
IBM Marketing Operations
Version 9 Release 0
January 15, 2013

Integration Module

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 33.

This edition applies to version 9, release 0, modification 0 of IBM Marketing Operations and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. What is IBM Marketing
Operations Integration Services? 1
What are the requirements for Marketing Operations
Integration Services? 1
Getting started with IBM Marketing Operations
Integration Services 1
For more information 4

Hosted JavaDocs 5

Chapter 2. About Marketing Operations
Integration Webservice 7
About Marketing Operations Integration Webservice
data types 7
executeProcedure 10
Marketing Operations Integration Services WSDL . 11

Chapter 3. IBM Marketing Operations
procedures 13
Assumptions 13
Design 14
Configuration 14
Procedure lifecycle 14

Data locking 16
Procedure transactions. 16
Communicating results 17
Procedure logging 17
Key Java classes 17
Procedure example 17
Procedure plug-in definition file 20

Chapter 4. About the IBM Marketing
Operations API 23
Contents of the IBM Marketing Operations API . . 24

API Interfaces 24
Common exceptions 25
Enumerated data types 25
Handles 28
Attribute Map 29

Contacting IBM technical support . . . 31

Notices 33
Trademarks 35
Privacy Policy and Terms of Use Considerations . . 35

© Copyright IBM Corp. 2002, 2012 iii

iv Integration Module

Chapter 1. What is IBM Marketing Operations Integration
Services?

IBM® Marketing Operations Integration Services is a composite of the following.
v Marketing Operations Integration Webservice

Integration Services provide a way for Marketing Operations customers,
partners, and IBM Professional Services to integrate Marketing Operations with
other applications running in their environment.

v Marketing Operations procedures and API

Custom procedures can be defined within Marketing Operations to extend
Marketing Operations business logic in arbitrary ways. Once defined, these
procedures can be the targets for the Integration Services webservice calls from
other applications. Procedures also can be defined to send messages to other
applications.

v Marketing Operations triggers

Triggers can be associated with events and procedures in Marketing Operations.
When one such event occurs, the associated trigger is executed.

What are the requirements for Marketing Operations Integration
Services?

Marketing Operations Integration Services must:
v Loosely couple system integration.
v Provide a mechanism for customer applications to affect Marketing Operations

through webservice calls.
v Provide a mechanism for customer applications to be notified of certain events

in Marketing Operations.
v Provide a simple programming model that is easy to understand and use.
v Be robust when recovering from failure.
v Guarantee data integrity.
v Integrate with, and minimize the effect on, existing Marketing Operations

GUI-based customers.
v Provide fine-grained access to Marketing Operations components while

insulating programmers from underlying implementation details.

Getting started with IBM Marketing Operations Integration Services
You use IBM Marketing Operations Integration Services functionality to create
custom procedures. You can use these procedures to trigger external events when
certain events occur within Marketing Operations. You can use these procedures to
perform Marketing Operations functions from external systems or programs.

You use the API to interface with IBM Marketing Operations at the programmatic
level, in the same way you use the GUI to interface with Marketing Operations at
a user level. Using the API, you construct procedures. Using these procedures you
communicate between Marketing Operations and external systems. The Marketing
Operations Webservice is the container object for the procedures, API, and triggers.

© Copyright IBM Corp. 2002, 2012 1

The architecture of the Marketing Operations Integration Services is shown here.

The following are key components of the Integration Services.
v Marketing Operations Procedure Manager: extends the business logic by

interacting with Marketing Operations through the API.
v Marketing Operations Trigger Manager: associates a condition (for example the

state change of a marketing object) with an action (a procedure to execute when
the condition for the trigger is met).

Methodology

You use the components of IBM Marketing Operations Integration Services to
develop custom procedures, as shown in this diagram:

2 Integration Module

Marketing Operations Installer

Java IDE

Application Server

Programmer

Restart Marketing Operations

Update
Marketing Operations

archive

Build plugin

<<include>>

Persist

Persist

Persist

Java

XML

ANT

File
System

File
System

Compile
classes

Update plugin
definition

Code
procedure

Install
Marketing Operations

devkit

After using the Marketing Operations Installer to install the developer's kit, you
follow these basic steps:
1. Code the custom procedure. Currently, you must use Java™.
2. Update the plug-in definition in the XML definition file.
3. Build the plug-in:

a. Compile the necessary classes.
b. Update the Marketing Operations archive (the WAR file).

4. Restart Marketing Operations.

Basic Example to communicate between IBM Marketing
Operations and the API

This section describes a basic example of establishing communication between the
API and Marketing Operations. It does not do any useful work; it performs a
round trip between Marketing Operations and the Integration Services.

This section uses portions of the example procedures included with the Marketing
Operations Integration Services developer's kit. Specifically, you can find the code
referenced here in the following files.

Chapter 1. What is IBM Marketing Operations Integration Services? 3

v PlanClientFacade.java
v PlanWSNOOPTestCase.java

The noop method is a webservice call to Marketing Operations. It is defined in the
PlanClientFacade class, and passes null values in an array.
public ProcedureResponse noop(String jobId)

throws RemoteException, ServiceException {
NameValueArrays parameters =

new NameValueArrays(null, null, null, null, null, null, null, null);
return _serviceBinding.executeProcedure("uapNOOPProcedure", jobId, parameters);

}

The procedure testExecuteProcedure calls the noop method from PlanClientFacade
to establish a round trip with the Marketing Operations application.
public void testExecuteProcedure() throws Exception {

// Time out after a minute
int timeout = 60000;
PlanClientFacade clientFacade = new PlanClientFacade(urlWebService, timeout);
System.out.println("noop w/no parameters");
long startTime = new Date().getTime();
ProcedureResponse response = clientFacade.noop("junit-jobid");
long duration = new Date().getTime() - startTime;

// zero or positive status => success
System.out.println("Status: " + response.getStatus());
System.out.println("Duration: " + duration + " ms");
assertTrue(response.getStatus() >= 0);
System.out.println("Done.");

}

For details of NameValueArrays, ProcedureResponse, and other listed methods and
data types, refer to specific sections in the remainder of this guide and the
JavaDocs.

For more information
Different people in your organization use IBM Marketing Operations to accomplish
different tasks. Information about Marketing Operations is available in a set of
guides, each of which is intended for use by team members with specific objectives
and skill sets.

Table 1. Guides in the Marketing Operations documentation set

If you See Audience

v Plan and manage projects

v Establish workflow tasks,
milestones, and personnel

v Track project expenses

v Get reviews and approvals for
content

v Produce reports

IBM Marketing Operations User's Guide v Project managers

v Creative designers

v Direct mail marketing managers

4 Integration Module

Table 1. Guides in the Marketing Operations documentation set (continued)

If you See Audience

v Design templates, forms,
attributes, and metrics

v Customize the user interface

v Define user access levels and
security

v Implement optional features

v Configure and tune Marketing
Operations

IBM Marketing Operations
Administrator's Guide

v Project managers

v IT administrators

v Implementation consultants

v Create marketing campaigns

v Plan offers

v Implement integration between
Marketing Operations and
Campaign

v Implement integration between
Marketing Operations and IBM
Digital Recommendations

IBM Marketing Operations and IBM
Campaign Integration Guide

v Project managers

v Marketing execution specialists

v Direct marketing managers

v Learn about new system features

v Research known issues and
workarounds

IBM Marketing Operations Release Notes Everyone who uses Marketing
Operations

v Install Marketing Operations

v Configure Marketing Operations

v Upgrade to a new version of
Marketing Operations

IBM Marketing Operations Installation
Guide

v Software implementation
consultants

v IT administrators

v Database administrators

Create custom procedures to
integrate Marketing Operations with
other applications

IBM Marketing Operations Integration
Module and the API JavaDocs
available when you click Help >
Product Documentation in Marketing
Operations, and then download the
IBM <version>PublicAPI.zip file

v IT administrators

v Database administrators

v Implementation consultants

Learn about the structure of the
Marketing Operations database

IBM Marketing Operations System
Schema

Database administrators

Need more information while you
work

v Get help and search or browse the
User's, Administrator's, or Installation
guides: Click Help > Help for this
page

v Access all of the Marketing
Operations guides: Click Help >
Product Documentation

v Access guides for all IBM
Enterprise Marketing Management
(EMM) products: Click Help > All
IBM EMM Suite Documentation

Everyone who uses Marketing
Operations

Hosted JavaDocs
For specific information about the public API methods, refer to the iPlanAPI class
in the JavaDocs API documentation files. These files are available in the following
ways:

Chapter 1. What is IBM Marketing Operations Integration Services? 5

v By the files in the <IBM_EMM>/<MarketingOperations_Home>/devkits/
integration/javadocs directory on the server that hosts Marketing Operations.

v By logging in to Marketing Operations and selecting Help > Product
Documentation from any page, and then downloading the IBM
<version>PublicAPI.zip file.

6 Integration Module

Chapter 2. About Marketing Operations Integration
Webservice

The webservice provides a client view of the Marketing Operations Integration
Services, which is part of the deployment of the IBM Marketing Operations server.
The service is designed to be used concurrently with Marketing Operations web
users.

The webservice supports one API call, executeProcedure.

A client makes this webservice call directly.

Authentication

Authentication is not required; all clients are associated with a known IBM
Marketing Operations user named PlanAPIUser. We assume that the security
capabilities of this special user are configured by a Marketing Operations system
administrator to the needs of all webservice clients.

A future version of the service may provide a more general mechanism for secure
client authentication.

Locale

The only locale supported is the locale currently configured for the IBM Marketing
Operations system instance. All locale-dependent data accessible via the service
(messages, currency, and so on) are assumed to be in the system locale.

A future version of the service may provide a mechanism for the client to tell
Marketing Operations which locale to use.

State management

The webservice is stateless; no per-client information is saved by the service
implementation across API calls. This feature provides for an efficient service
implementation and simplifies cluster support.

Database transactions

The webservice does not expose database transactions nor edit locks to the client.
It does, however, guarantee that the effect of any procedure execution is atomic.
This result means that the procedure either succeeds or fails; a failure leaves the
database in the same state as if the API was never called at all.

About Marketing Operations Integration Webservice data types
This section defines the data types used by the webservice, independent of a
particular service binding or programming implementation.

The following notation is used.
v <type>: <type definition> defines a simple data type. For example:

Handle: string

© Copyright IBM Corp. 2002, 2012 7

v <type>: [<type definition>] defines a complex data type or a data structure.
v <type>: { <type definition> } defines a complex data type or a data structure.

Complex type elements and API parameters can use these types to declare arrays.
For example:
Handle [] handles

The type, handles, is an array of Handle types.

Primitive types

Primitive types are restricted to the types defined in the table that follows to
simplify support for SOAP 1.1 bindings. All types can be declared as arrays, for
example, String []. Inherently, binary data types such as long can be represented
as strings by a protocol binding (for example, SOAP). This representation, however,
has no effect on the semantics of the type, permissible values, etc., as seen by the
client.

Table 2. Primitive types

API Type Description SOAP Type Java Type

boolean Boolean value: true or
false

xsd:boolean boolean

dateTime A date time value xsd:datetime Date

decimal An arbitrary-precision,
decimal value

xsd:decimal java.math.BigDecimal

double A double-precision,
signed, decimal value

xsd:double double

int A signed, 32-bit, integer
value

xsd:int int

integer An arbitrary-precision,
signed, integer value

xsd:integer java.math.BigInteger

long A signed, 64-bit, integer
value

xsd:long long

string A string of Unicode
characters

xsd:string java.lang.String

MessageTypeEnum
MessageTypeEnum: { INFORMATION, WARNING, ERROR }

MessageTypeEnum is an enumerated type that defines all possible message types.
v INFORMATION: an informational message
v WARNING: a warning message
v ERROR: an error message

Message
Message: [MessageTypeEnum type, string code, string localizedText, string logDetail]

Message is a data structure that defines the result of a webservice API call. It
provides optional fields for a non-localized code, localized text, and log detail.
Currently, all localized text uses the locale set for the IBM Marketing Operations
server instance.

8 Integration Module

Table 3. Message parameters

Parameter Description

type A MessageTypeEnum, setting the type of the message.

code An optional code, in string format, for the message.

localizedText An optional text string to associate with the message.

logDetail An optional stack trace message.

NameValue
NameValue: [string name, int sequence]

NameValue is a base complex type that defines a name-value pair. It also defines
an optional sequence that the service uses to construct value arrays as needed (the
sequences are zero-based).

All NameValues with the same name, but different sequence numbers, are
converted into an array of values and associated with the common name.

The array size is determined by the maximum sequence number; unspecified array
elements have null values. Array sequence numbers must be unique. The value
and its type are provided by the extended type.

Table 4. NameValue parameters

Parameter Description

name A string that defines the name of a NameValue type.

sequence A zero-based integer that sets the sequence number for the NameValue
implied value.

Extended NameValue types are defined for each primitive type, as follows:

Table 5. Extended NameValue types

Extended type Description

BigDecimalNameValue: NameValue [
decimal value]

A NameValue type whose value is an
arbitrary-precision, decimal number.

BigIntegerNameValue: NameValue [integer
value]

A NameValue type whose value is an
arbitrarily sized integer.

BooleanNameValue: NameValue [boolean
value]

A NameValue type whose value is a
boolean.

CurrencyNameValue: NameValue [string
locale, decimal value]

A NameValue type suitable for representing
currency in some locale. Locale is an ISO
Language Code, that is, the lowercase,
two-letter codes as defined by ISO-639.

Currently, the locale must agree with the
locale set in the IBM Marketing Operations
server instance.

DateNameValue: NameValue [datetime
value]

A NameValue type whose value is a date.

DecimalNameValue: NameValue [double
value]

A NameValue type whose value is a
double-precision, decimal number.

Chapter 2. About Marketing Operations Integration Webservice 9

Table 5. Extended NameValue types (continued)

Extended type Description

IntegerNameValue: NameValue [long value] A NameValue type whose value is a 64-bit
integer.

String NameValue: NameValue [string
value]

A NameValue type whose value is a string.

And finally, an array of the extended NameValue types is defined for use when
you need to define a set of NameValues of with different types.

NameValueArrays: [
BooleanNameValue[] booleanValues,
StringNameValue[] stringValues,
IntegerNameValue[] integerValues,
BigIntegerNameValue[] bigIntegooleanNameValue,
DecimalNameValue[] decimalValues,
BigDecimalNameValue[] bigDecimalValues
DateNameValue[] dateNameValues
CurrencyNameValue[] currencyValues

]

executeProcedure
Syntax
executeProcedure(string key, string jobid, NameValueArrays paramArray)

Returns
int: status
Message[]: messages

Description

This method invokes the specified procedure with an optional array of parameters.
The call executes synchronously; that is, it blocks the client and returns the result
upon completion.

Parameters

Table 6. executeProcedure parameters

Name Description

key The unique key of the procedure to execute. A RemoteException error is
returned if no procedure is bound to key.

jobid Optional string identifying the job associated with this procedure
execution. This string is a pass-through item, but it can be used to tie
client jobs to the execution of a particular procedure.

paramArray An array of parameters to pass to the procedure. An error status and
message is returned if one or more of the parameters is invalid (the
wrong type, an illegal value, and so on). It is up to the client to
determine the parameters, their types, and the number of values
required by the procedure.

10 Integration Module

Return Parameters

Table 7. executeProcedure return parameters

Name Description

status An integer code:

v 0 indicates the procedure executed successfully

v an integer indicates an error

Procedures can use the status to indicate different levels of errors.

messages An array of zero or more message data structures. If status is 0, this
array does not contain ERROR messages, but could contain
INFORMATION and WARNING messages.

If status is non-zero, messages can contain any mix of ERROR,
INFORMATION, and WARNING messages.

Marketing Operations Integration Services WSDL
This topic defines the Web Services Definition Language (WSDL) for the Marketing
Operations Integration Services. The WSDL was defined by hand and is the final
word on the webservice definition.

Axis

This version of the webservice uses Axis2 1.5.2 to generate the server-side classes
that make up the Web service implementation from the WSDL file. Users can use
any version of Axis, or a non-Axis technique, to create a client side implementation
for integrating with the API from the supplied WSDL.

Protocol version

The version of the protocol is explicitly bound to the WSDL as follows:
v As part of the WSDL name, for example, PlanIntegrationService1.0.wsdl
v As part of the WSDL targetNamespace, for example, xmlns:tns=”http://

webservices.unica.com /MktOps/services/PlanIntegrationServices1.0?wsdl”

WSDL

One WSDL file is provided with IBM Marketing Operations Integration Services:
PlanIntegrationServices1.0.wsdl. The WSDL is delivered in the
integration/examples/soap/plan directory. The example build script uses this file
to generate the appropriate client-side stubs to connect to the webservice.

Chapter 2. About Marketing Operations Integration Webservice 11

12 Integration Module

Chapter 3. IBM Marketing Operations procedures

A procedure is a custom or standard Java class hosted by IBM Marketing Operations
that does some unit of work. Procedures provide a way for customers, partners,
and IBM Professional Services to extend Marketing Operations business logic in
arbitrary ways.

Procedures follow a simple programming model, using a well-defined API to affect
components managed by Marketing Operations. Procedures are "discovered"
through a simple lookup mechanism and XML-based definition file. Marketing
Operations executes the procedures according to needs of their "clients." For
example, in response to an integration request (incoming) or a trigger firing
(internal or outgoing).

Procedures run synchronously with respect to their client; results are made
available directly to the client, and through a persisted auditing mechanism. The
execution of a procedure could also cause other events and triggers to fire in
Marketing Operations.

Procedures must be written in Java.

Assumptions
Note the following assumptions that concern procedures.
v The procedure implementation classes are packaged into a separate classes tree

or JAR file and made available to IBM Marketing Operations through a URL
path. The procedure execution manager uses an independent class loader to load
these classes as needed. By default, Marketing Operations looks in the following
directory:
<MarketingOperations_Home>/devkits/integration/examples/classes

To change this default, set the integrationProcedureClasspathURL parameter
under Settings > Configuration > Marketing Operations > umoConfiguration
> integrationServices.

v The procedure implementation class name follows the accepted Java naming
conventions, to avoid package collisions with “unica” and classes from other
vendors. In particular, customers must not place procedures under the
com.unica or com.unicacorp package tree.

v The procedure implementation is coded to the Java runtime version used by
IBM Marketing Operations on the application server (at least JRE 1.5.10).

v IBM Marketing Operations provides some number of open source and
third-party libraries; application servers also use different versions of these
libraries. Generally, this list changes from release to release.

Note: To avoid possible compatibility problems, do not use any open source,
third-party, or application server-specific libraries in procedures.
If a procedure, or the secondary classes that it imports, does use such packages,
their use must agree exactly with the packages provided by Marketing
Operations or the application server. In this case, rework of your procedure code
is required if a later version of Marketing Operations upgrades or abandons a
library.

© Copyright IBM Corp. 2002, 2012 13

v The procedure implementation class is loaded by the class loading policy that is
normally used by IBM Marketing Operations (typically parent-last). The
application server may provide development tools and options to reload classes
that would apply to Marketing Operations procedures, but that is not required.

v The procedure must be thread-safe concerning its own state; that is, its execute
method cannot depend on internal state changes from call to call.

v A procedure cannot create threads on its own.

Design
In your design, focus on producing a single unit of work that operates atomically.
Ideally, a procedure performs some series of tasks that can be scheduled
asynchronously to execute at some later time. This "fire and forget" integration
model results in the least load on both systems.

The procedure implementation class uses the IBM Marketing Operations API to
read and update Marketing Operations components, invoke services, and so on.
Other Java packages can be used to do other tasks.

Note: Only the documented classes and methods will be supported in future
releases of Marketing Operations. Consider all other classes and methods in
Marketing Operations to be off-limits.

After you code and compile the procedure implementation classes, you make them
available to Marketing Operations. The build scripts that are supplied with the
Marketing Operations Integration Services place the compiled procedures in the
default location. The final development step is to update the custom procedure
plug-in definition file that is used by Marketing Operations to discover the custom
procedures.

The procedure must implement the
com.unica.publicapi.plan.plugin.procedure.IProcedure interface and have a
parameter-less constructor (usual JavaBeans model). Coding and compilation of
each procedure is done in a Java IDE of the customer’s choice, such as Eclipse,
Borland JBuilder, or Idea. Sample code is provided with IBM Marketing Operations
as developer toolkits, in the following location:

<MarketingOperations_Home>/devkits/integration/examples/src/procedure

Configuration
Use the parameters under Settings > Configuration > Marketing Operations >
umoConfiguration > integrationServices to configure the Marketing Operations
Integration Module.

For details, see the Marketing Operations Installation Guide.

Procedure lifecycle
The runtime lifecycle of a procedure is:
1. Discovery and initialization
2. Selection (optional)
3. Execution
4. Destruction

14 Integration Module

Discovery and initialization

IBM Marketing Operations must be made aware of all standard and custom
procedures available for a particular installation instance. This process is called
discovery.

Note: Standard procedures (procedures defined by the Marketing Operations
engineering team) are known implicitly and so do not need any action to be
discovered.

Custom procedures are defined in the procedure plug-in definition file. The
Marketing Operations plug-in manager reads this file during initialization. For
each procedure found, the plug-in manager does the following:
1. Instantiate the procedure; transition its state to INSTANTIATED.
2. Create a new procedure audit record.
3. If the procedure could be instantiated, its initialize() method is called with

any initialization parameters found in its plug-in description file. If this method
throws an exception, the status is logged and the procedure is abandoned.
Otherwise, the procedure transitions to the INITIALIZED state. It is now ready
to execute.

4. Create a new procedure audit record.
5. If the procedure could be initialized, its getKey() method is called to determine

the key used by clients to reference the procedure. This key is associated with
the instance and saved for later lookup.

Selection

From time to time, IBM Marketing Operations may need to present a list of
available procedures to users, for example to enable administrators to setup a
trigger. This is done only after the procedure has been initialized. The procedure’s
getDisplayName() and getDescription() methods are used for this purpose.

Execution

At some point after the procedure has been initialized, IBM Marketing Operations
receives a request to execute the procedure. This may happen concurrently with
other procedures (or the same procedure) executing on other threads.

At execution time, the procedure execution manager does the following.
1. Start a database transaction.
2. Set the procedure state to EXECUTING.
3. Create a new procedure audit record.
4. Call the procedure’s execute() method with an execution context and any

execute parameters provided by the client. The method implementation uses
the Marketing Operations API as needed, acquiring edit locks and passing
along the execution context. If the execute method throws an exception, the
execution manager marks the transaction for rollback.

5. Commit or rollback the transaction according to the execution results; set
procedure state to EXECUTED.

6. Release any outstanding edit locks.
7. Create a new procedure audit record.

Note: The execute() method should not alter the procedure instance data.

Chapter 3. IBM Marketing Operations procedures 15

Destruction

When IBM Marketing Operations shuts down, the procedure plug-in manager
walks through all loaded procedures. For each procedure found, it does the
following:
1. Calls the procedure's destroy() method to allow the procedure to clean up

before the instance is destroyed.
2. Changes the state of the procedure to FINALIZED (it cannot be executed).
3. Creates a new procedure audit record.
4. Destroys the instance of the procedure.

Data locking
IBM Marketing Operations uses a pessimistic edit locking scheme; that is, only one
user is granted update access to component instances at a time. For the GUI user,
this locking is done at the visual tab level. In some cases this represents a subset of
an instance (for example, a project summary tab), while in others it represents
many instances (the workflow tab). Once a user acquires a lock, all other users are
restricted to read-only access to the related data.

Note: Edit locks are not the same as database transactions.

In order to ensure that the changes made by a procedure to a component instance
or group of instances are not inadvertently overwritten by another user, a
procedure must acquire the appropriate locks before updating component data.
The execution context object passed to the procedure's execute() method is used
to accomplish this.

Before the procedure updates any data, it must call the context's acquireLock()
method for each lock it needs. For example, if a procedure is going to update a
project and the associated workflow, the procedure needs to acquire locks for both.

If another user already has a lock, the acquireLock() method throws a
LockInUseException immediately. In order to minimize collisions, the procedure
should release the lock as soon as it updates the object.

The execution manager automatically releases any outstanding locks when the
execute method returns. In any case, locks are only held for the life of the database
transaction. That is, locks expire if the database-specific transaction timeout is
exceeded.

Procedure transactions
The procedure execution manager automatically wraps execution of the procedure
with a database transaction, committing or rolling it back as appropriate based on
the outcome of the procedure execution. This guarantees that updates to the IBM
Marketing Operations database are not visible to other users until committed and
that the updates are atomic.

The procedure writer still must acquire the necessary edit locks to ensure that
other users cannot write changes to the database before the procedure execution
completes.

16 Integration Module

Communicating results
The execute() method of a procedure returns an integer status code and zero or
more messages which are logged and persisted to the IBM Marketing Operations
procedure audit table. The client may also communicate the status information in
some other fashion.

Procedure logging
IBM Marketing Operations has a separate log file for procedures.

<MarketingOperations_Home>\logs\procedure.log

The procedure execution manager logs the lifecycle of each procedure and creates
audit records.
v logInfo(): write an informational message to the procedure log.
v logWarning(): write a warning message to the procedure log.
v logError(): write an error message to the procedure log.
v logException(): dump the stack trace for the exception to the procedure log.

Key Java classes
The supplied integration devkit contains a set of Javadoc for the public IBM
Marketing Operations API and supporting classes. The most important are listed
here.
v IProcedure (com.unica.publicapi.plan.plugin.procedure.IProcedure): interface that

all procedures must implement. Procedures go through a well-defined lifecycle
and access the Marketing Operations API to perform work.

v ITriggerProcedure
(com.unica.publicapi.plan.plugin.procedure.ITriggerProcedure): interface that all
trigger procedures must implement (marker interface).

v IExecutionContext
(com.unica.publicapi.plan.plugin.procedure.IExecutionContext): interface of
opaque context object handed to the procedure by the execution manager. This
object has public methods for logging and edit lock management. The procedure
also passes this object to all PlanAPI calls.

v IPlanAPI (com.unica.publicapi.plan.api.IPlanAPI): interface to the Marketing
Operations API. The execution context provides a getPlanAPI() method to
retrieve the proper implementation.

Procedure example

This example shows a standard procedure to change the state of a project from an
integration webservice or a trigger.

Note: Do not modify the sample procedures and their XML definitions. The
samples are overwritten each time you upgrade IBM Marketing Operations, and
your changes are lost. Instead, create and modify all custom procedures in a
different directory.
// ProjectStateChangeProcedure
// (c) Copyright 2012 by IBM Corporation. All rights reserved.

package com.unica.uap.plugin.procedure.standard;

Chapter 3. IBM Marketing Operations procedures 17

import java.util.Iterator;
import java.util.List;
import java.util.Locale;
import java.util.Map;

import com.unica.publicapi.plan.api.Handle;
import com.unica.publicapi.plan.api.IExecutionContext;
import com.unica.publicapi.plan.api.IPlanAPI;
import com.unica.publicapi.plan.api.LockInUseException;
import com.unica.publicapi.plan.api.ProjectHandle;
import com.unica.publicapi.plan.api.ProjectStateEnum;
import com.unica.publicapi.plan.plugin.PluginVersion;
import com.unica.publicapi.plan.plugin.procedure.IProcedure;
import com.unica.publicapi.plan.plugin.procedure.ProcedureExecutionException;
import com.unica.publicapi.plan.plugin.procedure.ProcedureInitializationException;
import com.unica.publicapi.plan.plugin.procedure.ProcedureMessage;
import com.unica.publicapi.plan.plugin.procedure.ProcedureMessageTypeEnum;
import com.unica.publicapi.plan.plugin.procedure.ProcedureResult;

/**
* ProjectStateChangeProcedure is a standard Marketing Operations procedure
* that attempts to
* transition the state of a project.
* <p>
* Expects the following initialization parameters:
*
* debug: Boolean object, <tt>true</tt> or <tt>false</tt>, indicating
* if debug tracing is enabled or not
*
*
* <p>
* Expects the following execute parameters:
*
* hProject: string array form of project handle, e.g.,
* "http://mymachine:7001/MktOps/affiniumplan.jsp?
* cat=projecttabs&projectid=12"
* uapState: string array form of new project state, e.g.,
* "COMPLETED". Note, case matters!
*
*
*/
public final class ProjectStateChangeProcedure implements IProcedure {
// initialization parameters
private final static String DEBUG_INITPARAMETER_NAME = "debug";

// execute parameters
private final static String HPROJECT_PARAMETER_NAME = "hProject";
private final static String STATE_PARAMETER_NAME

= IPlanAPI.PROJECT_ATTRIBUTE_STATEENUM; // same as attribute name

// our status codes
private final static int STATUS_SUCCESS = 0;

// debug property. set the procedure’s "debug" init parameter
// to true to enable debug trace

private boolean _debug = false;
private boolean isDebug() { return _debug; }

// simple name is unqualified class name
public String getName() {

return "uapProjectStateChangeProcedure";
}

// display name is always key
public String getDisplayName(Locale locale) {

// only do EN for now
return getName();

}

18 Integration Module

// description always in english
public String getDescription(Locale locale) {

// only do EN for now
return "A procedure to transition the state of a project.";

}

// version we’re coded to; must be 1.0.0 for now
public PluginVersion getVersion() {

return new PluginVersion(1,0,0);
}

// initialize instance from init parameters
public void initialize(Map initParameters)

throws ProcedureInitializationException {
// the only init parameter we have is: debug, Boolean

if (initParameters.containsKey(DEBUG_INITPARAMETER_NAME)) {
try {

_debug = ((Boolean)initParameters.get(DEBUG_INITPARAMETER_NAME)).
booleanValue();

} catch (Exception exception) {
throw new ProcedureInitializationException("Problem using "

+ DEBUG_INITPARAMETER_NAME
+ " init parameter: "
+ exception.getMessage());

}
}

}

// execute: expect hProject and state enum
public ProcedureResult execute(IExecutionContext context, Map parameters)

throws ProcedureExecutionException {
// get execute parameters: we expect two:
// - hProject: string[] form of project handle
// - uapState: string[] form of ProjectStateEnum
ProjectHandle hProject = null;

if (parameters.containsKey(HPROJECT_PARAMETER_NAME)) {
try {

hProject = (ProjectHandle)
Handle.makeHandle(((String[])parameters.get(HPROJECT_PARAMETER_NAME))[0]);

} catch (Exception exception) {
throw new ProcedureExecutionException("Problem using "

+ HPROJECT_PARAMETER_NAME
+ " parameter: "
+ exception.getMessage());

}
} else throw new ProcedureExecutionException(HPROJECT_PARAMETER_NAME

+ " parameter must be provided.");

ProjectStateEnum stateEnum = null;
if (parameters.containsKey(STATE_PARAMETER_NAME)) {

try {
stateEnum =

ProjectStateEnum.valueOf(((String[])parameters.
get(STATE_PARAMETER_NAME))[0]);

} catch (Exception exception) {
throw new ProcedureExecutionException("Problem using "

+ STATE_PARAMETER_NAME
+ " parameter: "
+ exception.getMessage());

}
} else throw new ProcedureExecutionException(STATE_PARAMETER_NAME

+ " parameter must be provided.");

int status = -1;
ProcedureMessage[] messages = null;

try {

Chapter 3. IBM Marketing Operations procedures 19

// try to acquire an edit lock for the project
context.acquireLock(hProject, IExecutionContext.LOCK_ALL_FIELDS);

// use PlanAPIImpl to update state
IPlanAPI planAPI = context.getPlanAPI();
planAPI.updateAttribute(context, hProject, STATE_PARAMETER_NAME,

new ProjectStateEnum[]{stateEnum});

// success
status = STATUS_SUCCESS;

} catch (Exception exception) {
// write stack trace if debug

if (isDebug()) {
context.logError(getName(), exception);

}
throw new ProcedureExecutionException(exception);

} finally {
// release our lock
try {

context.releaseAllLocks();
} catch (Exception exception) { /* ignored */ }

}

return new ProcedureResult(status, messages);
}

public void destroy(){
// we don’t need to do anything

}
}

Procedure plug-in definition file
The procedure plug-in definition file defines implementation class, metadata, and
other information about the custom procedures to be hosted in IBM Marketing
Operations. By default, the procedure plug-in definition is assumed to be in the
following path:

<MarketingOperations_Home>/devkits/integration/examples/src/procedures/
procedure-plugins.xml

This file is an XML document that contains the following information.

Procedures: a list of zero or more Procedure elements.

Procedure: an element that defines a procedure. Each procedure contains the
following elements.
v key (optional): string that defines the lookup key for the procedure. This key

must be unique among all standard (IBM-supplied) and custom procedures that
are hosted by a particular Marketing Operations instance. If not defined, defaults
to the fully qualified version of the className element. Names starting with the
string "uap" are reserved for use by IBM Marketing Operations.

v className (required): fully qualified package name of the procedure class. This
class must implement the IProcedure class
(com.unica.public.plan.plugin.procedure.IProcedure).

v initParameters (optional): a list of zero or more initParameter elements.
initParameter(optional): parameter to be passed to the procedure's initialize()
method. This element includes the nested parameter name, type, and value
elements.

20 Integration Module

– name: string that defines the parameter name
– type: optional class name of the Java wrapper class that defines the type of

the parameter value. Must be one of the following types:
- java.lang.String (the default)
- java.lang.Integer
- java.lang.Double
- java.lang.Calendar
- java.lang.Boolean

– value: string form of the attribute value according to its type

Chapter 3. IBM Marketing Operations procedures 21

22 Integration Module

Chapter 4. About the IBM Marketing Operations API

The IBM Marketing Operations API is a façade that provides a client view of a
running Marketing Operations instance. Only a subset of the Marketing Operations
capabilities are exposed. The API is designed to be used concurrently by Marketing
Operations web users and Marketing Operations Integration Services WebService
SOAP requests and triggers. The API supports the following types of operations.
v Component creation and deletion
v Discovery (by component type, attribute value, and so on)
v Component inspection (via its attributes, specialized links, and so on)
v Component modification

Versioning and backwards-compatibility

Future versions of this API will be backwardly compatible with all minor and
maintenance releases that share a major version number. However, IBM reserves
the right to break compatibility with an earlier version for dot zero (x.0) major
releases if the business or technical case warrants doing so.

The major version number of this API will be incremented if any of the following
changes are made.
v Data interpretation changed
v Business logic changed (for example service method functionality changed)
v Method parameters and/or return types changed

The minor version number of the API will be incremented if any of the following
changes are made (note, that these changes are by definition backward-
compatible).
v New method added
v New data type added and its usage restricted to a new method
v New element added to an enumerated type
v A new version of an interface is defined with a version suffix

User security

Authentication is assumed to be done by the procedure’s execution manager and
the authenticated user information bound to the execution context used by all
APIs. The API does not expose the authenticated user, but will pass it on to IBM
Marketing Operations to use as needed.

The authenticated user, however, may not be authorized to perform all the
operations exposed by the API; in this case, the API method will throw an
AuthorizationException.

Locale

The only locale supported by this version is the locale currently configured for the
IBM Marketing Operations server instance. All locale-dependent data accessible via
the API (messages, currency, etc.) are assumed to be in this system locale.

© Copyright IBM Corp. 2002, 2012 23

State management

This API is stateless, meaning that no per-client information is saved by the API
across calls.

Note, however, that specific API calls may change the state of underlying
component instances managed by IBM Marketing Operations, and these state
changes may be persisted to a database.

Database transactions

This API does not expose database transactions to the client, but will use such
information if included in the execution context. If a transaction is started, then the
effect of all API calls within a particular procedure will be atomic. Other users of
IBM Marketing Operations will not see the changes until the procedure
successfully commits the transaction.

API calls that update the database must first acquire an edit lock to prevent other
Marketing Operations users from modifying the underlying data during the course
of the API call(s). Other users will not be able to update locked components until
the API completes; likewise, another Marketing Operations user or API client may
have acquired the lock on the desired data which will prevent the API call from
completing.

Event processing

Operations performed on IBM Marketing Operations components via this API
generate the same events as if the operation were performed by a Marketing
Operations Web user. In particular, triggers waiting for certain events eventually
will fire in both cases. Users that subscribed to certain notifications (for example,
when a project state changes) will be notified of state changes that result from API
calls as well as Web user actions.

Contents of the IBM Marketing Operations API
The com.unica.publicapi.plan.api package delivers the IBM Marketing Operations
API. This package offers interfaces and exceptions, and contains the following
types of classes:
v Enumerated data types.
v Handles to identify object and component instances.
v A Java map, AttributeMap.

Complete documentation of the API, including all methods and possible values, is
available by clicking Help > Product Documentation in an instance of Marketing
Operations, then downloading the IBM <version>PublicAPI.zip file. An overview
follows.

API Interfaces
The IBM Marketing Operations application programming interface (API) includes
the following interfaces.

IPlanAPI
Defines the public API for Marketing Operations. Provides methods for
creating, discovering, and modifying objects, including folders, projects,
workflow tasks, and team members.

24 Integration Module

For systems that have the optional integration with IBM Campaign
enabled, also provides methods for creating, discovering, and modifying
offers.

IExecutionContext
Defines the triggers and locks that execute methods in the API.

API methods
For specific information about the public API methods, refer to the iPlanAPI class
in the JavaDocs API documentation files. These files are available by logging in to
Marketing Operations and selecting Help > Product Documentation from any
page, and then downloading the <version>PublicAPI.zip file.

Common exceptions
Common exceptions that are thrown by the API include the following.
v <object type>NotFoundException: The system is unable to return the specified

item or object.
v AuthorizationException: The user who is associated with the execution context is

not authorized for the requested operation. This exception can be thrown by any
API method, so is undeclared.

v DataException: An exception occurred in the underlying database layer in IBM
Marketing Operations. Check the SQL log for details.

v InvalidExecutionContextException: There is a problem with an execution context
passed to an API method (for example, the method was not initialized correctly).
This exception can be thrown by any API, so is undeclared.

v NotLockedException: Attempt to update component data without first acquiring
the required lock. See the acquireLock() method of the IExecutionContext
interface.

Enumerated data types
ApprovalMethodEnum

ApprovalMethodEnum defines valid approval methods. Possible values
are:
v SEQUENTIAL
v SIMULTANEOUS

ApprovalStateEnum
ApprovalStateEnum defines valid approval states. Possible values are:
v CANCELLED
v COMPLETED
v IN_PROGRESS
v NOT_STATED
v ON_HOLD

AssetLibraryStateEnum
AssetLibraryStateEnum defines valid asset library states. Possible values
are:
v DISABLED
v ENABLED

AssetStateEnum
AssetStateEnum defines valid asset states. Possible values are:
v ARCHIVE

Chapter 4. About the IBM Marketing Operations API 25

v DRAFT
v FINALIZE
v LOCK

AttachmentTypeEnum
AttachmentTypeEnum defines valid attachment types. Possible values are:
v ASSET
v FILE
v URL

BudgetPeriodEnum
BudgetPeriodEnum defines the possible budget periods. Possible values
are:
v ALL
v MONTHLY
v QUARTERLY
v WEEKLY
v YEARLY

BudgetTypeEnum
BudgetTypeEnum defines valid budget types. Possible values are:
v ACTUAL
v ALLOCATED
v COMMITTED
v FORECAST
v TOTAL

ComponentTypeEnum
ComponentTypeEnum identifies the accessible Marketing Operations
component types. Possible values are:
v APPROVAL
v ASSET
v ASSET_FOLDER
v ASSET_LIBRARY
v ATTACHMENT
v FINANCIAL_ACCOUNT
v GROUPING_FOLDER
v INVOICE
v MARKETING_OBJECT
v PLAN_TEAM
v PLAN_USER
v PROJECT
v PROJECT_REQUEST
v TASK
v

InvoiceStateEnum
InvoiceStateEnum defines valid invoice states. Possible values are:
v CANCELLED
v DRAFT

26 Integration Module

v PAID
v PAYABLE

MonthEnum
MonthEnum defines valid values for the month.

OfferStateEnum
OfferStateEnum defines valid offer states. Possible values are:
v STATE_OFFER_DRAFT
v STATE_OFFER_PUBLISHED
v STATE_OFFER_RETIRED

ProjectCopyTypeEnum
ProjectCopyTypeEnum defines valid methods for copying a project.
Possible values are:
v COPY_USING_PROJECT_METRICS
v COPY_USING_TEMMPLATE_METRICS

ProjectParticipantLevelEnum
ProjectParticipantLevelEnum identifies the roles that users can have in a
project. Possible values are:
v OWNER
v PARTICIPANT
v REQUESTER

ProjectStateEnum
ProjectStateEnum defines valid project and request states. Possible values
are:
v ACCEPTED
v CANCELLED
v COMPLETED
v DRAFT
v IN_PROGRESS
v IN_RECONCILIATION
v LATE: the project did not start by its scheduled begin date.
v NOT_STARTED
v ON_HOLD
v OVERDUE: the project was not completed before its scheduled end date.
v RETURNED
v SUBMITTED

For more information about project and task statuses, see the IBM
Marketing Operations User's Guide.

QuarterEnum
QuarterEnum defines the valid values for quarters: Q1, Q2, Q3, and Q4.

TaskStateEnum
TaskStateEnum defines valid workflow task states. Possible values are:
v ACTIVE
v DISABLED
v FINISHED
v PENDING

Chapter 4. About the IBM Marketing Operations API 27

v SKIPPED

WeekEnum
WeekEnum defines valid values for weeks in a year, from WEEK_1 to
WEEK_53.

Handles
A Handle is special URL object that references a particular object instance in a
Marketing Operations instance. Handles include the component type, internal data
identifier, and an instance base URL. Handles used or generated by the API can be
externalized to a full URL. You can use the resulting URL in different ways,
including to open a view of the component in the Marketing Operations GUI, send
in email messages, or use in another procedure as a parameter.

Handles are valid only for a particular Marketing Operations service instance or
clustered instance, but are valid for the lifetime of the deployed service. As a
result, handles can be saved in a file for later reference, but they cannot be used to
access components on another Marketing Operations instance. This restriction also
applies to instances on the same physical host server. Marketing Operations does
provide, however, a mechanism for mapping different base URLs to the current
instance to accommodate relocating an instance to another server (for example, if
the equipment malfunctions).

Handles are client-independent. For example, a trigger can pass a handle to a
procedure, which uses it as a parameter in a SOAP call to a 3rd-party system. The
3rd-party system can then issue a SOAP request back to Marketing Operations to
start a procedure that updates an attribute.

Members of the Handle class have factory methods for creating handles from
various types of URLs. Examples follow.

Approval
http://mymachine:7001/plan/affiniumplan.jsp?cat=approvaldetail&
approvalid=101

Asset
http://localhost:7001/plan/affiniumplan.jsp?cat=asset&
assetMode=VIEW_ASSET&assetid=101

Asset Folder
http://localhost:7001/plan/affiniumplan.jsp?cat=folder&id=101

Asset Library
http://localhost:7001/plan/affiniumplan.jsp?cat=library&id=101

Attachment
http://mychane:7001/plan/affiniumplan.jsp?cat=attachmentview&
attachid=101&parentObjectId=101&parentObjectType=project

Financial Account
http://localhost:7001/plan/affiniumplan.jsp?cat=accountdetails&
accountid=101

Folder
http://mymachine:7001/plan/affiniumplan.jsp?cat=grouping_folder&
folderid=1234

Invoice
http://localhost:7001/plan/affiniumplan.jsp?cat=invoicedetails&
invoiceid=134

28 Integration Module

Invoice line item
http://localhost:7001/plan/affiniumplan.jsp?cat=invoicedetails&
invoiceid=134&line_item_id=101

Marketing object
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234

Marketing object grid
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234&gridid=grid

Marketing object grid row
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234&gridid=grid&gridrowid=101

Plan team
http://mychane:7001/plan/affiniumplan.jsp?cat=teamdetails&
func=edit&teamid=100001

Plan user
http://mymachine:7001/plan/affiniumplan.jsp?cat=adminuserpermissions&
func=edit&userId=101

Project
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234

Project grid
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&gridid=grid

Project grid row
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&gridid=grid&gridrowid=101

Project line item
http://localhost:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&projectlineitemid=123&projectlineitemisversionfinal=false

Workflow stage
http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&
projectid=1234&taskid=5678

Workflow task
http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&
projectid=1234&taskid=5678

Attribute Map
The AttributeMap class is a Java map that contains only attributes. The attribute
<Name> is the map entry key, and the attribute <values> array (note plural) is the
map entry value.

AttributeMap includes the following fields:
v <Name>: the programmatic name of the attribute. This name serves as a unique

key for accessing the attribute within the component instance in which it occurs.

Note: Name is not necessarily the display name that is presented to a user in the
GUI. For components that are created from templates (such as projects or
workflow tasks), the attribute name is specified by the template element
definition and must be unique. For other components, the attribute name
typically is derived programmatically from the server-side component instance
(for example, through Java introspection).

Chapter 4. About the IBM Marketing Operations API 29

Note: By convention, custom attributes include the name of the form in which
the editable version is defined: <form_name>.<attribute_name>.

v Values: a Java object array, containing zero or more attribute values. The type of
each value must be the same and agree with the type of the attribute as it is
defined in Marketing Operations. Only the following Java wrapper and
Marketing Operations types are supported:
– AssetLibraryStateEnum: a AssetLibraryStateEnum enumerated type value.
– AssetStateEnum: a AssetStateEnum enumerated type value.
– AttachmentTypeEnum: a AttachmentTypeEnum enumerated type value.
– AttributeMap: a map that holds attributes.
– BudgetPeriodEnum: a BudgetPeriodEnum enumerated type value.
– BudgetTypeEnum: a BudgetTypeEnum enumerated type value.
– Handle: a reference to a component instance, grid row, attribute, and so on.
– InvoiceStateEnum: an InvoiceStateEnum enumerated type value.
– java.io.File: representation of a file.
– java.lang.Boolean: a boolean value, either True or False
– java.lang.Double: a double-precision decimal number value.
– java.lang.Float: a single-precision decimal number value
– java.lang.Integer: a 32-bit integer value
– java.lang.Long: a 64-bit integer value
– java.lang.Object: Generic Java object
– java.lang.String: a string of zero or more Unicode characters
– java.math.BigDecimal: arbitrary-precision signed decimal number value.

Suitable for currency; the interpretation of the value depends on the currency
locale for the client.

– java.math.BigInteger: arbitrary-precision integer value.
– java.net.URL: a Universal Resource Locator (URL) object.
– java.util.ArrayList: List of objects.
– java.util.Calendar: a date-time value for a particular locale.
– java.util.Date: a date-time value. This type is deprecated. Use

java.util.Calendar or java.util.GregorianCalendar instead.

Note: To implement date, users can select either java.util.Calendar or
java.util.GregorianCalendar.

– java.util.GregorianCalendar: GregorianCalendar is a concrete subclass of
java.util.Calendar and provides the standard calendar system in use by most
of the world.

– MonthEnum: a MonthEnum enumerated type value.
– ProjectStateEnum: a ProjectStateEnum enumerated type value.
– QuarterEnum: a QuarterEnum enumerated type value.
– TaskStateEnum: a TaskStateEnum enumerated type value.
– WeekEnum: a WeekEnum enumerated type value.

The metadata of an attribute (such as localized display name and description) is
defined by the template that is associated with the attribute and its parent object
instance. Attributes provide a simple yet extensible mechanism for exposing both
required and optional object instance attributes, such as project name, code, and
start date.

30 Integration Module

Contacting IBM technical support

If you encounter a problem that you cannot resolve by consulting the
documentation, your company’s designated support contact can log a call with
IBM technical support. Use the information in this section to ensure that your
problem is resolved efficiently and successfully.

If you are not a designated support contact at your company, contact your IBM
administrator for information.

Information to gather

Before you contact IBM technical support, gather the following information:
v A brief description of the nature of your issue.
v Detailed error messages that you see when the issue occurs.
v Detailed steps to reproduce the issue.
v Related log files, session files, configuration files, and data files.
v Information about your product and system environment, which you can obtain

as described in "System information."

System information

When you call IBM technical support, you might be asked to provide information
about your environment.

If your problem does not prevent you from logging in, much of this information is
available on the About page, which provides information about your installed IBM
applications.

You can access the About page by selecting Help > About. If the About page is not
accessible, you can obtain the version number of any IBM application by viewing
the version.txt file located under the installation directory for each application.

Contact information for IBM technical support

For ways to contact IBM technical support, see the IBM Product Technical Support
website: (http://www-947.ibm.com/support/entry/portal/open_service_request).

© Copyright IBM Corp. 2002, 2012 31

http://www-947.ibm.com/support/entry/portal/open_service_request

32 Integration Module

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2002, 2012 33

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
170 Tracer Lane
Waltham, MA 02451
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

34 Integration Module

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Privacy Policy and Terms of Use Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. A cookie is a piece of data that a web site can
send to your browser, which may then be stored on your computer as a tag that
identifies your computer. In many cases, no personal information is collected by
these cookies. If a Software Offering you are using enables you to collect personal
information through cookies and similar technologies, we inform you about the
specifics below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user’s user name, and other
personal information for purposes of session management, enhanced user usability,
or other usage tracking or functional purposes. These cookies can be disabled, but
disabling them will also eliminate the functionality they enable.

Various jurisdictions regulate the collection of personal information through
cookies and similar technologies. If the configurations deployed for this Software
Offering provide you as customer the ability to collect personal information from
end users via cookies and other technologies, you should seek your own legal
advice about any laws applicable to such data collection, including any
requirements for providing notice and consent where appropriate.

IBM requires that Clients (1) provide a clear and conspicuous link to Customer’s
website terms of use (e.g. privacy policy) which includes a link to IBM’s and
Client’s data collection and use practices, (2) notify that cookies and clear gifs/web
beacons are being placed on the visitor’s computer by IBM on the Client’s behalf
along with an explanation of the purpose of such technology, and (3) to the extent
required by law, obtain consent from website visitors prior to the placement of
cookies and clear gifs/web beacons placed by Client or IBM on Client’s behalf on
website visitor’s devices

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Online Privacy Statement at: http://www.ibm.com/
privacy/details/us/en section entitled “Cookies, Web Beacons and Other
Technologies."

Notices 35

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

36 Integration Module

����

Printed in USA

	Contents
	Chapter 1. What is IBM Marketing Operations Integration Services?
	What are the requirements for Marketing Operations Integration Services?
	Getting started with IBM Marketing Operations Integration Services
	For more information
	Hosted JavaDocs

	Chapter 2. About Marketing Operations Integration Webservice
	About Marketing Operations Integration Webservice data types
	executeProcedure
	Marketing Operations Integration Services WSDL

	Chapter 3. IBM Marketing Operations procedures
	Assumptions
	Design
	Configuration
	Procedure lifecycle
	Data locking
	Procedure transactions
	Communicating results
	Procedure logging
	Key Java classes
	Procedure example
	Procedure plug-in definition file

	Chapter 4. About the IBM Marketing Operations API
	Contents of the IBM Marketing Operations API
	API Interfaces
	API methods

	Common exceptions
	Enumerated data types
	Handles
	Attribute Map

	Contacting IBM technical support
	Notices
	Trademarks
	Privacy Policy and Terms of Use Considerations

