
Version 10 Release 0
September 23, 2016

IBM Marketing Operations Integration
Module

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 33.

This edition applies to version 10, release 0, modification 0 of IBM Marketing Operations and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. What is IBM Marketing
Operations Integration Services? 1
What are the requirements for Marketing Operations
Integration Services? 2
IBM Marketing Operations Integration Services basics 3

Installing Integration Services. 5
Software developer kit contents 5

Hosted JavaDocs 6
Marketing Operations documentation and help . . . 6

Chapter 2. Marketing Operations
Integration Webservice 9
Marketing Operations Integration Services WSDL . . 9
executeProcedure 9
Marketing Operations Integration Webservice data
types 10

Chapter 3. IBM Marketing Operations
procedures 15
Assumptions 15
Configuration parameters. 17
Design 17
Procedure lifecycle 18

Key Java classes 19
Data locking 19
Procedure transactions. 20
Procedure communication 20
Procedure logging 20
Procedure plug-in definition file 21

Chapter 4. IBM Marketing Operations
SOAP API 23
Contents of the IBM Marketing Operations SOAP
API 23

SOAP API interfaces 23
SOAP API common exceptions 24
SOAP API handles 24
SOAP API AttributeMap 26
SOAP API enumerated data types 27

Before you contact IBM technical
support 31

Notices 33
Trademarks 35
Privacy Policy and Terms of Use Considerations . . 35

© Copyright IBM Corp. 2002, 2016 iii

iv IBM Marketing Operations Integration Module

Chapter 1. What is IBM Marketing Operations Integration
Services?

IBM® Marketing Operations Integration Services combines the Marketing
Operations Integration Webservice, SOAP API procedures, and triggers to extend
business capabilities.

IBM Marketing Operations Integration Services is a composite of the following.
v Marketing Operations Integration Webservice

Integration Services provide a way for Marketing Operations customers and IBM
Professional Services to integrate Marketing Operations with other applications
that run in their environment.

v Marketing Operations procedures and SOAP API

Custom procedures can be defined within Marketing Operations to extend
Marketing Operations business logic in arbitrary ways. After you define
procedures, these procedures can be the targets for the Integration Services
webservice calls from other applications. Procedures also can be defined to send
messages to other applications.

v Marketing Operations triggers

Triggers can be associated with events and procedures in Marketing Operations.
When one such event occurs, the associated trigger is run.

REST APIs do not use Marketing Operations integration services. For information
about the REST API, see the IBM Marketing Operations Administrator's Guide.

Versions and backwards-compatibility

Future versions of the integration services will be backwardly compatible with all
minor and maintenance releases that share a major version number. However, IBM
reserves the right to break compatibility with an earlier version for dot zero (x.0)
major releases if the business or technical case warrants.

The major version number of this API is incremented if any of the following
changes are made.
v Data interpretation changes
v Business logic changes (for example, service method functions changes)
v Method parameters, return types, or both change

The minor version number of the API is incremented if any of the following
changes are made. These changes are compatible with an earlier version by
definition.
v New method added
v New data type is added and its usage is restricted to a new method
v New element added to an enumerated type
v A new version of an interface is defined with a version suffix

© Copyright IBM Corp. 2002, 2016 1

Authentication

Authentication is not required; all clients are associated with a known IBM
Marketing Operations user named PlanAPIUser. A system administrator configures
the security capabilities of this special user to meet the needs of all webservice
clients.

Locale

The only locale that is supported is the locale that is currently configured for the
IBM Marketing Operations system instance. All locale-dependent data, such as
messages and currency, are assumed to be in the system locale.

State management

The API and webservice are stateless; no per-client information is saved by the
service implementation across API calls. This feature provides for an efficient
service implementation and simplifies cluster support.

Database transactions

Marketing Operations Integration Services does not show database transactions to
the client, but uses such information if it is included in the execution context. If a
transaction is started, then the effect of all API calls within a particular procedure
is atomic. In other words, a failed API call leaves the database in the same state as
if the API was never called at all. Other users of Marketing Operations do not see
the changes until the procedure successfully completes the transaction.

API calls that update the database must first acquire an edit lock to prevent other
users from modifying the underlying data during the API calls. Other users cannot
update locked components until the API call completes. Likewise, the next
Marketing Operations user or API client must acquire the lock on the data before
another API call is submitted.

Event processing

Operations on IBM Marketing Operations components through the API generate
the same events as if a Marketing Operations user did the operation. Users that
subscribed to certain notifications, such as project state changes, are notified of
state changes that result from API calls and user actions.

What are the requirements for Marketing Operations Integration
Services?

Marketing Operations Integration Services has the following requirements.

Marketing Operations Integration Services must:
v Loosely couple system integration.
v Provide a mechanism for customer applications to affect Marketing Operations

through webservice calls.
v Provide a mechanism for customer applications to be notified of certain events

in Marketing Operations.
v Provide a simple programming model that is easy to understand and use.
v Be robust when recovering from failure.

2 IBM Marketing Operations Integration Module

v Guarantee data integrity.
v Integrate with, and minimize the effect on, existing Marketing Operations

GUI-based customers.
v Provide fine-grained access to Marketing Operations components while

insulating programmers from underlying implementation details.

IBM Marketing Operations Integration Services basics
You use IBM Marketing Operations Integration Services to create custom
procedures. You can use these procedures to trigger external events when certain
events occur within Marketing Operations. You can use these procedures to run
Marketing Operations functions from external systems or programs.

The API interface interacts with IBM Marketing Operations at the programmatic
level, in the same way the GUI interfaces with Marketing Operations at a user
level. Using the API, you construct procedures. Using these procedures, you
communicate between Marketing Operations and external systems. The Marketing
Operations Webservice is the container object for the procedures, API, and triggers.

The architecture of the Marketing Operations Integration Services is shown here.

The following are key components of the Integration Services.
v Marketing Operations Procedure Manager: extends the business logic by

interacting with Marketing Operations through the API.
v Marketing Operations Trigger Manager: associates a condition (for example, the

state change of a marketing object) with an action (a procedure to run when the
condition for the trigger is met).

Methods

You use the components of IBM Marketing Operations Integration Services to
develop custom procedures, as shown in the following diagram.

Chapter 1. What is IBM Marketing Operations Integration Services? 3

After you install the developer's kit, you follow these basic steps:
1. Code the custom procedure.
2. Update the plug-in definition in the XML definition file.
3. Build the plug-in:

a. Compile the necessary classes.
b. If you are using a third-party library that is not in the Marketing Operations

archive, bundle the library inside the plan.war file and redeploy.
4. Restart Marketing Operations. Changes to the procedure classes are applied

when you restart the application server.

Note: If you change the plan.war file, you must undeploy and redeploy
Marketing Operations with the new plan.war file. Undeploy and redeploy
Marketing Operations if you use a third-party library that is not in the
Marketing Operations archive and you edit the plan.war file.

Basic Example to communicate between IBM Marketing
Operations and the API

The following basic example describes establishing communication between the
API and Marketing Operations. It does not do any useful work; it performs a
round trip between Marketing Operations and the Integration Services.

4 IBM Marketing Operations Integration Module

This example uses portions of the example procedures included with the
Marketing Operations Integration Services developer's kit. Specifically, you can
find the code that is referenced here in the following files.
v PlanClientFacade.java

v PlanWSNOOPTestCase.java

The noop method is a webservice call to Marketing Operations. It is defined in the
PlanClientFacade class, and passes null values in an array.
public ProcedureResponse noop(String jobId)

throws RemoteException, ServiceException {
NameValueArrays parameters =
new NameValueArrays(null, null, null, null, null, null, null, null);

return _serviceBinding.executeProcedure("uapNOOPProcedure", jobId, parameters);
}

The procedure testExecuteProcedure calls the noop method from PlanClientFacade
to establish a round trip with the Marketing Operations application.
public void testExecuteProcedure() throws Exception {

// Time out after a minute
int timeout = 60000;
PlanClientFacade clientFacade = new PlanClientFacade(urlWebService, timeout);
System.out.println("noop w/no parameters");
long startTime = new Date().getTime();
ProcedureResponse response = clientFacade.noop("junit-jobid");
long duration = new Date().getTime() - startTime;

// zero or positive status => success
System.out.println("Status: " + response.getStatus());
System.out.println("Duration: " + duration + " ms");
assertTrue(response.getStatus() >= 0);
System.out.println("Done.");

}

For details of NameValueArrays, ProcedureResponse, and other listed methods and
data types, refer to the Marketing Operations Integration Module and the JavaDocs.

Installing Integration Services
The IBM Marketing Operations Integration Services module is a separate, paid
component. If you purchase the Integration Services module, you must install it.
1. Download the IBM Marketing Operations Integration Services installers.
2. The IBM Marketing Software installers detect the Integration Services module.
3. The installer sets configuration properties at Marketing Operations |

umoConfiguration | integrationServices | enableIntegrationServices. You can
customize your installation by changing configuration parameters. For more
information, see “Configuration parameters” on page 17.

Software developer kit contents
The software developer kit contains documentation containing all publicapi classes
and interfaces, and example code.

For the SOAP API, all the Marketing Operations Integration Services components
are installed under a folder labeled devkits.

Example code is installed in the following folders.
v The build folder contains scripts to build and deploy custom procedures.
v The Classes folder contains the compiled procedure classes.

Chapter 1. What is IBM Marketing Operations Integration Services? 5

Users must deploy the compiled classes of their custom procedures at the path
that is specified by the configuration parameter
integrationProcedureClasspathURL. Then, the IBM Marketing Operations
Procedure Manager loads them as specified in the procedure-plugins.xml
configuration file.

v The lib folder contains the necessary libraries for developing and compiling
custom procedures.

v The src folder contains source files for custom procedures. Users can place
custom procedures to be started as triggers or web-services here. Only the SOAP
API supports custome procedures.
– The src/procedure folder contains procedure-plugins.xml configuration file.

Every custom procedure that runs as a trigger based an event or through an
external web-service must have an entry in this file. The entries must contain
a fully qualified class path of procedure and required initialization
parameters.

– The src/procedure folder also contains some sample procedures that are
included with IBM Marketing Operations. These procedures can be used to
understand and develop your custom procedures.
Place custom procedures under the src directory in a new folder structure,
such as com/<mycompany>/<mypackage>. Do not place custom procedures in the
sample procedures folder.

– The src/soap folder contains sample web service clients that are developed in
Java. Use these samples as a starting point for developing web service-based
clients for Integration Services. This folder also contains binary scripts to start
sample clients over the command line.

Hosted JavaDocs
For specific information about the public API methods, refer to the iPlanAPI class
in the JavaDocs API documentation files.

These files are available in the following ways:
v By the files in the <IBM_IMS>/<MarketingOperations_Home>/devkits/

integration/javadocs directory for the SOAP API on the server that hosts
Marketing Operations.

v By logging in to Marketing Operations and selecting Help > Product
Documentation from any page, and then downloading the IBM
<version>PublicAPI.zip file for the SOAP API.

Marketing Operations documentation and help
Different people in your organization use IBM Marketing Operations to accomplish
different tasks. Information about Marketing Operations is available in a set of
guides, each of which is intended for use by team members with specific objectives
and skill sets.

The following table describes the information available in each guide.

6 IBM Marketing Operations Integration Module

Table 1. Guides in the Marketing Operations documentation set.

The following three-column table describes tasks in one column, guide names in the second column, and audience in
the third column.

If you See Audience

v Plan and manage projects

v Establish workflow tasks,
milestones, and personnel

v Track project expenses

v Get reviews and approvals for
content

v Produce reports

IBM Marketing Operations User's Guide v Project managers

v Creative designers

v Direct mail marketing managers

v Design templates, forms,
attributes, and metrics

v Customize the user interface

v Define user access levels and
security

v Implement optional features

v Configure and tune Marketing
Operations

IBM Marketing Operations
Administrator's Guide

v Project managers

v IT administrators

v Implementation consultants

v Create marketing campaigns

v Plan offers

v Implement integration between
Marketing Operations and
Campaign

v Implement integration between
Marketing Operations and IBM
Digital Recommendations

IBM Marketing Operations and IBM
Integration Guide

v Project managers

v Marketing execution specialists

v Direct marketing managers

v Learn about new system features

v Research known issues and
workarounds

IBM Marketing Operations Release Notes Everyone who uses Marketing
Operations

v Install Marketing Operations

v Configure Marketing Operations

v Upgrade to a new version of
Marketing Operations

IBM Marketing Operations Installation
Guide

v Software implementation
consultants

v IT administrators

v Database administrators

Create custom procedures to
integrate Marketing Operations with
other applications

IBM Marketing Operations Integration
Module and the API JavaDocs
available when you click Help >
Product Documentation in Marketing
Operations, and then download the
IBM<version>PublicAPI.zip file for
the SOAP API and
IBM<version>PublicAPI-
RestClient.zip for the REST API.

v IT administrators

v Database administrators

v Implementation consultants

Learn about the structure of the
Marketing Operations database

IBM Marketing Operations System
Schema

Database administrators

Chapter 1. What is IBM Marketing Operations Integration Services? 7

Table 1. Guides in the Marketing Operations documentation set (continued).

The following three-column table describes tasks in one column, guide names in the second column, and audience in
the third column.

If you See Audience

Need more information while you
work

v Get help and search or browse the
Marketing Operations User's,
Administrator's, or Marketing
Operations Installation guides: Click
Help > Help for this page

v Access all of the Marketing
Operations guides: Click Help >
Product Documentation

v Access guides for all IBM
Marketing Software products: Click
Help > All IBM Marketing
Software Suite Documentation

Everyone who uses Marketing
Operations

8 IBM Marketing Operations Integration Module

Chapter 2. Marketing Operations Integration Webservice

The webservice provides a client view of the Marketing Operations Integration
Services, which is part of the deployment of the IBM Marketing Operations server.
The service is used concurrently with Marketing Operations web users.

The webservice supports one API call, executeProcedure.

A client makes this webservice call directly.

Marketing Operations Integration Services WSDL
The Web Services Definition Language (WSDL) was defined by hand and is the
final word on the webservice definition.

Axis

This version of the webservice uses Axis2 1.5.2 to generate the server-side classes
that make up the web service implementation from the WSDL file. Users can use
any version of Axis, or a non-Axis technique, to create a client side implementation
for integrating with the API from the supplied WSDL.

Protocol version

The version of the protocol is explicitly bound to the WSDL as follows:
v As part of the WSDL name, for example, PlanIntegrationService1.0.wsdl
v As part of the WSDL targetNamespace, for example, xmlns:tns="http://

webservices.unica.com /MktOps/services/PlanIntegrationServices1.0?wsdl"

WSDL

One WSDL file is provided with IBM Marketing Operations Integration Services:
PlanIntegrationServices1.0.wsdl. The WSDL is delivered in the
integration/examples/soap/plan directory. The example build script uses this file
to generate the appropriate client-side stubs to connect to the webservice.

executeProcedure
executeProcedure is the on API call that is supported by the webservice.

Syntax
executeProcedure(string key, string jobid, NameValueArrays paramArray)

Returns
int: status
Message[]: messages

Description

This method invokes the specified procedure with an optional array of parameters.
The call executes synchronously; that is, it blocks the client and returns the result
upon completion.

© Copyright IBM Corp. 2002, 2016 9

Parameters

Table 2. executeProcedure parameters

Name Description

key The unique key of the procedure to run. A RemoteException error is
returned if no procedure is bound to key.

jobid Optional string that identifies the job that is associated with this
procedure execution. This string is a pass-through item, but it can be
used to tie client jobs to the execution of a particular procedure.

paramArray An array of parameters to pass to the procedure. An error status and
message is returned if one or more of the parameters is invalid (such
as, the wrong type or an incorrect value). It is up to the client to
determine the parameters, their types, and the number of values that
are required by the procedure.

Return Parameters

Table 3. executeProcedure return parameters

Name Description

status An integer code:

v 0 indicates that the procedure ran successfully

v an integer indicates an error

Procedures can use the status to indicate different levels of errors.

messages An array of zero or more message data structures. If status is 0, this
array does not contain ERROR messages, but might contain
INFORMATION and WARNING messages.

If status is non-zero, messages can contain any mix of ERROR,
INFORMATION, and WARNING messages.

Marketing Operations Integration Webservice data types
The data types that are used by the webservice are independent of any particular
service binding or programming implementation.

The following notation is used.
v <type>: <type definition> defines a simple data type. For example:

Handle: string
v <type>: [<type definition>] defines a complex data type or a data structure.
v <type>: { <type definition> } defines a complex data type or a data structure.

Complex type elements and API parameters can use these types to declare arrays.
For example:
Handle [] handles

The type, handles, is an array of Handle types.

Primitive types

Primitive types are restricted to the types defined in the table that follows to
simplify support for SOAP 1.1 bindings. All types can be declared as arrays, for
example, String []. Inherently, binary data types, such as long, can be represented

10 IBM Marketing Operations Integration Module

as strings by a protocol binding (for example, SOAP). This representation, however,
has no effect on the semantics of the type, permissible values, and so on, as seen
by the client.

Table 4. Primitive types

API Type Description SOAP Type Java™ Type

Boolean Boolean value: true or
false

xsd:Boolean Boolean

dateTime A date time value xsd:datetime Date

decimal An arbitrary-precision,
decimal value

xsd:decimal java.math.BigDecimal

double A double-precision,
signed, decimal value

xsd:double double

int A signed, 32-bit, integer
value

xsd:int int

integer An arbitrary-precision,
signed, integer value

xsd:integer java.math.BigInteger

long A signed, 64-bit, integer
value

xsd:long long

string A string of Unicode
characters

xsd:string java.lang.String

MessageTypeEnum
MessageTypeEnum: { INFORMATION, WARNING, ERROR }

MessageTypeEnum is an enumerated type that defines all possible message types.
v INFORMATION: an informational message
v WARNING: a warning message
v ERROR: an error message

Message
Message: [MessageTypeEnum type, string code, string localizedText, string logDetail]

Message is a data structure that defines the result of a webservice API call. It
provides optional fields for a non-localized code, localized text, and log detail.
Currently, all localized text uses the locale that is set for the IBM Marketing
Operations server instance.

Table 5. Message parameters

Parameter Description

type A MessageTypeEnum, setting the type of the message.

code An optional code, in string format, for the message.

localizedText An optional text string to associate with the message.

logDetail An optional stack trace message.

NameValue
NameValue: [string name, int sequence]

Chapter 2. Marketing Operations Integration Webservice 11

NameValue is a base complex type that defines a name-value pair. It also defines
an optional sequence that the service uses to construct value arrays as needed (the
sequences are zero-based).

All NameValues with the same name, but different sequence numbers, are
converted into an array of values and associated with the common name.

The array size is determined by the maximum sequence number; unspecified array
elements have null values. Array sequence numbers must be unique. The value
and its type are provided by the extended type.

Table 6. NameValue parameters

Parameter Description

name A string that defines the name of a NameValue type.

sequence A zero-based integer that sets the sequence number for the NameValue
implied value.

Extended NameValue types are defined for each primitive type, as follows:

Table 7. Extended NameValue types

Extended type Description

BigDecimalNameValue: NameValue [
decimal value]

A NameValue type whose value is an
arbitrary-precision, decimal number.

BigIntegerNameValue: NameValue [integer
value]

A NameValue type whose value is an
arbitrarily sized integer.

BooleanNameValue: NameValue [Boolean
value]

A NameValue type whose value is a
Boolean.

CurrencyNameValue: NameValue [string
locale, decimal value]

A NameValue type suitable for representing
currency in some locale. Locale is an ISO
Language Code, that is, the lowercase,
two-letter codes as defined by ISO-639.

Currently, the locale must agree with the
locale set in the IBM Marketing Operations
server instance.

DateNameValue: NameValue [datetime
value]

A NameValue type whose value is a date.

DecimalNameValue: NameValue [double
value]

A NameValue type whose value is a
double-precision, decimal number.

IntegerNameValue: NameValue [long value] A NameValue type whose value is a 64-bit
integer.

String NameValue: NameValue [string
value]

A NameValue type whose value is a string.

And finally, an array of the extended NameValue types is defined for use when
you must define a set of NameValues of with different types.

NameValueArrays: [
BooleanNameValue[] booleanValues,
StringNameValue[] stringValues,
IntegerNameValue[] integerValues,
BigIntegerNameValue[] bigIntegooleanNameValue,
DecimalNameValue[] decimalValues,

12 IBM Marketing Operations Integration Module

BigDecimalNameValue[] bigDecimalValues
DateNameValue[] dateNameValues
CurrencyNameValue[] currencyValues

]

Chapter 2. Marketing Operations Integration Webservice 13

14 IBM Marketing Operations Integration Module

Chapter 3. IBM Marketing Operations procedures

A "procedure" is a custom or standard Java class hosted by IBM Marketing
Operations that does some unit of work. Procedures provide a way for customers
and IBM Professional Services to extend Marketing Operations business logic in
arbitrary ways.

Procedures follow a simple programming model with a well-defined API to affect
components that are managed by Marketing Operations. Procedures are
"discovered" through a simple lookup mechanism and XML-based definition file.
Marketing Operations runs the procedures according to needs of their "clients." For
example, in response to an integration request (incoming) or a trigger firing
(internal or outgoing).

Procedures run synchronously with their client; results are made available directly
to the client, and through a persisted auditing mechanism. The execution of a
procedure can also cause other events and triggers to fire in Marketing Operations.

Procedures must be written in Java.

Assumptions
The procedure implementation classes are packaged into a separate classes tree or
JAR file and made available to IBM Marketing Operations through a URL path.

Procedure implementation

The procedure execution manager uses an independent class loader to load these
classes as needed. By default, Marketing Operations looks in the following
directory.

<MarketingOperations_Home>/devkits/integration/examples/classes

To change this default, set the integrationProcedureClasspathURL parameter under
Settings > Configuration > Marketing Operations > umoConfiguration >
integrationServices.

The procedure implementation class name follows the accepted Java naming
conventions, to avoid package collisions with "unica" and classes from other
vendors. In particular, customers must not place procedures under the "com.unica"
or "com.unicacorp" package tree.

The procedure implementation is coded to the Java runtime version used by IBM
Marketing Operations on the application server (at least JRE 1.5.10).

The procedure implementation class is loaded by the class loading policy that is
normally used by IBM Marketing Operations (typically parent-last). The
application server might provide development tools and options to reload classes
that would apply to Marketing Operations procedures, but that is not required.

© Copyright IBM Corp. 2002, 2016 15

Libraries

IBM Marketing Operations provides some open source and third-party libraries;
application servers also use different versions of these libraries.

Generally, this list changes from release to release. The following third-party
libraries are supported.
v Ant 1.6.5 (ant.jar)
v Axis2 1.5.2 and dependencies

– axiom-api-1.2.9.jar

– axiom-impl-1.2.9.jar

– axis2-adb-codegen-1.5.2.jar

– axis2-codegen-1.5.2.jar

– axis2-adb-1.5.2.jar

– axis2-kernel-1.5.2.jar

– axis2-transport-http-1.5.2.jar

– axis2-transport-local-1.5.2.jar

– commons-codec.jar

– commons-httpclient-3.1.jar

– commons-logging.jar

– httpcore-4.0.jar

– neethi-2.0.4.jar

– geronimo-stax-api_1.0_spec-1.0.1.jar

– jaxrpc.jar

– xlxpScanner.jar

– xlxpScannerUtils.jar

– xlxpWASParsers.jar

– wsdl4j-1.6.2.jar

– XmlSchema-1.4.3.jar

v JavaMail 1.4.3 (activation.jar, mail.jar)
v JUnit 4.4 (junit-4.4.jar)
v IBM Marketing Operations APIs (affinium_plan.jar)
v IBM Marketing Platform APIs (unica-common.jar)

If a procedure, or the secondary classes the procedure imports, does use such
packages, their use must agree exactly with the packages provided by Marketing
Operations or the application server. In this case, rework of your procedure code is
required if a later version of Marketing Operations upgrades or abandons a library.

Procedures and threads

The procedure must be thread-safe concerning its own state; that is, its run method
cannot depend on internal state changes from call to call. A procedure cannot
create threads on its own.

16 IBM Marketing Operations Integration Module

Configuration parameters
When you install the Marketing Operations Integration Module, the installer sets
three configuration properties. You can modify the configuration properties to
customize the behavior of the Integration Module.

Configuration properties for the Integration Module are under Marketing
Operations | umoConfiguration | integrationServices.
v The enableIntegrationServices configuration property to turns the Integration

Services module on and off.
v The integrationProcedureDefinitionPath parameter contains the full file path to

the custom procedure definition XML file.
The default value is <IBM_IMS_Home><MarketingOperations_Home>/devkits/
integration/ examples/src/procedure/procedure-plugins.xml/.

v The integrationProcedureClasspathURL parameter contains the URL to the class
path for custom procedures.
The default value is file:///<IBM_IMS_Home><MarketingOperations_Home>/
devkits/ integration/examples/classes/.

Note: The '/' at the end of the integrationProcedureClasspathURL path is
required for loading procedure classes correctly.

Design
The procedure implementation class uses the IBM Marketing Operations API to
read and update Marketing Operations components, start services, and so on.
Other Java packages can be used to do other tasks.

In your design, focus on producing a single unit of work that operates atomically.
Ideally, a procedure performs some series of tasks that can be scheduled
asynchronously to run at some later time. This "fire and forget" integration model
results in the least load on both systems.

Note: Only the documented classes and methods will be supported in future
releases of Marketing Operations. Consider all other classes and methods in
Marketing Operations to be off-limits.

After you code and compile the procedure implementation classes, you make them
available to Marketing Operations. The build scripts that are supplied with the
Marketing Operations Integration Services place the compiled procedures in the
default location. The final development step is to update the custom procedure
plug-in definition file that is used by Marketing Operations to discover the custom
procedures.

The procedure must implement the
com.unica.publicapi.plan.plugin.procedure.IProcedure interface and have a
parameter-less constructor (usual JavaBeans model). Coding and compilation of
each procedure is done in a Java IDE of the customer's choice, such as Eclipse,
Borland JBuilder, or Idea. Sample code is provided with IBM Marketing Operations
as developer toolkits, in the following location:

<MarketingOperations_Home>/devkits/integration/examples/src/procedure

Chapter 3. IBM Marketing Operations procedures 17

Procedure lifecycle
Each procedure runs through a complete lifecycle.

The runtime lifecycle of a procedure includes the following steps.
1. Discovery and initialization
2. Selection (optional)
3. Execution
4. Destruction

Discovery and initialization

IBM Marketing Operations must be made aware of all standard and custom
procedures available for a particular installation instance. This process is called
discovery.

Note: Standard procedures (procedures that are defined by the Marketing
Operations engineering team) are known implicitly and so do not need any action
to be discovered.

Custom procedures are defined in the procedure plug-in definition file. The
Marketing Operations plug-in manager reads this file during initialization. For
each procedure found, the plug-in manager completes the following steps.
1. Instantiate the procedure; transition its state to INSTANTIATED.
2. Create a procedure audit record.
3. If the procedure was instantiated, its initialize() method is called with any

initialization parameters found in its plug-in description file. If this method
throws an exception, the status is logged and the procedure is abandoned.
Otherwise, the procedure state changes to the INITIALIZED state. It is now
ready to run.

4. Create a procedure audit record.
5. If the procedure was initialized, its getKey() method is called to determine the

key that is used by clients to reference the procedure. This key is associated
with the instance and saved for later lookup.

Selection

From time to time, IBM Marketing Operations might present a list of available
procedures to users, for example to enable administrators to set up a trigger.
Marketing Operations only presents this list after the procedure is initialized, using
the procedure's getDisplayName() and getDescription() methods.

Execution

At some point after the procedure is initialized, IBM Marketing Operations receives
a request to run the procedure. This request might happen concurrently with other
procedures (or the same procedure) running on other threads.

At run time, the procedure execution manager completes the following steps.
1. Start a database transaction.
2. Set the procedure state to EXECUTING.
3. Create a procedure audit record.

18 IBM Marketing Operations Integration Module

4. Call the procedure's execute() method with an execution context and any run
parameters that are provided by the client. The method implementation uses
the Marketing Operations API as needed, acquiring edit locks, and passing
along the execution context. If the run method throws an exception, the
execution manager marks the transaction for rollback.

5. Commit or rollback the transaction according to the execution results; set
procedure state to EXECUTED.

6. Release any outstanding edit locks.
7. Create a procedure audit record.

Note: The execute() method is not intended to alter the procedure instance data.

Destruction

When IBM Marketing Operations shuts down, the procedure plug-in manager
walks through all loaded procedures. For each procedure found, it completes the
following steps.
1. Calls the procedure's destroy() method to allow the procedure to clean up

before the instance is destroyed.
2. Changes the state of the procedure to FINALIZED (it cannot be run).
3. Creates a procedure audit record.
4. Destroys the instance of the procedure.

Key Java classes
The supplied integration developer's kit contains a set of Javadoc for the public
IBM Marketing Operations API and supporting classes.

The most important Java classes are listed here.
v IProcedure (com.unica.publicapi.plan.plugin.procedure.IProcedure): interface that

all procedures must implement. Procedures go through a well-defined lifecycle
and access the Marketing Operations API to do work.

v ITriggerProcedure
(com.unica.publicapi.plan.plugin.procedure.ITriggerProcedure): interface that all
trigger procedures must implement (marker interface).

v IExecutionContext
(com.unica.publicapi.plan.plugin.procedure.IExecutionContext): interface of
opaque context object that is handed to the procedure by the execution manager.
This object has public methods for logging and edit lock management. The
procedure also passes this object to all PlanAPI calls.

v IPlanAPI (com.unica.publicapi.plan.api.IPlanAPI): interface to the Marketing
Operations API. The execution context provides a getPlanAPI() method to
retrieve the proper implementation.

Data locking
IBM Marketing Operations uses a pessimistic edit locking scheme; that is, only one
user is granted update access to component instances at a time. For the GUI user,
this locking is done at the visual tab level. In some cases, data is locked for a
subset of an instance, for example, a project summary tab. In other cases, data is
locked across many instances, for example, the workflow tab. After a user acquires
a lock, all other users are restricted to read-only access to the related data.

Chapter 3. IBM Marketing Operations procedures 19

To ensure that the changes made by a procedure to a component instance or group
of instances are not inadvertently overwritten by another user, a procedure must
acquire the appropriate locks before it updates component data. The execution
context object that is passed to the procedure's execute() method is used to
accomplish lock the data.

Before the procedure updates any data, it must call the context's acquireLock()
method for each lock it needs. For example, if a procedure is going to update a
project and the associated workflow, the procedure must acquire locks for both.

If another user already has a lock, the acquireLock() method throws a
LockInUseException immediately. To minimize collisions, the procedure must
release the lock as soon as it updates the object.

The execution manager automatically releases any outstanding locks when the
execute method returns. In any case, locks are only held for the life of the database
transaction. That is, locks expire if the database-specific transaction timeout is
exceeded.

Note: Edit locks are not the same as database transactions.

Procedure transactions
The procedure execution manager automatically wraps execution of the procedure
with a database transaction, committing or rolling it back based on the outcome of
the procedure execution.

Wrapping the procedure execution and database transaction ensures that updates
to the IBM Marketing Operations database are not visible to other users until
committed. It also makes the updates atomic.

The procedure writer still must acquire the necessary edit locks to ensure that
other users cannot write changes to the database before the procedure execution
completes.

Procedure communication
The execute() method of a procedure returns an integer status code to the IBM
Marketing Operations procedure audit table. The execute() method of a procedure
can also return zero or more messages to the procedure audit table, which are
logged and persisted.

The client might also communicate the status information in some other way.

Procedure logging
IBM Marketing Operations has a separate log file for procedures:
<MarketingOperations_Home>\logs\system.log

The procedure execution manager logs the lifecycle of each procedure and creates
audit records.
v logInfo(): write an informational message to the procedure log.
v logWarning(): write a warning message to the procedure log.
v logError(): write an error message to the procedure log.
v logException(): dump the stack trace for the exception to the procedure log.

20 IBM Marketing Operations Integration Module

Procedure plug-in definition file
The procedure plug-in definition file defines implementation class, metadata, and
other information about the custom procedures to be hosted in IBM Marketing
Operations.

By default, the procedure plug-in definition is assumed to be in the following path:

<MarketingOperations_Home>/devkits/integration/examples/src/procedures/
procedure-plugins.xml

This file is an XML document that contains the following information.

Procedures: a list of zero or more Procedure elements.

Procedure: an element that defines a procedure. Each procedure contains the
following elements.
v key (optional): string that defines the lookup key for the procedure. This key

must be unique among all standard (IBM-supplied) and custom procedures that
are hosted by a particular Marketing Operations instance. If not defined, defaults
to the fully qualified version of the className element. Names starting with the
string "uap" are reserved for use by IBM Marketing Operations.

v className (required): fully qualified package name of the procedure class. This
class must implement the IProcedure class
(com.unica.public.plan.plugin.procedure.IProcedure).

v initParameters (optional): a list of zero or more initParameter elements.
initParameter(optional): parameter to be passed to the procedure's initialize()
method. This element includes the nested parameter name, type, and value
elements.
– name: string that defines the parameter name
– type: optional class name of the Java wrapper class that defines the type of

the parameter value. Must be one of the following types:
- java.lang.String (the default)
- java.lang.Integer
- java.lang.Double
- java.lang.Calendar
- java.lang.Boolean

– value: string form of the attribute value according to its type

Chapter 3. IBM Marketing Operations procedures 21

22 IBM Marketing Operations Integration Module

Chapter 4. IBM Marketing Operations SOAP API

The IBM Marketing Operations SOAP API is a façade that provides a client view
of a running Marketing Operations instance.

Only a subset of the Marketing Operations capabilities is shown to users. The API
is used concurrently by Marketing Operations web users and Marketing
Operations Integration Services WebService SOAP requests and triggers. The API
supports the following types of operations.
v Component creation and deletion
v Discovery (by component type, attribute value, and more values)
v Component inspection (through its attributes, specialized links, and more values)
v Component modification

Note: Marketing Operations APIs are intended for Administrator use only.

Contents of the IBM Marketing Operations SOAP API
The com.unica.publicapi.plan.api package delivers the IBM Marketing Operations
SOAP API.

This package offers interfaces and exceptions, and contains the following types of
classes:
v Enumerated data types.
v Handles to identify object and component instances.
v A Java map, AttributeMap.

Complete documentation of the API, including all methods and possible values, is
available by clicking Help > Product Documentation in an instance of Marketing
Operations, then downloading the IBM <version>PublicAPI.zip file.

SOAP API interfaces
The IBM Marketing Operations SOAP application programming interface (API)
includes IPlanAPI and IExecutionContext.

The Marketing Operations SOAP API includes the following interfaces.

IPlanAPI
Defines the public API for Marketing Operations. Provides methods for
creating, discovering, and modifying objects, including folders, projects,
programs, workflow tasks, and team members.

For systems that have the optional integration with IBM Campaign
enabled, also provides methods for creating, discovering, and modifying
offers.

IExecutionContext
Defines the triggers and locks that execute methods in the API.

API methods
For specific information about the public API methods, refer to the iPlanAPI class
in the JavaDocs API documentation files.

© Copyright IBM Corp. 2002, 2016 23

These files are available by logging in to Marketing Operations and selecting Help
> Product Documentation from any page, and then downloading the
<version>PublicAPI.zip file.

SOAP API common exceptions
Common exceptions that are thrown by the SOAP API include
NotFoundException, AuthorizationException, DataException,
InvalidExecutionContextException, and NotLockedException.

The following list explains why these common exceptions might occur.
v <object type>NotFoundException: The system is unable to return the specified

item or object.
v AuthorizationException: The user who is associated with the execution context is

not authorized for the requested operation. This exception can be thrown by any
API method, so is undeclared.

v DataException: An exception occurred in the underlying database layer in IBM
Marketing Operations. Check the SQL log for details.

v InvalidExecutionContextException: There is a problem with an execution context
passed to an API method (for example, the method was not initialized correctly).
This exception can be thrown by any API, so is undeclared.

v NotLockedException: Attempt to update component data without first acquiring
the required lock. See the acquireLock() method of the IExecutionContext
interface.

SOAP API handles
A handle is special URL object that references a particular object instance in an
IBM Marketing Operations instance. Handles include the component type, internal
data identifier, and an instance base URL.

Handles used or generated by the API can be externalized to a full URL. You can
use the resulting URL in different ways. You can use the URL to open a view of
the component in the Marketing Operations GUI, send it in email messages, or use
it in another procedure as a parameter.

Handles are valid only for a particular Marketing Operations service instance or
clustered instance, but are valid for the lifetime of the deployed service. As a
result, handles can be saved in a file for later reference, but they cannot be used to
access components on another Marketing Operations instance. This restriction also
applies to instances on the same physical host server. Marketing Operations does
provide, however, a mechanism for mapping different base URLs to the current
instance to accommodate relocating an instance to another server (for example, if
the equipment malfunctions).

Handles are client-independent. For example, a trigger can pass a handle to a
procedure, which uses it as a parameter in a SOAP call to a 3rd-party system. The
3rd-party system can then issue a SOAP request back to Marketing Operations to
start a procedure that updates an attribute.

Members of the Handle class have factory methods for creating handles from
various types of URLs. Examples follow.

Approval
http://mymachine:7001/plan/affiniumplan.jsp?cat=approvaldetail&
approvalid=101

24 IBM Marketing Operations Integration Module

Asset
http://mymachine:7001/plan/affiniumplan.jsp?cat=asset&
assetMode=VIEW_ASSET&assetid=101

Asset Folder
http://mymachine:7001/plan/affiniumplan.jsp?cat=folder&id=101

Asset Library
http://mymachine:7001/plan/affiniumplan.jsp?cat=library&id=101

Attachment
http://mymachine:7001/plan/affiniumplan.jsp?cat=attachmentview&
attachid=101&parentObjectId=101&parentObjectType=project

Financial Account
http://mymachine:7001/plan/affiniumplan.jsp?cat=accountdetails&
accountid=101

Folder
http://mymachine:7001/plan/affiniumplan.jsp?cat=grouping_folder&
folderid=1234

Invoice
http://mymachine:7001/plan/affiniumplan.jsp?cat=invoicedetails&
invoiceid=134

Invoice line item
http://mymachine:7001/plan/affiniumplan.jsp?cat=invoicedetails&
invoiceid=134&line_item_id=101

Marketing object
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234

Marketing object grid
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234&gridid=grid

Marketing object grid row
http://mymachine:7001/plan/affiniumplan.jsp?cat=componenttabs&
componentid=creatives&componentinstid=1234&gridid=grid&gridrowid=101

Plan team
http://mymachine:7001/plan/affiniumplan.jsp?cat=teamdetails&
func=edit&teamid=100001

Plan user
http://mymachine:7001/plan/affiniumplan.jsp?cat=adminuserpermissions&
func=edit&userId=101

Program
http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&programid=125

Program grid
http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&
programid=1234&gridid=grid

Program grid row
http://mymachine:7001/plan/affiniumplan.jsp?cat=programtabs&
programid=1234&gridid=grid&gridrowid=101

Project
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234

Project grid
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&gridid=grid

Chapter 4. IBM Marketing Operations SOAP API 25

Project grid row
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&gridid=grid&gridrowid=101

Project line item
http://mymachine:7001/plan/affiniumplan.jsp?cat=projecttabs&
projectid=1234&projectlineitemid=123&projectlineitemisversionfinal=false

Workflow stage
http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&
projectid=1234&taskid=5678

Workflow task
http://mymachine:7001/plan/affiniumplan.jsp?cat=projectworkflow&
projectid=1234&taskid=5678

SOAP API AttributeMap
The AttributeMap class is a Java map that contains only attributes. The attribute
<Name> is the map entry key, and the attribute <values> array (note plural) is the
map entry value.

The AttributeMap class includes the following fields.
v <Name>: the programmatic name of the attribute. This name serves as a unique

key for accessing the attribute within the component instance in which it occurs.

Note: <Name> is not necessarily the display name that is presented to a user in
the GUI. For components that are created from templates (such as projects or
workflow tasks), the attribute name is specified by the template element
definition. The attribute name must be unique. For other components, the
attribute name typically is derived programmatically from the server-side
component instance (for example, through Java introspection).

Note: By convention, custom attributes include the name of the form in which
the editable version is defined: <form_name>.<attribute_name>.

v Values: a Java object array, containing zero or more attribute values. The type of
each value must be the same and agree with the type of the attribute as it is
defined in Marketing Operations. Only the following Java wrapper and
Marketing Operations types are supported:
– AssetLibraryStateEnum: a AssetLibraryStateEnum enumerated type value.
– AssetStateEnum: a AssetStateEnum enumerated type value.
– AttachmentTypeEnum: a AttachmentTypeEnum enumerated type value.
– AttributeMap: a map that holds attributes.
– BudgetPeriodEnum: a BudgetPeriodEnum enumerated type value.
– BudgetTypeEnum: a BudgetTypeEnum enumerated type value.
– Handle: a reference to a component instance, grid row, attribute, and so on.
– InvoiceStateEnum: an InvoiceStateEnum enumerated type value.
– java.io.File: representation of a file.
– java.lang.Boolean: a Boolean value, either True or False
– java.lang.Double: a double-precision decimal number value.
– java.lang.Float: a single-precision decimal number value
– java.lang.Integer: a 32-bit integer value
– java.lang.Long: a 64-bit integer value
– java.lang.Object: Generic Java object

26 IBM Marketing Operations Integration Module

– java.lang.String: a string of zero or more Unicode characters
– java.math.BigDecimal: arbitrary-precision signed decimal number value.

Suitable for currency; the interpretation of the value depends on the currency
locale for the client.

– java.math.BigInteger: arbitrary-precision integer value.
– java.net.URL: a Universal Resource Locator (URL) object.
– java.util.ArrayList: List of objects.
– java.util.Calendar: a date-time value for a particular locale.
– java.util.Date: a date-time value. This type is deprecated. Use

java.util.Calendar or java.util.GregorianCalendar instead.

Note: To implement date, users can select either java.util.Calendar or
java.util.GregorianCalendar.

– java.util.GregorianCalendar: GregorianCalendar is a concrete subclass of
java.util.Calendar and provides the standard calendar system in use by most
of the world.

– MonthEnum: a MonthEnum enumerated type value.
– ProjectStateEnum: a ProjectStateEnum enumerated type value.
– QuarterEnum: a QuarterEnum enumerated type value.
– TaskStateEnum: a TaskStateEnum enumerated type value.
– WeekEnum: a WeekEnum enumerated type value.

The metadata of an attribute (such as translated display name and description) is
defined by the template that is associated with the attribute and its parent object
instance. Attributes provide a simple yet extensible mechanism for showing both
required and optional object instance attributes, such as project name, code, and
start date.

SOAP API enumerated data types
The IBM Marketing Operations SOPA API supports the following enumerated data
types and values.

ApprovalMethodEnum
ApprovalMethodEnum defines valid approval methods. Possible values
are:
v SEQUENTIAL
v SIMULTANEOUS

ApprovalStateEnum
ApprovalStateEnum defines valid approval states. Possible values are:
v CANCELLED
v COMPLETED
v IN_PROGRESS
v NOT_STATED
v ON_HOLD

AssetLibraryStateEnum
AssetLibraryStateEnum defines valid asset library states. Possible values
are:
v DISABLED
v ENABLED

Chapter 4. IBM Marketing Operations SOAP API 27

AssetStateEnum
AssetStateEnum defines valid asset states. Possible values are:
v ARCHIVE
v DRAFT
v FINALIZE
v LOCK

AttachmentTypeEnum
AttachmentTypeEnum defines valid attachment types. Possible values are:
v ASSET
v FILE
v URL

BudgetPeriodEnum
BudgetPeriodEnum defines the possible budget periods. Possible values
are:
v ALL
v MONTHLY
v QUARTERLY
v WEEKLY
v YEARLY

BudgetTypeEnum
BudgetTypeEnum defines valid budget types. Possible values are:
v ACTUAL
v ALLOCATED
v COMMITTED
v FORECAST
v TOTAL

ComponentTypeEnum
ComponentTypeEnum identifies the accessible Marketing Operations
component types. Possible values are:
v APPROVAL
v ASSET
v ASSET_FOLDER
v ASSET_LIBRARY
v ATTACHMENT
v FINANCIAL_ACCOUNT
v GROUPING_FOLDER
v INVOICE
v MARKETING_OBJECT
v PLAN_TEAM
v PLAN_USER
v PROGRAM
v PROJECT
v PROJECT_REQUEST
v TASK
v

28 IBM Marketing Operations Integration Module

InvoiceStateEnum
InvoiceStateEnum defines valid invoice states. Possible values are:
v CANCELLED
v DRAFT
v PAID
v PAYABLE

MonthEnum
MonthEnum defines valid values for the month.

OfferStateEnum
OfferStateEnum defines valid offer states. Possible values are:
v STATE_OFFER_DRAFT
v STATE_OFFER_PUBLISHED
v STATE_OFFER_RETIRED

ProjectCopyTypeEnum
ProjectCopyTypeEnum defines valid methods for copying a project.
Possible values are:
v COPY_USING_PROJECT_METRICS
v COPY_USING_TEMMPLATE_METRICS

ProjectParticipantLevelEnum
ProjectParticipantLevelEnum identifies the roles that users can have in a
project. Possible values are:
v OWNER
v PARTICIPANT
v REQUESTER

ProjectStateEnum
ProjectStateEnum defines valid project and request states. Possible values
are:
v ACCEPTED
v CANCELLED
v COMPLETED
v DRAFT
v IN_PROGRESS
v IN_RECONCILIATION
v LATE: the project did not start by its scheduled begin date.
v NOT_STARTED
v ON_HOLD
v OVERDUE: the project was not completed before its scheduled end date.
v RETURNED
v SUBMITTED

For more information about project and task statuses, see the IBM
Marketing Operations User's Guide.

QuarterEnum
QuarterEnum defines the valid values for quarters: Q1, Q2, Q3, and Q4.

TaskStateEnum
TaskStateEnum defines valid workflow task states. Possible values are:
v ACTIVE

Chapter 4. IBM Marketing Operations SOAP API 29

v DISABLED
v FINISHED
v PENDING
v SKIPPED

WeekEnum
WeekEnum defines valid values for weeks in a year, from WEEK_1 to
WEEK_53.

30 IBM Marketing Operations Integration Module

Before you contact IBM technical support

If you encounter a problem that you cannot resolve by consulting the
documentation, your company's designated support contact can log a call with
IBM technical support. Use these guidelines to ensure that your problem is
resolved efficiently and successfully.

If you are not a designated support contact at your company, contact your IBM
administrator for information.

Note: Technical Support does not write or create API scripts. For assistance in
implementing our API offerings, contact IBM Professional Services.

Information to gather

Before you contact IBM technical support, gather the following information:
v A brief description of the nature of your issue.
v Detailed error messages that you see when the issue occurs.
v Detailed steps to reproduce the issue.
v Related log files, session files, configuration files, and data files.
v Information about your product and system environment, which you can obtain

as described in "System information."

System information

When you call IBM technical support, you might be asked to provide information
about your environment.

If your problem does not prevent you from logging in, much of this information is
available on the About page, which provides information about your installed IBM
applications.

You can access the About page by selecting Help > About. If the About page is not
accessible, check for a version.txt file that is located under the installation
directory for your application.

Contact information for IBM technical support

For ways to contact IBM technical support, see the IBM Product Technical Support
website: (http://www.ibm.com/support/entry/portal/open_service_request).

Note: To enter a support request, you must log in with an IBM account. This
account must be linked to your IBM customer number. To learn more about
associating your account with your IBM customer number, see Support Resources
> Entitled Software Support on the Support Portal.

© Copyright IBM Corp. 2002, 2016 31

http://www.ibm.com/support/entry/portal/open_service_request

32 IBM Marketing Operations Integration Module

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002, 2016 33

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
B1WA LKG1
550 King Street
Littleton, MA 01460-1250
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

34 IBM Marketing Operations Integration Module

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Privacy Policy and Terms of Use Considerations
IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. A cookie is a piece of data that a web site can
send to your browser, which may then be stored on your computer as a tag that
identifies your computer. In many cases, no personal information is collected by
these cookies. If a Software Offering you are using enables you to collect personal
information through cookies and similar technologies, we inform you about the
specifics below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user's user name, and other
personal information for purposes of session management, enhanced user usability,
or other usage tracking or functional purposes. These cookies can be disabled, but
disabling them will also eliminate the functionality they enable.

Various jurisdictions regulate the collection of personal information through
cookies and similar technologies. If the configurations deployed for this Software
Offering provide you as customer the ability to collect personal information from
end users via cookies and other technologies, you should seek your own legal
advice about any laws applicable to such data collection, including any
requirements for providing notice and consent where appropriate.

IBM requires that Clients (1) provide a clear and conspicuous link to Customer's
website terms of use (e.g. privacy policy) which includes a link to IBM's and
Client's data collection and use practices, (2) notify that cookies and clear gifs/web
beacons are being placed on the visitor's computer by IBM on the Client's behalf
along with an explanation of the purpose of such technology, and (3) to the extent
required by law, obtain consent from website visitors prior to the placement of
cookies and clear gifs/web beacons placed by Client or IBM on Client's behalf on
website visitor's devices

For more information about the use of various technologies, including cookies, for
these purposes, See IBM's Online Privacy Statement at: http://www.ibm.com/
privacy/details/us/en section entitled "Cookies, Web Beacons and Other
Technologies."

Notices 35

36 IBM Marketing Operations Integration Module

IBM®

Printed in USA

	Contents
	Chapter 1. What is IBM Marketing Operations Integration Services?
	What are the requirements for Marketing Operations Integration Services?
	IBM Marketing Operations Integration Services basics
	Installing Integration Services
	Software developer kit contents

	Hosted JavaDocs
	Marketing Operations documentation and help

	Chapter 2. Marketing Operations Integration Webservice
	Marketing Operations Integration Services WSDL
	executeProcedure
	Marketing Operations Integration Webservice data types

	Chapter 3. IBM Marketing Operations procedures
	Assumptions
	Configuration parameters
	Design
	Procedure lifecycle
	Key Java classes
	Data locking
	Procedure transactions
	Procedure communication
	Procedure logging
	Procedure plug-in definition file

	Chapter 4. IBM Marketing Operations SOAP API
	Contents of the IBM Marketing Operations SOAP API
	SOAP API interfaces
	API methods

	SOAP API common exceptions
	SOAP API handles
	SOAP API AttributeMap
	SOAP API enumerated data types

	Before you contact IBM technical support
	Notices
	Trademarks
	Privacy Policy and Terms of Use Considerations

