META-INF/functional-content-services.yml have

an entry for custom-service pointing to the respective versions of the factoryClass.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 21

These two versions are provided only for illustration purpose. For all practical purposes,

only one version of the service implementation is expected by the Asset Picker.

Irrespective of the approach used for service implementation, the method for service

invocation remains the same.

Multi-partitioned clients

In case of multi-partitioned client application of Asset Picker, the earlier mentioned method

of obtaining the service instance will appropriately return reference partition specific to the

service gateway. The ExecutionContext object passed to various callback methods will

contain the necessary partition specific information to work with.

Execution context
Almost every method in service implementation contract receives an instance of

com.hcl.unica.cms.model.request.ExecutionContext class.

This object contains all the contextual information that is necessary for a service to perform

its operation. The following are the methods in ExecutionContext class, which can be used

to obtain various types of information during service execution:

• T getRequest()

This method can be used to obtain the input, or request, object passed to the service

when it is executed using execute method on the ServiceGateway interface. (The

T return type is the type parameter corresponding to the generic argument used for

defining the service.)

• Map<String, Object> getAttributes()

Returns additional attributes pertaining to the current service execution, such as HTTP

response status & headers for current HTTP call.

Note: Content-Type HTTP header is populated as contentType key due to special

considerations in underlying framework.

• ServiceConfig getServiceConfig()

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 22

This method returns an instance of

com.hcl.unica.cms.integration.config.ServiceConfig class. This object holds the

configurations made in the service meta information file for the respective service.

• InstanceConfig getInstanceConfig()

This method returns an instance of

com.hcl.unica.cms.integration.config.InstanceConfig class. This object contains

all the configurations made in Unica Platform for the target system (instance in this

method name refers to the target system instance, and not the service instance). In

case of multi-partitioned configurations, this object will be appropriately populated

by Asset Picker to hold partition specific configuration. To know the various instance

configuration settings in Unica Platform, see Unica Asset Picker Admin Guide.

• void setAttributes(Map<String, Object>)

Use of this method is limited to Asset Picker only. Avoid using this method with the

Plugins.

User data source

Use the ExecutionContext to obtain applicable user data source (credentials) by navigating

through InstanceConfig object.:

executionContext.getInstanceConfig().getDataSourceCredentials()

The DataSourceCredentials object returned by the getDataSourceCredentials method

contains the selected data source based on the strategy set up for User credentials in

Platform configuration. Hence, plugins will not make any logical decision pertaining to the

right selection of the user data source.

Similarly, the getUnicaToken method called on InstanceConfig object returns a

UnicaToken object containing the Unica Token required for invoking APIs of Unica

applications.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 23

Standard services and specialized types
The plugin developer needs to implement RestService/HttpService or FunctionalService

interface to create an individual service.

Also, the implemented service can be executed by obtaining reference to it using

ServiceGatewayFactory.getServiceGateway method. The Asset Picker leverages this

design and defines certain standard services. These are Simple Search (simple-search),

Resource Loader (resource-loader), and Asset Selection Callback (asset-selection-

callback) services. The Asset Picker provides specialized interfaces extended from

RestService and FunctionalService for each of these standard services to facilitate their

implementation using RESTful or Functional approach.

Invocation of standard services

Once declared in service meta information file and implemented using either RESTful or

Functional approach, Asset Picker invokes it in the following scenarios:

• Simple Search (simple-search)

Whenever Asset Picker receives content or asset search request from its client

application against target system, it invokes the simple-search service implemented

for respective system. Asset Picker provides necessary input to the simple-search

service upon invocation. Search items received from simple-search service are

then returned to the client application. Identification of the target system happens

based on the systemId property used in the service meta information file and the

corresponding System Identifier setting in Unica Platform populated during the target

system onboarding. This service must be implemented by the plugin, else the content

search request ends up in 404 response to the client application.

• Resource Loader (resource-loader)

The resource-loader service is executed by Asset Picker only when indirect (or

authenticated) access needs to be made to the search item on target system. With

the absence of a direct URL to an individual search item on the target system, the

resource-loader service can be implemented by the plugin. Being an optional service,

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 24

Asset Picker automatically recognizes if the resource-loader implementation exists

for the target system and invokes it accordingly.

• Asset Selection Callback (asset-selection-callback)

Asset Picker executes this service for the target system when the client application

selects one of the search items returned by the simple-search service. Because the

service is optional, Asset Picker can automatically recognize the existence of this

service and invoke accordingly.

Specialized types

The following are the specialized derivatives of RestService, HttpService, and

FunctionalService interfaces, and their related types for all the standard services. Use the

asset-integration-starter project to implement the details mentioned in the following

topics:

• Derivatives of RestService (on page 24)

• Derivatives of HttpService (on page 28)

• Derivatives of FunctionalService (on page 30)

Derivatives of RestService

Derivatives of RestService interface facilitates creation of RESTful implementation of

standard services.

Simple search (simple-search)
The following are the specialized interfaces and classes available for the simple-search

service:

• com.hcl.unica.cms.integration.service.search.RestSearchService

The com.example.service.rest.SimpleSearchService class

in asset-integration-starter project is a quick starter

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 25

implementation for RESTful simple-search service. Its parent is

com.hcl.unica.cms.integration.service.search.RestSearchService class.

The RestSearchService class has a type parameter RS, which represents the type of

response (post deserialization) received from the remote REST API. In this case it is

SimpleSearchResponse class defined inside the asset-integration-starter project.

RestSearchService class implements RestService interface and defines the

SearchRequest class as the type argument RQ for RestService. Thus, the object of

SearchRequest becomes input to all the simple-search services (same input is used

for Functional counterpart of simple-search as well). SearchRequest class is part of the

Asset Picker SDK.

In addition to defining the input type for the simple-search service,

RestSearchService class also overrides the transformResponse method and defines

return value of this method to be of ContentPage type. ContentPage is also part of

the Asset Picker SDK and encapsulates the search result and associated pagination

details.

The plugin must extend its simple-search implementation from RestSearchService

service in order to be recognized as a simple-search service by Asset Picker.

RestSearchService extends from

com.hcl.unica.cms.integration.service.search .AbstractSearchService

abstract class.

We recommend looking at com.aem.service.AemSimpleSearchService class from the

aem-integration project to know more about how the SearchRequest class and the

ContentPage class are used during service implementation.

• com.hcl.unica.cms.integration.service.search.AbstractSearchService

This is a common base class for RESTful as well as Functional simple-search

implementations. So, the details of this class also apply to the Functional

implementation of simple-search.

This class defines the

com.hcl.unica.cms.integration.service.gateway.SimpleSearchServiceGateway

interface as the service gateway for the simple-search service. ServiceGateways are

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 26

the means to programmatically define input and output types of the service and the

work with the service. A closer look at this interface tells us that the simple-search

takes the SearchRequest object and returns the ContentPage object.

In addition to defining the service interface for simple-search, it introduces one more

abstract method for the simple-search service. Every simple-search implementation

must override and implement this new method. Please note that this method is

very simple-search specific and has nothing to do with other standard and custom

services. The Signature of this new method is as follows:

abstract public List<String> getSupportedContentTypes();

Implementation of this method returns a list of strings representing the categories

of contents or assets to search against in target system. There is no specific

semantic associated with the values in this list. It can be any meaningful text. It

acts as a filter for client application during search operation. Client application

can send values from this list to filter the search items. Values received from

the client application can be obtained from the ExecutionContext object by

navigating through the getRequest method and then calling getTypes() on

it. getRequest() returns the SearchRequest object which contains the set of

supported types the client application has sent to filter the search result. Simple-

search implementation deals with these set of values as per the target system’s

programming interface and filters the search items accordingly. Look at the

getSupportedContentTypes method in com.aem.service.AemSimpleSearchService

class in aem-integration project, and how the restrictContentTypes method in

com.aem.service.simplesearch.SimpleSearchRequestBuilder class restricts the

search result to the selected types.

Asset selection callback (asset-selection callback)

The following are the specialized interfaces and classes available for asset-selection-

callback service:

• com.hcl.unica.cms.integration.service.assetselectioncallback

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 27

.RestAssetSelectionCallbackService

The com.example.service.rest.ContentSelectionCallbackService class in the

asset-integration-starter project is a quick starter implementation for RESTful

asset-selection-callback service. Its parent is the following class:

com.hcl.unica.cms.integration.service.assetselectioncallback

.RestAssetSelectionCallbackService

The RestAssetSelectionCallbackService class has a type parameter RS, which

represents the type of response (post deserialization) received from remote REST API.

In this case it is String class defined in Standard Java Library.

The RestAssetSelectionCallbackService class

implements the RestService interface and defines the

com.hcl.unica.cms.model.request.assetselectioncallback.AssetSelectionDetails

class to be the type argument RQ for RestService. Thus, the object of

AssetSelectionDetails becomes the input to all the asset-selection-callback

services (Same input is used for Functional counterpart of asset-selection-callback

as well). The AssetSelectionDetails class is a part of the Asset Picker SDK. The

AssetSelectionDetails class encapsulates the details of an Asset (search item)

selected by the client application and the contextual information such as the search

query that lead to the search result containing the selected item.

Plugin must extend its asset-selection-callback implementation from the

RestAssetSelectionCallbackService service in order to be recognized as an asset-

selection-callback service by the Asset Picker (functional counterpart is also a valid

choice to extend from).

RestAssetSelectionCallbackService extends from the following abstract class:

com.hcl.unica.cms.integration.service.assetselectioncallback

.AbstractAssetSelectionCallbackService

• com.hcl.unica.cms.integration.service.assetselectioncallback

.AbstractAssetSelectionCallbackService

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 28

This is a common base class for RESTful as well as Functional asset-selection-

callback implementations. So, the details of this class mentioned here also applies to

the Functional implementation of asset-selection-callback.

The following class defines interface as the service gateway for the asset-selection-

callback service:

com.hcl.unica.cms.integration.service.gateway

.AssetSelectionCallbackServiceGateway

ServiceGateways are the means to define input and output types of the service and

programmatically work with the service. A closer look at this interface tells us that the

asset-selection-callback takes the AssetSelectionDetails object and returns any

Object. Currently, return value from asset-selection-callback is ignored by the Asset

Picker.

Derivatives of HttpService

Only resource-loader standard service is implemented as an HttpService as it relates

to the standard HTTP GET operation. You can also use RestService without losing any

capability.

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for resource-loader

service:

• com.hcl.unica.cms.integration.service.resourceloader.DefaultWebResourceLoaderService

The com.example.service.rest.ResourceLoaderService class in asset-

integration-starter project is a quick starter implementation for the resource-

loader service and extends from the following class:

com.hcl.unica.cms.integration.service.resourceloader

.DefaultWebResourceLoaderService

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 29

DefaultWebResourceLoaderService class is the default implementation of resource-

loader service provided by the Asset Picker SDK. If the plugin does not implement its

own resource-loader service, Asset Picker falls back on this default implementation.

Default implementation of resource-loader provided by Asset Picker SDK simply

follows the given resource URL and retrieves the web resource from target system. It

encapsulates the standard HTTP GET operation.

If the plugin needs to have its own resource-loader implementation which

slightly modifies the standard HTTP GET, we recommend extending from the

DefaultWebResourceLoaderService class.

• com.hcl.unica.cms.integration.service.resourceloader.HttpWebResourceLoaderService

The DefaultWebResourceLoaderService class discussed earlier extends from the

HttpWebResourceLoaderService abstract class. This class defines the input type and

the type of HTTP response received from target URL for resource-loader service as

com.hcl.unica.cms.model.request.resourceloader.ResourceRequest and byte[]

respectively. ResourceRequest class encapsulates the relative resource URL and

instance identifier (Instance identifier is exactly same as the systemId used everywhere

in Asset Picker). Similarly, resource-loader works with a byte array when the content

from remote HTTP URL is successfully read.

If the plugin does not extend its resource-loader implementation from

the DefaultWebResourceLoaderService class, it must at least extend from

HttpWebResourceLoaderService class in order to be recognized as a resource-loader

service by Asset Picker. (Functional counterpart is also a valid choice to extend from.)

• com.hcl.unica.cms.integration.service.resourceloader.AbstractWebResourceLoaderService

The HttpWebResourceLoaderService class discussed in previous point extends from

AbstractWebResourceLoaderService abstract class. This class defines the following

service gateway interface for the resource-loader service:

com.hcl.unica.cms.integration.service.gateway

.ResourceLoaderServiceGateway

To know the role of service gateways in service invocation, please see Service

invocation (on page 19). ResourceLoaderServiceGateway interface defines

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 30

ResourceRequest and WebResource<?> as input and output types for resource-loader

service. The com.hcl.unica.cms.model.response.resourceloader.WebResource

class is just a wrapper for HTTP response headers, body & cookies received from

remote URL.

Derivatives of FunctionalService

Derivatives of FunctionalService interface facilitates creation of functional implementation

of standard services. Functional service is just an object with a public method which takes a

certain input and generates the desired output.

Simple search (simple-search)

The following are the specialized interfaces and classes available for simple-search service:

• com.hcl.unica.cms.integration.service.search.SearchService

The com.example.service.functional.SimpleSearchService

class in the asset-integration-starter project is a quick starter

implementation for the Functional simple-search service. Its parent is the

com.hcl.unica.cms.integration.service.search.SearchService class.

The SearchService class implements the FunctionalService interface and defines

the SearchRequest class and the ContentPage class to be the type arguments RQ & RS

respectively for the FunctionalService. Thus, the object of the SearchRequest becomes

an input to all the simple-search services and the ContentPage is expected as an

output on completion of the service.

The plugin must extend its simple-search implementation from the SearchService

service in order to be recognized as a simple-search service by the Asset Picker

(RESTful counterpart is also a valid choice to extend from).

The SearchService extends from the

com.hcl.unica.cms.integration.service.search .AbstractSearchService

abstract class. It introduces one more abstract method, named

getSupportedContentTypes to implement the simple-search service.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 31

Asset selection callback (asset-selection-callback)

The following are the specialized interfaces and classes available for the asset-selection-

callback service:

• com.hcl.unica.cms.integration.service.assetselectioncallback.

AssetSelectionCallbackService

The com.example.service.functional.ContentSelectionCallbackService class

in the asset-integration-starter project is a quick starter implementation for

Functional asset-selection-callback service. Its parent is the following class:

com.hcl.unica.cms.integration.service.assetselectioncallback

.AssetSelectionCallbackService

The AssetSelectionCallbackService class implements the FunctionalService

interface and defines the AssetSelectionDetails class and the Object classes

to be the type arguments RQ & RS respectively for the FunctionalService. Thus,

the object of the AssetSelectionDetails becomes an input to all the asset-

selection-callback services and the Object or its subtype is expected as an output

on completion of the service (the same input & output types are used for RESTful

counterpart of asset-selection-callback). AssetSelectionDetails class is part of the

Asset Picker SDK.

Plugin must extend its asset-selection-callback implementation from the

AssetSelectionCallbackService service in order to be recognized as an asset-

selection-callback service by the Asset Picker (RESTful counterpart is also a valid

choice to extend from).

The AssetSelectionCallbackService extends from the following abstract class:

com.hcl.unica.cms.integration.service.assetselectioncallback

.AbstractAssetSelectionCallbackService

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 32

Resource loader (resource-loader)

The following are the specialized interfaces and classes available for the resource-loader

service:

• com.hcl.unica.cms.integration.service.resourceloader.WebResourceLoaderService

The com.example.service.functional.ResourceLoaderService

class in asset-integration-starter project is a quick starter

implementation for Functional resource-loader service. Its parent

is the com.hcl.unica.cms.integration.service.resourceloader.

WebResourceLoaderService class.

The WebResourceLoaderService class implements the FunctionalService interface

and defines the ResourceRequest and the WebResource classes to be the type

arguments RQ & RS respectively for the FunctionalService. Thus, the object of the

ResourceRequest becomes an input to all the resource-loader services and the

WebResource is expected as an output on completion of the service (the same input

and output types are used for RESTful counterpart of the resource-loader).

The plugin must extend its resource-loader implementation from the

WebResourceLoaderService service to be recognized as a resource-loader service by

the Asset Picker (RESTful counterpart is also a valid choice to extend from).

The WebResourceLoaderService extends from the following abstract class:

com.hcl.unica.cms.integration.service.resourceloader

.AbstractWebResourceLoaderService

Standard exceptions
Standard exceptions include exceptions provided by the Asset Picker SDK, which can be

used by the plugins to convey different failure conditions during service execution.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 33

RESTful approach

Asset Picker handles error conditions, arising from services implemented using RESTful

approach.

Additionally, Asset Picker initiates and handles the execution of remote API call for RESTful

integrations, so that it can keep track of the success of all the HTTP operation. Thus,

the plugins do not require any special exception to convey the failure of the REST call. If

something goes wrong inside the service implementation; any appropriate unchecked

exception is sufficient to convey the operation failure. Such exceptions are further conveyed

as 502 HTTP response to the client.

Functional approach

Since Asset Picker does not initiate and manage the outgoing connections in case of

Functional services, it cannot keep track of end to end success.

Hence, it provides certain standard exceptions, which the service implementations

can throw to convey relevant failure conditions. These exceptions are related

to communication with target content repository and are present within the

com.hcl.unica.cms.integration.exception package.

• RepositoryNotFoundException

This exception must be used when the target system or content repository cannot

be located. Alternatively, java.net.UnknownHostException can also be used. This

exception is also conveyed as 404 HTTP response to the client.

• ServiceNotFoundException

This exception must be used when the remote endpoint returns 404, or if the target

service no longer exists. Absence of the target system and the absence of the required

service are considered as different things. Hence, the ServiceNotFoundException

conveys presence of the target system and the absence of the required service,

or feature, on the target system. For example, in case of content fetched from the

database, the absence of the required table (or the absence of the permission to

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 34

access it) can be conveyed using this exception. This exception is also conveyed as

404 HTTP response to the client.

• InaccessibleRepositoryException

This exception must be used to convey unreachable or inaccessible target systems,

such as connection timeout. Alternatively, java.net.ConnectException can also be

used. This exception is also conveyed as 503 HTTP response to the client.

• SluggishRepositoryException

When the response from the target system is not received within expected time, this

exception must be used to convey the slowness of the target system. Alternatively,

java.net.SocketTimeoutException can also be used. This exception is also conveyed

as 504 HTTP response to the client.

• InternalRepositoryErrorException

This exception must be used if the plugin receives a temporary, or unexpected, error

from the target system to convey the problems in it. This exception is also conveyed as

502 HTTP response to the client.

Any other exceptions are conveyed as 502 HTTP response to the client. In any case, the

message in the exception is never returned to the client. Each HTTP response code carries

a fixed, generic, and localized message.

Loggers
Asset Picker provides logging interface using the slf4j library. By adding dependency

for the slf4j library, the plugins can use its API for adding loggers inside service

implementations.

The starter as well as reference projects included in dev-kits manage their dependencies

using Apache Maven. The following entry is found in the POM file:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.26</version>

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 35

 </dependency>

Use 1.7.26 or higher version of slf4j-api to avoid conflict. Once the required dependency

is added, the logger object can be obtained by directly accessing the slf4j API.

Logger log = LoggerFactory.getLogger(YOUR_CLASS.class);

Alternatively, project Lombok can also be used to get the logger object for your class.

Lombok provides @Slf4j annotation, which can be used to inject the earlier mentioned

property inside the annotated class. For more information on project Lombok, please visit

its official web page.

Additionally, the application logs can be found in AssetPicker/logs directory under

platform home. By default, all the loggers from your plugin will reside in the common log

file configured in AssetPicker/conf/logging/log4j2.xml file. You can alter the

log4j2.xml configuration file to route your loggers to a different file, for troubleshooting

during development. Configuration of log4j2 is not part of the scope of this guide. Please

refer to the official documentation of Apache Log4j2 for more information.

Verification and troubleshooting

You should verify end-to-end integration after the plugin has been developed. Place the JAR

file, containing the plugin implementation, in the class path of the application server where

the Asset Picker is deployed. Additionally, configure the corresponding content repository in

Platform configuration under supported application.

Note: Currently, only Unica Centralized Offer Management can access Asset Picker.

For more information on configuration details, see Unica Asset Picker Administration Guide.

After the plugin is deployed and the configurations are customized, restart the Asset Picker

application. The changes in user data source does not require a restart.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 36

Verification of integration
Although, you can verify Asset Picker using REST endpoints, we recommended you to check

end-to-end integration by running through the relevant user interface in Unica.

In this release, the custom attribute, for an Asset URL in Offers, allows working with Asset

Picker. By navigating to the relevant screen in Offers management, you can launch Asset

Picker for a URL picker custom attribute. Once the Asset Picker popup is launched, use the

following guidelines to verify different services included in your plugin:

• Verify the system registration

• Verify the simple-search service

• Verify the resource-loader service

• Verify the asset-selection-callback service

Verify the system registration

Your content repository must be listed in the first dropdown as shown in the following

image. Additionally, all the supported content types should appear in the next dropdown

box.

Figure 3. Verifying system registration

Use the developer tools of your browser to troubleshoot the response received from the

Asset Picker backend. The following endpoint URL is accessed when Asset Picker launches

to retrieve the list of content repositories available for the logged in user:

/api/AssetPicker/instances

If your content repository is not listed, ensure that the system identifier used in the plugin

and the system identifier used in platform configuration match. Additionally, you can refer to

the application logs to check for any possible error or exception.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 37

Verify the simple-search service

After you perform a valid search against your content repository, the expected search result

with relevant details appear.

Use the developer tools on your browser to troubleshoot the response received from the

Asset Picker backend. The following endpoint URL will be accessed when performing the

search operation:

/api/AssetPicker/WCM/assets?query=none&types=Images&page=0&size=10

10

In the URL mentioned earlier:

• WCM is the system identifier for your content repository.

• query contains the search keyword.

• types contain the list of supported content types for filtering the search result.

• page is the page number of the search result.

• size is the maximum number of items expected on single page.

Verify the resource-loader service

In Platform configuration, if the Anonymous Content is configured to No for your content

repository, the search items will be accessed through Asset Picker instead of directly

connecting to the target repository. To ensure accuracy of the resource-loader service,

verify the accessibility, or visibility, of every search item.

Use the developer tools of your browser to troubleshoot the response received from the

Asset Picker backend. The following URL is accessed to retrieve individual search item:

/api/AssetPicker/WCM/?resource /wps/wcm/connect/9350fd83-cd83-465a-

a847-967f59048c0c/unnamed.jpg?MOD=AJPERES&CVID=n2B8-11

In the earlier URL, WCM is the system identifier for your content repository and the resource

contains the relative URL to corresponding search item. This URL is similar to the one the

simple-search service populates in the resource URL attribute of corresponding asset, when

transforming the search result.

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 38

In Platform configuration, if the Anonymous Content is configured to Yes for your content

repository, all search items will be fetched directly from your content repository instead of

going through the Asset Picker. In such a case, the resource-loader service will not be

invoked.

Verify the asset-selection-callback service

The 12.0 release of Asset Picker does not support the asset-selection-callback

service.

Overview of loggers
As mentioned in Verification of integration (on page 36), the logging configuration

for Asset Picker is available in the log4j.xml and log4j2.xml files, placed in the

AssetPicker/conf/logging folder within Platform home.

The log4j.xml file is used for the loggers originating from Platform’s

unica_common.jar and unica_helper.jar. Whereas, log4j2.xml is used for the

loggers originating from everywhere else in Asset Picker.

The default log level is set to WARN in both cases, which should be sufficient for the

troubleshooting needs for plugin development. Most of the loggers, produced by the

Asset Picker at INFO & DEBUG level, are not extremely relevant for plugin development &

integration. The following topics elaborate only the relevant loggers. These loggers are

already present in log4j2.xml file and need to be uncommented, if required. Please

ensure that log level is never set to DEBUG or TRACE for these loggers in production since

they can generate sensitive information.

Useful loggers in log4j2.xml file

The following table lists the useful loggers in the log4j2.xml file:

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 39

Table 2. Useful loggers in log4j2.xml file

Loggers Information

org.springframework.web Setting this logger to TRACE level produces

HTTP request and response details for

all the incoming HTTP requests to Asset

Picker. This logger can be useful if you want

to see what is being exchanged between

frontend and backend.

com.hcl.unica.cms.integration

.flow.interceptor.logger

This logger is most useful for plugin

development. It logs the HTTP interaction

between Asset Picker and the target

repository. For any service implemented

using RESTful approach (by implementing

RestService, HTTPService or their

specialized derivatives), this logger will

write HTTP request and response details

for all the outbound HTTP interactions

with target system. To prevent security

vulnerability, values of confidential headers

are masked before logging. Only the last

four characters are left unmasked for

troubleshooting. Such headers include

standard header Authorization, or any non-

standard custom headers set in request or

received in response.

org.springframework.retry Setting this logger to TRACE level adds

information related to retrial attempts while

making HTTP calls to the target repository.

This is useful to verify Retry Policy set

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 40

Loggers Information

up under QOS section for the respective

system in Platform Configuration.

Other important loggers

Other important loggers are useful in troubleshooting Asset Picker. Along with spotting

warnings and errors, these loggers provide information that is useful from a functional point

of view.

The following table lists the other important loggers:

• Client applications - If root logger level is set to INFO level, the following lines tells

you the number of client applications, and which client applications Asset Picker can

identify:

SupportedClientApplications: Found {1} supported client applications.

SupportedClientApplications: Registered {Offer} as supported client

 application.

• CORS - If root logger is set to INFO level, the following lines can provide information

about Asset Picker’s support for Cross Origin Resource Sharing:

RegexCorsConfig: CORS: Enabling CORS for {hcl.com} & its subdomains.

 Allowed HTTP methods - {[GET, POST]}, allowed headers - {[*]}

RegexCorsConfig: CORS: Allowed origins set to {[http(s)?://([^\.]+

\.)*hcl.com(:[0-9]+)?]}

• Platform configuration - Content repositories - Setting the root logger level to INFO

tells us about the content repositories that are identified by Asset Picker.

PlatformConfigurationCategoryResolver: Platform configuration: Reading

 list of entries for path {Affinium|Offer|partitions|partition1|

assetPicker|dataSources}...

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {AEM#119[partition1]}

Unica Asset Picker V12.0 Developer's Guide | 1 - Unica Asset Picker Developer Guide | 41

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {WCM#119[partition1]}

PlatformCmsConfigurationReader: Platform configuration: Imported

 settings for {Bing#119[partition1]}

• Service meta information files - The following lines are also logged at INFO level to tell

how many service meta information files have been identified by Asset Picker:

YamlConfigReader: 2 service configuration file(s) found.

YamlConfigReader: Parsing service configuration file (YAML):

 {jar:file:/{DEPLOYMEN_LOCATION}/asset-viewer/WEB-INF/lib/aem-

integration-0.0.1-SNAPSHOT.jar!/META-INF/aem-content-services.yml}...

YamlConfigReader: Parsing service configuration file (YAML):

 {jar:file:/{DEPLOYMEN_LOCATION}/asset-viewer/WEB-INF/lib/wcm-

integration-0.0.1-SNAPSHOT.jar!/META-INF/wcm-content-services.yml}...

• Authentication protocols - The following lines, logged at INFO level, confirms the

authentication protocol is identified for the given content repository:

AssetPickerRestTemplate: Setting up {BASIC} authentication for

 {Offer[partition1].WCM:simple-search} service...

	Unica Asset Picker V12.0 Developer's Guide
	Contents
	Chapter 1. Unica Asset Picker Developer Guide
	Overview
	Plugins
	Integration support and plugin development approach
	RESTful content search flow
	Non-RESTful content search flow

	Plugin development overview
	Components of plugin
	Service meta information file
	Service declarations
	Standard services

	Service implementations
	RESTful approach
	Functional approach
	Error Handling

	Best approach selection

	SDK Plugin Development
	Generic type parameters
	RestService<RQ, RS>
	FunctionalService<RQ, RS>
	ServiceGateway<RQ, RS>

	Service invocation
	Multi-partitioned clients

	Execution context
	User data source

	Standard services and specialized types
	Invocation of standard services
	Specialized types
	Derivatives of RestService
	Simple search (simple-search)
	Asset selection callback (asset-selection callback)

	Derivatives of HttpService
	Resource loader (r esource-loader)

	Derivatives of FunctionalService
	Simple search (simple-search)
	Asset selection callback (asset-selection-callback)
	Resource loader (resource-loader)

	Standard exceptions
	RESTful approach
	Functional approach

	Loggers

	Verification and troubleshooting
	Verification of integration
	Verify the system registration
	Verify the simple-search service
	Verify the resource-loader service
	Verify the asset-selection-callback service

	Overview of loggers
	Useful loggers in log4j2.xml file
	Other important loggers

