
Version 11 Release 0
May 31 2018

IBM Interact Administrator's Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 363.

This edition applies to version 11, release 0, modification 0 of IBM Interact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2001, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Administer IBM Interact . . . 1
Interact key concepts 1

Audience levels 1
Design environment 2
Events 2
Interactive channels 3
Interactive flowcharts 3
Interaction points 4
Offers. 4
Profiles 4
Runtime environment 4
Runtime sessions 5
Touchpoints 5
Treatment rules 5

Interact architecture 5
Interact network considerations 6
Interact server ports and network security 7
Logging in to IBM Marketing Software 9

Chapter 2. Configuring Users 11
Configuring the runtime environment user 11
Configuring design environment users 11
Example design environment permissions 13

Chapter 3. Managing Interact data
sources 15
Interact data sources 15
Databases and the applications 15
Campaign system tables 16
Runtime tables 17
Test run tables 18

Overriding the default data types used for
dynamically created tables 19
Overriding the default data types 19
Default data types for dynamically created tables 20

Profile database 20
Learning tables 22
Contact history for cross-session response tracking 22
Running database scripts to enable features . . . 23
About contact and response history tracking . . . 23

Contact and response types 24
Additional Contact types 24
Additional response types 25
Runtime environment staging tables to Campaign
history tables mapping 27
Configuring JMX monitoring for the contact and
response history module 32

About cross-session response tracking 32
Cross-session response tracking data source
configuration 33
Configuring contact and response history tables
for cross-session response tracking. 33
Enabling cross-session response tracking. . . . 36
Cross-session response offer matching 36

Using a database load utility with the runtime
environment 39

Enabling a database load utility with runtime
environment 40

Event pattern ETL process 40
Running the stand-alone ETL process. 40
Stopping the stand-alone ETL process 42

Chapter 4. Offer serving 43
Offer eligibility 43

Generating a list of candidate offers 43
Calculate the marketing score 44
Influencing learning 45

Suppress offers 45
Enabling offer suppression 46
Offer suppression table 46

Global offers and individual assignments 46
Defining the default cell codes 47
Defining offers not used in a treatment rule . . 47
About the global offers table. 47
Assigning global offers 48
Global offer table 48
About the score override table 50
Configuring score overrides 50
Score override table 50

Interact built-in learning overview. 53
Interact learning module 53
Enabling the learning module 55
Learning attributes 55
Defining a learning attribute. 57
Define dynamic learning attributes 57
Interact AutoBinning 58
Configuring the runtime environment to
recognize external learning modules 59

Chapter 5. Understanding the Interact
API 61
Interact API dataflow 61
Simple interaction planning example 65
Designing the Interact API integration 69

Points to consider 69

Chapter 6. Managing the IBM Interact
API 71
Locale and the Interact API 71
About JMX monitoring 71

Configuring Interact to use JMX monitoring with
the RMI protocol 71
Configuring Interact to use JMX monitoring with
the JMXMP protocol 72
Configuring Interact to use the jconsole scripts
for JMX monitoring. 72
JMX attributes 73
JMX operations 83

© Copyright IBM Corp. 2001, 2018 iii

Chapter 7. Classes and methods for
the IBM Interact Java, SOAP, and REST
API 85
Interact API Classes 85

Java serialization over HTTP prerequisites . . . 85
SOAP prerequisites 86
REST prerequisites 86
API JavaDoc 87
API examples. 87

Working with session data 87
About the InteractAPI class 88

endSession 88
executeBatch 89
getInstance 91
getOffers 91
getOffersForMultipleInteractionPoints 92
getProfile 94
getVersion 95
postEvent 96
setAudience 98
setDebug 99
startSession 100
Reserved parameters 104

About the AdvisoryMessage class 106
getDetailMessage 106
getMessage 107
getMessageCode 107
getStatusLevel 107

About the AdvisoryMessageCode class 108
Advisory message codes. 108

About the BatchResponse class 110
getBatchStatusCode 110
getResponses 111

About the Command interface 111
setAudienceID 112
setAudienceLevel 113
setDebug 113
setEvent 114
setEventParameters 114
setGetOfferRequests 115
setInteractiveChannel 116
setInteractionPoint. 117
setMethodIdentifier 117
setNumberRequested 118
setRelyOnExistingSession 118

About the NameValuePair interface 119
getName 119
getValueAsDate 119
getValueAsNumeric 119
getValueAsString 120
getValueDataType 120
setName 121
setValueAsDate. 121
setValueAsNumeric 122
setValueAsString 122
setValueDataType 122

About the Offer class 123
getAdditionalAttributes 123
getDescription 124
getOfferCode 124

getOfferName 125
getScore 125
getTreatmentCode 125

About the OfferList class 126
getDefaultString 126
getRecommendedOffers 127

About the Response class 127
getAdvisoryMessages 127
getApiVersion 128
getOfferList 128
getAllOfferLists 129
getProfileRecord 129
getSessionID. 130
getStatusCode 130

Chapter 8. Classes and methods for
the IBM Interact JavaScript API . . . 131
JavaScript prerequisites 131
Working with session data 131
Working with the callback parameter 132
About the InteractAPI class. 132

startSession 133
getOffers 137
getOffersForMultipleInteractionPoints 138
setAudience 139
getProfile 140
endSession 141
setDebug 141
getVersion 142
executeBatch 142

JavaScript API example 143
Example response JavaScript object onSuccesss . . 150

Chapter 9. About the ExternalCallout
API 153
IAffiniumExternalCallout interface 153

Adding a web service for use with the
EXTERNALCALLOUT macro 154
getNumberOfArguments 154
getValue 154
initialize 155
shutdown 155

ExternalCallout API example 156
IInteractProfileDataService interface 157

Adding a data source for use with Profile Data
Services 157

IParameterizableCallout interface 158
initialize 158
shutdown 158

ITriggeredMessageAction interface 159
getName 159
setName 159

IChannelSelector interface 159
selectChannels 160

IDispatcher interface 160
dispatch 160

IGateway interface 161
deliver 161
validate 162

iv IBM Interact Administrator's Guide

Chapter 10. IBM Interact utilities . . . 163
Run Deployment Utility (runDeployment.sh/.bat) 163

Chapter 11. About the Learning API 167
Configuring the runtime environment to recognize
external learning modules 168
ILearning interface 168

initialize 169
logEvent 169
optimizeRecommendList 170
reinitialize 171
shutdown 171

IAudienceID interface 172
getAudienceLevel 172
getComponentNames. 172
getComponentValue 172

IClientArgs 172
getValue 172

IInteractSession. 173
getAudienceId 173
getSessionData 173

IInteractSessionData interface 173
getDataType 173
getParameterNames 173
getValue 174
setValue 174

ILearningAttribute. 174
getName 174

ILearningConfig 175
ILearningContext 175

getLearningContext 175
getResponseCode 175

IOffer 176
getCreateDate 176
getEffectiveDateFlag 176
getExpirationDateFlag 176
getOfferAttributes 176
getOfferCode 177
getOfferDescription 177
getOfferID 177
getOfferName 177
getUpdateDate 177

IOfferAttributes 177
getParameterNames 178
getValue 178

IOfferCode interface 178
getPartCount 178
getParts 178

LearningException. 178
IScoreOverride 178

getOfferCode 179
getParameterNames 179
getValue 179

ISelectionMethod 180
ITreatment interface 180

getCellCode 180
getCellId 180
getCellName 180
getLearningScore 180
getMarketerScore 181
getOffer 181

getOverrideValues 181
getPredicate 181
getPredicateScore 182
getScore 182
getTreatmentCode 182
setActualValueUsed 182

Learning API example 183

Chapter 12. IBM Interact WSDL. . . . 187

Chapter 13. Interact runtime
environment configuration properties . 195
Interact | general 195

Interact | general | learningTablesDataSource 195
Interact | general | prodUserDataSource . . . 197
Interact | general | systemTablesDataSource 198
Interact | general | testRunDataSource. . . . 203
Interact | general |
contactAndResponseHistoryDataSource . . . 204
Interact | general | idsByType 206

Interact | flowchart 206
Interact | flowchart | ExternalCallouts |
[ExternalCalloutName] 208
Interact | flowchart | ExternalCallouts |
[ExternalCalloutName] | Parameter Data |
[parameterName] 208

Interact | monitoring. 209
Interact | monitoring | activitySubscribers . . 210

Interact | profile 211
Interact | profile | Audience Levels |
[AudienceLevelName] 212
Interact | profile | Audience Levels |
[AudienceLevelName] | Offers by Raw SQL . . 215
Interact | profile | Audience Levels |
[AudienceLevelName | Profile Data Services |
[DataSource]. 218

Interact | offerserving 219
Interact | offerserving | Built-in Learning
Config. 221
Interact | offerserving | Built-in Learning
Config | Parameter Data | [parameterName] . 223
Interact | offerserving | External Learning
Config. 224
Interact | offerserving | External Learning
Config | Parameter Data | [parameterName] . 225
Interact | offerserving | Constraints. 225

Interact | services 226
Interact | services | contactHist 226
Interact | services | contactHist | cache . . . 227
Interact | services | contactHist |
contactStatusCodes 227
Interact | services | contactHist | fileCache . . 228
Interact | services | defaultedStats 228
Interact | services | defaultedStats | cache . . 229
Interact | services | eligOpsStats 229
Interact | services | eligOpsStats | cache . . . 229
Interact | services | eventActivity 230
Interact | services | eventActivity | cache . . 230
Interact | services | eventPattern. 230

Contents v

Interact | services | eventPattern |
userEventCache 231
Interact | services | eventPattern |
advancedPatterns 232
Interact | services | customLogger 234
Interact | services | customLogger | cache . . 235
Interact | services | responseHist 235
Interact | services | responseHist | cache . . . 236
Interact | services | response Hist |
responseTypeCodes 236
Interact | services | responseHist | fileCache 237
Interact | services | crossSessionResponse . . 237
Interact | services | crossSessionResponse |
cache 238
Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] |
TrackingCodes | byTreatmentCode 239
Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] |
TrackingCodes | byOfferCode. 240
Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] |
TrackingCodes | byAlternateCode 241
Interact | services | threadManagement |
contactAndResponseHist 241
Interact | services | threadManagement |
allOtherServices 242
Interact | services | threadManagement |
flushCacheToDB 243
Interact | services | threadManagement |
eventHandling 244
Interact | services | configurationMonitor. . . 245

Interact | cacheManagement 246
Interact | cacheManagement | Cache Managers 246
Interact | caches 250

Interact | triggeredMessage 256
Interact | triggeredMessage | offerSelection . . 257
Interact | triggeredMessage | dispatchers . . . 258
Interact | triggeredMessage | gateways |
<gatewayName> 260
Interact | triggeredMessage | channels. . . . 261

Interact | activityOrchestrator 263
Interact | activityOrchestrator | receivers . . . 263
Interact | activityOrchestrator | gateways. . . 264

Interact | ETL | patternStateETL 265
Interact | ETL | patternStateETL |
<patternStateETLName> | RuntimeDS 266
Interact | ETL | patternStateETL |
<patternStateETLName> | TargetDS 267
Interact | ETL | patternStateETL |
<patternStateETLName> | Report 269

Chapter 14. Interact Simulator 271
Interact | simulator 271
Interact | simulator|scenarioDataSource 271

Chapter 15. Interact design
environment configuration properties . 275
Campaign | partitions | partition[n] | reports . . 275

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking. 277

Campaign | partitions | partition[n] | Interact
| contactAndResponseHistTracking |
runtimeDataSources | [runtimeDataSource] . . 281
Campaign | partitions | partition[n] | Interact
| contactAndResponseHistTracking |
contactTypeMappings 282
Campaign | partitions | partition[n] | Interact
| contactAndResponseHistTracking |
responseTypeMappings 282

Campaign | partitions | partition[n] | Interact |
report 283
Campaign | partitions | partition[n] | Interact |
learning 283

Campaign | partitions | partition[n] | Interact
| learning | learningAttributes |
[learningAttribute]. 286

Campaign | partitions | partition[n] | Interact |
deployment 287
Campaign | partitions | partition[n] | Interact |
serverGroups | [serverGroup] 287

Campaign | partitions | partition[n] | Interact
| serverGroups | [serverGroup] | instanceURLs
| [instanceURL] 287

Campaign | partitions | partition[n] | Interact |
flowchart 288
Campaign | partitions | partition[n] | Interact |
whiteList | [AudienceLevel] | DefaultOffers . . . 289
Campaign | partitions | partition[n] | Interact |
whiteList | [AudienceLevel] | offersBySQL . . . 289
Campaign | partitions | partition[n] | Interact |
whiteList | [AudienceLevel] | ScoreOverride . . 290
Campaign | partitions | partition[n] | server |
internal 290
Campaign | monitoring 294
Campaign | partitions | partition[n] | Interact |
outboundChannels 296

Campaign | partitions | partition[n] | Interact
| outboundChannels | Parameter Data. . . . 296

Campaign | partitions | partition[n] | Interact |
Simulator. 296

Chapter 16. Real-time offer
personalization on the client side. . . 297
About the Interact Message Connector 297

Installing the Message Connector 298
Creating the Message Connector links 304

About the Interact Web Connector 306
Installing the Web Connector on the runtime
server 307
Installing the Web Connector as a separate web
application 307
Configuring the Web Connector 309
Using the Web Connector Admin Page 320
Sample Web Connector Page 321

vi IBM Interact Administrator's Guide

Chapter 17. Interact and Digital
Recommendations integration 325
Overview of Interact integration with Digital
Recommendations 325

Integration Prerequisites 326
Configuring an offer for Digital Recommendations
integration 326
Using the Integration Sample Project 327

Chapter 18. Interact and Digital Data
Exchange integration 333
Prerequisites. 333
Integrating IBM Interact with your website through
IBM Digital Data Exchange 333
Interact tags in Digital Data Exchange 334

End Session 335
Get Offers 335
Load Library 335
Post Event 336
Set Audience 336
Start Session. 337
Example tag settings 337

Verify your integration configuration 341

Chapter 19. Configure gateways for
triggered messages 343
Using the IBM Interact Inbound Gateway for IBM
Universal Behavior Exchange 343

Using the IBM Interact Outbound Gateway for
IBM Universal Behavior Exchange 350
Using IBM Interact Outbound Gateway for IBM
Mobile Push Notification 354
Using the IBM Interact Email (Transact) Outbound
Gateway for IBM Marketing Cloud 356

Adding a dispatcher for the gateway integration 356
Adding a gateway for the IBM Interact Email
(Transact) Outbound Gateway for IBM
Marketing Cloud 356
Add a channel handler for the IBM Interact
Email (Transact) Outbound Gateway for IBM
Marketing Cloud 358
Adding an outbound channel for the IBM
Interact Email (Transact) Outbound Gateway for
IBM Marketing Cloud 358
Configuring the transactional mailing with the
IBM Interact Email (Transact) Outbound
Gateway for IBM Marketing Cloud 359

Before you contact IBM technical
support 361

Notices 363
Trademarks 365
Privacy Policy and Terms of Use Considerations 365

Contents vii

viii IBM Interact Administrator's Guide

Chapter 1. Administer IBM Interact

When you administer Interact you configure and maintain users and roles, data
sources, and optional product features. You also monitor and maintain the design
and runtime environments. Product-specific application programming interfaces
(APIs) are available for you to use.

Administering Interact consists of several tasks. These tasks can include, but are
not limited to:
v Maintaining users and roles
v Maintaining data sources
v Configuring Interact optional offer serving features
v Monitoring and maintaining runtime environment performance

Before you start administering Interact, there are some key concepts about how
Interact works that you can familiarize yourself with to make your tasks easier.
The sections that follow describe the administrative tasks that are associated with
Interact.

The second part of the administration guide describes the APIs available with
Interact:
v Interact API
v ExternalCallout API
v Learning API

Interact key concepts
IBM® Interact is an interactive engine that targets personalized marketing offers to
various audiences.

This section describes some of the key concepts you should understand before you
work with Interact.

Audience levels
An audience level is a collection of identifiers that can be targeted by a campaign.
You can define audience levels to target the correct set of audiences for your
campaign.

For example, a set of campaigns can use the audience levels "Household,"
"Prospect," "Customer," and "Account." Each of these levels represents a certain
view of the marketing data available for a campaign.

Audience levels are typically organized hierarchically. Using the examples above:
v Household is at the top of the hierarchy, and each household can contain

multiple customers and one or more prospects.
v Customer is next in the hierarchy, and each customer can have multiple

accounts.
v Account is at the bottom of the hierarchy.

© Copyright IBM Corp. 2001, 2018 1

Other, more complex examples of audience hierarchies exist in business-to-business
environments, where audience levels can exist for businesses, companies, divisions,
groups, individuals, accounts, and so on.

These audience levels can have different relationships with each other, for example
one-to-one, many-to-one, or many-to-many. By defining audience levels, you allow
these concepts to be represented within Campaign so that users can manage the
relationships among these different audiences for targeting purposes. For example,
although there might be multiple prospects per household, you might want to
limit mailings to one prospect per household.

Design environment
Use the design environment to configure various Interact components and deploy
them to the runtime environment.

The design environment is where you complete most of your Interact
configuration. In the design environment, you define events, interaction points,
smart segments, and treatment rules. After you configure these components, you
deploy them to the runtime environment.

The design environment is installed with the Campaign web application.

Events
An event is an action that is taken by a visitor and that triggers an action in the
runtime environment. Examples of an event can be: placing a visitor into a
segment, presenting an offer, or logging data.

Events are first created in an interactive channel and then triggered by a call to the
Interact API by using the postEvent method. An event can lead to one or more of
the following actions that are defined in the Interact design environment:
v Trigger re-segmentation: The runtime environment runs all the interactive

flowcharts for the current audience level that is associated with the interactive
channel again, by using the current data in the visitor's session.
When you design your interaction, unless you specify a specific flowchart, a
resegmentation action runs all interactive flowcharts that are associated with this
interactive channel with the current audience level again, and that any request
for offers waits until all flowcharts are finished. Excessive resegmentation within
a single visit can affect the performance of the touchpoint in a customer-visible
way.
Place the customer in new segments after significant new data is added to the
runtime session object, such as new data from requests from the Interact API
(such as changing the audience) or customer actions (such as adding new items
to a wish list or shopping cart).

v Log offer contact: The runtime environment flags the recommended offers for
the database service to log the offers to contact history.
For web integrations, log the offer contact in the same call where you request
offers to minimize the number of requests between the touchpoint and the
runtime server.
If the touchpoint does not return the treatment codes for the offers that Interact
presented to the visitor, the runtime environment logs the last list of
recommended offers.

v Log offer acceptance: The runtime environment flags the selected offer for the
database service to log to response history.

2 IBM Interact Administrator's Guide

v Log offer rejection: The runtime environment flags the selected offer for the
database service to log to response history.

v Trigger user expression: An expression action is an action that you can define by
using Interact macros, including functions, variables, and operators, including
EXTERNALCALLOUT. You can assign the return value of the expression to any
profile attribute.
When you click the edit icon next to Trigger User Expression, the standard User
Expression editing dialog is displayed, and you can use this dialog to specify the
audience level, optional field name to which to assign the results, and the
definition of the expression itself.

v Trigger events: You can use the Trigger Events action to enter an event name
that you want to be triggered by this action. If you enter an event that is already
defined, that event is triggered when this action is run. If the event name you
enter does not exist, this action causes the creation of that event with the
specified action.

You can also use events to trigger actions that are defined by the postEvent
method, including logging data to a table, including data to learning, or triggering
individual flowcharts.

Events can be organized into categories for your convenience in the design
environment. Categories have no functional purpose in the runtime environment.

Interactive channels
Use interactive channels in Interact to coordinate all the objects, data, and server
resources that are involved in interactive marketing.

An interactive channel is a representation in Campaign of a touchpoint where the
method of the interface is an interactive dialog. This software representation is
used to coordinate all of the objects, data, and server resources that are involved in
interactive marketing.

An interactive channel is a tool that you use to define interaction points and
events. You can also access reports for an interactive channel from the Analysis tab
of that interactive channel.

Interactive channels also contain production runtime and staging server
assignments. You can create several interactive channels to organize your events
and interaction points if you have only one set of production runtime and staging
servers, or to divide your events and interaction points by customer-facing system.

Interactive flowcharts
Use interactive flowcharts to divide your customers into segments and assign a
profile to a segment.

An interactive flowchart is related to but slightly different from a Campaign batch
flowchart. Interactive flowcharts perform the same major function as batch
flowcharts: dividing your customers in to groups known as segments. For
interactive flowcharts, however, the groups are smart segments. Interact uses these
interactive flowcharts to assign a profile to a segment when a behavioral event or
system event indicates that a visitor re-segmentation is needed.

Interactive flowcharts contain a subset of the batch flowchart processes, and a few
interactive flowchart-specific processes.

Chapter 1. Administer IBM Interact 3

Note: Interactive flowcharts can be created in a Campaign session only.

Interaction points
An interaction point is a place in your touchpoint where you want to present an
offer.

Interaction points contain default filler content in cases where the runtime
environment does not have other eligible content to present. Interaction points can
be organized into zones.

Offers
An offer represents a single marketing message, which can be delivered in various
ways.

In Campaign, you create offers that can be used in one or more campaigns.

Offers are reusable:
v In different campaigns
v At different points in time
v For different groups of people (cells)
v As different "versions" by varying the offer's parameterized fields

You assign offers to interaction points in the touchpoints that are presented to
visitors.

Profiles
A profile is the set of customer data that is used by the runtime environment. This
data can be a subset of the customer data available in your customer database,
data that is collected in real time, or a combination of the two.

The customer data is used for the following purposes:
v To assign a customer to one or more smart segments in real-time interaction

scenarios.
You need a set of profile data for each audience level by which you want to
segment. For example, if you are segmenting by location, you might include
only the customer's postal code from all the address information you have.

v To personalize offers
v As attributes to track for learning

For example, you can configure Interact to monitor the marital status of a visitor
and how many visitors of each status accept a specific offer. The runtime
environment can then use that information to refine offer selection.

This data is read-only for the runtime environment.

Runtime environment
The runtime environment connects to your touchpoint and performs interactions.
The runtime environment can consist of one or many runtime servers that are
connected to a touchpoint.

The runtime environment uses the information that is deployed from the design
environment in combination with the Interact API to present offers to your
touchpoint.

4 IBM Interact Administrator's Guide

Runtime sessions
A runtime session exists on the runtime server for each visitor to your touchpoint.
This session holds all the data for the visitor that the runtime environment uses to
assign visitors to segments and recommend offers.

You create a runtime session when you use the startSession call.

Touchpoints
A touchpoint is an application or place where you can interact with a customer. A
touchpoint can be a channel where the customer initiates the contact (an "inbound"
interaction) or where you contact the customer (an "outbound" interaction).

Common examples are websites and call center applications. Using the Interact
API, you can integrate Interact with your touchpoints to present offers to
customers based on their action in the touchpoint. Touchpoints are also called
client-facing systems (CFS).

Treatment rules
Treatment rules assign an offer to a smart segment. These assignments are further
constrained by the custom-defined zone you associate with the offer in the
treatment rule.

For example, you have one set of offers you assign a smart segment in the "login"
zone, but a different set of offers for the same segment in the "after purchase" zone.
Treatment rules are defined on an interaction strategy tab of a campaign.

Each treatment rule also has a marketing score. If a customer is assigned to more
than one segment, and therefore more than one offer is applicable, the marketing
scores help define which offer Interact suggests. Which offers the runtime
environment suggests can be influenced by a learning module, an offer
suppression list, and global and individual offer assignments.

Interact architecture
The Interact environment consists of at least two major components, design
environment and the runtime environment. You may have optional testing runtime
servers as well.

The following figure shows the high-level architecture overview.

Chapter 1. Administer IBM Interact 5

The design environment is where you perform the majority of your Interact
configuration. The design environment is installed with the Campaign web
application and references the Campaign system tables and your customer
databases. You use the design environment to define the interaction points and
events you use with the API.

After you design and configure how you want the runtime environment to handle
customer interactions, you deploy that data to either a staging server group for
testing or a production runtime server group for real-time customer interaction.

The Interact API provides the connection between your touchpoint and the
runtime server. You reference objects (interaction points and events) created in the
design environment with the Interact API and use them to request information
from the runtime server.

Interact network considerations
A production installation of Interact spans at least two machines. In a high-volume
production environment, with several Interact runtime servers and distributed
databases, your installation might span dozens of machines.

For best performance, there are several network topology requirements to consider.
v If your implementation of the Interact API starts and ends sessions in the same

call, for example:
executeBatch(startSession, getOffers, postEvent, endSession)

you do not need to enable session persistence (sticky sessions) between the load
balancer and the Interact runtime servers. You can configure the Interact runtime
servers session management for local cache type.

v If your implementation of the Interact API uses multiple calls to start and end
sessions, for example:

6 IBM Interact Administrator's Guide

startSession
. . .
executeBatch(getOffers, postEvent)
. . .
endSession

and you are using a load balancer for your Interact runtime servers, you should
enable some type of persistence for the load balancer (also known as sticky
sessions). If that is not possible, or if you are not using a load balancer, configure
the Interact servers session management for a distributed cacheType. If you are
using a distributed cache, all the Interact runtime servers must be able to
communicate via multicast. You may need to tune your network so that the
communication between Interact servers using the same multicast IP address
and port does not impede system performance. A load balancer with sticky
sessions has better performance than using a distributed cache.

v Distributed caching among multiple server groups is not supported.
v Keep your runtime environment Interact servers, Marketing Platform, load

balancers, and touchpoint) in the same geographic location for best performance.
Design time and runtime can be in different geographic locations, but expect a
slow deployment.

v Have a fast network connection (at least 1Gb) between the Interact production
server group and its associated touchpoint.

v Design time requires http or https access to runtime to complete deployment
tasks. Any firewalls or other network applications must be configured to allow
deployment. You may need to extend the HTTP timeout lengths between the
design environment and the runtime environments if you have large
deployments.

v The contact and response history module requires access to the design time
database (Campaign system tables) and access to the runtime database Interact
runtime tables). You must configure your databases and network appropriately
for this data transfer to occur.

In a testing or staging installation, you can install Interact design time and runtime
on the same machine. This scenario is not recommended for a production
environment.

Interact server ports and network security
Configure Interact t to secure your server ports.

Interact runtime ports

Some of these ports can be closed, or are not required by all Interact installations,
depending on your configuration.

Interact application server port for HTTP
The default port where Interact requests are handled.

Interact application server port for HTTPS
The default SSL port where Interact requests are handled.

Interact systemTablesDataSource port
See the datasource's JDBC configuration in Marketing Platform.

Interact learningTablesDataSource port
See the datasource's JDBC configuration in Marketing Platform.

Interact contactAndResponseHistoryDataSource port
See the datasource's JDBC configuration in Marketing Platform.

Chapter 1. Administer IBM Interact 7

Interact prodUserDataSource port
See the datasource's JDBC configuration in Marketing Platform.

Interact testRunDataSource port
See the datasource's JDBC configuration in Marketing Platform.

ETL communication port
Configure this port in Interact | ETL | patternStateETL |
communicationPort in the configuration properties.

EHCache multicast port
Configure this port in Interact | cacheManagement | Cache | Managers |
EHCache | Parameter Data | multicastPort in configuration properties
when cache mode is distributed.

ExtremeScale catalog port
Configure this port in Interact | Cache Managers | Extreme Scale |
Parameter Data | catalogURLs in configuration properties.

Interact JMX Monitoring port
Configure this port in Interact | monitoring | port under configuration
properties or run -Dinteract.jmx.monitoring.port=portNumber.

Interact WebConnector port

This port is usually the same as the Interact server port, but it is
modifiable in jsconnector.xml.

For the ports for any Interact integrated products, see the documentation for those
products.

JMX monitoring is not required for typical Interact functionality. However, it is
used for diagnostics and monitoring.

JMX port access can be disabled in the Interact configuration or limited to specific
IP address through firewall configurations. This is recommended due to the JMX
vulnerability recently found in the third party Apache Commons Library.

The JMX remoting functionality in Apache Geronimo 3.x before 3.0.1, as used in
IBM WebSphere Application Server (WAS) Community Edition 3.0.0.3 and other
products, does not properly implement the RMI classloader, which allows remote
attackers to execute arbitrary code by using the JMX connector to send a crafted
serialized object. See http://www-01.ibm.com/support/
docview.wss?uid=swg21643282.

Interact design ports

Some of these ports can be closed, or are not required by all Interact installations,
depending on your configuration.

Campaign application server port for HTTP
The default port where Interact requests are handled.

Campaign application server port for HTTPS
The default SSL port where Interact requests are handled.

Campaign listener port
The port that Campaign uses internally to accept connections from the
web client.

8 IBM Interact Administrator's Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21643282
http://www-01.ibm.com/support/docview.wss?uid=swg21643282

Other Campaign design ports
See the Campaign documentation for more information on these ports.

Campaign JMX Connector port
Configure this port in Campaign | monitoring | port in configuration
properties for contact response history monitorying only.

Campaign operational monitoring server port
Configure this port in Campaign | monitoring | serverURL in
configuration properties.

Logging in to IBM Marketing Software
Use this procedure to log in to IBM Marketing Software.

You need the following.
v An intranet (network) connection to access your IBM Marketing Software server.
v A supported browser installed on your computer.
v User name and password to sign in to IBM Marketing Software.
v The URL to access IBM Marketing Software on your network.

The URL is:

http://host.domain.com:port/unica

where

host is the machine where Marketing Platform is installed.

domain.com is the domain in which the host machine resides.

port is the port number where the Marketing Platform application server is
listening.

Note: The following procedure assumes that you are logging in with an account
that has Admin access to Marketing Platform.

Access the IBM Marketing Software URL using your browser.
v If IBM Marketing Software is configured to integrate with Windows Active

Directory or with a web access control platform, and you are logged in to that
system, you see the default dashboard page. Your login is complete.

v If you see the login screen, log in using the default administrator credentials. In
a single-partition environment, use asm_admin with password as the password. In
a multi-partition environment, use platform_admin with password as the
password.
A prompt asks you to change the password. You can enter the existing
password, but for good security you should choose a new one.

v If IBM Marketing Software is configured to use SSL, you may be prompted to
accept a digital security certificate the first time you sign in. Click Yes to accept
the certificate.

If your login is successful, IBM Marketing Software displays the default dashboard
page.

Chapter 1. Administer IBM Interact 9

With the default permissions assigned to Marketing Platform administrator
accounts, you can administer user accounts and security using the options listed
under the Settings menu. To perform the highest level administration tasks for
IBM Marketing Software dashboards, you must log in as platform_admin.

10 IBM Interact Administrator's Guide

Chapter 2. Configuring Users

Interact requires you to configure two sets of users, runtime environment users
and design environment users.
v Runtime users are created in the Marketing Platform configured to work with

the runtime servers.
v Design time users are Campaign users. Configure the security for the various

members of your design team as for Campaign.

Configuring the runtime environment user
After you install Interact, you must configure at least one Interact user, the runtime
environment user. Runtime users are created in Marketing Platform.

The runtime environment user provides access to the runtime tables. The runtime
environment user is the user name and password you use to deploy interactive
channels. The runtime server uses the web application server JDBC authentication
for the database credentials. You do not have to add any runtime environment data
sources to the runtime environment user.

An LDAP user and any Platform user can deploy an Interactive channel. The
InteractAdminRole is not required to deploy the Interactive channel.

When you create runtime users:
v If you have separate Marketing Platform instances for each runtime server, you

must create the same user and password on each. All runtime servers that
belong to the same server group must share user credentials.

v If you use the database load utility, you must define the runtime tables as a data
source with login credentials for the runtime environment in your configuration
properties under Interact > general > systemTablesDataSource.

v If you enable security for JMX monitoring with the JMXMP protocol, you might
need a separate user for JMX monitoring security.

See the Marketing Platform documentation for the steps to create the runtime
users.

Configuring design environment users
Design environment users are Campaign users. You configure your design
environment users in the same way you configure Campaign role permissions.

Some design environment users also require some Campaign permissions such as
Custom Macros.

When you create design environment users:
v If you have any Campaign users who have permission to edit interactive

flowcharts, give them access to the test run tables data source.
v If you installed and configured Interact, the following extra options are available

for the default Global Policy and new policies.
v

© Copyright IBM Corp. 2001, 2018 11

Category Permissions

Campaigns v View Campaign Interaction Strategies - Ability to see but not
edit interaction strategy tabs in a campaign.

v Edit Campaign Interaction Strategies - Ability to make changes
to interaction strategy tabs, including treatment rules.

v Delete Campaign Interaction Strategies - Ability to remove
interaction strategy tabs from campaigns. Deletion of an
interaction strategy tab is restricted if the interaction strategy has
been included in an interactive channel deployment.

v Add Campaign Interaction Strategies - Ability to create new
interaction strategy tabs in a campaign.

v Initiate Campaign Interaction Strategy Deployments - Ability to
mark an interaction strategy tab for deployment or
undeployment.

Interactive Channels v Deploy Interactive Channels - Ability to deploy an interactive
channel to Interact runtime environments.

v Edit Interactive Channels - Ability to make changes to the
summary tab of interactive channels.

v Delete Interactive Channels - Ability to remove interactive
channels. Deletion of interactive channels is restricted if the
interactive channel has been deployed.

v View Interactive Channels - Ability to see but not edit
interactive channels.

v Add Interactive Channels - Ability to create new interactive
channels.

v View Interactive Channel Reports - Ability to see the analysis
tab of the interactive channel.

v Add Interactive Channel Child Objects - Ability to add
interaction points, zones, events, and categories.

Sessions v View Interactive Flowcharts - Ability to see an interactive
flowchart in a session.

v Add Interactive Flowcharts - Ability to create new interactive
flowcharts in a session.

v Edit Interactive Flowcharts - Ability to make changes to
interactive flowcharts.

v Delete Interactive Flowcharts - Ability to remove interactive
flowcharts. Deletion of interactive flowcharts is restricted if the
interactive channel to which this interactive flowchart is
assigned has been deployed.

v Copy Interactive Flowcharts - Ability to copy interactive
flowcharts.

v Test Run Interactive Flowcharts - Ability to initiate a test run of
an interactive flowchart.

v Review Interactive Flowcharts - Ability to see an interactive
flowchart and open processes to view settings, but unable to
make changes.

v Deploy Interactive Flowcharts - Ability to mark an interactive
flowcharts for deployment or undeployment.

12 IBM Interact Administrator's Guide

Example design environment permissions
This example lists the permissions that are granted to two different roles, one for
users who create interactive flowcharts, and one for users who define interaction
strategies.

Interactive flowchart role

This table shows the permissions that are given to the interactive flowchart role:

Category Permission

Custom Macro The user role has these permissions:

v Add Custom Macros

v Edit Custom Macros

v Use Custom Macros

Derived Field The user role has these permissions:

v Add Derived Fields

v Edit Derived Fields

v Use Derived Fields

Flowchart Template The user role has these permissions:

v Paste Templates

Segment Template The user role has these permissions:

v Add Segments

v Edit Segments

Session The user role has these permissions:

v View Session Summary

v View Interactive Flowcharts

v Add Interactive Flowcharts

v Edit Interactive Flowcharts

v Copy Interactive Flowcharts

v Test Run Interactive Flowcharts

v Deploy Interactive Flowcharts

Interaction strategy role

This table shows the permissions that are given to the interaction strategy role:

Category Permission

Campaign The user role has these permissions:

v View Campaign Summary

v Manage Campaign Target Cells

v View Campaign Interaction Strategies

v Edit Campaign Interaction Strategies

v Add Campaign Interaction Strategies

v Initiate Campaign Interaction Strategy
Deployments

Offer The user role has these permissions:

v View Offer Summary

Chapter 2. Configuring Users 13

Category Permission

Segment Template The user role has these permissions:

v View Segment Summary

Session The user role has these permissions:

v Review Interactive Flowcharts

14 IBM Interact Administrator's Guide

Chapter 3. Managing Interact data sources

Interact requires several data sources to function properly. Some data sources
contain the information Interact requires to function, other data sources contain
your data.

The following sections describe the Interact data sources including information you
need to configure them correctly, and some suggestions for maintaining them.

Interact data sources
Interact requires several sets of data to function. The sets of data are stored and
retrieved from data sources, and the data sources you set up depend on the
Interact features you are enabling.
v Campaign system tables. Beyond all the data for Campaign, the Campaign

system tables contain data for Interact components that you create in the design
environment, such as treatment rules and interactive channels. The design
environment and the Campaign system tables use the same physical database
and schema.

v Runtime tables(systemTablesDataSource). This data source contains the
deployment data from the design environment, staging tables for contact and
response history, and runtime statistics.

v Profile tables (prodUserDataSource). This data source contains any customer
data, beyond information that is gathered in real time, that is required by
interactive flowcharts to properly place visitors into smart segments. If you are
relying entirely on real-time data, you do not need profile tables. If you are
using profile tables, you must have at least one profile table per audience level
that is used by the interactive channel.
The profile tables can also contain the tables that are used for augmenting offer
serving, including tables for offer suppression, score override, and global and
individual offer assignment.

v Test run tables (testRunDataSource). This data source contains a sample of all
data that is required by interactive flowcharts to place visitors into smart
segments, including data that mimics what is gathered in real time during an
interaction. These tables are required for the server group that is designated as
the test run server group for the design environment only.

v Learning tables (learningTablesDataSource). This data source contains all data
that is gathered by the built-in learning utility. These tables can include a table
that defines dynamic attributes. If you are not using learning or are using an
external learning utility that you create, you do not need learning tables.

v Contact and response history for cross-session response
(contactAndResponseHistoryDataSource). This data source contains either the
Campaign contact history tables or a copy of them. If you are not using the
cross-session response feature, you do not need to configure these contact
history tables.

Databases and the applications
The data sources that you create for use by Interact might also be used to exchange
or share data with other IBM Marketing Software applications.

© Copyright IBM Corp. 2001, 2018 15

The following diagram shows Interact data sources and how they relate to IBM
Marketing Software applications.

Campaign Marketing

Platform

Interactive

Flowchart Test

Run Only

Campaign

System

Tables

R
e

p
o

rtin
g

 D
a

ta

DESIGN ENVIRONMENT

Data Flow

Deployment

Contact and Response

History Utility

M
a

rk
e

ti
n

g
 P

la
tf

o
rm

PRODUCTION RUNTIME ENVIRONMENTSTAGING RUNTIME ENVIRONMENT

Contact Response History

(contactAndResponse

HistoryDataSource)

Contact Response History

(contactAndResponse

HistoryDataSource)

Profile Tables

(prodUserDataSource)
Profile Tables

(prodUserDataSource)

Runtime Tables

(systemTablesDataSource)

Runtime Tables

(systemTablesDataSource)Test Run Tables

(testRunDataSource)

Runtime Server

Runtime Server

Runtime Server

Runtime Server

M
a

rk
e

tin
g

 P
la

tfo
rm

Learning Tables

(learningTables

DataSource)

Learning Tables

(learningTables

DataSource)

Runtime

Server

v Both Campaign and the test run server group access the test run tables.
v The test run tables are used for interactive flowchart test runs only.
v When you are using a runtime server to test a deployment, including the

Interact API, the runtime server uses the profile tables for data.
v If you configure the contact and response history module, the module uses a

background Extract, Transform, Load (ETL) process to move data from the
runtime staging tables to the Campaign contact and response history tables.

v The reporting function queries data from the learning tables, runtime tables, and
the Campaign system tables to display reports in Campaign.

You should configure the testing runtime environments to use a different set of
tables than your production runtime environments. With separate tables between
staging and production, you can keep your testing results separate from your
actual results. Note that the contact and response history module always inserts
data into the actual Campaign contact and response history tables (Campaign has
no testing contact and response history tables). If you have separate learning tables
for the testing runtime environment, and you want to see the results in reports,
you need a separate instance of IBM Cognos® BI running the learning reports for
the testing environment.

Campaign system tables
When you install the Interact design environment, you also create new,
Interact-specific tables in the Campaign system tables. The tables that you create
depend on the Interact features you are enabling.

If you enable the contact and response history module, the module copies contact
and response history from staging tables in the runtime tables to the contact and
response history tables in the Campaign system tables. The default tables are

16 IBM Interact Administrator's Guide

UA_ContactHistory, UA_DtlContactHist, and UA_ResponseHistory, but the contact
and response history module uses whichever tables are mapped in Campaign for
the contact and response history tables.

If you use the global offers tables and the score override tables to assign offers,
you may need to populate the UACI_ICBatchOffers table in the Campaign system
tables if you are using offers not contained in the treatment rules for the Interactive
Channel.

Runtime tables
If you have more than one audience level, you must create staging tables for the
contact and response history data for each audience level.

The SQL scripts create the following tables for the default audience level:
v UACI_CHStaging

v UACI_CHOfferAttrib

v UACI_RHStaging

You must create copies of these three tables for each of your audience levels in the
runtime tables.

If your Campaign contact and response history tables have user defined fields, you
must create the same field names and types in the UACI_CHStaging and
UACI_RHStaging tables. You can populate these fields during runtime by creating
name-value pairs of the same name in session data. For example, your contact and
response history tables contain the field catalogID. You must add the catalogID
field to both the UACI_CHStaging and UACI_RHStaging tables. Later, the Interact API
populates this field by defining an event parameter as a name-value pair named
catalogID. Session data can be supplied by the profile table, temporal data,
learning, or the Interact API.

The following diagram shows sample tables for the audiences Aud1 and Aud2.
This diagram does not include all tables in the runtime database.

Chapter 3. Managing Interact data sources 17

All fields in the tables are required. You can modify the CustomerID and the
UserDefinedFields to match your Campaign contact and response history tables.

Test run tables
The test run tables are used for test runs of interactive flowcharts only. Test runs of
interactive flowcharts should test your segmentation logic. You only need to
configure one test run database for your Interact installation. The test run tables do
not need to be in a stand-alone database. You could, for example, use your
customer data tables for Campaign.

The database user associated with the test run tables must have CREATE privileges
to add the test run result tables.

The test run database must contain all tables mapped in the interactive channel.

These tables should contain data to run scenarios you want to test in your
interactive flowcharts. For example, if your interactive flowcharts have logic to sort
people into segments based on the choice selected in a voice mail system, you
should have at least one row for every possible selection. If you are creating an

18 IBM Interact Administrator's Guide

interaction that works with a form on your web site, you should include rows
representing missing or malformed data, for example, use name@domaincom for the
value of an email address.

Each test run table must contain at least a list of IDs for the appropriate audience
level, and a column representing the real time data you expect to use. Since test
runs do not have access to real time data, you must supply sample data for every
piece of expected real time data. For example, if you want to use data you can
collect in real time, such as the name of the last web page visited, stored in the
attribute lastPageVisited, or the number of items in a shopping cart, stored in the
attribute shoppingCartItemCount, you must create columns with the same names,
and populate the columns with sample data. This allows you to test run the
branches of your flowchart logic that are behavioral or contextual in nature.

Test runs of interactive flowcharts are not optimized for working with large sets of
data. You can limit the number of rows used for the test run in the Interaction
process. However, this always results in the first set of rows being selected. To
ensure that different sets of rows are selected, use different views of the test run
tables.

To test the throughput performance of interactive flowcharts in runtime, you must
create a test runtime environment, including a profile table for the testing
environment.

In practice, you may need three sets of tables for testing, a test run table for test
runs of interactive flowcharts, test profile tables for the testing server group, and a
set of production profile tables.

Overriding the default data types used for dynamically created
tables

The Interact runtime environment dynamically creates tables under two scenarios:
during a test run of a flowchart and during the running of a Snapshot process that
writes to a table that doesn't already exist. To create these tables, Interact relies on
hardcoded data types for each supported database type.

You can override the default data types by creating a table of alternate data types,
named uaci_column_types, in the testRunDataSource or prodUserDataSource. This
additional table allows Interact to accommodate rare cases that aren't covered by
the hardcoded data types.

When the uaci_column_types table is defined, Interact uses the metadata for the
columns as the data types to be used for any table generation. If the
uaci_column_types table is not defined, or if there are any exceptions encountered
while trying to read the table, the default data types are used.

At startup, the runtime system first checks the testRunDataSource for the
uaci_column_types table. If the uaci_column_types table does not exist in the
testRunDataSource, or if the prodUserDataSource is of a different database type,
Interact then checks the prodUserDataSource for the table.

Overriding the default data types
Use this procedure to override the default data types for dynamically created
tables.

Chapter 3. Managing Interact data sources 19

You must restart the runtime server whenever you change the uaci_column_types
table. Plan to make your changes so that restarting the server has minimal affect
on operations.
1. Create a table in the TestRunDataSource or ProdUserDataSource with the

following properties:
Table Name: uaci_column_types
Column Names:
v uaci_float

v uaci_number

v uaci_datetime

v uaci_string

Use the appropriate data type supported by your database to define each
column.

2. Restart the runtime server to allow Interact to recognize the new table.

Default data types for dynamically created tables
For each supported database that the Interact runtime system uses, there are
hardcoded data types used by default for float, number, date/time, and string
columns.

Table 1. Default data types for dynamically-created tables

Database Default data types

DB2®
v float

v bigint

v timestamp

v varchar

Informix®
v float

v int8

v DATETIME YEAR TO FRACTION

v char2

Oracle v float

v number(19)

v timestamp

v varchar2

SQL Server v float

v bigint

v datetime

v nvarchar

Profile database
The contents of the profile database depend entirely on the data you need for
configuring your interactive flowcharts and Interact API. Interact requires or
recommends that each database contain certain tables or data.

The profile database must contain the following:
v All tables mapped in the interactive channel.

20 IBM Interact Administrator's Guide

These tables must contain all the data required for running your interactive
flowcharts in production. These tables should be flattened, streamlined, and
properly indexed. As there is a performance cost to access dimensional data, you
should use a denormalized schema whenever possible. At a minimum, you
should index the profile table on the audience level ID fields. If there are other
fields retrieved from dimensional tables, these should be indexed appropriately
to reduce database fetch time. The Audience IDs for the profile tables must
match the Audience IDs defined in Campaign.

v If you set the enableScoreOverrideLookup configuration property to true, you
must include a score override table for at least one audience level. You define
the score override table names with the scoreOverrideTable property.
The score override table can contain individual customer-to-offer pairings. You
can create a sample score override table, UACI_ScoreOverride by running the
aci_usrtab SQL script against your profile database. You should also index this
table on the Audience ID column.
If you set the enableScoreOverrideLookup property to false, you do not need to
include a score override table.

v If you set the enableDefaultOfferLookup configuration property to true, you
must include the global offers table (UACI_DefaultOffers). You can create the
global offers table by running the aci_usrtab SQL script against your profile
database.
The global offers table can contain audience-to-offer pairings.

v If you set the enableOfferSuppressionLookup property to true, you must include
an offer suppression table for at least one audience level. You define the offer
suppression table names with the offerSuppressionTable property.
The offer suppression table can contain a row for each offer suppressed for an
audience member, although an entry is not required for all audience members.
You can create a sample offer suppression table, UACI_BlackList by running the
aci_usrtab SQL script against your profile database.
If you set the enableOfferSuppressionLookup property to false, you do not need
to include an offer suppression table.

A large amount of data in any of these tables may impede performance. For best
results, put appropriate indexes on the audience level columns for tables used at
runtime that have large amounts of data.

All configuration properties referenced above are in the Interact > profile or the
Interact > profile > Audience Levels > AudienceLevel category. The aci_usrtab
SQL script is located in the ddl directory in your runtime environment installation
directory.

The following diagram shows example tables for the test run and profile databases
for the audience levels Aud1 and Aud2.

Chapter 3. Managing Interact data sources 21

Test Run Database

(testRunDataSource)

profileTableAud1 profileTableAud2

userData moreUserData

Aud1_ID

ProfileData1

ProfileData2

ProfileData3

RealtimeData1

RealtimeData2

RealtimeData3

Aud2_ID

ProfileDataA

ProfileDataB

ProfileDataC

RealtimeDataA

RealtimeDataB

RealtimeDataC

userData1

userData2

userData3

userData4

...

userDataN

moreUserData1

moreUserData2

moreUserData3

moreUserData4

...

moreUserDataN

profileTableAud1

Aud1_ID

ProfileData1

ProfileData2

ProfileData3

Profile Database

(prodUserDataSource)

profileTableAud2

Aud2_ID

ProfileDataA

ProfileDataB

ProfileDataC

userData moreUserData

userData1

userData2

userData3

userData4

...

userDataN

moreUserData1

moreUserData2

moreUserData3

moreUserData4

...

moreUserDataN

UACI_BlacklistAud1 UACI_BlacklistAud2

Customer ID

OfferCode1

Customer ID

OfferCode1

UACI_Score

OverrideAud1

Customer ID

OfferCode1

Score

UACI_Score

OverrideAud2

Customer ID

OfferCode1

Score

Learning tables
If you are using Interact built-in learning, you must configure the learning tables.
These tables contain all the data the built-in learning feature learns on.

If you are using dynamic learning attributes, you must populate the
UACI_AttributeList table.

Learning involves writing to intermediate staging tables and aggregating
information from staging tables to learning tables. The
insertRawStatsIntervalInMinutes and aggregateStatsIntervalInMinutes
configuration properties in the Interact > offerserving > Built-in Learning
Config category determine how often the learning tables get populated.

The insertRawStatsIntervalInMinutes attribute determines how often the accept
and contact information for each customer and offer is moved from memory to the
staging tables, UACI_OfferStatsTX and UACI_OfferTxAll. The information stored in
the staging tables is aggregated and moved to UACI_OfferStats and
UACI_OfferStatsAll tables at regular intervals determined by the
aggregateStatsIntervalInMinutes configuration property.

Interact built-in learning uses this data to calculate final scores for offers.

Contact history for cross-session response tracking
If you enable the cross-session response feature, the runtime environment needs
read-only access to the Campaign contact history tables. You can configure the
runtime environment to view the Campaign system tables, or you can create a
copy of the Campaign contact history tables. If you create a copy of the tables, you

22 IBM Interact Administrator's Guide

must manage the process of keeping the copy up to date. The contact and response
history module will not update the copy of the contact history tables.

You must run the aci_crhtab SQL script against these contact history tables to add
tables required for the cross-session response tracking feature.

Running database scripts to enable features
To use the optional features that are available in , run database scripts against the
database to create tables or update existing tables.

Your installation, both the design time environment and runtime environment,
includes feature ddl scripts. The ddl scripts add required columns to your tables.

To enable any of the optional features, run the appropriate script against the
database or table that is indicated.

dbType is the database type, such as sqlsvr for Microsoft SQL Server, ora for
Oracle, or db2 for IBM DB2.

Use the following table to run database scripts against the database to create tables
or update existing tables:

Table 2. Database scripts

Feature Name Feature Script Run Against Change

Global offers, offer
suppression, and score
override

aci_usrtab_dbType.sql in
Interact_Home\ddl\
acifeatures\ (Runtime
environment installation
directory)

Your profile database
(userProdDataSource)

Creates the
UACI_DefaultOffers,
UACI_BlackList, and
UACI_ScoreOverride tables.

Scoring aci_scoringfeature_dbType.sql
in Interact_Home\ddl\
acifeatures\ (Runtime
environment installation
directory)

Score override tables in
your profile database
(userProdDataSource)

Adds the LikelihoodScore
and AdjExploreScore
columns.

Learning aci_lrnfeature_dbType.sql in
Interact_Home\interactDT\ddl\
acifeatures\ (Design time
environment installation
directory)

Campaign database that
contains your contact
history tables

Adds the columns
RTSelectionMethod,
RTLearningMode, and
RTLearningModelID to the
UA_DtlContactHist table.
Also adds the columns
RTLearningMode and
RTLearningModelID to the
UA_ResponseHistory table.
This script is also required
by the reporting features
provided by the optional
Reports Pack.

About contact and response history tracking
You can configure runtime environment to record contact and response history in
the Campaign contact and response history tables. The runtime servers store
contact and response history in staging tables. The contact and response history
module copies this data from the staging tables to Campaign contact and response
history tables.

Chapter 3. Managing Interact data sources 23

The contact and response history module functions only if you set the Campaign >
partitions > partition1 > Interact > interactInstalled and
contactAndResponseHistTracking > isEnabled properties on the Configuration
page for the design environment to yes.

If you are using the cross-session response tracking module, the contact and
response history module is a separate entity.

Contact and response types
You can record one contact type and two response types with Interact. You can
also record more custom response types with the postEvent method.

contactAndResponseHistTracking table properties

This table lists the properties that are found in the
contactAndResponseHistTracking category:

Event Contact/response type Configuration Property

Log Offer Contact Contact contacted

Log Offer Acceptance Response accept

Log Offer Rejection Response reject

UA_UsrResponseType table properties

Ensure the CountsAsResponse column of the UA_UsrResponseType table in the
Campaign system tables is configured properly. All of these response types must
exist in the UA_UsrResponseType table.

To be a valid entry in the UA_UsrResponseType table, you must define a value for
all the columns in the table, including CountsAsResponse. Valid values for
CountsAsResponse are:
v 0 - no response
v 1 - a response
v 2 - a reject
v

These responses are used for reporting.

Additional Contact types

In Interact, you can use the postEvent method in the Interact API to trigger a
contact event. You can also augment the system to allow the postEvent call to
record additional custom contact types. All of these contact types must exist in the
UA_ContactStatus table in the Campaign system tables. Using specific event
parameters to the postEvent method, you can record additional contact types and
define whether it is true contact or not. To log additional contact types, you must
add the following event parameters:

UACIContactStatusCode - a string representing a contact type code. The value
must be a valid entry in the UA_ContactStatus table. To be a valid entry in the
UA_ContactStatus you must define all of the columns in the table, including

24 IBM Interact Administrator's Guide

CountsAsContact. Valid values for CountsAsContact are 0 and 1. 0 indicates not as
successful contact, 1 indicates as a successful contact.

Additional response types
In Interact, you can use the postEvent method in the Interact API to trigger an
event which logs an "accept" or "reject" action for an offer. You can also augment
the system to allow the postEvent call to record additional response types, such as
Explore, Consider, Commit, or Fulfill.

All of these response types must exist in the UA_UsrResponseType table in the
Campaign system tables. Using specific event parameters to the postEvent method,
you can record additional response types and define whether an accept should be
included in learning.Also its suggested not to post multiple responses
(Accept/Reject) for single contact , as it may result in incorrect learning scores.

To log additional response types, you must add the following event parameters:
v UACIResponseTypeCode - a string representing a response type code. The

value must be a valid entry in the UA_UsrResponseType table.
To be a valid entry in the UA_UsrResponseType you must define all of the
columns in the table, including CountsAsResponse. Valid values for
CountsAsResponse are 0, 1, or 2. 0 indicates no response, 1 indicates a response,
and 2 indicates a reject. These responses are used for reporting.

v UACILogToLearning -
The parameter ‘UACILogToLearning’ is deprecated in version 11.0. Instead, the actual
values defined in ‘ UA_ContactStatus’ and ‘UA_UsrResponseType’ tables from
Campaign database along with the values defined in the
‘Affinium|interact|services|contactHist|contactStatusCodes’ and
‘Affinium|interact|services|responseHist|responseTypeCodes ‘ parameters would
be considered by the Interact system.

’

If you pass ‘UACILogToLearning= 1’ in a postevent call, then the configured action
associated to the response type/contact status will be ignored and this event is always
treated as a true response/contact.

You may want to create several events with the Log Offer Acceptance action, one
for every response type you want to log, or a single event with the Log Offer
Acceptance action you use for every postEvent call you use to log separate
response types.

For example, create an event with the Log Offer Acceptance action for each type of
response. You define the following custom responses in the UA_UsrResponseType
table [as Name (code)]: Explore (EXP), Consider (CON), and Commit (CMT). You
then create three events and name them LogAccept_Explore, LogAccept_Consider,
and LogAccept_Commit. All three events are exactly the same (have the Log Offer
Acceptance action), but the names are different so that the person working with
the API can distinguish between them.

Or, you could create a single event with the Log Offer Acceptance action that you
use for all custom response types. For example, name it LogCustomResponse.

When working with the API, there is no functional difference between the events,
but the naming conventions may make the code clearer. Also, if you give each
custom response a separate name, the Channel Event Activity Summary report
displays more accurate information.

Chapter 3. Managing Interact data sources 25

First, set up all the name-value pairs
//Define name value pairs for the UACIResponseTypeCode
// Response type Explore
NameValuePair responseTypeEXP = new NameValuePairImpl();
responseTypeEXP.setName("UACIResponseTypeCode");
responseTypeEXP.setValueAsString("EXP");
responseTypeEXP.setValueDataType(NameValuePair.DATA_TYPE_STRING);

// Response type Consider
NameValuePair responseTypeCON = new NameValuePairImpl();
responseTypeCON.setName("UACIResponseTypeCode");
responseTypeCON.setValueAsString("CON");
responseTypeCON.setValueDataType(NameValuePair.DATA_TYPE_STRING);

// Response type Commit
NameValuePair responseTypeCMT = new NameValuePairImpl();
responseTypeCMT.setName("UACIResponseTypeCode");
responseTypeCMT.setValueAsString("CMT");
responseTypeCMT.setValueDataType(NameValuePair.DATA_TYPE_STRING);

//Define name value pairs for UACILOGTOLEARNING
//Does not log to learning
NameValuePair noLogToLearning = new NameValuePairImpl();
noLogToLearning.setName("UACILOGTOLEARNING");
noLogToLearning.setValueAsString("0");
noLogToLearning.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

//Logs to learning
NameValuePair LogToLearning = new NameValuePairImpl();
LogToLearning.setName("UACILogToLearning");
LogToLearning.setValueAsString("1");
LogToLearning.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

This first example shows using the individual events.
//EXAMPLE 1: This set of postEvent calls use the individually named events
//PostEvent with an Explore response
NameValuePair[] postEventParameters = { responseTypeEXP, noLogToLearning };
response = api.postEvent(sessionId, LogAccept_Explore, postEventParameters);

//PostEvent with a Consider response
NameValuePair[] postEventParameters = { responseTypeCON, noLogToLearning };
response = api.postEvent(sessionId, LogAccept_Consider, postEventParameters);

//PostEvent with a Commit response
NameValuePair[] postEventParameters = { responseTypeCOM, LogToLearning };
response = api.postEvent(sessionId, LogAccept_Commit, postEventParameters);

This second example shows using just one event.
//EXAMPLE 2: This set of postEvent calls use the single event
//PostEvent with an Explore response
NameValuePair[] postEventParameters = { responseTypeEXP, noLogToLearning };
response = api.postEvent(sessionId, LogCustomResponse, postEventParameters);

//PostEvent with a Consider response
NameValuePair[] postEventParameters = { responseTypeCON, noLogToLearning };
response = api.postEvent(sessionId, LogCustomResponse, postEventParameters);

//PostEvent with a Commit response
NameValuePair[] postEventParameters = { responseTypeCOM, LogToLearning };
response = api.postEvent(sessionId, LogCustomResponse, postEventParameters);

Both examples perform exactly the same actions, however, one version may be
easier to read than the other.

26 IBM Interact Administrator's Guide

Runtime environment staging tables to Campaign history
tables mapping

The Interact contact history staging tables map to Campaign history tables. You
must have one of the runtime environment staging tables for each audience level.

UACI_CHStaging contact history staging table mapping

This table shows how the UACI_CHStaging runtime environment staging table maps
to the Campaign contact history table. The table names that are shown are the
sample tables that are created for the default audience in the runtime tables and
the Campaign system tables.

Table 3. Contact History

UACI_CHStaging

Interact contact history staging table
column name

Campaign contact
history table Table column name

ContactID N/A N/A

TreatmentCode UA_Treatment TreatmentCode

CampaignID UA_Treatment CampaignID

OfferID UA_Treatment OfferID

CellID UA_Treatment CellID

CustomerID UA_DtlContactHist CustomerID

ContactDate UA_DtlContactHist ContactDateTime

ExpirationDateTime UA_Treatment ExpirationDateTime

EffectiveDateTime UA_Treatment EffectiveDateTime

ContactType UA_DtlContactHist ContactStatusID

ContactStatusCode UA_DtlContactHist ContactStatusId

UserDefinedFields UA_DtlContactHist UserDefinedFields

ContactID is a key to join the UACI_CHOfferAtrib table with the UACI_CHStaging
table. The userDefinedFields column can contain any data that you choose.

UACI_CHOfferAttrib contact history staging table mapping

This table shows how the UACI_CHOfferAttrib runtime environment staging table
maps to the Campaign contact history table. The table names that are shown are
the sample tables that are created for the default audience in the runtime tables
and the Campaign system tables.

Table 4. Offer attributes

UACI_CHOfferAttrib

Interact contact history staging table
column name

Campaign contact
history table Table column name

ContactID N/A N/A

AttributeID UA_OfferHistAttrib AttributeID

StringValue UA_OfferHistAttrib StringValue

NumberValue UA_OfferHistAttrib NumberValue

Chapter 3. Managing Interact data sources 27

Table 4. Offer attributes (continued)

UACI_CHOfferAttrib

Interact contact history staging table
column name

Campaign contact
history table Table column name

DateTimeValue UA_OfferHistAttrib DateTimeValue

UACI_RHStaging contact response history staging table mapping

This table shows how the UACI_RHStaging runtime environment staging table maps
to the Campaign response history table. The table names that are shown are the
sample tables that are created for the default audience in the runtime tables and
the Campaign system tables.

Table 5. Response history

UACI_RHStaging

Interact response history staging table
column name

Campaign response
history table Table column name

SeqNum N/A N/A

TreatmentCode UA_ResponseHistory TreatmentInstID

CustomerID UA_ResponseHistory CustomerID

ResponseDate UA_ResponseHistory ResponseDateTime

ResponseType UA_ResponseHistory ResponseTypeID

UserDefinedFields UA_ResponseHistory UserDefinedFields

SeqNum is a key that is used by the contact and response history module to identify
data, but is not recorded in the Campaign response tables. The userDefinedFields
column can contain any data that you choose.

Additional columns in staging tables

If you add columns to the staging tables, the contact and response history module
writes them to the UA_DtlContactHist or UA_ResponseHistory tables in columns of
the same name.

For example, if you add the column linkFrom to your UACI_CHStaging table, the
contact and response history module copies that data to the linkFrom column in
the UA_DtlContactHist table.

Additional columns in Campaign contact and response history
tables

If you have additional columns in your Campaign contact and response history
tables, add matching columns to the staging tables before you run the contact and
response history module.

You populate extra columns in the staging tables by creating columns with the
same names as your name-value pairs in your runtime session data.

For example, you create name-value pairs NumberItemsInWishList and
NumberItemsInShoppingCart and add them to your UACI_RHStaging table. When a

28 IBM Interact Administrator's Guide

Log Offer Acceptance or Log Offer Rejection event occurs, the runtime
environment populates those fields. The runtime environment populates the
UACI_CHStaging table when a Log Offer Contact event occurs.

Use tables to include a score for an offer

You can use the user-defined fields to include the score that is used to present an
offer. Add a column that is named FinalScore to both the UACI_CHStaging table in
the runtime tables and the UA_DtlContactHist table in the Campaign system tables.
Interact automatically populates the FinalScore column with the final score used
for the offer if you are using built-in learning.

If you are building a customized learning module, you can use the
setActualValueUsed method of the ITreatment interface and the logEvent method
of the ILearning interface.

If you are not using learning, add a column that is named Score to both the
UACI_CHStaging table in the runtime tables and the UA_DtlContactHist table in the
Campaign system tables. Interact automatically populates the Score column with
the score used for the offer.

Create new history tables in the Campaign and staging tables in
the Interact

If you are using an audience level other than the Customer, then you will have to
create new history tables in the Campaign, and new staging tables in the Interact.

For example, the below sample script is used in the IBM DB2 design time database
to create history tables in the Campaign for an audience level of type Account.
DROP TABLE ACCT_UA_ResponseHistory;
DROP TABLE ACCT_UA_DtlContactHist;
DROP TABLE ACCT_UA_ContactHistory;
CREATE TABLE ACCT_UA_ResponseHistory (

AccountID varchar(30) NOT NULL,
TreatmentInstID bigint NOT NULL,
ResponsePackID bigint NOT NULL,
ResponseDateTime timestamp NOT NULL,
WithinDateRangeFlg int,
OrigContactedFlg int,
BestAttrib int,
FractionalAttrib float,
DirectResponse int,
CustomAttrib float,
ResponseTypeID bigint,
DateID bigint,
TimeID bigint,
UserDefinedFields char(18),
CONSTRAINT ACCT_cRespHistory_PK

PRIMARY KEY (AccountID, TreatmentInstID,
ResponsePackID)

);
CREATE TABLE ACCT_UA_ContactHistory (

AccountID varchar(30) NOT NULL,
CellID bigint NOT NULL,
PackageID bigint NOT NULL,
ContactDateTime timestamp,
UpdateDateTime timestamp,
ContactStatusID bigint,
DateID bigint,
TimeID bigint,
UserDefinedFields char(18),

Chapter 3. Managing Interact data sources 29

CONSTRAINT ACCT_cContactHist_PK
PRIMARY KEY (AccountID, CellID, PackageID)

);
CREATE INDEX ACCT_cContactHist_IX1 ON ACCT_UA_ContactHistory
(

CellID
);
CREATE INDEX ACCT_cContactHist_IX2 ON ACCT_UA_ContactHistory
(

PackageID ,
CellID

);
CREATE TABLE ACCT_UA_DtlContactHist (

AccountID varchar(30) NOT NULL,
TreatmentInstID bigint NOT NULL,
ContactStatusID bigint,
ContactDateTime timestamp,
UpdateDateTime timestamp,
UserDefinedFields char(18),
DateID bigint NOT NULL,
TimeID bigint NOT NULL

);
CREATE INDEX ACCT_cDtlContHist_IX1 ON ACCT_UA_DtlContactHist
(

AccountID ,
TreatmentInstID

);
ALTER TABLE ACCT_UA_ResponseHistory

ADD CONSTRAINT ACCT_cRespHistory_FK2
FOREIGN KEY (TimeID)

REFERENCES UA_Time (TimeID);
ALTER TABLE ACCT_UA_ResponseHistory

ADD CONSTRAINT ACCT_cRespHistory_FK4
FOREIGN KEY (DateID)

REFERENCES UA_Calendar (DateID);
ALTER TABLE ACCT_UA_ResponseHistory

ADD CONSTRAINT ACCT_cRespHistory_FK3
FOREIGN KEY (ResponseTypeID)

REFERENCES UA_UsrResponseType (
ResponseTypeID);

ALTER TABLE ACCT_UA_ResponseHistory
ADD CONSTRAINT ACCT_cRespHistory_FK1

FOREIGN KEY (TreatmentInstID)
REFERENCES UA_Treatment (

TreatmentInstID);
ALTER TABLE ACCT_UA_ContactHistory

ADD CONSTRAINT ACCT_cContactHist_FK2
FOREIGN KEY (DateID)

REFERENCES UA_Calendar (DateID);
ALTER TABLE ACCT_UA_ContactHistory

ADD CONSTRAINT ACCT_cContactHist_FK3
FOREIGN KEY (TimeID)

REFERENCES UA_Time (TimeID);
ALTER TABLE ACCT_UA_ContactHistory

ADD CONSTRAINT ACCT_cContactHist_FK1
FOREIGN KEY (ContactStatusID)

REFERENCES UA_ContactStatus (
ContactStatusID);

ALTER TABLE ACCT_UA_DtlContactHist
ADD CONSTRAINT ACCT_cDtlContactH_FK3

FOREIGN KEY (TimeID)
REFERENCES UA_Time (TimeID);

ALTER TABLE ACCT_UA_DtlContactHist
ADD CONSTRAINT ACCT_cDtlContactH_FK2

FOREIGN KEY (DateID)
REFERENCES UA_Calendar (DateID);

ALTER TABLE ACCT_UA_DtlContactHist

30 IBM Interact Administrator's Guide

ADD CONSTRAINT ACCT_cDtlContactH_FK1
FOREIGN KEY (ContactStatusID)

REFERENCES UA_ContactStatus (
ContactStatusID);

alter table ACCT_UA_DtlContactHist add RTSelectionMethod int;
alter table ACCT_UA_ResponseHistory add RTSelectionMethod int;

The below sample script is used in the runtime time IBM DB2 database to create
history staging tables in the Interact for an audience level of type Account.
DROP TABLE ACCT_UACI_RHStaging;
DROP TABLE ACCT_UACI_CHOfferAttrib;
DROP TABLE ACCT_UACI_CHStaging;
DROP TABLE ACCT_UACI_UserEventActivities;
DROP TABLE ACCT_UACI_EventPatternState;
CREATE TABLE ACCT_UACI_RHStaging (

SeqNum bigint NOT NULL,
TreatmentCode varchar(512),
AccountID varchar(30),
ResponseDate timestamp,
ResponseType int,
ResponseTypeCode varchar(64),
Mark bigint NOT NULL

DEFAULT 0,
UserDefinedFields char(18),

RTSelectionMethod int,
CONSTRAINT iRHStaging_PK1

PRIMARY KEY (SeqNum)
);
CREATE TABLE ACCT_UACI_CHOfferAttrib (

ContactID bigint NOT NULL,
AttributeID bigint NOT NULL,
StringValue varchar(512),
NumberValue float,
DateTimeValue timestamp,
CONSTRAINT ACCT_iCHOfferAttrib_PK

PRIMARY KEY (ContactID, AttributeID)
);
CREATE TABLE ACCT_UACI_CHStaging (

ContactID bigint NOT NULL,
TreatmentCode varchar(512),
CampaignID bigint,
OfferID bigint,
CellID bigint,
AccountID varchar(30),
ContactDate timestamp,
ExpirationDateTime timestamp,
EffectiveDateTime timestamp,
ContactType int,
UserDefinedFields char(18),
Mark bigint NOT NULL DEFAULT 0,

RTSelectionMethod bigint,
CONSTRAINT ACCT_iCHStaging_PK

PRIMARY KEY (ContactID)
);
CREATE TABLE ACCT_UACI_UserEventActivity
(

SeqNum bigint NOT NULL GENERATED ALWAYS AS IDENTITY,
ICID bigint NOT NULL,
ICName varchar(64) NOT NULL,
CategoryID bigint NOT NULL,
CategoryName varchar(64) NOT NULL,
EventID bigint NOT NULL,
EventName varchar(64) NOT NULL,
TimeID bigint,
DateID bigint,
Occurrences bigint NOT NULL,

Chapter 3. Managing Interact data sources 31

AccountID varchar(30) not null,
CONSTRAINT iUserEventActivity_PK

PRIMARY KEY (SeqNum)
);
create table ACCT_UACI_EventPatternState
(
UpdateTime bigint not null,
State varchar(1000) for bit data,
AccountID varchar(30) not null,

CONSTRAINT iCustomerPatternState_PK
PRIMARY KEY (AccountID,UpdateTime)

);
ALTER TABLE ACCT_UACI_CHOfferAttrib

ADD CONSTRAINT ACCT_iCHOfferAttrib_FK1
FOREIGN KEY (ContactID)

REFERENCES ACCT_UACI_CHStaging (ContactID);

Configuring JMX monitoring for the contact and response
history module

Use this procedure to configure JMX monitoring for the contact and response
history module. The JMXMP and RMI protocols are supported. Configuring JMX
monitoring does not enable security for the contact and response history module.
You use the Marketing Platform for the design environment to configure the JMX
monitoring.

To use your JMX monitoring tool for the contact and response history module, the
default address that is used for:
v The JMXMP protocol is service:jmx:jmxmp://CampaignServer:port/campaign.
v The RMI protocol is service:jmx:rmi:///jndi/rmi://CampaignServer:port/

campaign.

When you view the data in your JMX monitoring tool, the results attributes are
organized first by partition and next by audience level.

In Marketing Platform for the design environment, edit the following configuration
properties in the Campaign > monitoring category.

Configuration property Setting

monitorEnabledForInteract True

port The port number for the JMX service

protocol The protocol to use:

v JMXMP

v RMI

Security is not enabled for the contact and response
history module, even if you select the JMXMP
protocol.

About cross-session response tracking
Visitors may not always complete a transaction in a single visit to your touchpoint.
A customer may add an item to their shopping cart on your web site and not
complete the sale until two days later. Keeping the runtime session active
indefinitely is not feasible. You can enable cross-session response tracking to track
an offer presentation in one session and match it with a response in another
session.

32 IBM Interact Administrator's Guide

Interact cross-session response tracking can match on treatment codes or offer
codes by default. You can also configure it to match any custom code of your
choice. Cross-session response matches on the available data. For example, your
web site includes an offer with a promotional code generated at the time of display
for a discount good for one week. A user may add items to their shopping cart,
but not complete the purchase until three days later. When you use the postEvent
call to log an accept event, you can include only the promotional code. Because the
runtime cannot find a treatment or offer code to match in the current session, the
runtime places the accept event with the available information in a cross-session
response (XSessResponse) staging table. The CrossSessionResponse service
periodically reads the XSessResponse table and attempts to match the records with
the available contact history data. The CrossSessionResponse service matches the
promotional code to the contact history and collects all the required data to log a
proper response. The CrossSessionResponse service then writes the response to the
response staging tables, and if learning is enabled, the learning tables. The contact
and response history module then writes the response to the Campaign contact
and response history tables. The successful processing of the cross-session response
depends on the original contact history records that has been migrated to the
Campaign database by the contact history ETL.

Cross-session response tracking data source configuration
Interact cross-session response tracking matches session data from the runtime
environment with the Campaign contact and response history. By default,
cross-session response tracking matches on treatment code or offer code. You can
configure the runtime environment to match on a custom, alternate code.
v If you choose to match on an alternate code, you must define the alternate code

in the UACI_TrackingType table in the Interact runtime tables.
v The runtime environment must have access to the Campaign contact history

tables. This can be by either configuring the runtime environment to have access
to the Campaign contact history tables, or by creating a copy of the contact
history tables in the runtime environment.
This access is read-only, and is separate from the contact and response history
utility.
If you create a copy of the tables, it is your responsibility to ensure data in the
copy of the contact history is accurate. You can configure the length of time the
CrossSessionResponse service retains unmatched responses to match the how
often you refresh the data in the copy of the contact history tables using the
purgeOrphanResponseThresholdInMinutes property. If you are using the contact
and response history module, you should coordinate the ETL updates to ensure
you have the most current data.

Configuring contact and response history tables for
cross-session response tracking

Whether you create a copy of the contact history tables, or use the actual tables in
the Campaign system tables, you must perform the following steps to configure
the contact and response history tables.

The contact and response history tables must be mapped properly in Campaign
prior to performing these steps.
1. Run the aci_lrnfeature SQL script in the interactDT/ddl/acifeatures

directory in the Interact design environment installation directory against the
UA_DtlContactHist and UA_ResponseHistory tables in your Campaign system
tables.

Chapter 3. Managing Interact data sources 33

This adds the RTSelectionMethod column to the UA_DtlContactHist and
UA_ResponseHistory tables. Run the aci_lrnfeature script against these tables
for each of your audience levels. Edit the script as necessary to work with the
correct table for each of your audience levels.

2. If you want to copy the contact history tables to the runtime environment, do
so now.
If you are creating a copy of the Campaign contact history tables accessible by
the runtime environment for cross-session response tracking support, use the
following guidelines:
v Cross-session response tracking requires read-only access to these tables.
v Cross-session response tracking requires the following tables from the

Campaign contact history.
– UA_DtlContactHist (for each audience level)
– UA_Treatment

You must update the data in these tables on a regular basis to ensure
accurate response tracking.

3. Run the aci_crhtab SQL script in the ddl directory in the Interact runtime
environment installation directory against the contact and response history data
source.
This script creates the UACI_XsessResponse and UACI_CRHTAB_Ver tables.

4. Create a version of the UACI_XsessResponse table for each audience level.

To improve the performance of cross-session response tracking, you may want to
limit the amount of contact history data, either by the way in which you copy the
contact history data or by configuring a view in to the Campaign contact history
tables. For example, if you have a business practice that no offer is valid for longer
than 30 days, you should limit the contact history data to the last 30 days. To
modify the number of days of contact history data to maintain, open the
configuration property Campaign | partitions | partitionn| Interact |
contactAndResponseHistTracking and set the value of
daysBackInHistoryToLookupContact.

You will not see results from cross-session response tracking until the contact and
response history module runs. For example, the default
processSleepIntervalInMinutes is 60 minutes. Therefore, it may take at least an
hour before cross-session responses appear in your Campaign response history.

UACI_TrackingType table
The UACI_TrackingType table is part of the runtime environment tables. This table
defines the tracking codes used with cross-session response tracking. The tracking
code defines what method the runtime environment uses to match the current offer
in a runtime session with the contact and response history.

Column Type Description

TrackingCodeType int A number representing the tracking code type.
This number is referenced by the SQL commands
used to match information from the session data to
the contact and response history tables.

Name varchar(64) The name for the tracking code type. This is
passed in to session data using the
UACI_TrackingCodeType reserved parameter with
the postEvent method.

34 IBM Interact Administrator's Guide

Column Type Description

Description varchar(512) A brief description of the tracking code type. This
field is optional.

By default, the runtime environment has two tracking code types defined, as
shown in the following table. For any alternate code, you must define a unique
TrackingCodeType.

TrackingCodeType Name Description

1 Treatment
Code

UACI Generated Treatment Code

2 Offer Code UAC Campaign Offer Code

UACI_XSessResponse
The UACI_XSessResponse table is part of the runtime environment tables. This table
is used for cross-session response tracking.

One instance of this table for each audience level must exist in the contact and
response history data source available for Interact cross-session response tracking.

Column Type Description

SeqNumber bigint Identifier for the row of data. The
CrossSessionResponse service processes all records
in the SeqNumber order.

ICID bigint Interactive channel ID

AudienceID bigint The audience ID for this audience level. The name
of this column must match the audience ID defined
in Campaign. The sample table contains the column
CustomerID.

TrackingCode varchar(64) The value that is passed by UACIOfferTrackingCode
parameter of the postEvent method.

TrackingCodeType int The numeric representation of the tracking code.
The value must be a valid entry in the
UACI_TrackingType table.

OfferID bigint The offer ID as defined in Campaign.

ResponseType int The response type for this record. The value must be
a valid entry in the UA_UsrResponseType table.

ResponseTypeCode varchar(64) The response type code for this record. The value
must be a valid entry in the UA_UsrResponseType
table.

ResponseDate datetime The date of the response.

Chapter 3. Managing Interact data sources 35

Column Type Description

Mark bigint The value of this field identifies the state of the
record.

v 1 - In process

v 2 - Successful

v NULL - Retry

v -1 - Record has been in the database for more
than purgeOrphanResponseThresholdInMinutes
minutes.

As part of the database administrator's maintenance
of this table, you can check this field for records that
are not being matched, that is, all records with value
of -1. All records with value 2 are automatically
removed by the CrossSessionResponse service.

UsrDefinedFields char(18) Any custom fields that you want to include when
you are matching offer responses to the contact and
response history. For example, if you want to match
on a promotional code, include a promotional code
user-defined field.

Enabling cross-session response tracking
Use this procedure to enable cross-section response tracking.

You must configure the contact and response history module to take full advantage
of cross-session response tracking.

To use cross-session response tracking, you must configure the runtime
environment to have read-access to the Campaign contact and response history
tables. You can read from either the actual Campaign contact and response history
tables in the design environment, or a copy of the tables in the runtime
environment data sources. Configuring the runtime environment to have
read-access to the contact and response history table is separate from any contact
and response history module configuration.

If you are matching on something other than treatment code or offer code, you
must add it to the UACI_TrackingType table.
1. Create the XSessResponse tables in the contact and response history tables

accessible to the runtime environment.
2. Define the properties in the contactAndResponseHistoryDataSource category for

the runtime environment.
3. Define the crossSessionResponseTable property for each audience level.
4. Create an OverridePerAudience category for each audience level.

Cross-session response offer matching
By default, cross-session response tracking matches on treatment codes or offer
codes. The crossSessionResponse service uses SQL commands to match treatment
codes, offer codes, or a custom code from session data to the Campaign contact
and response history tables. You can edit these SQL commands to match any
customizations you make to your tracking codes, offer codes, or custom codes.

36 IBM Interact Administrator's Guide

Matching by treatment code

The SQL to match by treatment code must return all the columns in the
XSessResponse table for this audience level plus a column called OfferIDMatch.
The value in the OfferIDMatch column must be the offerId that goes with the
treatment code in the XSessResponse record.

The following is a sample of the default generated SQL command that match
treatment codes. Interact generates the SQL to use the correct table names for the
audience level. This SQL is used if the Interact > services >
crossSessionResponse > OverridePerAudience > AudienceLevel > TrackingCodes
> byTreatmentCode > SQL property is set to Use System Generated SQL.
select distinct treatment.offerId as OFFERIDMATCH,

tx.*,
dch.RTSelectionMethod

from UACI_XSessResponse tx
Left Outer Join UA_Treatment treatment ON tx.trackingCode=treatment.treatmentCode
Left Outer Join UA_DtlContactHist dch ON tx.CustomerID = dch.CustomerID
Left Outer Join UA_ContactHistory ch ON tx.CustomerID = ch.CustomerID
AND treatment.cellID = ch.cellID
AND treatment.packageID=ch.packageID
where tx.mark=1
and tx.trackingCodeType=1

The values UACI_XsessResponse, UA_DtlContactHist, CustomerID, and
UA_ContactHistory are defined by your settings in Interact. For example,
UACI_XsessResponse is defined by the Interact > profile > Audience Levels >
[AudienceLevelName] > crossSessionResponseTable configuration property.

If you have customized your contact and response history tables, you may need to
revise this SQL to work with your tables. You define SQL overrides in the Interact
> services > crossSessionResponse > OverridePerAudience > (AudienceLevel) >
TrackingCodes > byTreatmentCode > OverrideSQL property. If you provide some
override SQL, you must also change the SQL property to Override SQL.

Matching by offer code

The SQL to match by offer code must return all the columns in the XSessResponse
table for this audience level plus a column called TreatmentCodeMatch. The value in
the TreatmentCodeMatch column is the Treatment Code that goes with the Offer ID
(and Offer Code) in the XSessResponse record.

The following is a sample of the default generated SQL command that match offer
codes. Interact generates the SQL to use the correct table names for the audience
level. This SQL is used if the Interact > services > crossSessionResponse >
OverridePerAudience > AudienceLevel > TrackingCodes > byOfferCode > SQL
property is set to Use System Generated SQL.
select treatment.treatmentCode as TREATMENTCODEMATCH,

tx.*,
dch.RTSelectionMethod
from UACI_XSessResponse tx
Left Outer Join UA_DtlContactHist dch ON tx.CustomerID=dch.CustomerID
Left Outer Join UA_Treatment treatment ON tx.offerId = treatment.offerId
Left Outer Join

(
select max(dch.contactDateTime) as maxDate,

treatment.offerId,
dch.CustomerID

from UA_DtlContactHist dch, UA_Treatment treatment, UACI_XSessResponse tx

Chapter 3. Managing Interact data sources 37

where tx.CustomerID=dch.CustomerID
and tx.offerID = treatment.offerId
and dch.treatmentInstId = treatment.treatmentInstId
group by dch.CustomerID, treatment.offerId
) dch_by_max_date ON tx.CustomerID=dch_by_max_date.CustomerID
and tx.offerId = dch_by_max_date.offerId

where tx.mark = 1
and dch.contactDateTime = dch_by_max_date.maxDate
and dch.treatmentInstId = treatment.treatmentInstId
and tx.trackingCodeType=2
union
select treatment.treatmentCode as TREATMENTCODEMATCH,

tx.*,
0

from UACI_XSessResponse tx
Left Outer Join UA_ContactHistory ch ON tx.CustomerID =ch.CustomerID
Left Outer Join UA_Treatment treatment ON tx.offerId = treatment.offerId
Left Outer Join

(
select max(ch.contactDateTime) as maxDate,

treatment.offerId, ch.CustomerID
from UA_ContactHistory ch, UA_Treatment treatment, UACI_XSessResponse tx
where tx.CustomerID =ch.CustomerID
and tx.offerID = treatment.offerId
and treatment.cellID = ch.cellID
and treatment.packageID=ch.packageID
group by ch.CustomerID, treatment.offerId
) ch_by_max_date ON tx.CustomerID =ch_by_max_date.CustomerID
and tx.offerId = ch_by_max_date.offerId
and treatment.cellID = ch.cellID
and treatment.packageID=ch.packageID

where tx.mark = 1
and ch.contactDateTime = ch_by_max_date.maxDate
and treatment.cellID = ch.cellID
and treatment.packageID=ch.packageID
and tx.offerID = treatment.offerId
and tx.trackingCodeType=2

The values UACI_XsessResponse, UA_DtlContactHist, CustomerID, and
UA_ContactHistory are defined by your settings in Interact. For example,
UACI_XsessResponse is defined by the Interact > profile > Audience Levels >
[AudienceLevelName] > crossSessionResponseTable configuration property.

If you have customized your contact and response history tables, you may need to
revise this SQL to work with your tables. You define SQL overrides in the Interact
> services > crossSessionResponse > OverridePerAudience > (AudienceLevel) >
TrackingCodes > byOfferCode > OverrideSQL property. If you provide some
override SQL, you must also change the SQL property to Override SQL.

Matching by alternate code

You can define an SQL command to match by some alternate code of your choice.
For example, you could have promotional codes or product codes separate from
offer or treatment codes.

You must define this alternate code in the UACI_TrackingType table in the Interact
runtime environment tables.

You must provide SQL or a stored procedure in the Interact > services >
crossSessionResponse > OverridePerAudience > (AudienceLevel) >
TrackingCodes > byAlternateCode > OverrideSQL property which returns all the
columns in the XSessResponse table for this audience level plus the columns

38 IBM Interact Administrator's Guide

TreatmentCodeMatch and OfferIDMatch. You may optionally return the offerCode in
place of OfferIDMatch (in the form of offerCode1, offerCode2, ... offerCodeN for N
part offer codes). The values in the TreatmentCodeMatch column and OfferIDMatch
column (or offer code columns) must correspond to the TrackingCode in the
XSessResponse record.

For example, the following SQL pseudo code matches on the AlternateCode
column in the XSessResponse table.
Select m.TreatmentCode as TreatmentCodeMatch, m.OfferID as OfferIDMatch, tx.*
From MyLookup m, UACI_XSessResponse tx
Where m.customerId = tx.customerId
And m.alternateCode = tx.trackingCode
And tx.mark=1
And tx.trackingCodeType = <x>

Where <x> is the tracking code defined in the UACI_TrackingType table.

Using a database load utility with the runtime environment
By default, the runtime environment writes contact and response history data from
session data into staging tables. On a very active production system, however, the
amount of memory required to cache all the data before runtime can write it to the
staging tables may be prohibitive. You can configure runtime to use a database
load utility to improve performance.

When you enable a database load utility, instead of holding all contact and
response history in memory before writing to the staging tables, runtime writes the
data to a staging file. You define the location of the directory containing the
staging files with the externalLoaderStagingDirectory property. This directory
contains several subdirectories. The first subdirectory is the runtime instance
directory, which contains the contactHist and respHist directories. The
contactHist and respHist directories contain uniquely named subdirectories in the
format of audienceLevelName.uniqueID.currentState, which contain the staging files.

Current State Description

CACHE Contents of directory currently being written to a file.

READY Contents of directory ready to be processed.

RUN Contents of directory currently being written to the database.

PROCESSED Contents of directory have been written to the database.

ERROR An error occurred while writing the contents of directory to the
database.

ATTN Contents of directory need attention. That is, you may need to take
some manual steps to complete writing the contents of this
directory to the database.

RERUN Contents of directory ready to be written to the database. You
should rename a directory from ATTN or ERROR to RERUN after you
have corrected the problem.

You can define the runtime instance directory by defining the
interact.runtime.instance.name JVM property in the application server startup
script. For example, you could add -Dinteract.runtime.instance.name=instance2
to your web application server startup script. If not set, the default name is
DefaultInteractRuntimeInstance.

Chapter 3. Managing Interact data sources 39

The samples directory contains sample files to assist you with writing your own
database load utility control files.

Enabling a database load utility with runtime environment
Use this procedure to enable a database load utility with the runtime environment.

You must define any command or control files for your database load utility before
you configure runtime environment to use them. These files must exist in the same
location on all runtime servers in the same server group.

Interact provides sample command and control files in the loaderService directory
in your Interact runtime server installation.
1. Confirm that the runtime environment user has login credentials for the

runtime tables data source that is defined in Interact > general >
systemTablesDataSource in your configuration properties.

2. Define the Interact > general > systemTablesDataSource > loaderProperties
configuration properties.

3. Define the Interact > services >externalLoaderStagingDirectory property.
4. Revise the Interact > services > responseHist > fileCache configuration

properties, if necessary.
5. Revise the Interact > services > contactHist > fileCache configuration

properties, if necessary.
6. Restart the runtime server.

Event pattern ETL process
To process large amounts of IBM Interact event pattern data and to make that data
available for queries and reporting purposes, you can install a stand-alone Extract,
Transform, Load (ETL) process on any supported server for optimal performance.

In Interact, all event pattern data for a given AudienceID is stored as a single
collection in the runtime database tables. The AudienceID and pattern state
information is stored as a Binary Large Object (BLOB). To perform any SQL queries
or reporting based on event patterns, this new ETL process is necessary to break
up the object into tables into a target database. To accomplish this, the stand-alone
ETL process takes event pattern data from the Interact runtime database tables,
processes it on the schedule you specify, and stores it in the target database where
it is available for SQL queries or additional reporting.

In addition to moving and transforming event pattern data to the target database,
the stand-alone ETL process also synchronizes the data in the target database with
the most current information in your Interact runtime database. For example, if
you delete an event pattern in the Interact runtime, that event pattern's processed
data is removed from the target database the next time the ETL process runs. Event
pattern state information is kept up to date as well. So the information stored
about event patterns in the target database is solely current data, not historical
information.

Running the stand-alone ETL process
When you launch the stand-alone ETL process on a server, it runs continuously in
the background until stopped. The process follows the instructions in the
Marketing Platform configuration properties to determine frequency, database
connections, and other details during its operation.

40 IBM Interact Administrator's Guide

Before you run the stand-alone ETL process, ensure that you complete the
following tasks:
v You must have the permissions of an Interact Admin user role.
v You must have installed the process on a server, and configured both the files on

the server and in the Marketing Platform correctly for your configuration.

Note:

If you are running the ETL process on Microsoft Windows for a language other
than US English, use chcp at the command prompt to set the code page for the
language you are using. For example, you might use any of the following codes:
ja_jp=932, zh_cn=936, ko_kr=949, ru_ru=1251 and for de_de, fr_fr, it_it, es_es,
pt_br, use 1252. To ensure proper character display, use the chcp command in the
Windows command prompt prior to launching the ETL process.

After you have installed and configured the stand-alone ETL process, you are
ready to launch the process.
1. Open a command prompt on the server where the ETL process is installed.
2. Navigate to the <Interact_home>/PatternStateETL/bin directory that contains

the executable files for the ETL process.
3. Run the command.bat file (on Microsoft Windows) or command.sh file (on

UNIX-like operating systems) with the following parameters:
v

-u <username>. This value must be a valid Marketing Platform user, and you
must have configured that user with access to the TargetDS and RuntimeDS
datasources that the ETL process will use.

v
-p <password>. Replace <password> with the password matching the user you
specified. If the password for this user is blank, specify two double quotes
(as in -p ""). The password is optional when you run the command file; if
you omit the password with the command, you are prompted to enter it
when the command runs.

v
-c <profileName>. Replace <profileName> with the exact name you specified
in the Marketing Platform in the Interact | PatternStateETL configuration
you created.
The name you enter here must match the value you specified in the New
category name field when you created the configuration.

v start. The start command is required to start the process.
The complete command to start the process would therefore take the following
form:
command.bat -u <username> -p <password> -c <profileName> start

The stand-alone ETL process runs, and continues to run in the background until
you stop the process or until the server is restarted.

Note:

The first time that you run the process, the accumulated event pattern data may
take a considerable amount of time to run. Subsequent times that the process runs
will work with only the most recent set of event pattern data and takes less time to
complete.

Chapter 3. Managing Interact data sources 41

Be aware that you can also provide the help argument to the command.bat or
command.sh file to see all available options, as in the following example:

command.bat help

Stopping the stand-alone ETL process
When you launch the stand-alone ETL process on a server, it runs continuously in
the background until stopped.
1. Open a command prompt on the server where the ETL process is installed.
2. Navigate to the <Interact_home>/PatternStateETL/bin directory that contains

the executable files for the ETL process.
3. Run the command.bat file (on Microsoft Windows) or command.sh file (on

UNIX-like operating systems) with the following parameters:
v

-u <username>. This value must be a valid Marketing Platform user, and you
must have configured that user with access to the TargetDS and RuntimeDS
data sources that the ETL process will use.

v
-p <password>. Replace <password> with the password matching the user you
specified. If the password for this user is blank, specify two double quotes
(as in -p ""). The password is optional when you run the command file; if
you omit the password with the command, you are prompted to enter it
when the command runs.

v
-c <profileName>. Replace <profileName> with the exact name you specified
in the Marketing Platform in the Interact | PatternStateETL configuration
you created.
The name you enter here must match the value you specified in the New
category name field when you created the configuration.

v
stop. The stop command is required to stop the process. If you use this
command, any ongoing ETL operation will complete before the process shuts
down.
To shut down the ETL process without waiting for any ongoing operations to
complete, use forcestop instead of stop.

The complete command to start the process would therefore take the following
form:
command.bat -u <username> -p <password> -c <profileName> stop

The stand-alone ETL process stops.

42 IBM Interact Administrator's Guide

Chapter 4. Offer serving

You can configure Interact in many ways to enhance how it selects offers to
present. The following sections describe these optional features in detail.

Offer eligibility
The purpose of Interact is to present eligible offers. Simply, Interact presents the
most optimal among the eligible offers, based on the visitor, the channel, and the
situation.

Treatment rules are only the start of how Interact determines which offers are
eligible for a customer. Interact has several optional features which you can
implement to enhance how the runtime environment determines which offers to
present. None of these features guarantee that an offer is presented to a customer.
These features influence the probability that an offer is eligible to be presented to a
customer. You can use as many or as few of these features as you need to
implement the best solution for your environment.

There are three main areas where you can influence offer eligibility: generating the
list of candidate offers, determining the marketing score, and learning.

Generating a list of candidate offers
Generating a list of candidate offers has two major stages. The first stage is
generating a list of all possible offers for which the customer may be eligible. The
second stage is filtering out any offer for which the customer is no longer eligible.
There are several places in both stages where you can influence the generation of
the candidate offer list.

This diagram shows the stages of the candidate offer list generation. The arrows
show the order of precedence. For example, if an offer passes the Max # of times
to present an offer filter, but fails the Global offer inclusion rules filter, the
runtime environment excludes the offer.

Offer

Suppression
Max # Times

Present Offer

Global Offer

Inclusion

Rules

Advanced

Options

Individual

Offer Inclusion

Rules

List of

Candidate

Offers

Offer Exclusion

Campaign

Start and

End Date

Offer

Expiration

Date

Candidate Offers

Global Offer

Assignments

Treatment

Rules

Individual

Offer

Assignments

v Global offer assignments - You can define global offers by audience level using
the global offers table.

© Copyright IBM Corp. 2001, 2018 43

v Treatment rules - The basic method to define offers by segment by interaction
point using the interaction strategy tab.

v Individual offer assignments - You can define specific offer assignments by
customer using the score override table.

v Offer expiration date - When you create an offer in Campaign, you can define
an expiration date. If the expiration date for an offer has passed, the runtime
environment excludes the offer.

v Campaign start and end date - When you create a campaign in Campaign, you
can define a start and end date for the campaign. If the start date for the
campaign has not occurred or the end date for the campaign has passed, the
runtime environment excludes the offer.

v Offer suppression - You can define offer suppression for specific audience
members using the offer suppression table.

v Max # times to present an offer - When you define an interactive channel, you
define the maximum number of times to present an offer to a customer per
session. If the offer has already been presented this number of times, the
runtime environment excludes the offer.

v Global offer inclusion rules - You can define a boolean expression to filter
offers on an audience level using the global offers table. If the result is false, the
runtime environment excludes the offer.

v Advanced options - You can use the Consider this rule eligible if the
following expression is true advanced option in a treatment rule to filter offers
on a segment level. If the result is false, the runtime environment excludes the
offer.

v Individual offer inclusion rules - You can define a boolean expression to filter
offers on a customer level using the score override table. If the result is false, the
runtime environment excludes the offer.

Calculate the marketing score
There are many ways to influence (by using a calculation) or override the
marketing score.

This diagram shows the different stages where you can influence or override the
marketing score.

Global Score
Marketer's

Score

ScoreOverride

Score

Global Offer

Inclusion

Rules

Advanced

Options

Individual

Offer Inclusion

Rules

Final

Marketer's

Score

Marketer's Score

The arrows show the order of precedence. For example, if you define an expression
to determine the marketing score in the Advanced Options for a treatment rule and
define an expression in the score override table, the expression in the score
override table takes precedence.

44 IBM Interact Administrator's Guide

v Global score - You can define a score per audience level using the global offers
table.

v Marketer's score - You can define a score per segment using the slider in a
treatment rule.

v Score Override score - You can define a score per customer using the score
override table.

v Global offer inclusion rules - You can define an expression which calculates a
score per audience level using the global offers table.

v Advanced Options - You can define an expression which calculates a score per
segment using the Use the following expression as the marketing score
advanced option in a treatment rule.

v Score override offer inclusion rules - You can define an expression which
calculates a score per customer using the score override table.

Influencing learning
If you are using the Interact built-in learning module, you can influence the
learning output beyond the standard learning configurations such as the list of
learning attributes or the confidence level. You can override components of the
learning algorithm while using the remaining components.

You can override learning using the LikelihoodScore and AdjExploreScore
columns of the default offers and score override tables. You can add these columns
to the default offers and score override tables using the aci_scoringfeature feature
script. To properly use these overrides, you need a thorough understanding of
Interact built-in learning.

The learning module takes the list of candidate offers and the marketing score per
candidate offer and uses them in the final calculations. The offer list is used with
the learning attributes to calculate the likelihood (accept probability) that the
customer will accept the offer. Using these probabilities and the historical number
of presentations to balance between exploration and exploitation, the learning
algorithm determines the offer weight. Finally, the built-in learning takes the offer
weight, multiplies it by the final marketing score and returns a final score. The
offers are sorted by this final score.

Suppress offers
You can configure the runtime environment to suppress offers.

There are several ways in which the runtime environment suppresses an offer:
v The Maximum # of times to show any offer during a single visit element of an

interactive channel.
You define the Maximum # of times to show any offer during a single visit
when you create or edit an interactive channel.

v The use of an offer suppression table.
You create an offer suppression table in your profile database.

v Offers whose expiration date has passed.
v Offers from expired campaigns.
v Offers excluded because they do not pass an offer inclusion rule (treatment rule

advanced option).
v Offers already explicitly accepted or rejected in a Interact session. If a customer

explicitly accepts or rejects an offer, that offer is suppressed during the session.

Chapter 4. Offer serving 45

Enabling offer suppression
Use this procedure to enable offer suppression.

You can configure Interact to reference a list of suppressed offers.
1. Create an offerSuppressionTable, a new table for every audience that contains

the audience ID and the offer ID.
2. Set the enableOfferSuppressionLookup property to true.
3. Set the Interact > profile > offerSuppressionTable property to the name of

the offer suppression table for the appropriate audience.

Offer suppression table
The offer suppression table enables you to suppress an offer for a specific audience
ID. For example, if your audience is Customer, you can suppress an offer for the
customer John Smith. A version of this table for at least one audience level must
exist in your production profile database. You can create a sample offer
suppression table, UACI_Blacklist by running the aci_usrtab SQL script against
your profile database. The aci_usrtab SQL script is located in the ddl directory in
your runtime environment installation directory.

You must define the AudienceID and OfferCode1 fields for each row. You can add
additional columns if your Audience ID or Offer Code consists of multiple
columns. These columns must match the column names defined in Campaign. For
example if you define the audience Customer by the fields HHold_ID and MemberNum,
you must add HHold_ID and MemberNum to the offer suppression table.

Name Description

AudienceID (Required) The name of this column must match the name of the column
defining the audience ID in Campaign. If your audience ID consists of
multiple columns, you can add them to this table. Each row must contain
the audience ID to which you assign the default offer, for example,
customer1.

OfferCode1 (Required) The offer code for the offer you are overriding. If your offer
codes are made of multiple fields, you can add the additional columns, for
example OfferCode2, and so on.

Global offers and individual assignments
You can configure the runtime environment to assign specific offers beyond the
treatment rules configured on the Interaction Strategy tab. You can define global
offers for any member of an audience level and individual assignments for specific
audience members. For example, you can define a global offer for all households to
see when no others are available, and then create an individual offer assignment
for the specific Smith household.

You can constrain both global offers and individual assignments by zone, cell, and
offer inclusion rules. Both global offers and individual assignments are configured
by adding data to specific tables in your production profile database.

For global offers and individual assignments to function properly, all referenced
cell and offer codes must exist in the deployment. To ensure the required data is
available, you must configure default cell codes and the UACI_ICBatchOffers table.

46 IBM Interact Administrator's Guide

Defining the default cell codes
If you use the default offers or score override tables for global or individual offer
assignments, you must define default cell codes. The DefaultCellCode is used
when there is no defined cell code in a particular row in the default offers or score
override tables. Reporting uses this default cell code.

The DefaultCellCode must match the cell code format that is defined in Campaign.
This cell code is used for all offer assignments that appear in reporting.

If you define unique default cell codes, you can easily identify offers that are
assigned by the default offers or score override tables.

Define the DefaultCellCode property for each audience level and table type in the
IndividualTreatment category.

Defining offers not used in a treatment rule
If you use the default offers or score override tables, you must ensure that all offer
codes exist in the deployment. If you know that all offers you use in the default
offers or score override tables are used in your treatment rules, the offers exist in
the deployment. However, any offer that is not used in a treatment rule must be
defined in the UACI_ICBatchOffers table.

The UACI_ICBatchOffers table exists in the Campaign system tables.

Populate the UACI_ICBatchOffers table with offer codes that you use in the default
offer or score override tables. The table has the following format:

Column Name Type Description

ICName varchar(64) The name of the interactive channel the offer is
associated with. If you are using the same offer
with two different interactive channels, you must
provide a row for each interactive channel.

OfferCode1 varchar(64) The first part of the offer code.

OfferCode2 varchar(64) The second part of the offer code.

OfferCode3 varchar(64) The third part of the offer code.

OfferCode4 varchar(64) The fourth part of the offer code.

OfferCode5 varchar(64) The fifth part of the offer code

About the global offers table
The global offers table enables you to define treatments at the audience level. For
example, you can define a global offer for every member of the audience
Household.

You can define global settings for the following elements of Interact offer serving.
v Global offer assignment
v Global marketer's score, by a number or by an expression
v Boolean expression to filter offers
v Learning probability and weight, if you are using Interact Built-in Learning
v Global learning override

Chapter 4. Offer serving 47

Assigning global offers
Use this procedure to configure the runtime environment to assign global offers for
an audience level, beyond anything that is defined in treatment rules.
1. Create a table that is called UACI_DefaultOffers in your profile database.

To create the UACI_DefaultOffers table with the correct columns, use the
aci_usrtab ddl file.

2. Set the Interact > profile > enableDefaultOfferLookup property to true.

Global offer table
The global offer table must exist in your profile database. You can create the global
offer table, UACI_DefaultOffers by running the aci_usrtab SQL script against your
profile database.

The aci_usrtab SQL script is located in the ddl directory in your runtime
environment installation directory .

You must define the AudienceLevel, and OfferCode1 fields for each row. The other
fields are optional to constrain your offer assignments further or influence the
built-in learning at the audience level.

For best performance, you should create an index on this table on the audience
level column.

Name Type Description

AudienceLevel varchar(64) (Required) The name of the audience level you
assign the default offer to, for example, customer or
household. This name must match the audience
level as defined in Campaign.

OfferCode1 varchar(64) (Required) The offer code for the default offer. If
your offer codes are made of multiple fields, you
can add the additional columns, for example
OfferCode2 and so on.

If you are adding this offer to provide a global offer
assignment, you must add this offer to the
UACI_ICBatchOffers table.

Score float A number to define the marketing score for this
offer assignment.

OverrideTypeID int If set to 1, if the offer does not exist in the
candidate list of offers, add this offer to the list as
well as using any score data for the offer. In
general, use 1 to provide global offer assignments.

If set to 0, null, or any number other than 1, use
any data for the offer only if the offer exists in the
candidate list of offers. In most cases, a treatment
rule or individual assignment will override this
setting.

48 IBM Interact Administrator's Guide

Name Type Description

Predicate varchar(4000) You can enter expressions in this column as for
advanced options for treatment rules. You can use
the same variables and macros available to you
when writing advanced options for treatment rules.
The behavior of this column depends on the value
in the EnableStateID column.

v If the EnableStateID is 2, this column works the
same as Consider this rule eligible if the
following expression is true option in the
advanced options for treatment rules to constrain
this offer assignment. This column must contain
a boolean expression, and resolve to true to
include this offer.

If you accidentally define an expression that
resolves to a number, any non-zero number is
considered true and zero is considered false.

v If the EnableStateID is 3, this column works the
same as Use the following expression as the
marketing score option in the advanced options
for treatment rules to constrain this offer. This
column must contain an expression that resolves
to a number.

v If the EnableStateID is 1, Interact ignores any
value in this column.

FinalScore float A number to override the final score used to order
the final list of returned offers. This column is used
if you have enabled the built-in learning module.
You can implement your own learning to use this
column.

CellCode varchar(64) The cell code for a deployed interactive segment to
which you want to assign this default offer. If your
cell codes are made of multiple fields, you can add
the additional columns.

You must provide a cell code if OverrideTypeID is 0
or null. If you do not include a cell code, the run
time environment ignores this row of data.

If the OverrideTypeID is 1, you do not have to
provide a cell code in this column. If you do not
provide a cell code, the runtime environment uses
the cell code defined in the DefaultCellCode
property for this audience level and table for
reporting purposes.

Zone varchar(64) The name of the zone to which you want this offer
assignment to apply. If NULL, this applies to all
zones.

Chapter 4. Offer serving 49

Name Type Description

EnableStateID int The value in this column defines the behavior of
the Predicate column.

v 1 - Do not use the Predicate column.

v 2 - Use Predicate as a boolean to filter the offer.
This follows the same rules as the Consider this
rule eligible if the following expression is true
advanced option in a treatment rule.

v 3 - Use Predicate to define the marketer's score.
This follows the same rules as the Use the
following expression as the marketing score
advanced option in a treatment rule.

Any row where this column is Null or any value
other than 2 or 3 ignores the Predicate column.

LikelihoodScore float This column is used only to influence built-in
learning. You can add this column with the
aci_scoringfeature ddl.

AdjExploreScore float This column is used only to influence built-in
learning. You can add this column with the
aci_scoringfeature ddl.

About the score override table
The score override table allows you to define treatments on an audience ID or
individual level. For example, if your audience level is Visitor, you can create
overrides for specific visitors.

You can define overrides for the following elements of Interact offer serving.
v Individual offer assignment
v Individual marketer's score, by a number or by an expression
v Boolean expression to filter offers
v Learning probability and weight, if you are using Built-in Learning
v Individual learning override

Configuring score overrides
You can configure Interact to use a score that is generated from a modeling
application instead of the marketing score.
1. Create a score override table for each audience level for which you want to

provide overrides.
To create a sample score override table with the correct columns, use the
aci_usrtab ddl file.

2. Set the Interact > Profile > enableScoreOverrideLookup property to true.
3. Set the scoreOverrideTable property to the name of the score override table for

each audience level for which you want to provide overrides.
You do not need to provide a score override table for every audience level.

Score override table
The score override table must exist in your production profile database. You can
create a sample score override table, UACI_ScoreOverride by running the
aci_usrtab SQL script against your profile database.

50 IBM Interact Administrator's Guide

The aci_usrtab SQL script is located in the ddl directory in your runtime
environment installation directory.

You must define the AudienceID, OfferCode1, and Score fields for each row. The
values in the other fields are optional to constrain your individual offer
assignments further or provide score override information for the built-in learning.

Name Type Description

AudienceID varchar(64) (Required) The name of this column must match
the name of the column defining the audience ID in
Campaign. The sample table created by the
aci_usrtab ddl file create this column as the
CustomerID column. If your audience ID consists of
multiple columns, you can add them to this table.
Each row must contain the audience ID to which
you assign the individual offer, for example,
customer1. For best performance, you should create
an index on this column.

OfferCode1 varchar(64) (Required) The offer code for the offer. If your offer
codes are made of multiple fields, you can add the
additional columns, for example OfferCode2 and so
on.

If you are adding this offer to provide an
individual offer assignment, you must add this
offer to the UACI_ICBatchOffers table.

Score float A number to define the marketing score for this
offer assignment.

OverrideTypeID int If set to 0 or null (or any number other than 1), use
any data for the offer only if the offer exists in the
candidate list of offers. In general, use 0 to provide
score overrides. You must provide a cell code

If set to 1, if the offer does not exist in the
candidate list of offers, add this offer to the list as
well as using any score data for the offer. In
general, use 1 to provide individual offer
assignments.

Chapter 4. Offer serving 51

Name Type Description

Predicate varchar(4000) You can enter expressions in this column as for
advanced options for treatment rules. You can use
the same variables and macros available to you
when writing advanced options for treatment rules.
The behavior of this column depends on the value
in the EnableStateID column.

v If the EnableStateID is 2, this column works the
same as Consider this rule eligible if the
following expression is true option in the
advanced options for treatment rules to constrain
this offer assignment. This column must contain
a boolean expression, and resolve to true to
include this offer.

If you accidentally define an expression that
resolves to a number, any non-zero number is
considered true and zero is considered false.

v If the EnableStateID is 3, this column works the
same as Use the following expression as the
marketing score option in the advanced options
for treatment rules to constrain this offer. This
column must contain an expression that resolves
to a number.

v If the EnableStateID is 1, Interact ignores any
value in this column.

FinalScore float A number to override the final score used to order
the final list of returned offers. This column is used
if you have enabled the built-in learning module.
You can implement your own learning to use this
column.

CellCode varchar(64) The cell code for an interactive segment to which
you want to assign this offer. If your cell codes are
made of multiple fields, you can add the additional
columns.

You must provide a cell code if OverrideTypeID is 0
or null. If you do not include a cell code, the run
time environment ignores this row of data.

If the OverrideTypeID is 1, you do not have to
provide a cell code in this column. If you do not
provide a cell code, the runtime environment uses
the cell code defined in the DefaultCellCode
property for this audience level and table for
reporting purposes.

Zone varchar(64) The name of the zone to which you want this offer
assignment to apply. If NULL, this applies to all
zones.

52 IBM Interact Administrator's Guide

Name Type Description

EnableStateID int The value in this column defines the behavior of
the Predicate column.

v 1 - Do not use the Predicate column.

v 2 - Use Predicate as a boolean to filter the offer.
This follows the same rules as the Consider this
rule eligible if the following expression is true
advanced option in a treatment rule.

v 3 - Use Predicate to define the marketer's score.
This follows the same rules as the Use the
following expression as the marketing score
advanced option in a treatment rule.

Any row where this column is Null or any value
other than 2 or 3 ignores the Predicate column.

LikelihoodScore float This column is used only to influence built-in
learning. You can add this column with the
aci_scoringfeature ddl.

AdjExploreScore float This column is used only to influence built-in
learning. You can add this column with the
aci_scoringfeature ddl.

Interact built-in learning overview
While you do everything you can to ensure that you propose the right offers to the
right segments, you can always learn something from actual selections of your
visitors. The actual behavior of your visitors should influence your strategy. You
can take response history and run it through some modeling tools to get a score
which you can include in your interactive flowcharts.

However, this data is not real-time.

Interact provides two options for you to learn from your visitor's actions in real
time:
v Built-in learning module - The runtime environment has a Naive Bayesian-based

learning module. This module monitors customer attributes of your choosing
and uses that data to help select which offers to present.

v Learning API - The runtime environment also has a learning API for you to
write your own learning module.

You do not have to use learning. By default, learning is disabled.

Interact learning module
The Interact learning module monitors visitor's responses to offers and visitor
attributes.

Learning module modes

The learning module has two general modes:
v Exploration - the learning module serves offers in order so it can gather enough

response data to optimize the estimation that is used during the exploitation
mode. Offers served during exploration do not necessarily reflect the optimal
choice.

Chapter 4. Offer serving 53

v Exploitation - after enough data is collected by the exploration phase, the
learning module uses the probabilities to help select the offers to present.

The learning module uses two properties to alternates between exploration mode
and exploitation mode. The two properties are:
v a confidence level that you configure with the confidenceLevel property.
v a probability that the learning module presents a random offer that you

configure with the percentRandomSelection property.

Confidence level property

You set the confidenceLevel to a percentage that represents how sure (or
confident) the learning module must be before its scores for an offer are used in
arbitration. At first, when the learning module has no data to work from, the
learning module relies entirely upon the marketing score. After every offer is
presented as many times as defined by the minPresentCountThreshold, the learning
module enters the exploration mode. Without much data to work with, the
learning module is not confident that the percentages it calculates are correct.
Therefore, it stays in the exploration mode.

The learning module assigns weights to each offer. To calculate the weights, the
learning module uses a formula that takes in as input the configured confidence
level, the historical acceptance data, and the current session data. The formula
inherently balances between exploration and exploitation, and returns the
appropriate weight.

Random selection property

To ensure that the system is not biased toward the offers that perform best during
early stages, Interact presents a random offer the percentRandomSelection percent
of the time. This random offer percentage forces the learning module to
recommend offers other than the most successful to determine whether other offers
would be more successful if they had greater exposure. For example, if you
configure percentRandomSelection to 5, then 5% of the time the learning module
presents a random offer and adds the response data to its calculations.

You can set the % Random to specify the change that the returned offer is
randomly selected, without considering scores, for each zone on the Interaction
Points tab of the Interactive Channel window.

How the learning module determines offers

The learning module determines which offers are presented in the following way.
1. Calculates the probability that a visitor selects an offer.
2. Calculates the offer weight by using the probability from step 1 and determines

whether to be in exploration or exploitation mode.
3. Calculates a final score for each offer by using the marketing score and the

offer weight from step 2.
4. Sorts the offers by the scores that are determined in step 3 and returns the

requested number of top offers.

For example, the learning module determines that a visitor is 30% likely to accept
offer A and 70% likely to accept offer B and to exploit this information. From the
treatment rules, the marketing score for offer A is 75 and 55 for offer B. However,

54 IBM Interact Administrator's Guide

the calculations in step 3 makes the final score for offer B higher than offer A,
therefore, the runtime environment recommends offer B.

Weight factor properties

Learning is also based on the recencyWeightingFactor property and the
recencyWeightingPeriod property. These properties let you to add more weight to
more recent data than older data. The recencyWeightingFactor is the percentage of
weight to give to the recent data. The recencyWeightingPeriod is the length of time
that is recent. For example, you configure the recencyWeightingFactor to 0.30 and
the recencyWeightingPeriod to 24. These settings mean that the previous 24 hours
of data are 30% of all data considered. For a week's worth of data, all of the data
averaged across the first six days is 70% of the data, and the last day is 30% of the
data.

Staging table data written

Every session writes the following data to a learning staging table:
v Offer contact
v Offer acceptance
v Learning attributes

At a configurable interval, an aggregator reads the data from the staging table,
compiles it, and writes it to a table. The learning module reads this aggregated
data and uses it in calculations.

Enabling the learning module
All runtime servers have a built-in learning module. By default, this learning
module is disabled. You the enable learning module by changing a configuration
property.

In Marketing Platform for the runtime environment, edit the following
configuration properties in the Interact > offerserving category.

Configuration property Setting

optimizationType BuiltInLearning

Learning attributes
The learning module learns using visitor attributes and offer acceptance data. You
can select which visitor attributes you monitor. These visitor attributes can be
anything within a customer profile, including some event parameter you collect in
real time.

Attributes from dimensional tables are not supported in learning.

While you can configure any number of attributes to monitor, IBM recommends
that you configure no more than ten learning attributes between the static and
dynamic learning attributes, as well as follow these guidelines.
v Select independent attributes.

Do not select attributes that are similar. For example, if you create an attribute
called HighValue, and that attribute is defined by a calculation based on salary,
do not select both HighValue and Salary. Similar attributes do not help the
learning algorithm.

Chapter 4. Offer serving 55

v Select attributes with discrete values.
If an attribute has value ranges, you must select an exact value. For example, if
you want to use salary as an attribute, you should give each salary range a
specific value, the range 20,000-30,000 should be A, 30,001-40,000 should be B,
and so on.You can also define bins in interact and learning system will
automatically do the mapping

v Limit the number of attributes you track so you do not impede performance.
The number of attributes you can track depends on your performance
requirements and your Interact installation. If you can, use another modeling
tool (such as PredictiveInsight) to determine the top ten predictive attributes.
You can configure the learning module to automatically prune attributes that are
not predictive, but that also has a performance cost.

You can manage performance by defining both the number of attributes you
monitor and the number of values per attribute you monitor. The Campaign >
partitions > partition1 > Interact > learning > maxAttributeNames property
defines the maximum number of visitor attributes you track. The
maxAttributeValues property defines the maximum number of values you track
per attribute. All other values are assigned to a category defined by the value of
the otherAttributeValue property. However, the learning engine only tracks the
first values it encounters. For example, you are tracking the visitor attribute eye
color. You are only interested in the values blue, brown, and green, so you set
maxAttributeValues to 3. However, the first three visitors have the values blue,
brown, and hazel. This means that all visitors with green eyes are assigned the
otherAttributeValue.

You can also use dynamic learning attributes which enable you to define your
learning criteria more specifically. Dynamic learning attributes let you learn on the
combination of two attributes as a single entry. For example consider the following
profile information.

Visitor ID Card Type Card Balance

1 Gold Card $1,000

2 Gold Card $9,000

3 Bronze Card $1,000

4 Bronze Card $9,000

If you use standard learning attributes, you can only learn on card type and
balance individually. Visitors 1 and 2 will be grouped together same based on Card
Type, and visitors 2 and 4 grouped based on Card Balance. This may not be an
accurate predictor of offer acceptance behavior. If Gold Card holders tend to have
higher balances, the behavior of Visitor 2 may be radically different than Visitor 4,
which would skew the standard learning attributes. However, if you use dynamic
learning attributes, each of these visitors is learned on individually and the
predictions will be more accurate.

If you use dynamic learning attributes, and the visitor has two valid values for an
attribute, the learning module selects the first value it finds.

If you set the enablePruning property to yes, the learning module algorithmically
determines which attributes are not predictive and ceases to consider those
attributes when calculating weights. For example, if you are tracking an attribute
representing hair color, and the learning module determines that there is no

56 IBM Interact Administrator's Guide

pattern to accepting an offer based on the visitor's hair color, the learning module
ceases to consider the hair color attribute. Attributes are re-evaluated every time
the learning aggregation process runs (defined by the
aggregateStatsIntervalInMinutes property). Dynamic learning attributes are also
pruned.

Defining a learning attribute
Use this procedure to define a learning attribute.

You can configure up to the maxAttributeNames number of visitor attributes.

The (learningAttributes) is a template to create new learning attributes. You
must enter a new name for each attribute. You cannot create two categories with
the same name

In Marketing Platform for the design environment, edit the following configuration
properties in the Campaign > partitions > partitionn > Interact > learning
category.

Configuration property Setting

attributeName The attributeName must match the name of a name-value
pair in the profile data. This name is case-insensitive.

Define dynamic learning attributes
To define dynamic learning attributes, you must populate the UACI_AttributeList
table in the Learning data source.

All columns in this table have the type of varchar(64).

Column Description

AttributeName The name of the dynamic attribute upon which you want
to learn. This value must be an actual value possible in the
AttributeNameCol.

AttributeNameCol The fully qualified column name (hierarchical structure,
starting from profile table) where the AttributeName can be
found. This column name does not have to be a standard
learning attribute.

AttributeValueCol The fully qualified column name (hierarchical structure,
starting from profile table) where the associated value for
the AttributeName can be found.

For example, consider the following profile table and its associated dimension
table.

Table 6. MyProfileTable

VisitorID KeyField

1 Key1

2 Key2

3 Key3

4 Key4

Chapter 4. Offer serving 57

Table 7. MyDimensionTable

KeyField CardType CardBalance

Key1 Gold Card 1000

Key2 Gold Card 9000

Key3 Bronze Card 1000

Key4 Bronze Card 9000

The following is a sample UACI_AttributeList table matching on card type and
balance.

Table 8. UACI_AttributeList

AttributeName AttributeNameCol AttributeValueCol

Gold Card MyProfileTable.MyDimensionTable.
CardType

MyProfileTable.MyDimensionTable.
CardBalance

Bronze Card MyProfileTable.MyDimensionTable.
CardType

MyProfileTable.MyDimensionTable.
CardBalance

Interact AutoBinning

In Interact, the built-in learning algorithm works partly by saving and analysing
the values of profile attributes at the time offers were contacted and responded.
Some attributes may have virtually unlimited number of unique values. However,
due to limited resources in an Interact system, you can save only a small number
of them. In addition, often it is more reasonable to do the analysis based on the
ranges of the values. You can use this feature is to create such bins in Interact and
the learning sub-system will automatically do the mapping.

You can create the bin definitions from Interact -> Global Learning -> All Bin
Definitions page. While adding, or editing a bin definition you can select profile
attributes from list of ALL attributes from all mapped profile tables. The types of a
Bin Definition can be either Range or List. The “Range” type can only have
mathematic operators, the “List” type can only have “contains” operator and
consists of list of values.

Example for “Range” type bin:

low income < =30000

30000 < medium income < =60000

high income > 60000

Example for “List” type bin:

New England: MA, NH, CT

North West: MI, IL

A bin definition is global data across all interactive channels and across all learning
models.

58 IBM Interact Administrator's Guide

All bin definitions will be deployed as part of Global Deployment Data. You can
deploy them in any interactive channel, deploying once and deployed for ALL.
After that, the new bin definitions are saved into a memory cache, which is visible
only to the built-in learning sub-system.

When a contact or response event is posted, the value of a profile attribute is
mapped to a bin if such bin exists. The “bin” values is used while logging to the
learning tables. If bins are defined for the attribute and the attribute value is not
part of any bin definitions, then attribute value will be logged as OTHER in
learning tables.

Configuring the runtime environment to recognize external
learning modules

You can use the Learning Java™ API to write your own learning module. You must
configure the runtime environment to recognize your learning utility in Marketing
Platform.

You must restart the Interact runtime server for these changes to take effect.
1. In Marketing Platform for the runtime environment, edit the following

configuration properties in the Interact > offerserving category. The
configuration properties for the learning optimizer API exist in Interact >
offerserving > External Learning Config category.

Configuration property Setting

optimizationType ExternalLearning

externalLearningClass class name for the external learning

externalLearningClassPath The path to the class or JAR files on the runtime
server for the external learning. If you are using a
server group and all the runtime servers reference
the same instance of Marketing Platform, every
server must have a copy of the class or JAR files in
the same location.

2. Restart the Interact runtime server for these changes to take effect.

Chapter 4. Offer serving 59

60 IBM Interact Administrator's Guide

Chapter 5. Understanding the Interact API

Interact serves offers dynamically to a wide variety of touchpoints. For example,
you can configure the runtime environment and your touchpoint to send messages
to your call center employees informing them of the best up sell or cross sell
prospects for a customer who has called with a specific type of service inquiry. You
can also configure the runtime environment and your touchpoint to provide
tailored offers to a customer (visitor) who has entered a particular area of your
Web site.

The Interact application programming interface (API) allows you to configure your
touchpoint and a runtime server to work together to serve the best possible offers.
Using the API, the touchpoint can request information from the runtime server to
assign the visitor to a group (a segment) and present offers based on that segment.
You can also log data for later analysis to refine your offer presentation strategies.

The Interact API also allows for end-user client to server communication through
JavaScript.

In order to provide you with the greatest possible flexibility in integrating Interact
with your environments, IBM provides a web service accessible using the Interact
API.

Interact API dataflow
This example shows how the API works between your touchpoint and the runtime
environment. The visitor takes only four actions - log in, navigate to page that
displays offers, select an offer, and log out. You can design your integration to be
as complicated as you need, within the limits of your performance requirements.

This diagram shows a simple implementation of the Interact API.

A visitor logs in to a website and navigates to a page that displays offers. The
visitor selects an offer and logs out. While the interaction is simple, several events
occur both in the touchpoint and the runtime server:
1. Starting a session
2. Navigating to a page
3. Selecting an offer
4. Closing the session

© Copyright IBM Corp. 2001, 2018 61

Profile DB

Contact/Response

History Staging

Tables

Touchpoint

action flow

Event

Log Offer

Acceptance

Event

Log Offer

Contact

Treatment

Rules

Interactive

flowcharts

Interaction

Deployment

Bundle

Offer

Arbitration

Learning

Utility

Runtime

Session Data

Segment

assignment

Visitor profile

Touchpoint

Customer login

Interaction point

Select choice

Content Page

Pick offer

Customer logout

Interact API
Dataflow

startSession

• Load customer profile

• Load offer suppression list

• Load score override data

• Load global and individual

 offer assignments

• Trigger segmentation

• Visitor profile

• Offer

 suppression

Starting the session

When the visitor logs in, it triggers a startSession.

The startSession method does four things:
1. It creates a new runtime session
2. It sends a request to load the customer profile data into the session
3. It sends a request to use the profile data and start an interactive flowchart to

place the customer into segments. This flowchart run is asynchronous.
4. The runtime server loads any offer suppression and global and individual offer

treatment information into the session. The session data is held in memory
during the session.

Navigating to a page

The visitor navigates the site until the visitor reaches a pre-defined interaction
point. In the figure, the second interaction point (Select choice) is a place where the
visitor clicks a link that presents a set of offers. The touchpoint manager
configured the link to trigger an executeBatch method for selecting an offer.

62 IBM Interact Administrator's Guide

Selecting an offer

This diagram shows the API call that triggers the executeBatch method.

The executeBatch method lets you call more than one method in a single call to
the runtime server. This particular executeBatch calls two other methods,
getOffers and postEvent. The getOffers method requests a list of offers. The
runtime server uses the segmentation data, the offer suppression list, the treatment
rules, and the learning module to propose a set of offers. The runtime server
returns a set of offers that are displayed on the content page.

The postEvent method triggers one of the events that are defined in the design
environment. In this particular case, the event sends a request to log the offers that
are presented to contact history.

The visitor selects one of the offers (Pick offer).

This diagram shows the postEvent method.

Chapter 5. Understanding the Interact API 63

Profile DB

Contact/Response

History Staging

Tables

Touchpoint

action flow

Event

Log Offer

Acceptance

Event

Log Offer

Contact

Treatment

Rules

Interactive

flowcharts

Interaction

Deployment

Bundle

Offer

Arbitration

Learning

Utility

Runtime

Session Data

Segment

assignment

Visitor profile

Offer

recommendations

Touchpoint

Customer login

Interaction point

Select choice

Content Page

Pick offer

Customer logout

Interact API
Dataflow

postEvent

The user interface control that is associated with selecting the offer is configured to
send another postEvent method. This event sends a request to log the offer
acceptance to response history.

Closing the session

After the visitor selects the offer, the visitor is finished with the website and logs
out. The log out command is linked to the endSession method.

This diagram shows the endSession method.

64 IBM Interact Administrator's Guide

Profile DB

Contact/Response

History Staging

Tables

Touchpoint

action flow

Event

Log Offer

Acceptance

Event

Log Offer

Contact

Treatment

Rules

Interactive

flowcharts

Interaction

Deployment

Bundle

Offer

Arbitration

Learning

Utility

Runtime

Session Data

Segment

assignment

Visitor profile

Offer

recommendations

Touchpoint

Customer login

Interaction point

Select choice

Content Page

Pick offer

Customer logout

Interact API
Dataflow

endSession

The endSession method closes the session. If the visitor forgets to log out, there is
a configurable session timeout to ensure that all sessions eventually end. If you
want to keep any of the data passed to the session, such as information included
in parameters in the startSession or setAudience methods, work with the person
who creates interactive flowcharts. The person who creates an interactive flowchart
can use the Snapshot process to write that data to a database before the session
ends and that data is lost. You can then use the postEvent method to call the
interactive flowchart that contains the Snapshot process.

Simple interaction planning example
In this example, you are designing an interaction for a cellular phone company's
website. You create three different offers, set up logging for the offers, assign
treatment codes to the offer, and show a series of pictures that link to the offers.

Design process

To design an interaction for this client, you:
1. Identify the requirements for the client's summary page
2. Create interaction points for the offer requirements
3. Configure logging for the offers
4. Create treatment codes
5. Link a series of rotating images to the offers

This example is basic, and does not show the best way to write the integration. For
example, none of these examples include any error checking that uses the
Response class.

Chapter 5. Understanding the Interact API 65

Identify requirements for the cell phone plan summary page

The following diagram shows the layout for the cell phone plan summary page.

Navigation and Branding

Navigation

Page Content

pl
an

S
um

m
ar

yB
ot

to
m

Le
ft

pl
an

S
um

m
ar

yB
ot

to
m

R
ig

ht

pl
an

S
um

m
ar

yT
op

R
ig

ht

You define the following items to meet the requirements for the cell phone plan
summary page:

Requirement Implementation

One offer to be displayed in a zone that is
dedicated to offers about upgrades

The area on the page that displays the
upgrade offer must be defined. Also, after
Interact picks an offer to display, the
information must be logged.

v Interaction point:
ip_planSummaryBottomRight

v Event: evt_logOffer

Two offers for phone upgrades

Each area on the page that displays the
phone upgrades must be defined.

v Interaction point: ip_planSummaryTopRight

v Interaction
point: ip_planSummaryBottomLeft

For analysis, you need to log which offers
are accepted, and which offers are rejected.

v Event: evt_offerAccept

v Event: evt_offerReject

You also know that you must pass the
treatment code of an offer whenever you log
an offer contact, acceptance, or rejection.

NameValuePair

Display three rotating images on the page.
Link the images to the offers.

66 IBM Interact Administrator's Guide

Create Interaction points

Now you can ask the design environment user to create the interaction points and
events for you while you start to code the integration with your touchpoint.

For each interaction point that displays an offer, you need to first get an offer, then
extract the information that you need to display the offer. For example, request an
offer for the lower right area of your web page (planSummaryBottomRight)
Response response=getOffers(sessionID, ip_planSummaryBottomRight, 1)

This response call returns a response object that includes an OfferList response.
However, your web page cannot use an OfferList object. You need an image file
for the offer, which you know is one of the offer attributes (offerImg). You need to
extract the offer attribute you need from the OfferList.
OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{
Offer offer = offerList.getRecommendedOffers()[0];
NameValuePair[] attributes = offer.getAdditionalAttributes();
for(NameValuePair attribute: attributes)
{
if(attribute.getName().equalsIgnoreCase("offerImg"))
{
/* Use this value in your code for the page, for
example: stringHtml = " */
}
}
}

Configure logging

Now that you are displaying the offer, you want to log it as a contact.
NameValuePair evtParam_TreatmentCode = new NameValuePairImpl();
evtParam_TreatmentCode.setName("UACIOfferTrackingCode");
evtParam_TreatmentCode.setValueAsString(offer.getTreatmentCode());
evtParam_TreatmentCode.setValueDataType(NameValuePair.DATA_TYPE_STRING);
postEvent(sessionID, evt_logOffer, evtParam_TreatmentCode)

Instead of calling each of these methods singularly, you can use the executeBatch
method, as shown in the following example for the planSummaryBottomLeft portion
of the web page.
Command getOffersCommand = new CommandImpl();
getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);
getOffersCommand.setInteractionPoint(ip_planSummaryBottomLeft);
getOffersCommand.setNumberRequested(1);

Command postEventCommand = new CommandImpl();
postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);
postEventCommand.setEvent(evt_logOffer);

/** Build command array */
Command[] commands =
{
getOffersCommand,
postEventCommand
};

/** Make the call */
BatchResponse batchResponse = api.executeBatch(sessionId, commands);

Chapter 5. Understanding the Interact API 67

You do not need to define the UACIOfferTrackingCode in this example. The Interact
runtime server automatically logs the last recommended list of treatments as
contacts if you do not supply the UACIOfferTrackingCode.

Create treatment codes

Where necessary, you create a NameValuePair to contain the treatment code, as in
the following example.
NameValuePair evtParam_TreatmentCode = new NameValuePairImpl();
evtParam_TreatmentCode.setName("UACIOfferTrackingCode");
evtParam_TreatmentCode.setValueAsString(offer.getTreatmentCode());
evtParam_TreatmentCode.setValueDataType(NameValuePair.DATA_TYPE_STRING);

Link images to offers

For the second area on the page that displays a phone upgrade, you wrote
something to change the image displayed every 30 seconds. You decide to rotate
between three images and you use the following to retrieve the set of offers to
cache for use in your code to rotate the images.
Response response=getOffers(sessionID, ip_planSummaryBottomLeft, 3)
OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{
for(int x=0;x<3;x++)
{
Offer offer = offerList.getRecommendedOffers()[x];
if(x==0)
{
// grab offerimg attribute value and store somewhere;
// this will be the first image to display
}
else if(x==1)
{
// grab offerimg attribute value and store somewhere;
// this will be the second image to display
}
else if(x==2)
{
// grab offerimg attribute value and store somewhere;
// this will be the third image to display
}
}
}

You must write your client code fetch from the local cache and log to contact only
once for each offer after its image is displayed. To log the contact, the
UACITrackingCode parameter needs to be posted as before. Each offer has a
different tracking code.
NameValuePair evtParam_TreatmentCodeSTR = new NameValuePairImpl();
NameValuePair evtParam_TreatmentCodeSBR = new NameValuePairImpl();
NameValuePair evtParam_TreatmentCodeSBL = new NameValuePairImpl();

OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{
for(int x=0;x<3;x++)
{
Offer offer = offerList.getRecommendedOffers()[x];
if(x==0)
{
evtParam_TreatmentCodeSTR.setName("UACIOfferTrackingCode");
evtParam_TreatmentCodeSTR.setValueAsString(offer.getTreatmentCode());

68 IBM Interact Administrator's Guide

evtParam_TreatmentCodeSTR.setValueDataType(NameValuePair.DATA_TYPE_STRING);
}
else if(x==1)
{
evtParam_TreatmentCodeSBR.setName("UACIOfferTrackingCode");
evtParam_TreatmentCodeSBR.setValueAsString(offer.getTreatmentCode());
evtParam_TreatmentCodeSBR.setValueDataType(NameValuePair.DATA_TYPE_STRING);
}
else if(x==2)
{
evtParam_TreatmentCodeSBL.setName("UACIOfferTrackingCode");
evtParam_TreatmentCodeSBL.setValueAsString(offer.getTreatmentCode());
evtParam_TreatmentCodeSBL.setValueDataType(NameValuePair.DATA_TYPE_STRING);
}
}
}

For each offer, if the offer is clicked, you log the offer that is accepted and the
offers that are rejected. (In this scenario, offers not explicitly selected are
considered rejected.) The following is an example if the ip_planSummaryTopRight
offer is selected:
postEvent(sessionID, evt_offerAccept, evtParam_TreatmentCodeSTR)
postEvent(sessionID, evt_offerReject, evtParam_TreatmentCodeSBR)
postEvent(sessionID, evt_offerReject, evtParam_TreatmentCodeSBL)

In practice, it would be best to send these three postEvent calls with the
executeBatch method.

Designing the Interact API integration
Building your Interact API integration with your touchpoint requires some
designing before you can begin implementation. You need to work with your
marketing team to decide on where in your touchpoint you want the runtime
environment to serve offers (define your interaction points) and what other kind of
tracking or interactive functionality you want to use (define your events).

In the design phase, these may be mere outlines. For example, for a
telecommunications web site, the customer's plan summary page should display
one offer regarding plan upgrade and two offers for phone upgrades.

Once your company has decided where and how they wish to interact with
customers, you need to use Interact to define the details. A flowchart author needs
to design the interactive flowcharts that will be used when re-segmentation events
occur. You need to decide on the number and names of interaction points and
events, as well as what data needs to be passed along for proper segmentation,
event posting, and offer retrieval. The design environment user defines the
interaction points and events for the Interactive Channel. You then use those
names as you code the integration with your touchpoint in the runtime
environment. You should also define what metric information is required, to define
when you need to log offer contacts and responses.

Points to consider
When you design an interaction, keep in mind the effects that no eligible offer, an
unreachable runtime server, process timing have on the interaction. Be specific
when you define offer rejections. Consider the optional product features that can
enhance the interaction.

When you are designing your interaction:

Chapter 5. Understanding the Interact API 69

Create some default filler content
Create default filler content, a benign branding message or empty content,
for every interaction point where offers can be presented. This filler content
is used when there are no offers eligible to be served to the current visitor
in the current situation. You assign this default filler content as the default
string for the interaction point.

Include an alternative method of presenting content
Include some method of presenting content in case your touchpoint cannot
reach the runtime server group for some unforeseen reason.

Consider the time that running flowcharts takes
When you trigger events that resegment your visitor, including postEvent
and setAudience, keep in mind that running flowcharts does take some
amount of time. The getOffers method waits until segmentation is
finished before the getOffers method runs. Overly frequent
resegmentation can hinder getOffers call response performance.

Decide what an "offer rejection" means
Several reports, such as the Channel Offer Performance Summary report,
present the number of times an offer is rejected. This report shows the
number of times a postEvent triggered a Log Offer Rejection action. You
need to determine whether the Log Offer Rejection action is for an actual
rejection, such as clicking a link labeled No, thanks. Or is Log Offer
Rejection action for an offer that is ignored, such as a page that displays
three different banner ads, none of which are selected.

Decide which offer selection features to use
There are several optional features you can use to enhance Interact offer
selection. These features include:
v Learning
v Offer suppression
v Individual offer assignments
v Other elements of offer serving

You need to determine how many, if any, of these optional features would
enhance your interactions.

70 IBM Interact Administrator's Guide

Chapter 6. Managing the IBM Interact API

Whenever you use the startSession method, you create a Interact runtime session
on the runtime server. You can use configuration properties to manage the sessions
on a runtime server.

You may need to configure these settings as you implement your Interact
integration with your touchpoint.

These configuration properties are in the sessionManagement category.

Locale and the Interact API
You can use Interact for non-English touchpoints. The touchpoint and all strings in
the API use the locale defined for the runtime environment user.

You can select only one locale per server group.

For example, in the runtime environment, you create two users, asm_admin_en
with the user locale set to English, and asm_admin_fr with the user locale set to
French. If your touchpoint is designed for French speakers, define the
asmUserForDefaultLocale property for the runtime environment as asm_admin_fr.

About JMX monitoring
Interact provides Java Management Extensions (JMX) monitoring service that you
can access with any JMX monitoring application. This JMX monitoring enables you
to monitor and manage your runtime servers.

The JMX attributes provide a lot of detailed information about the runtime server.
For example, the JMX attribute ErrorCount gives the number of error messages
logged since last reset or system start. You can use this information to see how
often there are errors in your system. If you have coded your web site to only call
an end session if someone completes a transaction, you could also compare the
startSessionCount to the endSessionCount to see how many transactions are
incomplete.

Interact supports the RMI and JMXMP protocols, as defined by JSR 160. You can
connect to the JMX monitoring service with any JSR160-compliant JMX client.

Interactive flowcharts can be monitored with JMX monitoring only. Information
about Interactive flowcharts does not appear in Campaign Monitoring.

Note: If you are using IBM WebSphere® with a node manager, you must define the
Generic JVM Argument to enable JMX monitoring.

Configuring Interact to use JMX monitoring with the RMI
protocol

Use this procedure to configure Interact to use JMX monitoring with the RMI
protocol.

© Copyright IBM Corp. 2001, 2018 71

http://jcp.org/en/jsr/detail?id=160

The default address for monitoring for the RMI protocol is service:jmx:rmi:///
jndi/rmi://RuntimeServer:port/interact.

In Marketing Platform for the runtime environment, edit the following
configuration properties in the Interact > monitoring category.

Configuration property Setting

protocol RMI

port The port number for the JMX service

enableSecurity False

The Interact implementation of the RMI protocol does not
support security.

Configuring Interact to use JMX monitoring with the JMXMP
protocol

Use this procedure to configure Interact to use JMX monitoring with the JMXMP
protocol.

The JMXMP protocol requires two extra libraries in the following order in the
classpath, InteractJMX.jar and jmxremote_optional.jar. Both of these files can be
found in the lib directory of your runtime environment installation.

If you enable security, the user name and password must match a user in
Marketing Platform for the runtime environment. You cannot use an empty
password.

The default address for monitoring for the JMXMP protocol is
service:jmx:jmxmp://RuntimeServer:port.
1. Verify that the InteractJMX.jar and jmxremote_optional.jar libraries are in the

classpath in order. If they are not in the classpath, add them to the classpath.
2. In Marketing Platform for the runtime environment, edit the following

configuration properties in the Interact > monitoring category.

Configuration property Setting

protocol JMXMP

port the port number for the JMX service

enableSecurity False to disable security, or True to enable security

Configuring Interact to use the jconsole scripts for JMX
monitoring

If you do not have a separate JMX monitoring application, you can use the
jconsole that is installed with the JVM. You can start the jconsole with the startup
scripts in the Interact/tools directory.

The jconsole script uses the JMXMP protocol for monitoring by default. The default
settings for jconsole.bat are:

The JMXMP connection
%JAVA_HOME%\bin\jconsole.exe -J-Djava.class.path=%JAVA_HOME%

\lib\jconsole.jar;INTERACT_LIB%\interactJMX.jar; INTERACT_LIB%
\jmxremote_optional.jar service:jmx:jmxmp://%HOST%:%PORT%

72 IBM Interact Administrator's Guide

The RMI connection
%JAVA_HOME%\bin\jconsole.exe -J-Djava.class.path=%JAVA_HOME%

\lib\jconsole.jar;INTERACT_LIB%\jmxremote_optional.jar
service:jmx:rmi:///jndi/rmi://%HOST%:%PORT%/interact

1. Open Interact\tools\jconsole.bat (Windows) or Interact/tools/jconsole.sh
(UNIX) in a text editor.

2. Set INTERACT_LIB to the full path to the InteractInstallationDirectory/lib
directory.

3. Set HOST to the host name of the runtime server you want to monitor.
4. Set PORT to the port you configured JMX to listen on with the Interact >

monitoring > port property.
5. Optional: If you are using the RMI protocol for monitoring, add a comment

before the JMXMP connection and remove the comment before the RMI
connection.

JMX attributes
There are multiple attributes available for JMX monitoring. Design environment
attributes include contact response history ETL monitoring. Runtime environment
attributes include exceptions, several different flowchart attributes, locale, logger,
and thread pool statistics. Several service statistics attributes are also available. All
data that is provided by JMX monitoring is since the last reset or system start. For
example, a count is of the number of items since last reset or system start, not
since installation.

Contact Response History ETL Monitor attributes

The Contact Response History ETL Monitor attributes are part of the design
environment. All of the following attributes are part of the runtime environment.

Table 9. Contact Response History ETL Monitor

Attribute Description

AvgCHExecutionTime The average number of milliseconds it
takes for the contact and response
history module to write to the contact
history table. This average is calculated
only for the operations that were
successful and for which there was at
least one record that was written to the
contact history table.

AvgETLExecutionTime The average number of milliseconds it
takes for the contact and response
history module to read data from the
runtime environment. The average
includes the time for successful as well
as failed operations.

AvgRHExecutionTime The average number of milliseconds it
takes for the contact and response
history module to write to the response
history table. This average is calculated
only for the operations that were
successful and for which there was at
least one record that was written to the
response history table.

Chapter 6. Managing the IBM Interact API 73

Table 9. Contact Response History ETL Monitor (continued)

Attribute Description

ErrorCount The number of error messages that
were logged since last reset or system
start, if any.

HighWaterMarkCHExecutionTime The maximum number of milliseconds
it took for the contact and response
history module to write to the contact
history table. This value is calculated
only for the operations that were
successful and for which there was at
least one record that was written to the
contact history table.

HighWaterMarkETLExecutionTime The maximum number of milliseconds
it took for the contact and response
history module to read data from the
runtime environment. The calculation
includes both successful as well as
failed operations.

HighWaterMarkRHExecutionTime The maximum number of milliseconds
it took for the contact and response
history module to write to the response
history table. This value is calculated
only for the operations that were
successful and for which there was at
least one record that was written to the
response history table.

LastExecutionDuration The number of milliseconds the contact
and response history module took to
perform the last copy.

NumberOfExecutions The number of times the contact and
response history module has run since
initialization.

LastExecutionStart The time the last run of the contact
and response history module started.

LastExecutionSuccessful If true, the last run of the contact and
response history module was
successful. If false, an error occurred.

NumberOfContactHistoryRecordsMarked The number of contact history records
in the UACI_CHStaging table that are
being moved during the current run of
the contact and response history
module. This value is greater than zero
only if the contact and response history
module is running.

NumberOfResponseHistoryRecordsMarked The number of response history
records in the UACI_RHStaging table
that are being moved during the
current run of the contact and response
history module. This value is greater
than zero only if the contact and
response history module is running.

74 IBM Interact Administrator's Guide

Exception attributes

Exception attributes are part of the runtime environment.

Table 10. Exceptions

Attribute Description

errorCount The number of error messages that were
logged since last reset or system start.

warningCount The number of warning messages that were
logged since last reset or system start.

Flowchart Engine Statistics attributes

Flowchart Engine Statistics attributes are part of the runtime environment.

Table 11. Flowchart Engine Statistics

Attribute Description

activeProcessBoxThreads Active count of flowchart process
threads (shared between all executions)
that are currently running.

activeSchedulerThreads Active count of Flowchart Scheduler
threads that are currently running.

avgExecutionTimeMillis Average flowchart execution time in
milliseconds.

CurrentJobsInProcessBoxQueue The number of jobs that are waiting to
be run by flowchart process threads.

CurrentJobsInSchedulerQueue The number of jobs that are waiting to
be run by Flowchart Scheduler threads.

maximumProcessBoxThreads Maximum number of flowchart process
threads (shared between all executions)
that can be run.

maximumSchedulerThreads Maximum number of Flowchart
Scheduler threads (one thread per
execution) that can be run.

numExecutionsCompleted Total number of flowchart executions
that completed.

numExecutionsStarted Total number of flowchart executions
started.

Specific flowcharts by interactive channel attributes

Specific flowcharts by interactive channel attributes are part of the runtime
environment.

Table 12. Specific flowcharts by interactive channel

Attribute Description

AvgExecutionTimeMillis Average execution time in milliseconds
for this flowchart in this interactive
channel.

Chapter 6. Managing the IBM Interact API 75

Table 12. Specific flowcharts by interactive channel (continued)

Attribute Description

HighWaterMarkForExecutionTime Maximum execution time in
milliseconds for this flowchart in this
interactive channel.

LastCompletedExecutionTimeMillis Execution time in milliseconds for the
last completion of this flowchart in this
interactive channel.

NumExecutionsCompleted Total number of executions that have
completed for this flowchart in this
interactive channel.

NumExecutionsStarted Total number of executions that are
started for this flowchart in this
interactive channel.

Locale attributes

Locale attributes are part of the runtime environment.

Table 13. Locale

Attribute Description

locale Locale setting for JMX client.

Logger Configuration attributes

Logger Configuration attributes are part of the runtime environment.

Table 14. Logger Configuration

Attribute Description

category Change the log category on which the log
level can be manipulated.

Services Thread Pool Statistics attributes

Services Thread Pool Statistics attributes are part of the runtime environment.

Table 15. Services Thread Pool Statistics

Attribute Description

activeContactHistThreads The approximate number of threads
that are actively running tasks for
Contact History and Response History.

activeFlushCacheToDBThreads The approximate number of threads
that are actively running tasks to flush
cached statistics to the data store.

activeOtherStatsThreads The approximate number of threads
that are actively running tasks for
Eligible Stats, Event Activities, and
Default Stats.

CurrentHighWaterMarkInContactHistQueue Greatest number of entries queued to
be logged by the service that collects
the contact and response history data.

76 IBM Interact Administrator's Guide

Table 15. Services Thread Pool Statistics (continued)

Attribute Description

CurrentHighWaterMark InFlushCachetoDBQueue Greatest number of entries queued to
be logged by the service that writes the
data in the cache to the database
tables.

CurrentHighWaterMarkInOtherStatsQueue Greatest number of entries queued to
be logged by the service that collects
the offer eligibility statistics, default
string usage statistics, event activity
statistics, and the custom log to table
data.

currentMsgsInContactHistQueue The number of jobs in the queue for
the thread pool that is used for Contact
History and Response History.

currentMsgsInFlushCacheToDBQueue The number of jobs in the queue for
the thread pool that is used to flush
cached statistics to the data store.

currentMsgsInOtherStatsQueue The number of jobs in the queue for
the thread pool that is used for Eligible
Stats, Event Activities, and Default
Stats.

maximumContactHistThreads The largest number of threads that
have ever simultaneously been in the
pool that is used for Contact History
and Response History.

maximumFlushCacheToDBThreads The largest number of threads that
have ever simultaneously been in the
pool that is used for flushing cached
statistics to the data store.

maximumOtherStatsThreads The largest number of threads that
have ever simultaneously been in the
pool that is used for Eligible Stats,
Event Activities, and Default Stats.

Service Statistics attributes

The Service Statistics consist of a set of attributes for each service.
v ContactHistoryMemoryCacheStatistics - The service that collects data for the

contact history staging tables.
v CustomLoggerStatistics - The service that collects custom data to write to a table

(an event that uses the UACICustomLoggerTableName event parameter).
v Default Statistics - The service that collects the statistics regarding the number of

times the default string for the interaction point was used.
v Eligibility Statistics - The service that writes the statistics for eligible offers.
v Event Activity Statistics - The service that collects the event statistics, both

system events such as getOffer or startSession and user events that are
triggered by postEvent.

v Response History Memory Cache Statistics - The service that writes to the
response history staging tables.

v Cross-session Response Statistics - The service that collects the cross-session
response tracking data.

Chapter 6. Managing the IBM Interact API 77

Table 16. Service Statistics

Attribute Description

Count The number of messages processed.

ExecTimeInsideMutex The amount of time spent processing
messages for this service, excluding
time spent waiting for other threads, in
milliseconds. If there is a great
difference between
ExecTimeInsidMutex and
ExecTimeMillis, you might need to
change the thread pool size for the
service.

ExecTimeMillis The amount of time spent processing
messages for this service, including
time spent waiting for other threads, in
milliseconds.

ExecTimeOfDBInsertOnly The amount of time in milliseconds
spent processing the batch insert
portion only.

HighWaterMark The maximum number of messages
that are processed for this service.

NumberOfDBInserts The total number of batch inserts run.

TotalRowsInserted The total number of rows that are
inserted into the database.

Service Statistics - Database Load Utility attributes

Service Statistics - Database Load Utility attributes are part of the runtime
environment.

Table 17. Service Statistics - Database Load Utility

Attribute Description

ExecTimeOfWriteToCache The amount of time in milliseconds spent
writing to file cache, including writing to
files and getting the primary key from
database when necessary.

ExecTimeOfLoaderDBAccessOnly The amount of time in milliseconds spent
running database loader portion only.

ExecTimeOfLoaderThreads The amount of time in milliseconds spent by
database loader threads.

ExecTimeOfFlushCacheFiles The amount of time in milliseconds spent
flushing the cache and re-creating new ones.

ExecTimeOfRetrievePKDBAccess The amount of time in milliseconds spent
retrieving the primary key database access.

NumberOfDBLoaderRuns The total number of database loader runs.

NumberOfLoaderStagingDirCreated The total number of staging directories that
are created.

NumberOfLoaderStagingDirRemoved The total number of staging directories that
are removed.

NumberOfLoaderStaging
DirMovedToAttention

The total number of staging directories that
are renamed to attention.

78 IBM Interact Administrator's Guide

Table 17. Service Statistics - Database Load Utility (continued)

Attribute Description

NumberOfLoaderStagingDirMovedToError The total number of staging directories that
are renamed to error.

NumberOfLoaderStagingDirRecovered The total number of staging directories
recovered, including at startup time and
rerun by background threads.

NumberOfTimesRetrievePKFromDB The total number of times the primary key
was retrieved from database.

NumberOfLoaderThreadsRuns The total number of database loader threads
runs.

NumberOfFlushCacheFiles The total number of times the file cache was
flushed.

API Statistics attributes

API Statistics attributes are part of the runtime environment.

Table 18. API Statistics

Attribute Description

endSessionCount The number of endSession API calls since
last reset or system start.

endSessionDuration Time that is elapsed for the last endSession
API call in milliseconds.

executeBatchCount The number of executeBatch API calls since
last reset or system start.

executeBatchDuration Time that is elapsed for the last
executeBatch API call in milliseconds.

getOffersCount The number of getOffers API calls since last
reset or system start.

getOffersDuration Time that is elapsed for the last getOffer
API call in milliseconds.

getProfileCount The number of getProfile API calls since
last reset or system start.

getProfileDuration Time that is elapsed for the last
getProfileDuration API call in milliseconds.

getVersionCount The number of getVersion API calls since
last reset or system start.

getVersionDuration Time that is elapsed for the last getVersion
API call in milliseconds.

loadOfferSuppressionDuration Time that is elapsed for the last
loadOfferSuppression API call.

LoadOffersBySQLCount The number of LoadOffersBySQL API calls
since last reset or system start.

LoadOffersBySQLDuration Time that is elapsed for the last
LoadOffersBySQL API call in milliseconds.

loadProfileDuration Time that is elapsed for the last loadProfile
API call in milliseconds.

Chapter 6. Managing the IBM Interact API 79

Table 18. API Statistics (continued)

Attribute Description

loadScoreOverrideDuration Time that is elapsed for the last
loadScoreOverride API call in milliseconds.

postEventCount The number of postEvent API calls since last
reset or system start.

postEventDuration Time that is elapsed for the last postEvent
API call in milliseconds.

runSegmentationDuration Time that is elapsed for the last
runSegmentation API call in milliseconds.

setAudienceCount The number of setAudience API calls since
last reset or system start.

setAudienceDuration Time that is elapsed for the last setAudience
API call in milliseconds.

setDebugCount The number of setDebug API calls since last
reset or system start.

setDebugDuration Time that is elapsed for the last setDebug
API call in milliseconds.

startSessionCount The number of startSession API calls since
last reset or system start.

startSessionAverage Average time that is elapsed for the last
startSession API call in milliseconds.

ActiveSessionCount The number of sessions that are currently
active in the interact run time instance.
Note: The ActiveSessionCount in JMX
MBean com.unicacorp.interact:type=api,
group=Statistics does not consider timed out
events and hence it could show incorrect
active count.

Learning Optimizer Statistics attributes

Learning Optimizer Statistics attributes are part of the runtime environment.

Table 19. Learning Optimizer Statistics

Attribute Description

LearningOptimizerAcceptCalls The number of accept events that are passed
into the learning module.

LearningOptimizer AcceptTrackingDuration The total number of milliseconds spent
logging the accept events in the learning
module.

LearningOptimizerContactCalls The number of contact events that are
passed into the learning module.

LearningOptimizer ContactTrackingDuration The total number of milliseconds spent
logging the contact events in the learning
module.

LearningOptimizerLogOtherCalls The number of non-contact and non-accept
events that are passed into the learning
module.

80 IBM Interact Administrator's Guide

Table 19. Learning Optimizer Statistics (continued)

Attribute Description

LearningOptimizer
LogOtherTrackingDuration

The duration in milliseconds spent in
logging other events (non-contact and
non-accept) in the learning module.

LearningOptimizer NonRandomCalls The number of times the configured learning
implementation was applied.

LearningOptimizer RandomCalls The number of times the configured learning
implementation was bypassed and random
selection was applied.

LearningOptimizer RecommendCalls The number of recommend requests that are
passed into the learning module.

LearningOptimizer RecommendDuration The total number of milliseconds spent in
the learning recommend logic.

Default Offer Statistics attributes

Default Offer Statistics attributes are part of the runtime environment.

Table 20. Default Offer Statistics

Attribute Description

LoadDefaultOffersDuration Time that is elapsed on the default
offers loading.

DefaultOffersCalls The number of times the default offers
loading.

Triggered Message Dispatchers attributes

Triggered Message Dispatchers attributes are part of the runtime environment.

Table 21. Triggered Message Dispatchers

Attribute Description

NumRequested The total number of offers that were
requested for dispatching using this
dispatcher.

NumDispatched The total number of offers this
dispatcher successfully dispatched.

AvgExecutionTime The average time in milliseconds this
dispatcher uses for dispatching an
offer. Only the offers that were
successfully dispatched to gateways
are counted in the calculation.

CurrentQueueSize The number of offers currently waiting
to be dispatched.

GatewayInvocation The number of offers and average
dispatching time in milliseconds
dispatched to each gateway by this
dispatcher. The format of its value is
{gateway name=[number of offers,
average dispatching time]}.

Chapter 6. Managing the IBM Interact API 81

Triggered Message Gateways attributes

Triggered Message Gateways attributes are part of the runtime environment.

Table 22. Triggered Message Gateways

Attribute Description

NumValidationRequested The total number of offers this
gateway requested for validation.

NumValidated The total number of offers this
gateway successfully validated.

AvgValidationTime The average time in milliseconds this
gateway uses for validating an offer.
Only the offers that were successfully
validated are counted in the
calculation.

NumDeliveryRequested The total number of offers this
gateway requested for delivery.

NumDelivered The total number of offers this
gateway successfully delivered.

AvgDeliveryTime The average time in milliseconds this
gateway uses for delivering an offer.
Only the offers that were successfully
delivered are counted in the
calculation.

Triggered Message Messages attributes

Triggered Message Messages attributes are part of the runtime environment.

Table 23. Triggered Message Messages

Attribute Description

ProcessSuccessCount The total number of times this
triggered message successfully
executed.

AvgSuccessProcessTime The average time in milliseconds this
triggered message spends for each
successful execution.

ProcessErrorCount The total number of times this
triggered message unsuccessfully
executed.

AvgErrorProcessTime The average time in milliseconds this
triggered message spends for each
unsuccessful execution.

SelectBranchCount The total number of times branch
selection was executed while
processing triggered messages.

AvgSelectBranchTime The average time in milliseconds
branch selection execution uses while
processing triggered messages.

SelectOfferCount The total number of times offer
selection was executed while
processing triggered messages.

82 IBM Interact Administrator's Guide

Table 23. Triggered Message Messages (continued)

Attribute Description

AvgSelectOfferTime The average time in milliseconds offer
selection execution uses while
processing triggered messages.

SelectChannelCount The total number of times channel
selection was executed while
processing triggered messages.

AvgSelectChannelTime The average time in milliseconds
channel selection execution uses while
processing triggered messages.

FlowchartWaitCount The total number of times this
triggered message waited for
segmentation to complete.

AvgFlowchartWaitTime The average time in milliseconds this
triggered message waited for
segmentation to complete in each
execution.

WaitFlowchartTimeoutCount The total number of times this
triggered message timed out while
waiting for segmentation to complete.

JMX operations
There are several operations available for JMX monitoring.

The following table describes the operations available for JMX monitoring.

Group Attribute Description

Logger Configuration activateDebug Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to debug.

Logger Configuration activateError Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to error.

Logger Configuration activateFatal Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to fatal.

Logger Configuration activateInfo Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to info.

Logger Configuration activateTrace Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to trace.

Logger Configuration activateWarn Set log level for the log file that is defined
in Interact/conf/
interact_log4j.properties to warn.

Locale changeLocale Change the JMX client's locale. Interact
supported locales are de, en, es, and fr.

ContactResponseHistory
ETLMonitor

reset Reset all counters.

Chapter 6. Managing the IBM Interact API 83

Group Attribute Description

Default Offer Statistics updatePollPeriod Updates defaultOfferUpdatePollPeriod.
This value, in seconds, tells the system
how long to wait before the system
updates the default offers in the cache. If
set to -1, the system reads the number of
default offers only at startup.

84 IBM Interact Administrator's Guide

Chapter 7. Classes and methods for the IBM Interact Java,
SOAP, and REST API

The following sections list requirements and other details you should know before
you work with the Interact API.

Note: This section assumes you are familiar with your touchpoint, the Java
programming language, and working with a Java-based API.

The Interact API has a Java client adaptor that uses Java serialization over HTTP.
In addition, Interact supplies a WSDL to support SOAP clients. The WSDL exposes
the same set of functions as the Java client adaptor, so the following sections,
except for examples, still apply.

Note: Multiple occurrences of any parameter in a single API call is not supported.

Interact API Classes
The Interact API is based on the InteractAPI class.

There are 6 supporting interfaces.
v AdvisoryMessage

v BatchResponse

v NameValuePair

v Offer

v OfferList

v Response

These interfaces have 3 supporting concrete classes. The following two concrete
classes need to be instantiated and passed in as arguments into the Interact API
methods:
v NameValuePairImpl
v CommandImpl

A third concrete class, called AdvisoryMessageCode is available to provide the
constants used to distinguish the message codes returned from the server
whenever applicable.

The rest of this section describes the methods which comprise the Interact API.

Java serialization over HTTP prerequisites
The Java client adapter uses Java serialization over HTTP.

The prerequisites for using the Java client adapter for Java serialization over HTTP
are:
1. Add the following file to your CLASSPATH:

Interact_Home/lib/interact_client.jar

2. All objects that are passed back and forth between the client and the server can
be found in the package com.unicacorp.interact.api. For more details, see the

© Copyright IBM Corp. 2001, 2018 85

Interact API Javadoc installed on the runtime server in Interact_Home/docs/
apiJavaDoc. You can view the Javadoc by opening the index.html file in that
location with any web browser.

3. To get an instance of the InteractAPI class, call the static method getInstance
with the url of the Interact runtime server.

SOAP prerequisites
Before you can access the runtime server with SOAP, you do several prerequisite
tasks to configure your environment.

Important: Performance testing shows that the Java serialization adapter performs
at a much higher rate than a generated SOAP client. For best performance, use the
Java serialization adapter whenever possible.

To access the runtime server with SOAP, you must do the following:
1. Convert the Interact API WSDL with the SOAP toolkit of your choice.

The Interact API WSDL is installed with Interact in the Interact/conf directory.
When you configure SOAP using the WSDL XML files, you must modify your
URLs to the host name and port of the runtime server.
The text of the WSDL is available at the end of Interact Administration guide.

2. Install and configure the runtime server.
The runtime server must be running to fully test your integration.

3. Verify that you are using the correct SOAP version.
Interact uses axis2 1.3 as the SOAP infrastructure on the Interact runtime
servers. For details about what versions of SOAP axis2 1.3 supports, see the
following website:
Apache Axis2
Interact was tested with the axis2, XFire, JAX-WS-Ri, DotNet, SOAPUI, and
IBM RAD SOAP clients.

REST prerequisites
One method of calling the Interact API is by using JSON (JavaScript Object
Notation) format calls over HTTP, referred to here as the REST API. The REST API
has the advantage of having better performance than SOAP, although the Java
serialization adapter is still the fastest method for Interact API calls.

Before you begin using the REST API, be aware of the following:
v The URL that supports REST calls to the Interact API is:

http://Interact_Runtime_Server:PORT/interact/servlet/RestServlet,
substituting the actual host name or IP address of the Interact runtime server
and the port on which Interact is deployed.

v There are two Interact classes specific to the REST API: RestClientConnector,
which serves as a helper to connect to an Interact run time instance via REST
with the format of JSON, and RestFieldConstants, which describes the
underlying format of the JSON message that is used for API requests and
responses.

v A sample REST client is provided at Interact _Home/samples/javaApi/
InteractRestClient.java. Although the sample code is a simple example, it
should provide a good starting point for demonstrating how the REST API is
used.

86 IBM Interact Administrator's Guide

http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://xfire.codehaus.org/

v For a complete description of the REST API classes along with all other Interact
API information, see the Javadoc installed on the runtime server at
Interact_Home/docs/apiJavaDoc.

v The REST API returns SessionIDs and messages in the HTML-escaped format
and not in the Unicode format.

Other than the information mentioned here, the REST API supports all of the
methods that are supported by the other protocols for using the Interact API.

API JavaDoc
In addition to Interact Administrator guide, the Javadoc for the Interact API is
installed with the runtime server. The Javadoc is installed for your reference in the
Interact_Home/docs/apiJavaDoc directory.

API examples
All of the examples in the guide were created with the Java serialization over
HTTP adapter. The classes generated from the WSDL can vary based on the SOAP
toolkit and the options you select. If you are using SOAP, these examples might
not work the same in your environment.

Working with session data
When you initiate a session with the startSession method, session data is loaded
into memory. Throughout the session, you can read and write to the session data
(which is a superset of the static profile data).

The session contains the following data:
v Static profile data
v Segment assignments
v Real-time data
v Offer recommendations

All session data is available until you call the endSession method, or the
sessionTimeout time elapses. Once the session ends, all data not explicitly saved to
contact or response history or some other database table is lost.

The data is stored as a set of name-value pairs. If the data is read from a database
table, the name is the column of the table.

You can create these name-value pairs as you work with the Interact API. You do
not need to declare all name-value pairs in a global area. If you set new event
parameters as name-value pairs, the runtime environment adds the name-value
pairs to the session data. For example if you use event parameters with the
postEvent method, the runtime environment adds the event parameters to the
session data, even if the event parameters were not available in the profile data.
This data exists in the session data only.

You can overwrite session data at any time. For example, if part of the customer
profile includes creditScore, you can pass in an event parameter using the custom
type NameValuePair. In the NameValuePair class, you can use the setName and
setValueAsNumeric methods to change the value. The name needs to match. Within
the session data, the name is not case-sensitive. Therefore, the name creditscore
or CrEdItScOrE would both overwrite creditScore.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 87

Only the last data written to the session data is kept. For example, startSession
loads the profile data for the value of lastOffer. A postEvent method overwrites
lastOffer. Then a second postEvent method overwrites lastOffer. The runtime
environment keeps only the data written by the second postEvent method in the
session data.

When the session ends, the data is lost, unless you made special considerations
such as using a Snapshot process in your interactive flowchart to write the data to
a database table. If you are planning on using Snapshot processes, remember that
the names need to match the limitations of your database. For example, if your are
allowed only 256 characters for the name of a column, then the name for the
name-value pair should not exceed 256 characters.

About the InteractAPI class
The InteractAPI class contains the methods which you use to integrate your
touchpoint with the runtime server. All other classes and methods in the Interact
API support the methods in this class.

You must compile your implementation against interact_client.jar located in the
lib directory of your Interact runtime environment installation.

endSession
The endSession method marks the end of the runtime session. When the runtime
server receives this method, the runtime server logs to history, clears memory, and
so on.
endSession(String sessionID)

v sessionID - Unique string identifying the session.

If the endSession method is not called, runtime sessions timeout. The timeout
period is configurable with the sessionTimeout property.

Return value

The runtime server responds to the endSession method with the Response object
with the following attributes populated:
v SessionID
v ApiVersion
v StatusCode
v AdvisoryMessages

Example

The following example shows the endSession method and how you can parse the
response. sessionId is the same string to identify the session used by the
startSession call which started this session.
response = api.endSession(sessionId);

// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("endSession call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("endSession call processed with a warning");

88 IBM Interact Administrator's Guide

}
else
{

System.out.println("endSession call processed with an error");
}
// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("endSession",
response.getAdvisoryMessages());

executeBatch
The executeBatch method enables you to execute several methods with a single
request to the runtime server.
executeBatch(String sessionID, CommandImpl[] commands)

v sessionID-A string identifying the session ID. This session ID is used for all
commands run by this method call.

v commandImpl[]-An array of CommandImpl objects, one for each command you
want to perform.

The result of calling this method is equivalent to explicitly calling each method in
the Command array. This method minimizes the number of actual requests to the
runtime server. The runtime server runs each method serially; for each call, any
error or warnings are captured in the Response object that corresponds to that
method call. If an error is encountered, the executeBatch continues with the rest of
the calls in the batch. If the running of any method results in an error, the top level
status for the BatchResponse object reflects that error. If no error occurred, the top
level status reflects any warnings that may have occurred. If no warning occurred,
then the top level status reflects a successful run of the batch.

Return value

The runtime server responds to the executeBatch with a BatchResponse object.

Example

The following example shows how to call all the getOffer and postEvent methods
with a single executeBatch call, and a suggestion for how to handle the response.
/** Define all variables for all members of the executeBatch*/
String sessionId="MySessionID-123";
String interactionPoint = "Overview Page Banner 1";
int numberRequested=1;
String eventName = "logOffer";

/** build the getOffers command */
Command getOffersCommand = new CommandImpl();
getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);
getOffersCommand.setInteractionPoint(interactionPoint);
getOffersCommand.setNumberRequested(numberRequested);

/** build the postEvent command */
Command postEventCommand = new CommandImpl();
postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);
postEventCommand.setEventParameters(postEventParameters);
postEventCommand.setEvent(eventName);

/** Build command array */
Command[] commands =
{

getOffersCommand,
postEventCommand,

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 89

};

/** Make the call */
BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */
// Top level status code is a short cut to determine if there
// are any non-successes in the array of Response objects
if(batchResponse.getBatchStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("ExecuteBatch ran perfectly!");
}
else if(batchResponse.getBatchStatusCode() == Response.STATUS_WARNING)
{

System.out.println("ExecuteBatch call processed with at least one warning");
}
else
{

System.out.println("ExecuteBatch call processed with at least one error");
}

// Iterate through the array, and print out the message for any non-successes
for(Response response : batchResponse.getResponses())
{

if(response.getStatusCode()!=Response.STATUS_SUCCESS)
{
printDetailMessageOfWarningOrError("executeBatchCommand",
response.getAdvisoryMessages());
}

}

Writing executeBatch() XML requests for the Interact SOAP API
Use these steps to write executeBatch() XML requests for the Interact SOAP API.

The request XML for a single operation SOAP API calls (startSession, getOffers,
setAudience, endSession, and so on) must not be directly copied or pasted into a
multiple operation executeBatch() call. The subcommands in the executeBatch()
calls have slightly different WSDL and XML request structures than those of the
single operation API calls. The structural differences cause failure responses from
the server if the XML elements are copied and pasted from single operation API
requests into multiple operation executeBatch requests.

Sample failure responses:
** XML Response Element: <ns0:faultstring>org.apache.axis2.databinding.ADBException:
Unexpected subelement audienceID</ns0:faultstring>
** Interact Server Exception: java.lang.Exception: org.apache.axis2.databinding.
ADBException: Unexpected subelement audienceID at
*** ... com.unicacorp.interact.api.soap.service.v1.xsd.CommandImpl$Factory.parse
(CommandImpl.java:1917) at

Use these steps to write an executeBatch() XML request. You can refer to single
operation API call requests for parameter values during these steps, but do not
copy and paste XML elements.
1. Use a WSDL processing tool (for example, SoapUI) to create a well-formed

executeBatch() XML request from the Interact WSDL file.
2. Add subcommands to the request after the WSDL definition for executeBatch()

child elements.
3. Complete the subcommand arguments after the WSDL definition for

executeBatch() child elements.

90 IBM Interact Administrator's Guide

getInstance
The getInstance method creates an instance of the Interact API that communicates
with the specified runtime server.
getInstance(String URL)

Important: Every application you write using the Interact API must call
getInstance to instantiate an InteractAPI object which is mapped to a runtime
server specified by the URL parameter.

For server groups, if you are using a load balancer, use the hostname and port you
configure with the load balancer. If you do not have a load balancer, you will have
to include logic to rotate between the available runtime servers.

This method is applicable for the Java serialization over HTTP adapter only. There
is no corresponding method defined in the SOAP WSDL. Each SOAP client
implementation has its own way of establishing the endpoint URL.
v URL - A string identifying the URL for the runtime instance. For example,

http://localhost:7001/Interact/servlet/InteractJSService.

Return value

The runtime server returns the InteractAPI.

Example

The following example shows how to instantiate an InteractAPI object that points
to a runtime server instance running on the same machine as your touchpoint.
InteractAPI api=InteractAPI.getInstance("http://localhost:7001/interact/servlet/InteractJSService");

getOffers
The getOffers method enables you to request offers from the runtime server.
getOffers(String sessionID, String interactionPoint, int numberOfOffers)

v sessionID-a string identifying the current session.
v interactionPoint-a string identifying the name of the interaction point this

method references.

Note: This name must match the name of the interaction point defined in
interactive channel exactly.

v numberOfOffers-an integer identifying the number of offers requested.

The getOffers method waits the number of milliseconds defined in the
segmentationMaxWaitTimeInMS property for all re-segmentation to complete before
running. Therefore, if you call a postEvent method which triggers a
re-segmentation or a setAudience method immediately before a getOffers call,
there may be a delay.

Return value

The runtime server responds to getOffers with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 91

v SessionID
v StatusCode

Example

This example shows requesting a single offer for the Overview Page Banner 1
interaction point and a way to handle the response.

sessionId is the same string to identify the runtime session used by the
startSession call which started this session.
String interactionPoint = "Overview Page Banner 1";
int numberRequested=1;

/** Make the call */
response = api.getOffers(sessionId, interactionPoint, numberRequested);

/** Process the response appropriately */
// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{
System.out.println("getOffers call processed with no warnings or errors");

/** Check to see if there are any offers */
OfferList offerList=response.getOfferList();

if(offerList.getRecommendedOffers() != null)
{

for(Offer offer : offerList.getRecommendedOffers())
{

// print offer
System.out.println("Offer Name:"+offer.getOfferName());

}
}
else // count on the default Offer String
System.out.println("Default offer:"+offerList.getDefaultString());

}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("getOffers call processed with a warning");
}
else
{

System.out.println("getOffers call processed with an error");
}
// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("getOffers",
response.getAdvisoryMessages());

getOffersForMultipleInteractionPoints
The getOffersForMultipleInteractionPoints method enables you to request offers
from the runtime server for multiple IPs with deduplication.
getOffersForMultipleInteractionPoints(String sessionID, String requestStr)

v sessionID - a string identifying the current session.
v requestStr - a string providing an array of GetOfferRequest objects.

Each GetOfferRequest object specifies:
– ipName - The interaction point (IP) name for which the object is requesting

offers
– numberRequested - The number of unique offers it needs for the specified IP

92 IBM Interact Administrator's Guide

– offerAttributes - Requirements on the attributes of the delivered offers using
an instance of OfferAttributeRequirements

– duplicationPolicy - Duplication policy ID for the offers that will be delivered
Duplication policies determine whether duplicated offers will be returned
across different interaction points in a single method call. (Within an
individual interaction point, duplicated offers are never returned.) Currently,
two duplication policies are supported.
- NO_DUPLICATION (ID value = 1). None of the offers that have been

included in the preceding GetOfferRequest instances will be included in
this GetOfferRequest instance (that is, Interact will apply de-duplication).

- ALLOW_DUPLICATION (ID value = 2). Any of the offers satisfying the
requirements specified in this GetOfferRequest instance will be included.
The offers that have been included in the preceding GetOfferRequest
instances will not be reconciled.

The order of requests in the array parameter is also the priority order when
offers are being delivered.
For example, suppose the IPs in the request are IP1, then IP2, that no duplicated
offers are allowed (a duplication policy ID = 1), and each is requesting two
offers. If Interact finds offers A, B, and C for IP1 and offers A and D for IP2, the
response will contain offers A and B for IP1, and only offer D for IP2.
Also note that when the duplication policy ID is 1, the offers that have been
delivered via an IP with higher priority will not be delivered via this IP.

The getOffersForMultipleInteractionPoints method waits the number of
milliseconds defined in the segmentationMaxWaitTimeInMS property for all
re-segmentation to complete before running. Therefore, if you call a postEvent
method which triggers a re-segmentation or a setAudience method immediately
before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffersForMultipleInteractionPoints with a
Response object with the following attributes populated:
v AdvisoryMessages
v ApiVersion
v array of OfferList
v SessionID
v StatusCode

Example
InteractAPI api = InteractAPI.getInstance("url");
String sessionId = "123";
String requestForIP1 = "{IP1,5,1,(5,attr1=1|numeric;attr2=value2|string,

(3,attr3=value3|string)(3,attr4=4|numeric))}";
String requestForIP2 = "{IP2,3,2,(3,attr5=value5|string)}";
String requestForIP3 = "{IP3,2,1}";
String requestStr = requestForIP1 + requestForIP2 + requestForIP3;
Response response = api.getOffersForMultipleInteractionPoints(sessionId,

requestStr);

if (response.getStatusCode() == Response.STATUS_SUCCESS) {
// Check to see if there are any offers

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 93

OfferList[] allOfferLists = response.getAllOfferLists();
if (allOfferLists != null) {
for (OfferList ol : allOfferLists) {
System.out.println

("The following offers are delivered for interaction
point " + ol.getInteractionPointName() + ":");

for (Offer o : ol.getRecommendedOffers()) {
System.out.println(o.getOfferName());

}
}
}
}
else {
System.out.println("getOffersForMultipleInteractionPoints() method calls

returns an error with code: " + response.getStatusCode());
}

Note that the syntax of the requestStr is the following:

requests_for_IP[<requests_for_IP]

where
<requests_for_IP> = {ip_name,number_requested_for_this_ip,

dupe_policy[,child_requirements]]}
attribute_requirements = (number_requested_for_these_attribute_requirements

[,attribute_requirement[;individual_attribute_requirement])
[,(attribute_requirements))

individual_attribute_requirement = attribute_name=attribute_value | attribute_type

In the example shown above, requestForIP1 ({IP1,5,1,(5,attr1=1|numeric;
attr2=value2|string, (3,attr3=value3|string)(3,attr4=4|numeric))}) means,
for the interaction point named IP1, deliver at most 5 distinct offers that can not
also be returned for any other interaction points during this same method call. All
of those 5 offers must have a numeric attribute named attr1 which must have the
value 1, and must have a string attribute named attr2 which must have the value
value2. Out of those 5 offers, a maximum of 3 must have a string attribute named
attr3 which must have the value value3, and a maximum of 3 must have a
numeric attribute named attr4 which must have the value 4.

The allowed attribute types are numeric, string, and datetime, and the format of a
datetime attribute value must be MM/dd/yyyy HH:mm:ss. To retrieve the returned
offers, use the method Response.getAllOfferLists(). To help understand the
syntax, the example in setGetOfferRequests builds the same instance of
GetOfferRequests, while using Java objects, which is preferred.

getProfile
The getProfile method enables you to retrieve the profile and temporal
information about the visitor visiting the touchpoint.
getProfile(String sessionID)

v sessionID-a string identifying the session ID.

Return value

The runtime server responds to getProfile with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion

94 IBM Interact Administrator's Guide

v ProfileRecord
v SessionID
v StatusCode

Example

The following is an example of using getProfile and a way to handle the
response.

sessionId is the same string to identify the session used by the startSession call
which started this session.
response = api.getProfile(sessionId);
/** Process the response appropriately */

// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("getProfile call processed with no warnings or errors");
// Print the profile - it’s just an array of NameValuePair objects
for(NameValuePair nvp : response.getProfileRecord())
{

System.out.println("Name:"+nvp.getName());
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))
{

System.out.println("Value:"+nvp.getValueAsDate());
}
else if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))
{

System.out.println("Value:"+nvp.getValueAsNumeric());
}
else
{

System.out.println("Value:"+nvp.getValueAsString());
}

}
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("getProfile call processed with a warning");
}
else
{

System.out.println("getProfile call processed with an error");
}
// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("getProfile",
response.getAdvisoryMessages());

getVersion
The getVersion method returns the version of the current implementation of the
Interact runtime server.
getVersion()

Best practice is to use this method when you initialize the touchpoint with the
Interact API.

Return value

The runtime server responds to the getVersion with a Response object with the
following attributes populated:

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 95

v AdvisoryMessages
v ApiVersion
v StatusCode

Example

This example shows a simple way to call getVersion and process the results.
response = api.getVersion();
/** Process the response appropriately */

// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("getVersion call processed with no warnings or errors");
System.out.println("API Version:" + response.getApiVersion(););

}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("getVersion call processed with a warning");
}
else
{

System.out.println("getVersion call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("getVersion",
response.getAdvisoryMessages());

postEvent
The postEvent method enables you to execute any event defined in the interactive
channel.

postEvent(String sessionID, String eventName, NameValuePairImpl[]
eventParameters)

v sessionID: a string identifying the session ID.
v eventName: a string identifying the name of the event.

Note: The name of the event must match the name of the event as defined in
the interactive channel. This name is case-insensitive.

v eventParameters. NameValuePairImpl objects identifying any parameters that
need to be passed with the event. These values are stored in the session data.
If this event triggers re-segmentation, you must ensure that all data required by
the interactive flowcharts is available in the session data. If any of these values
have not been populated by prior actions (for example, from startSession or
setAudience, or loading the profile table) you must include an eventParameter
for every missing value. For example, if you have configured all profile tables to
load into memory, you must include a NameValuePair for temporal data
required for the interactive flowcharts.
If you are using more than one audience level, you most likely have different
sets of eventParameters for each audience level. You should include some logic
to ensure you are selecting the correct set of parameters for the audience level.

Important: If this event logs to response history, you must pass the treatment
code for the offer. You must define the name for the NameValuePair as
"UACIOfferTrackingCode".

96 IBM Interact Administrator's Guide

You can only pass one treatment code per event. If you do not pass the
treatment code for an offer contact, Interact logs an offer contact for every offer
in the last recommended list of offers. If you do not pass the treatment code for
a response, Interact returns an error.

v There are several other reserved parameters used with postEvent and other
methods and are discussed later in this section.

Any request for re-segmentation or writing to contact or response history does not
wait for a response.

Re-segmentation does not clear prior segmentation results for the current audience
level. You can use the UACIExecuteFlowchartByName parameter to define specific
flowcharts to run. The getOffers method waits for re-segmentation to finish before
running. Therefore, if you call a postEvent method, which triggers a
re-segmentation immediately before a getOffers call, there might be a delay.

Return value

The runtime server responds to postEvent with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v SessionID
v StatusCode

Example

The following postEvent example shows sending new parameters for an event
which triggers re-segmentation, and a way to handle the response.

sessionId is the same string to identify the session used by the startSession call
which started this session.
String eventName = "SearchExecution";

NameValuePair parmB1 = new NameValuePairImpl();
parmB1.setName("SearchString");
parmB1.setValueAsString("mortgage");
parmB1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB2 = new NameValuePairImpl();
parmB2.setName("TimeStamp");
parmB2.setValueAsDate(new Date());
parmB2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parmB3 = new NameValuePairImpl();
parmB3.setName("Browser");
parmB3.setValueAsString("IE6");
parmB3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB4 = new NameValuePairImpl();
parmB4.setName("FlashEnabled");
parmB4.setValueAsNumeric(1.0);
parmB4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parmB5 = new NameValuePairImpl();
parmB5.setName("TxAcctValueChange");
parmB5.setValueAsNumeric(0.0);
parmB5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 97

NameValuePair parmB6 = new NameValuePairImpl();
parmB6.setName("PageTopic");
parmB6.setValueAsString("");
parmB6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair[] postEventParameters = { parmB1,
parmB2,
parmB3,
parmB4,
parmB5,
parmB6
};

/** Make the call */
response = api.postEvent(sessionId, eventName, postEventParameters);

/** Process the response appropriately */
// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("postEvent call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("postEvent call processed with a warning");
}
else
{

System.out.println("postEvent call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("postEvent",
response.getAdvisoryMessages());

setAudience
The setAudience method enables you to set the audience ID and level for a visitor.
setAudience(String sessionID, NameValuePairImpl[] audienceID,

String audienceLevel, NameValuePairImpl[] parameters)

v sessionID - a string identifying the session ID.
v audienceID - an array of NameValuePairImpl objects that defines the audience

ID.
v audienceLevel - a string that defines the audience level.
v parameters - NameValuePairImpl objects identifying any parameters that need to

be passed with setAudience. These values are stored in the session data and can
be used for segmentation.
You must have a value for every column in your profile. This is a superset of all
columns in all the tables defined for the interactive channel and any real-time
data. If you have already populated all the session data with startSession or
postEvent, you do not need to send new parameters.

The setAudience method triggers a re-segmentation. The getOffers method waits
for re-segmentation to finish before running. Therefore, if you call a setAudience
method immediately before a getOffers call, there may be a delay.

The setAudience method also loads the profile data for the audience ID. You can
use the setAudience method to force a reload of the same profile data loaded by
the startSession method.

98 IBM Interact Administrator's Guide

Return value

The runtime server responds to setAudience with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v SessionID
v StatusCode

Example

For this example, the audience level stays the same, but the ID changes, as if an
anonymous user logs in and becomes known.

sessionId and audienceLevel are the same strings to identify the session and
audience level used by the startSession call which started this session.
NameValuePair custId2 = new NameValuePairImpl();
custId2.setName("CustomerId");
custId2.setValueAsNumeric(123.0);
custId2.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair[] newAudienceId = { custId2 };

/** Parameters can be passed in as well. For this example, there are no parameters,
* therefore pass in null */
NameValuePair[] noParameters=null;

/** Make the call */
response = api.setAudience(sessionId, newAudienceId, audienceLevel, noParameters);

/** Process the response appropriately */
// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("setAudience call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("setAudience call processed with a warning");
}
else
{

System.out.println("setAudience call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("setAudience",
response.getAdvisoryMessages());

setDebug
The setDebug method enables you to set the logging verbosity level for all code
paths for the session.
setDebug(String sessionID, boolean debug)

v sessionID-a string which identifies the session ID.
v debug-a boolean which enables or disables debug information. Valid values are

true or false. If true, Interact logs debug information to the runtime server log.

Return value

The runtime server responds to setDebug with a Response object with the
following attributes populated:
v AdvisoryMessages

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 99

v ApiVersion
v SessionID
v StatusCode

Example

The following example shows changing the debug level of the session.

sessionId is the same string to identify the session used by the startSession call
which started this session.
boolean newDebugFlag=false;
/** make the call */
response = api.setDebug(sessionId, newDebugFlag);

/** Process the response appropriately */
// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("setDebug call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("setDebug call processed with a warning");
}
else
{

System.out.println("setDebug call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("setDebug",
response.getAdvisoryMessages());

startSession
The startSession method creates and defines a runtime session.
startSession(String sessionID,

boolean relyOnExistingSession,
boolean debug,
String interactiveChannel,
NameValuePairImpl[] audienceID,
String audienceLevel,
NameValuePairImpl[] parameters)

startSession can trigger up to five actions:
v create a runtime session.
v load visitor profile data for the current audience level into the runtime session,

including any dimension tables marked for loading in the table mapping defined
for the interactive channel.

v trigger segmentation, running all interactive flowcharts for the current audience
level.

v load offer suppression data into the session, if the
enableOfferSuppressionLookup property is set to true.

v load score override data into the session, if the enableScoreOverrideLookup
property is set to true.

The startSession method requires the following parameters:

100 IBM Interact Administrator's Guide

v sessionID-a string which identifies the session ID. You must define the session
ID. For example, you could use a combination of customer ID and timestamp.
To define what makes a runtime session, a session id has to be specified. This
value is managed by the client. All method calls for the same session id has to
be synchronized by the client. The behavior for concurrent API calls with the
same session id is undefined.

v relyOnExistingSession - a boolean which defines whether this session uses a
new or an existing session. Valid values are true or false. If true, you must
supply an existing session ID with the startSession method. If false, you must
supply a new session ID.
If you set relyOnExistingSession to true and a session exists, the runtime
environment uses the existing session data and does not reload any data or
trigger segmentation. If the session does not exist, the runtime environment
creates a new session, including loading data and triggering segmentation.
Setting relyOnExistingSession to true and using it with all startSession calls is
useful if your touchpoint has a longer session length than the runtime session.
For example, a web site session is alive for 2 hours, but the runtime session is
only alive for 20 minutes.
If you call startSession twice with the same session ID, all session data from
the first startSession call is lost if relyOnExistingSession is false.

v debug - a boolean which enables or disables debug information. Valid values are
true or false. If true, Interact logs debug information to the runtime server logs.
The debug flag is set for each session individually. Therefore, you can trace
debug data for an individual session.

v interactiveChannel-a string defining the name of the interactive channel this
session refers to. This name must match the name of the interactive channel
defined in Campaign exactly.

v audienceID - an array of NameValuePairImpl objects where the names must
match the physical column names of any table containing the audience ID.

v audienceLevel - a string defining the audience level.
v parameters - NameValuePairImpl objects identifying any parameters that need

to be passed with startSession. These values are stored in the session data and
can be used for segmentation.
If you have several interactive flowcharts for the same audience level, you must
include a superset of all columns in all the tables. If you configure the runtime
to load the profile table, and the profile table contains all the columns you
require, you do not need to pass any parameters, unless you want to overwrite
the data in the profile table. If your profile table contains a subset of the
required columns, you must include the missing columns as parameters.

If the audienceID or audienceLevel are invalid and relyOnExistingSession is false,
the startSession call fails. If the interactiveChannel is invalid, startSession fails,
whether relyOnExistingSession is true or false.

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID, but the first session has expired, Interact creates a new
session.

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID but a different audienceID or audienceLevel, the runtime
server changes the audience for the existing session.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 101

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID but a different interactiveChannel, the runtime server creates
a new session.

Return value

The runtime server responds to startSession with a Response object with the
following attributes populated:
v AdvisoryMessages (if StatusCode does not equal 0)
v ApiVersion
v SessionID
v StatusCode

Example

The following example shows one way to call startSession.
String sessionId="MySessionID-123";
String audienceLevel="Customer";
NameValuePair custId = new NameValuePairImpl();
custId.setName("CustomerId");
custId.setValueAsNumeric(1.0);
custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);
NameValuePair[] initialAudienceId = { custId };
boolean relyOnExistingSession=false;
boolean initialDebugFlag=true;
String interactiveChannel="Accounts Website";
NameValuePair parm1 = new NameValuePairImpl();
parm1.setName("SearchString");
parm1.setValueAsString("");
parm1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm2 = new NameValuePairImpl();
parm2.setName("TimeStamp");
parm2.setValueAsDate(new Date());
parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parm3 = new NameValuePairImpl();
parm3.setName("Browser");
parm3.setValueAsString("IE6");
parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm4 = new NameValuePairImpl();
parm4.setName("FlashEnabled");
parm4.setValueAsNumeric(1.0);
parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parm5 = new NameValuePairImpl();
parm5.setName("TxAcctValueChange");
parm5.setValueAsNumeric(0.0);
parm5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parm6 = new NameValuePairImpl();
parm6.setName("PageTopic");
parm6.setValueAsString("");
parm6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

/** Specifying the parameters (optional) */
NameValuePair[] initialParameters = { parm1,
parm2,
parm3,
parm4,
parm5,

102 IBM Interact Administrator's Guide

parm6
};

/** Make the call */
response = api.startSession(sessionId, relyOnExistingSession, initialDebugFlag,
interactiveChannel, initialAudienceId, audienceLevel, initialParameters);

/** Process the response appropriately */
processStartSessionResponse(response);

processStartSessionResponse is a method which handles the response object
returned by startSession.
public static void processStartSessionResponse(Response response)
{

// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{
System.out.println("startSession call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{
System.out.println("startSession call processed with a warning");
}
else
{
System.out.println("startSession call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)
printDetailMessageOfWarningOrError("StartSession",
response.getAdvisoryMessages());

}

Offer deduplication across offer attributes
Using the Interact application programming interface (API), two API calls deliver
offers: getOffers and getOffersForMultipleInteractionPoints.
getOffersForMultipleInteractionPoints can prevent the return of duplicate offers
at the OfferID level, but cannot deduplicate offers across offer category. So, for
example, for Interact to return only one offer from each offer category, a
workaround was previously required. With the introduction of two parameters to
the startSession API call, offer deduplication across offer attributes, such as
category, is now possible.

This list summarizes the parameters that were added to the startSession API call.
For more information about these parameters or any aspect of the Interact API, see
the IBM Interact Administrator's Guide, or the Javadoc files included with your
Interact installation in <Interact_Home>/docs/apiJavaDoc.
v

UACIOfferDedupeAttribute. To create a startSession API call with offer
deduplication, so that the subsequent getOffer calls return only one offer from
each category, you must include the UACIOfferDedupeAttribute parameter as
part of the API call. You can specify a parameter in the name,value,type format,
as shown here:
UACIOfferDedupeAttribute,<attributeName>,string

In this example, you would replace <attributeName> with the name of the offer
attribute you want to use as the criterion for deduplication, such as Category.

Note: Interact examines the offers that have the same attribute value you specify
(such as Category) and deduplicate to remove all but the offer that has the

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 103

highest score. If the offers that have the duplicate attribute also have identical
scores, Interact returns a random selection from among the matching offers.

v
UACINoAttributeDedupeIfFewerOf. When you include the
UACIOfferDedupeAttribute in the startSession call, you can also set this
UACINoAttributeDedupeIfFewerOf parameter to specify the behavior in cases
where the offer list after deduplication no longer contains enough offers to
satisfy the original request.
For example, if you set UACIOfferDedupeAttribute to use the offer category to
deduplicate offers, and your subsequent getOffers call requests that eight offers
be returned, deduplication might result in fewer than eight eligible offers. In that
case, setting UACINoAttributeDedupeIfFewerOf parameter to true would result in
adding some of the duplicated to the eligible list to satisfy the requested number
of offers. In this example, if you set the parameter to false, the number of offers
that are returned would be fewer than the requested number.
UACINoAttributeDedupeIfFewerOf is set to true by default.

For example, suppose you specified as a startSession parameter that the
deduplication criterion is offer Category, as shown here:

UACIOfferDedupeAttribute, Category,
string;UACINoAttributeDedupeIfFewerOffer, 0, string

These parameters together cause Interact to deduplicate offers based on the offer
attribute "Category," and to return only the deduplicated offers even if the
resulting number of offers is fewer than requested
(UACINoAttributeDedupeIfFewerOffer is false).

When you issue a getOffers API call, the original set of eligible offers might
include these offers:
v Category=Electronics: Offer A1 with a score of 100 and Offer A2 with a score of

50.
v Category=Smartphones: Offer B1 with a score of 100, Offer B2 with a score of 80,

and offer B3 with a score of 50.
v Category=MP3Players: Offer C1 with a score of 100, Offer C2 with a score of 50.

In this case, there were two duplicate offers that match the first category, three
duplicate offers that match the second category, and two duplicate offers that
match the third category. The offers that are returned would be the highest scoring
offers from each category, which are Offer A1, Offer B1, and Offer C1.

If the getOffers API call requested six offers, this example set
UACINoAttributeDedupeIfFewerOffer to false, so only three offers would be
returned.

If the getOffers API call requested six offers, and this example omitted the
UACINoAttributeDedupeIfFewerOffer parameter, or specifically set it to true, some
of the duplicate offers would be included in the result to satisfy the requested
number.

Reserved parameters
There are several reserved parameters used with the Interact API. Some are
required for the runtime server, and others you can use for additional features.

104 IBM Interact Administrator's Guide

postEvent features

Feature Parameter Description

Log to custom
table

UACICustomLoggerTableName The name of a table in the runtime tables
data source. If you provide this parameter
with a valid table name, the runtime
environment writes all session data to the
selected table. All column names in the
table that match session data
NameValuePair are populated. The runtime
environment populates any column that
does not match a session name-value pair
with a null. You can manage the process
which writes to the database with the
customLogger configuration properties.

Multiple
response
types

UACILogToLearning An integer with the value 1 or 0. 1 indicates
the runtime environment should log the
event as an accept to the learning system or
enable offer suppression within a session. 0
indicates the runtime environment should
not log the event to the learning system or
enable offer suppression within a session.
This parameter enables you to create
several postEvent methods logging different
response types without influencing
learning. You do not need to define this
parameter for events set to log a contact,
accept, or reject. You must use this
parameter in conjunction with
UACIResponseTypeCode. If you do not define
UACILOGTOLEARNING, the runtime
environment assumes the default value of 0
(unless the event triggers a log contact,
accept, or reject).

UACIResponseTypeCode A value representing a response type code.
The value must be a valid entry in the
UA_UsrResponseType table

Response
tracking

UACIOfferTrackingCode The treatment code for the offer. You must
define this parameter if the event logs to
contact or response history. You can only
pass one treatment code per event. If you
do not pass the treatment code for an offer
contact, the runtime environment logs an
offer contact for every offer in the last
recommended list of offers. If you do not
pass the treatment code for a response, the
runtime environment returns an error. If
you configure the cross-session response
tracking, you can use the
UACIOfferTrackingcodeType parameter to
define what type of tracking code you use
other than treatment code.

Cross-session
response
tracking

UACIOfferTrackingCodeType A number which defines the tracking code
type. 1 is the default treatment code, and 2
is the offer code. All codes must be valid
entries in the UACI_TrackingType table. You
can add other, custom codes to this table.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 105

Feature Parameter Description

Specific
flowchart
execution

UACIExecuteFlowchartByName If you define this parameter for any method
which triggers segmentation (startSession,
setAudience, or a postEvent that triggers
re-segmentation), instead of running all
flowcharts for the current audience level,
Interact runs only the named flowcharts.
You can provide a list of flowcharts
separated by a pipe (|) character.

runtime environment reserved parameters

The following reserved parameters are used by the runtime environment. Do not
use these names for your event parameters.
v UACIEventID

v UACIEventName

v UACIInteractiveChannelID

v UACIInteractiveChannelName

v UACIInteractionPointID

v UACIInteractionPointName

v UACISessionID

About the AdvisoryMessage class
The advisoryMessage class contains methods which define the advisory message
object. The advisory message object is contained in the Response object. Every
method in the InteractAPI returns a Response object. (Except for the executeBatch
method, which returns a batchResponse object.)

If there is an error or a warning, the Interact server populates the advisory
message object. The advisory message object contains the following attributes:
v DetailMessage-a verbose description of the advisory message. This attribute

may not be available for all advisory messages. If available, the DetailMessage
may not be localized.

v Message-a short description of the advisory message.
v MessageCode-a code number for the advisory message.
v StatusLevel-a code number for the severity of the advisory message.

You retrieve the advisoryMessage objects by using the getAdvisoryMessages
method.

getDetailMessage
The getDetailMessage method returns the detailed, verbose description of an
Advisory Message object. Not all messages have a detailed message.
getDetailMessage()

Return value

The Advisory Message object returns a string.

106 IBM Interact Administrator's Guide

Example
// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)
{
for(AdvisoryMessage msg : response.getAdvisoryMessages())
{
System.out.println(msg.getMessage());
// Some advisory messages may have additional detail:
System.out.println(msg.getDetailMessage());
}
}

getMessage
The getMessage method returns the brief description of an Advisory Message
object.
getMessage()

Return value

The Advisory Message object returns a string.

Example

The following method prints out the message and detailed message of an
AdvisoryMessage object.
// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)
{
for(AdvisoryMessage msg : response.getAdvisoryMessages())
{
System.out.println(msg.getMessage());
// Some advisory messages may have additional detail:
System.out.println(msg.getDetailMessage());
}
}

getMessageCode
The getMessageCode method returns the internal error code associated with an
Advisory Message object if the status level is 2 (STATUS_LEVEL_ERROR).
getMessageCode()

Return value

The AdvisoryMessage object returns an integer.

Example

The following method prints out the message code of an AdvisoryMessage object.
public static void printMessageCodeOfWarningOrError(String command,AdvisoryMessage[] messages)

{
System.out.println("Calling "+command);
for(AdvisoryMessage msg : messages)
{

System.out.println(msg.getMessageCode());

getStatusLevel
The getStatusLevel method returns the status level of an Advisory Message object.
getStatusLevel()

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 107

Return value

The Advisory Message object returns an integer.
v 0 - STATUS_LEVEL_SUCCESS-The method called completed with no errors.
v 1 - STATUS_LEVEL_WARNING-The method called completed with at least one

warning (but no errors).
v 2 - STATUS_LEVEL_ERROR-The method called did not complete successfully

and has at least one error.

Example

The following method prints out the status level of an AdvisoryMessage object.
public static void printMessageCodeOfWarningOrError(String command,AdvisoryMessage[] messages)

{
System.out.println("Calling "+command);
for(AdvisoryMessage msg : messages)
{

System.out.println(msg.getStatusLevel());

About the AdvisoryMessageCode class
The advisoryMessageCode class contains methods which define the advisory
message codes. You retrieve the advisory message codes with the getMessageCode
method.

Advisory message codes
You retrieve the advisory message codes with the getMessageCode method.

This table lists and describes the advisory message codes.

Code Message text Description

1 INVALID_SESSION_ID The session ID does not reference a valid
session.

2 ERROR_TRYING_TO_ABORT_
SEGMENTATION

An error occurred while trying to abort
segmentation during an endSession call.

3 INVALID_INTERACTIVE_CHANNEL The argument that was passed in for
interactive channel does not reference a
valid interactive channel.

4 INVALID_EVENT_NAME The argument that was passed in for the
event does not reference a valid event for
the current interactive channel.

5 INVALID_INTERACTION_POINT The argument that was passed in for the
interaction point does not reference a
valid interaction point for the current
interactive channel.

6 ERROR_WHILE_MAKING_INITIAL_
SEGMENTATION_REQUEST

An error was encountered when
submitting a segmentation request.

7 SEGMENTATION_RUN_FAILED The segmentation ran partly, but resulted
in an error.

8 PROFILE_LOAD_FAILED The attempt to load the profile or
dimension tables failed.

9 OFFER_SUPPRESSION_LOAD_FAILED The attempt to load the offer suppression
table failed.

108 IBM Interact Administrator's Guide

Code Message text Description

10 COMMAND_METHOD_
UNRECOGNIZED

A command method that was specified
for a command within an executeBatch
call is not valid.

11 ERROR_TRYING_TO_POST_EVENT
_PARAMETERS

An error occurred while posting the
event parameters.

12 LOG_SYSTEM_EVENT_EXCEPTION An exception occurred when trying to
submit system event (End Session, Get
Offer, Get Profile, Set Audience, Set
Debug, or Start Session) for logging.

13 LOG_USER_EVENT_EXCEPTION An exception occurred when trying to
submit user event for logging.

14 ERROR_TRYING_TO_LOOK_UP_EVENT An error occurred when trying to look
up the event name.

15 ERROR_TRYING_TO_LOOK_UP
_INTERACTIVE_CHANNEL

An error occurred when trying to look
up the interactive channel name.

16 ERROR_TRYING_TO_LOOK_UP
_INTERACTION_POINT

An error occurred when trying to look
up the interaction point name.

17 RUNTIME_EXCEPTION_
ENCOUNTERED

An unexpected runtime exception was
encountered.

18 ERROR_TRYING_TO_EXECUTE_
ASSOCIATED_ACTION

An error occurred while trying to run
associated action (Trigger
Resegmentation, Log Offer Contact, Log
Offer Acceptance, or Log Offer
Rejection).

19 ERROR_TRYING_RUN_FLOWCHART An error occurred while trying to run
flowchart.

20 FLOWCHART_FAILED A flowchart run failed.

21 FLOWCHART_ABORTED A flowchart run was aborted.

22 FLOWCHART_NEVER_RUN A specified flowchart was never run.

23 FLOWCHART_STILL_RUNNING A flowchart is still running.

24 ERROR_WHILE_READING_
PARAMETERS

An error occurred while reading
parameters.

25 ERROR_WHILE_LOADING_
RECOMMENDED_OFFERS

Error while loading recommended offers

26 ERROR_WHILE_LOGGING_DEFAULT
_TEXT_STATISTICS

An error occurred while logging default
text statistics (the number of times the
default string for the interaction point
displayed).

27 SCORE_OVERRIDE_LOAD_FAILED The score override table failed to load.

28 NULL_AUDIENCE_ID The audience identifier is empty.

29 UNRECOGNIZED_AUDIENCE_LEVEL An unrecognized audience level was
specified.

30 MISSING_AUDIENCE_FIELD An audience field is missing.

31 INVALID_AUDIENCE_FIELD_TYPE An invalid audience field type was
specified.

32 UNSUPPORTED_AUDIENCE_FIELD
_TYPE

Unsupported audience field type

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 109

Code Message text Description

33 TIMEOUT_REACHED_ON_GET_
OFFERS_CALL

The getOffers call reached timeout
without returning offers.

34 INTERACT_INITIALIZATION_NOT_
COMPLETED_SUCCESSFULLY

The runtime server initialization did not
complete successfully.

35 SESSION_ID_UNDEFINED The session identifier is undefined.

36 INVALID_NUMBER_OF_OFFERS_
REQUESTED

An invalid number of offers was
requested.

37 NO_SESSION_EXIST_BUT_WILL_
CREATE_NEW_ONE

No session existed, but one was created.

38 AUDIENCE_ID_NOT_FOUND_IN_
PROFILE_TABLE

The specified audience identifier is not in
the profile table.

39 LOG_CUSTOM_LOGGER_EVENT_
EXCEPTION

An exception occurred when trying to
submit custom logging data event.

40 SPECIFIED_FLOWCHART_FOR_
EXECUTION_DOES_NOT_EXIST

The specified flowchart cannot be run
because it does not exist.

41 AUDIENCE_NOT_DEFINED_IN_
CONFIGURATION

The specified audience is not defined in
the configuration.

About the BatchResponse class
The BatchResponse class contains methods which define the results of the
executeBatch method.

The Batch Response object contains the following attributes:
v BatchStatusCode-The highest Status Code value for all the responses requested

by the executeBatch method.
v Responses-An array of the Response objects requested by the executeBatch

method.

getBatchStatusCode
The getBatchStatusCode method returns the highest status code from the array of
commands executed by the executeBatch method.
getBatchStatusCode()

Return value

The getBatchStatusCode method returns an integer.
v 0 - STATUS_SUCCESS-The method called completed with no errors.
v 1 - STATUS_WARNING-The method called completed with at least one warning

(but no errors).
v 2 - STATUS_ERROR-The method called did not complete successfully and has at

least one error.

Example

The following code sample gives an example of how to retrieve the
BatchStatusCode.
// Top level status code is a short cut to determine if there are any
// non-successes in the array of Response objects
if(batchResponse.getBatchStatusCode() == Response.STATUS_SUCCESS)

110 IBM Interact Administrator's Guide

{
System.out.println("ExecuteBatch ran perfectly!");

}
else if(batchResponse.getBatchStatusCode() == Response.STATUS_WARNING)
{

System.out.println("ExecuteBatch call processed with at least one warning");
}
else
{

System.out.println("ExecuteBatch call processed with at least one error");
}

// Iterate through the array, and print out the message for any non-successes
for(Response response : batchResponse.getResponses())
{

if(response.getStatusCode()!=Response.STATUS_SUCCESS)
{

printDetailMessageOfWarningOrError("executeBatchCommand",
response.getAdvisoryMessages());
}

}

getResponses
The getResponses method returns the array of response objects that correspond to
the array of commands executed by the executeBatch method.
getResponses()

Return value

The getResponses method returns an array of Response objects.

Example

The following example selects all the responses and prints out any advisory
messages if the command was not successful.
for(Response response : batchResponse.getResponses())
{

if(response.getStatusCode()!=Response.STATUS_SUCCESS)
{

printDetailMessageOfWarningOrError("executeBatchCommand",
response.getAdvisoryMessages());
}

}

About the Command interface
The executeBatch method requires you to pass in an array of objects that
implements the Command interface. You should use the default implementation,
CommandImpl to pass in the Command objects.

The following table lists the command, the method of the InteractAPI class the
command represents, and the Command interface methods you must use for each
command. You do not need to include a session ID because the executeBatch
method already includes the session ID.

Command
Interact API
Method Command Interface Methods

COMMAND_ENDSESSION endSession None.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 111

Command
Interact API
Method Command Interface Methods

COMMAND_GETOFFERS getOffers v setInteractionPoint

v setNumberRequested

COMMAND_GETPROFILE getProfile None.

COMMAND_GETVERSION getVersion None.

COMMAND_POSTEVENT postEvent v setEvent

v setEventParameters

COMMAND_SETAUDIENCE setAudience v setAudienceID

v setAudienceLevel

v setEventParameters

COMMAND_SETDEBUG setDebug setDebug

COMMAND_STARTSESSION startSession v setAudienceID

v setAudienceLevel

v setDebug

v setEventParameters

v setInteractiveChannel

v setRelyOnExistingSession

setAudienceID
The setAudienceID method defines the AudienceID for the setAudience and
startSession commands.
setAudienceID(audienceID)

v audienceID-an array of NameValuePair objects which define the AudienceID.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
startSession and setAudience.
NameValuePair custId = new NameValuePairImpl();
custId.setName("CustomerId");
custId.setValueAsNumeric(1.0);
custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);
NameValuePair[] initialAudienceId = { custId };
. . .
Command startSessionCommand = new CommandImpl();
startSessionCommand.setAudienceID(initialAudienceId);
. . .
Command setAudienceCommand = new CommandImpl();
setAudienceCommand.setAudienceID(newAudienceId);
. . .
/** Build command array */
Command[] commands =

{
startSessionCommand,
setAudienceCommand,

};
/** Make the call */

112 IBM Interact Administrator's Guide

BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */
processExecuteBatchResponse(batchResponse);

setAudienceLevel
The setAudienceLevel method defines the Audience Level for the setAudience and
startSession commands.
setAudienceLevel(audienceLevel)

v
audienceLevel-a string containing the Audience Level.

Important: The name of the audienceLevel must match the name of the audience
level as defined in Campaign exactly. It is case-sensitive.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
startSession and setAudience.
String audienceLevel="Customer";
. . .
Command startSessionCommand = new CommandImpl();
startSessionCommand.setAudienceID(initialAudienceId);
. . .
Command setAudienceCommand = new CommandImpl();
setAudienceCommand.setAudienceLevel(audienceLevel);
. . .
/** Build command array */
Command[] commands =

{
startSessionCommand,
setAudienceCommand,

};
/** Make the call */

BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */
processExecuteBatchResponse(batchResponse);

setDebug
The setDebug method defines the debug level for the startSession command.
setDebug(debug)

If true, the runtime server logs debug information to the runtime server log. If
false, the runtime server does not log any debug information. The debug flag is
set for each session individually. Therefore, you can trace debut data for an
individual runtime session.
v debug-a boolean (true or false).

Return value

None.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 113

Example

The following example is an excerpt from an executeBatch method calling
startSession and setDebug.
boolean initialDebugFlag=true;
boolean newDebugFlag=false;
. . .
/* build the startSession command */
Command startSessionCommand = new CommandImpl();
startSessionCommand.setDebug(initialDebugFlag);
. . .

/* build the setDebug command */
Command setDebugCommand = new CommandImpl();
setDebugCommand.setMethodIdentifier(Command.COMMAND_SETDEBUG);
setDebugCommand.setDebug(newDebugFlag);

/** Build command array */
Command[] commands =

{
startSessionCommand,
setDebugCommand,

};
/** Make the call */

BatchResponse batchResponse = api.executeBatch(sessionId, commands);

/** Process the response appropriately */
processExecuteBatchResponse(batchResponse);

setEvent
The setEvent method defines the name of the event used by the postEvent
command.
setEvent(event)

v event-A string which contains the event name.

Important: The name of the event must match the name of the event as defined in
the interactive channel exactly. It is case-sensitive.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
postEvent.
String eventName = "SearchExecution";

Command postEventCommand = new CommandImpl();
postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);
postEventCommand.setEventParameters(postEventParameters);
postEventCommand.setEvent(eventName);

setEventParameters
The setEventParameters method defines the event parameters used by the
postEvent command. These values are stored in the session data.
setEventParameters(eventParameters)

114 IBM Interact Administrator's Guide

v eventParameters-an array of NameValuePair objects defining the event
parameters.

For example, if the event is logging an offer to contact history, you must include
the treatment code of the offer.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
postEvent.
NameValuePair parmB1 = new NameValuePairImpl();
parmB1.setName("SearchString");
parmB1.setValueAsString("mortgage");
parmB1.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB2 = new NameValuePairImpl();
parmB2.setName("TimeStamp");
parmB2.setValueAsDate(new Date());
parmB2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parmB3 = new NameValuePairImpl();
parmB3.setName("Browser");
parmB3.setValueAsString("IE6");
parmB3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parmB4 = new NameValuePairImpl();
parmB4.setName("FlashEnabled");
parmB4.setValueAsNumeric(1.0);
parmB4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parmB5 = new NameValuePairImpl();
parmB5.setName("TxAcctValueChange");
parmB5.setValueAsNumeric(0.0);
parmB5.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

NameValuePair parmB6 = new NameValuePairImpl();
parmB6.setName("PageTopic");
parmB6.setValueAsString("");
parmB6.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair[] postEventParameters = { parmB1,
parmB2,
parmB3,
parmB4,
parmB5,
parmB6
};

. . .
Command postEventCommand = new CommandImpl();
postEventCommand.setMethodIdentifier(Command.COMMAND_POSTEVENT);
postEventCommand.setEventParameters(postEventParameters);
postEventCommand.setEvent(eventName);

setGetOfferRequests
The setGetOfferRequests method sets the parameter for retrieving offers used by
the getOffersForMultipleInteractionPoints command.
setGetOfferRequests(numberRequested)

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 115

v numberRequested - an array of GetOfferRequest objects defining the parameter
for retrieving offers.

Return value

None.

Example

The following example is an excerpt from a GetOfferRequest method calling
setGetOfferRequests.

GetOfferRequest request1 = new GetOfferRequest(5, GetOfferRequest.NO_DUPLICATION);
request1.setIpName("IP1");
OfferAttributeRequirements offerAttributes1 = new OfferAttributeRequirements();
NameValuePairImpl attr1 = new NameValuePairImpl("attr1",

NameValuePair.DATA_TYPE_NUMERIC, 1);
NameValuePairImpl attr2 = new NameValuePairImpl("attr2",

NameValuePair.DATA_TYPE_STRING, "value2");
NameValuePairImpl attr3 = new NameValuePairImpl("attr3",

NameValuePair.DATA_TYPE_STRING, "value3");
NameValuePairImpl attr4 = new NameValuePairImpl("attr4",

NameValuePair.DATA_TYPE_NUMERIC, 4);
offerAttributes1.setNumberRequested(5);
offerAttributes1.setAttributes(new NameValuePairImpl[] {attr1, attr2});
OfferAttributeRequirements childAttributes1 = new OfferAttributeRequirements();
childAttributes1.setNumberRequested(3);
childAttributes1.setAttributes(new NameValuePairImpl[] {attr3});
OfferAttributeRequirements childAttributes2 = new OfferAttributeRequirements();
childAttributes2.setNumberRequested(3);
childAttributes2.setAttributes(new NameValuePairImpl[] {attr4});
offerAttributes1.setChildRequirements(Arrays.asList(childAttributes1,

childAttributes2));
request1.setOfferAttributes(offerAttributes1);

GetOfferRequest request2 = new GetOfferRequest(3, GetOfferRequest.ALLOW_DUPLICATION);
request2.setIpName("IP2");
OfferAttributeRequirements offerAttributes2 = new OfferAttributeRequirements();
offerAttributes2.setNumberRequested(3);
offerAttributes2.setAttributes(new NameValuePairImpl[] {new NameValuePairImpl("attr5",

NameValuePair.DATA_TYPE_STRING, "value5")});
request2.setOfferAttributes(offerAttributes2);

GetOfferRequest request3 = new GetOfferRequest(2, GetOfferRequest.NO_DUPLICATION);
request3.setIpName("IP3");
request3.setOfferAttributes(null);

Command getOffersMultiIPCmd = new CommandImpl();
getOffersMultiIPCmd.setGetOfferRequests(new GetOfferRequest[] {request1,

request2, request3});

setInteractiveChannel
The setInteractiveChannel method defines the name of the interactive channel
used by the startSession command.
setInteractiveChannel(interactiveChannel)

v interactiveChannel-a string containing the interactive channel name.

Important: The interactiveChannel must match the name of the interactive channel
as defined in Campaign exactly. It is case-sensitive.

116 IBM Interact Administrator's Guide

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
startSession.
String interactiveChannel="Accounts Website";
. . .
Command startSessionCommand = new CommandImpl();
startSessionCommand.setInteractiveChannel(interactiveChannel);

setInteractionPoint
The setInteractionPoint method defines the name of the interaction point used
by the getOffers and postEvent commands.
setInteractionPoint(interactionPoint)

v interactionPoint-a string containing the interaction point name.

Important: The interactionPoint must match the name of the interaction point as
defined in the interactive channel exactly. It is case-sensitive.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
getOffers.
String interactionPoint = "Overview Page Banner 1";
int numberRequested=1;

Command getOffersCommand = new CommandImpl();
getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);
getOffersCommand.setInteractionPoint(interactionPoint);
getOffersCommand.setNumberRequested(numberRequested);

setMethodIdentifier
The setMethodIdentifier method defines the type of command contained in the
command object.
setMethodIdentifier(methodIdentifier)

v methodIdentifier-a string containing the type of command.
The valid values are:
– COMMAND_ENDSESSION-represents the endSession method.
– COMMAND_GETOFFERS-represents the getOffers method.
– COMMAND_GETPROFILE-represents the getProfile method.
– COMMAND_GETVERSION-represents the getVersion method.
– COMMAND_POSTEVENT-represents the postEvent method.
– COMMAND_SETAUDIENCE-represents the setAudience method.
– COMMAND_SETDEBUG-represents the setDebug method.
– COMMAND_STARTSESSION-represents the startSession method.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 117

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
getVersion and endSession.
Command getVersionCommand = new CommandImpl();
getVersionCommand.setMethodIdentifier(Command.COMMAND_GETVERSION);

Command endSessionCommand = new CommandImpl();
endSessionCommand.setMethodIdentifier(Command.COMMAND_ENDSESSION);

Command[] commands =
{

getVersionCommand,
endSessionCommand

};

setNumberRequested
The setNumberRequested method defines the number of offers requested by the
getOffers command.
setNumberRequested(numberRequested)

v numberRequested-an integer defining the number of offers requested by the
getOffers command.

Return value

None.

Example

The following example is an excerpt from an executeBatch method calling
getOffers.
String interactionPoint = "Overview Page Banner 1";
int numberRequested=1;

Command getOffersCommand = new CommandImpl();
getOffersCommand.setMethodIdentifier(Command.COMMAND_GETOFFERS);
getOffersCommand.setInteractionPoint(interactionPoint);
getOffersCommand.setNumberRequested(numberRequested);

setRelyOnExistingSession
The setRelyOnExistingSession method defines a boolean defining whether the
startSession command uses an existing session or not.
setRelyOnExistingSession(relyOnExistingSession)

If true, the session ID for executeBatch must match an existing session ID. If
false, you must supply a new session ID with the executeBatch method.
v relyOnExistingSession-a boolean (true or false).

Return value

None.

118 IBM Interact Administrator's Guide

Example

The following example is an excerpt from an executeBatch method calling
startSession.
boolean relyOnExistingSession=false;
. . .
Command startSessionCommand = new CommandImpl();
startSessionCommand.setRelyOnExistingSession(relyOnExistingSession);

About the NameValuePair interface
Many methods in the Interact API either return NameValuePair objects or require
you to pass NameValuePair objects as arguments. When passing as arguments into
a method, you should use the default implementation NameValuePairImpl.

getName
The getName method returns the name component of a NameValuePair object.
getName()

Return value

The getName method returns a string.

Example

The following example is an excerpt from a method which processes the response
object for getProfile.
for(NameValuePair nvp : response.getProfileRecord())
{

System.out.println("Name:"+nvp.getName());
}

getValueAsDate
The getValueAsDate method returns the value of a NameValuePair object.
getValueAsDate()

You should use getValueDataType before using getValueAsDate to confirm you are
referencing the correct data type.

Return value

The getValueAsDate method returns a date.

Example

The following example is an excerpt from a method which processes a
NameValuePair and prints the value if it is a date.
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATE))
{

System.out.println("Value:"+nvp.getValueAsDate());
}

getValueAsNumeric
The getValueAsNumeric method returns the value of a NameValuePair object.
getValueAsNumeric()

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 119

You should use getValueDataType before using getValueAsNumeric to confirm you
are referencing the correct data type.

Return value

The getValueAsNumeric method returns a double. If, for example, you are
retrieving a value originally stored in your profile table as an Integer,
getValueAsNumeric returns a double.

Example

The following example is an excerpt from a method which processes a
NameValuePair and prints the value if it is numeric.
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))
{

System.out.println("Value:"+nvp.getValueAsNumeric());
}

getValueAsString
The getValueAsString method returns the value of a NameValuePair object.
getValueAsString()

You should use getValueDataType before using getValueAsString to confirm you
are referencing the correct data type.

Return value

The getValueAsString method returns a string. If, for example, you are retrieving a
value originally stored in your profile table as a char, varchar, or char[10],
getValueAsString returns a string.

Example

The following example is an excerpt from a method which processes a
NameValuePair and prints the value if it is a string.
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_STRING))
{

System.out.println("Value:"+nvp.getValueAsString());
}

getValueDataType
The getValueDataType method returns the data type of a NameValuePair object.
getValueDataType()

You should use getValueDataType before using getValueAsDate,
getValueAsNumeric, or getValueAsString to confirm you are referencing the correct
data type.

Return value

The getValueDataType method returns a string indicating whether the
NameValuePair contains a data, number, or string.

The valid values are:
v DATA_TYPE_DATETIME-a date containing a date and time value.

120 IBM Interact Administrator's Guide

v DATA_TYPE_NUMERIC-a double containing a number value.
v DATA_TYPE_STRING-a string containing a text value.

Example

The following example is an excerpt from a method which processes the response
object from a getProfile method.
for(NameValuePair nvp : response.getProfileRecord())
{

System.out.println("Name:"+nvp.getName());
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))
{

System.out.println("Value:"+nvp.getValueAsDate());
}
else if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))
{

System.out.println("Value:"+nvp.getValueAsNumeric());
}
else
{

System.out.println("Value:"+nvp.getValueAsString());
}

}

setName
The setName method defines the name component of a NameValuePair object.
setName(name)

v name-a string containing the name component of a NameValuePair object.

Return value

None.

Example

The following example shows how to define the name component of a
NameValuePair.
NameValuePair custId = new NameValuePairImpl();
custId.setName("CustomerId");
custId.setValueAsNumeric(1.0);
custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);
NameValuePair[] initialAudienceId = { custId };

setValueAsDate
The setValueAsDate method defines the value of a NameValuePair object.
setValueAsDate(valueAsDate)

v valueAsDate-a date containing the date and time value of a NameValuePair
object.

Return value

None.

Example

The following example shows how to define the value component of a
NameValuePair if the value is a date.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 121

NameValuePair parm2 = new NameValuePairImpl();
parm2.setName("TimeStamp");
parm2.setValueAsDate(new Date());
parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

setValueAsNumeric
The setValueAsNumeric method defines the value of a NameValuePair object.
setValueAsNumeric(valueAsNumeric)

v valueAsNumeric-a double containing the numeric value of a NameValuePair
object.

Return value

None.

Example

The following example shows how to define the value component of a
NameValuePair if the value is a numeric.
NameValuePair parm4 = new NameValuePairImpl();
parm4.setName("FlashEnabled");
parm4.setValueAsNumeric(1.0);
parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

setValueAsString
The setValueAsString method defines the value of a NameValuePair object.
setValueAsString(valueAsString)

v valueAsString-a string containing the value of a NameValuePair object

Return value

None.

Example

The following example shows how to define the value component of a
NameValuePair if the value is a numeric.
NameValuePair parm3 = new NameValuePairImpl();
parm3.setName("Browser");
parm3.setValueAsString("IE6");
parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

setValueDataType
The setValueDataType method defines the data type of a NameValuePair object.
getValueDataType(valueDataType)

The valid values are:
v DATA_TYPE_DATETIME-a date containing a date and time value.
v DATA_TYPE_NUMERIC-a double containing a number value.
v DATA_TYPE_STRING-a string containing a text value.

Return value

None.

122 IBM Interact Administrator's Guide

Example

The following examples show how to set the data type of the value of a
NameValuePair.
NameValuePair parm2 = new NameValuePairImpl();
parm2.setName("TimeStamp");
parm2.setValueAsDate(new Date());
parm2.setValueDataType(NameValuePair.DATA_TYPE_DATETIME);

NameValuePair parm3 = new NameValuePairImpl();
parm3.setName("Browser");
parm3.setValueAsString("IE6");
parm3.setValueDataType(NameValuePair.DATA_TYPE_STRING);

NameValuePair parm4 = new NameValuePairImpl();
parm4.setName("FlashEnabled");
parm4.setValueAsNumeric(1.0);
parm4.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);

About the Offer class
The Offer class contains methods which define an Offer object. This offer object
contains many of the same properties of an offer in Campaign.

The offer object contains the following attributes:
v AdditionalAttributes-NameValuePairs containing any custom offer attributes

you have defined in Campaign.
v Description-The description of the offer.
v EffectiveDate-The effective date of the offer.
v ExpirationDate-The expiration date of the offer.
v OfferCode-The offer code of the offer.
v OfferName-The name of the offer.
v TreatmentCode-The treatment code of the offer.
v Score-The marketing score of the offer, or the score defined by the

ScoreOverrideTable if the enableScoreOverrideLookup property is true.

getAdditionalAttributes
The getAdditionalAttributes method returns the custom offer attributes defined
in Campaign.
getAdditionalAttributes()

Return value

The getAdditionalAttributes method returns an array of NameValuePair objects.

Example

The following example sorts through all the additional attributes, checking for the
effective date and expiration date, and printing out the other attributes.

for(NameValuePair offerAttribute : offer.getAdditionalAttributes())
{

// check to see if the effective date exists
if(offerAttribute.getName().equalsIgnoreCase("effectiveDate"))
{

System.out.println("Found effective date");
}

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 123

// check to see if the expiration date exists
else if(offerAttribute.getName().equalsIgnoreCase("expirationDate"))
{

System.out.println("Found expiration date");
}
printNameValuePair(offerAttribute);
}

}
public static void printNameValuePair(NameValuePair nvp)
{

// print out the name:
System.out.println("Name:"+nvp.getName());

// based on the datatype, call the appropriate method to get the value
if(nvp.getValueDataType()==NameValuePair.DATA_TYPE_DATETIME)

System.out.println("DateValue:"+nvp.getValueAsDate());
else if(nvp.getValueDataType()==NameValuePair.DATA_TYPE_NUMERIC)

System.out.println("NumericValue:"+nvp.getValueAsNumeric());
else

System.out.println("StringValue:"+nvp.getValueAsString());
}

getDescription
The getDescription method returns the description of the offer defined in
Campaign.
getDescription()

Return value

The getDescription method returns a string.

Example

The following example prints the description of an offer.
for(Offer offer : offerList.getRecommendedOffers())
{

// print offer
System.out.println("Offer Description:"+offer.getDescription());

}

getOfferCode
The getOfferCode method returns the offer code of the offer as defined in
Campaign.
getOfferCode()

Return value

The getOfferCode method returns an array of strings containing the offer code of
the offer.

Example

The following example prints the offer code of an offer.
for(Offer offer : offerList.getRecommendedOffers())
{

// print offer
System.out.println("Offer Code:"+offer.getOfferCode());

}

124 IBM Interact Administrator's Guide

getOfferName
The getOfferName method returns the name of the offer as defined in Campaign.
getOfferName()

Return value

The getOfferName method returns string.

Example

The following example prints the name of an offer.
for(Offer offer : offerList.getRecommendedOffers())
{
// print offer
System.out.println("Offer Name:"+offer.getOfferName());
}

getScore
The getScore method returns a score, which is based on the offers you configured.
getScore()

The getScore method returns one of the following:
v If you did not enabled the default offers table, score override table, or built-in

learning, this method returns the marketing score of the offer as defined on the
interaction strategy tab.

v If you enabled the default offers or score override table and not enabled built-in
learning, this method returns the score of the offer as defined by the order of
precedence between the default offers table, the marketer's score, and the score
override table.

v If you enabled built-in learning, this method returns the final score that the
built-in learning used to order offers.

Return value

The getScore method returns an integer that represents the score of the offer.

Example

The following example prints the score of an offer.
for(Offer offer : offerList.getRecommendedOffers())
{
// print offer
System.out.println("Offer Score:"+offer.getOfferScore());
}

getTreatmentCode
The getTreatmentCode method returns the treatment code of the offer as defined in
Campaign.
getTreatmentCode()

Because Campaign uses the treatment code to identify the instance of the offer
served, this code must be returned as an event parameter when using the
postEvent method to log a contact, acceptance, or rejection event of the offer. If

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 125

you are logging an offer acceptance or rejection, you must set the name value of
the NameValuePair representing the treatment code to UACIOfferTrackingCode.

Return value

The getTreatmentCode method returns a string.

Example

The following example prints the treatment code of an offer.
for(Offer offer : offerList.getRecommendedOffers())
{

// print offer
System.out.println("Offer Treatment Code:"+offer.getTreatmentCode());

}

About the OfferList class
The OfferList class contains methods which define the results of the getOffers
method.

The OfferList object contains the following attributes:
v DefaultString-The default string defined for the interaction point in the

interactive channel.
v RecommendedOffers-An array of the Offer objects requested by the getOffers

method.

The OfferList class works with lists of offers. This class is not related to Campaign
offer lists.

getDefaultString
The getDefaultString method returns the default string for the interaction point as
defined in Campaign.
getDefaultString()

If the RecommendedOffers object is empty, you should configure your touchpoint
to present this string to ensure some content is presented. Interact populates the
DefaultString object only if the RecommendedOffers object is empty.

Return value

The getDefaultString method returns a string.

Example

The following example gets the default string if the offerList object does not
contain any offers.
OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{

for(Offer offer : offerList.getRecommendedOffers())
{

System.out.println("Offer Name:"+offer.getOfferName());
}

}
else // count on the default Offer String

System.out.println("Default offer:"+offerList.getDefaultString());

126 IBM Interact Administrator's Guide

getRecommendedOffers
The getRecommendedOffers method returns an array of Offer objects requested by
the getOffers method.
getRecommendedOffers()

If the response to getRecommendedOffer is empty, the touchpoint should present the
result of getDefaultString.

Return value

The getRecommendedOffers method returns an Offer object.

Example

The following example processes the OfferList object, and prints the offer name for
all the recommended offers.
OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{

for(Offer offer : offerList.getRecommendedOffers())
{

// print offer
System.out.println("Offer Name:"+offer.getOfferName());

}
}
else // count on the default Offer String
System.out.println("Default offer:"+offerList.getDefaultString());

About the Response class
The Response class contains methods which define the results of any of the
InteractAPI class methods.

The Response object contains the following attributes:
v AdvisoryMessages-an array of advisory messages. This attribute is populated

only if there were warnings or errors when the method ran.
v ApiVersion-a string containing the API version. This attribute is populated by

the getVersion method.
v OfferList-the OfferList object containing the offers requested by the getOffers

method.
v ProfileRecord-an array of NameValuePairs containing profile data. This attribute

is populated by the getProfile method.
v SessionID-a string defining the session ID. This is returned by all InteractAPI

class methods.
v StatusCode-a number stating if the method ran without error, with a warning,

or with errors. This is returned by all InteractAPI class methods.

getAdvisoryMessages
The getAdvisoryMessages method returns an array of Advisory Messages from the
Response object.
getAdvisoryMessages()

Return value

The getAdvisoryMessages method returns an array of Advisory Message objects.

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 127

Example

The following example gets the AdvisoryMessage objects from a Response object
and iterates through them, printing out the messages.
AdvisoryMessage[] messages = response.getAdvisoryMessages();

for(AdvisoryMessage msg : messages)
{

System.out.println(msg.getMessage());
// Some advisory messages may have additional detail:
System.out.println(msg.getDetailMessage());

}

getApiVersion
The getApiVersion method returns the API version of a Response object.
getApiVersion()

The getVersion method populates the ApiVersion attribute of a Response object.

Return value

The Response object returns a string.

Example

The following example is an excerpt from a method which processes the response
object for getVersion.
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("getVersion call processed with no warnings or errors");
System.out.println("API Version:" + response.getApiVersion());

}

getOfferList
The getOfferList method returns the OfferList object of a Response object.
getOfferList()

The getOffers method populates the OfferList object of a Response object.

Return value

The Response object returns an OfferList object.

Example

The following example is an excerpt from a method which processes the response
object for getOffers.
OfferList offerList=response.getOfferList();
if(offerList.getRecommendedOffers() != null)
{

for(Offer offer : offerList.getRecommendedOffers())
{
// print offer
System.out.println("Offer Name:"+offer.getOfferName());
}

}

128 IBM Interact Administrator's Guide

getAllOfferLists
The getAllOfferLists method returns an array of all OfferLists of a Response
object.
getAllOfferLists()

This is used by the getOffersForMultipleInteractionPoints method that
populates the OfferList array object of a Response object.

Return value

The Response object returns an OfferList array.

Example

The following example is an excerpt from a method which processes the response
object for getOffers.
OfferList[] allOfferLists = response.getAllOfferLists();
if (allOfferLists != null) {
for (OfferList ol : allOfferLists) {
System.out.println("The following offers are delivered for interaction point "

+ ol.getInteractionPointName() + ":");
for (Offer o : ol.getRecommendedOffers()) {
System.out.println(o.getOfferName());
}
}
}

getProfileRecord
The getProfileRecord method returns the profile records for the current session as
an array of NameValuePair objects. These profile records also include any
eventParameters added earlier in the runtime session.
getProfileRecord()

The getProfile method populates the profile record NameValuePair objects of a
Response object.

Return value

The Response object returns an array of NameValuePair objects.

Example

The following example is an excerpt from a method which processes the response
object for getOffers.
for(NameValuePair nvp : response.getProfileRecord())
{

System.out.println("Name:"+nvp.getName());
if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_DATETIME))
{

System.out.println("Value:"+nvp.getValueAsDate());
}
else if(nvp.getValueDataType().equals(NameValuePair.DATA_TYPE_NUMERIC))
{

System.out.println("Value:"+nvp.getValueAsNumeric());
}
else

Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API 129

{
System.out.println("Value:"+nvp.getValueAsString());

}
}

getSessionID
The getSessionID method returns session ID.
getSessionID()

Return value

The getSessionID method returns a string.

Example

The following example shows a message you can display at the end or beginning
of your error handling to indicate to which session any errors pertain.
System.out.println("This response pertains to sessionId:"+response.getSessionID());

getStatusCode
The getStatusCode method returns the status code of a Response object.
getStatusCode()

Return value

The Response object returns an integer.
v 0 - STATUS_SUCCESS - The method called completed with no errors. There may

or may not be Advisory Messages.
v 1 - STATUS_WARNING - The method called completed with at least one

warning message (but no errors). Query Advisory Messages for more details.
v 2 - STATUS_ERROR - The method called did not complete successfully and has

at least one error message. Query Advisory Messages for more details.

Example

The following is an example of how you can use getStatusCode in error handling.
public static void processSetDebugResponse(Response response)
{

// check if response is successful or not
if(response.getStatusCode() == Response.STATUS_SUCCESS)
{

System.out.println("setDebug call processed with no warnings or errors");
}
else if(response.getStatusCode() == Response.STATUS_WARNING)
{

System.out.println("setDebug call processed with a warning");
}
else
{

System.out.println("setDebug call processed with an error");
}

// For any non-successes, there should be advisory messages explaining why
if(response.getStatusCode() != Response.STATUS_SUCCESS)

printDetailMessageOfWarningOrError("setDebug",
response.getAdvisoryMessages());

}

130 IBM Interact Administrator's Guide

Chapter 8. Classes and methods for the IBM Interact
JavaScript API

The following sections list requirements and other details you should know before
you work with the Interact JavaScript API.

The Interact API supports a javascript flavor to allow for end-user client (browser)
to server communication.

Note: This section assumes you are familiar with a JavaScript-based API.

Note: Multiple occurrences of any parameter in a single API call is not supported.

JavaScript prerequisites
Before you use the Interact JavaScript API on a website you must include the
interactapi.js file on your web pages.

Working with session data
When you initiate a session with the startSession method, session data is loaded
into memory. Throughout the session, you can read and write to the session data
(which is a superset of the static profile data).

The session contains the following data:
v Static profile data
v Segment assignments
v Real-time data
v Offer recommendations

All session data is available until you call the endSession method, or the
sessionTimeout time elapses. Once the session ends, all data not explicitly saved to
contact or response history or some other database table is lost.

The data is stored as a set of name-value pairs. If the data is read from a database
table, the name is the column of the table.

You can create these name-value pairs as you work with the Interact API. You do
not need to declare all name-value pairs in a global area. If you set new event
parameters as name-value pairs, the runtime environment adds the name-value
pairs to the session data. For example if you use event parameters with the
postEvent method, the runtime environment adds the event parameters to the
session data, even if the event parameters were not available in the profile data.
This data exists in the session data only.

You can overwrite session data at any time. For example, if part of the customer
profile includes creditScore, you can pass in an event parameter using the custom
type NameValuePair. In the NameValuePair class, you can use the setName and
setValueAsNumeric methods to change the value. The name needs to match. Within
the session data, the name is not case-sensitive. Therefore, the name creditscore
or CrEdItScOrE would both overwrite creditScore.

© Copyright IBM Corp. 2001, 2018 131

Only the last data written to the session data is kept. For example, startSession
loads the profile data for the value of lastOffer. A postEvent method overwrites
lastOffer. Then a second postEvent method overwrites lastOffer. The runtime
environment keeps only the data written by the second postEvent method in the
session data.

When the session ends, the data is lost, unless you made special considerations
such as using a Snapshot process in your interactive flowchart to write the data to
a database table. If you are planning on using Snapshot processes, remember that
the names need to match the limitations of your database. For example, if your are
allowed only 256 characters for the name of a column, then the name for the
name-value pair should not exceed 256 characters.

Working with the callback parameter
The callback function is an additional parameter of each method of the Interact
JavaScript API.

The main browser process is a single threaded event loop. Executing a
long-running operation within a single-threaded event loop, blocks the process.
This is stops the process from processing other events while it waits for your
operation to complete. In order to prevent blocks on long-running operations, the
XMLHttpRequest provides an asynchronous interface. You pass it a callback to run
after the operation is complete, and while it processes, it gives control back to the
main event loop instead of blocking the process.

If the method was successful, the callback function calls onSuccess. If the method
failed, the callback function calls onError.

For example, if you wanted to display offers on your web page, you would use the
getOffers method and use the callback to display on the page. The web page
behaves normally and does not wait for Interact to return the offers. Instead, when
Interact does return the offers, the response is sent back in the callback parameter.
You can parse the callback data and show offers on the page.

You can use one generic callback for all functions or you can also use specific
callbacks for specific functions.

You can use var callback = InteractAPI.Callback.create(onSuccess, onError);
to create a generic callback function.

You can use the following function to create a specific callback function for the
getOffers method.
var callbackforGetOffer = InteractAPI.Callback.create(onSuccessofGetOffer,
onErrorofGetOffer);

About the InteractAPI class
The InteractAPI class contains the methods which you use to integrate your
touchpoint with the runtime server. All other classes and methods in the Interact
API support the methods in this class.

You must compile your implementation against interact_client.jar located in the
lib directory of your Interact runtime environment installation.

132 IBM Interact Administrator's Guide

startSession
The startSession method creates and defines a runtime session.
function callStartSession(commandsToExecute, callback) {

//read configured start session
var ssId = document.getElementById(’ss_sessionId’).value;
var icName = document.getElementById(’ic’).value;
var audId = document.getElementById(’audienceId’).value;
var audLevel = document.getElementById(’audienceLevel’).value;
var params = document.getElementById(’ss_parameters’).value;
var relyOldSs = document.getElementById(’relyOnOldSession’).value;
var debug = document.getElementById(’ss_isDebug’).value;

InteractAPI.startSession(ssId, icName,
getNameValuePairs(audId), audLevel,
getNameValuePairs(params), relyOldSs,
debug, callback) ;

}

startSession can trigger up to five actions:
v create a runtime session.
v load visitor profile data for the current audience level into the runtime session,

including any dimension tables marked for loading in the table mapping defined
for the interactive channel.

v trigger segmentation, running all interactive flowcharts for the current audience
level.

v load offer suppression data into the session, if the
enableOfferSuppressionLookup property is set to true.

v load score override data into the session, if the enableScoreOverrideLookup
property is set to true.

The startSession method requires the following parameters:
v sessionID-a string which identifies the session ID. You must define the session

ID. For example, you could use a combination of customer ID and timestamp.
To define what makes a runtime session, a session id has to be specified. This
value is managed by the client. All method calls for the same session id has to
be synchronized by the client. The behavior for concurrent API calls with the
same session id is undefined.

v relyOnExistingSession - a boolean which defines whether this session uses a
new or an existing session. Valid values are true or false. If true, you must
supply an existing session ID with the startSession method. If false, you must
supply a new session ID.
If you set relyOnExistingSession to true and a session exists, the runtime
environment uses the existing session data and does not reload any data or
trigger segmentation. If the session does not exist, the runtime environment
creates a new session, including loading data and triggering segmentation.
Setting relyOnExistingSession to true and using it with all startSession calls is
useful if your touchpoint has a longer session length than the runtime session.
For example, a web site session is alive for 2 hours, but the runtime session is
only alive for 20 minutes.
If you call startSession twice with the same session ID, all session data from
the first startSession call is lost if relyOnExistingSession is false.

Chapter 8. Classes and methods for the IBM Interact JavaScript API 133

v debug - a boolean which enables or disables debug information. Valid values are
true or false. If true, Interact logs debug information to the runtime server logs.
The debug flag is set for each session individually. Therefore, you can trace
debug data for an individual session.

v interactiveChannel-a string defining the name of the interactive channel this
session refers to. This name must match the name of the interactive channel
defined in Campaign exactly.

v audienceID - an array of NameValuePairImpl objects where the names must
match the physical column names of any table containing the audience ID.

v audienceLevel - a string defining the audience level.
v parameters - NameValuePairImpl objects identifying any parameters that need

to be passed with startSession. These values are stored in the session data and
can be used for segmentation.
If you have several interactive flowcharts for the same audience level, you must
include a superset of all columns in all the tables. If you configure the runtime
to load the profile table, and the profile table contains all the columns you
require, you do not need to pass any parameters, unless you want to overwrite
the data in the profile table. If your profile table contains a subset of the
required columns, you must include the missing columns as parameters.

v callback - If the method was successful, the callback function calls onSuccess. If
the method failed, the callback function calls onError.

If the audienceID or audienceLevel are invalid and relyOnExistingSession is false,
the startSession call fails. If the interactiveChannel is invalid, startSession fails,
whether relyOnExistingSession is true or false.

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID, but the first session has expired, Interact creates a new
session.

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID but a different audienceID or audienceLevel, the runtime
server changes the audience for the existing session.

If relyOnExistingSession is true, and you make a second startSession call using
the same sessionID but a different interactiveChannel, the runtime server creates
a new session.

Return value

The runtime server responds to startSession with a Response object with the
following attributes populated:
v AdvisoryMessages (if StatusCode does not equal 0)
v ApiVersion
v SessionID
v StatusCode

Offer deduplication across offer attributes
Using the Interact application programming interface (API), two API calls deliver
offers: getOffers and getOffersForMultipleInteractionPoints.
getOffersForMultipleInteractionPoints can prevent the return of duplicate offers
at the OfferID level, but cannot deduplicate offers across offer category. So, for
example, for Interact to return only one offer from each offer category, a

134 IBM Interact Administrator's Guide

workaround was previously required. With the introduction of two parameters to
the startSession API call, offer deduplication across offer attributes, such as
category, is now possible.

This list summarizes the parameters that were added to the startSession API call.
For more information about these parameters or any aspect of the Interact API, see
the IBM Interact Administrator's Guide, or the Javadoc files included with your
Interact installation in <Interact_Home>/docs/apiJavaDoc.
v

UACIOfferDedupeAttribute. To create a startSession API call with offer
deduplication, so that the subsequent getOffer calls return only one offer from
each category, you must include the UACIOfferDedupeAttribute parameter as
part of the API call. You can specify a parameter in the name,value,type format,
as shown here:
UACIOfferDedupeAttribute,<attributeName>,string

In this example, you would replace <attributeName> with the name of the offer
attribute you want to use as the criterion for deduplication, such as Category.

Note: Interact examines the offers that have the same attribute value you specify
(such as Category) and deduplicate to remove all but the offer that has the
highest score. If the offers that have the duplicate attribute also have identical
scores, Interact returns a random selection from among the matching offers.

v
UACINoAttributeDedupeIfFewerOffer. When you include the
UACIOfferDedupeAttribute in the startSession call, you can also set this
UACINoAttributeDedupeIfFewerOffer parameter to specify the behavior in cases
where the offer list after deduplication no longer contains enough offers to
satisfy the original request.
For example, if you set UACIOfferDedupeAttribute to use the offer category to
deduplicate offers, and your subsequent getOffers call requests that eight offers
be returned, deduplication might result in fewer than eight eligible offers. In that
case, setting UACINoAttributeDedupeIfFewerOffer parameter to true would result
in adding some of the duplicated to the eligible list to satisfy the requested
number of offers. In this example, if you set the parameter to false, the number
of offers that are returned would be fewer than the requested number.
UACINoAttributeDedupeIfFewerOffer is set to true by default.

For example, suppose you specified as a startSession parameter that the
deduplication criterion is offer Category, as shown here:

UACIOfferDedupeAttribute,Category,string;

UACINoAttributeDedupeIfFewerOffer,1,string

By default, the UACIOfferDedupeAttribute will not deduplicate offers if fewer than
the requested number is returned . However, to ensure that the deduplication
happens when fewer than requested offers are returned, the
UACINoAttributeDedupeIfFewerOffer parameter must be provided and must be set
to 1.

These parameters together cause Interact to deduplicate offers based on the offer
attribute "Category," and to return only the deduplicated offers even if the
resulting number of offers is fewer than requested
(UACINoAttributeDedupeIfFewerOffer is false).

Chapter 8. Classes and methods for the IBM Interact JavaScript API 135

When you issue a getOffers API call, the original set of eligible offers might
include these offers:
v Category=Electronics: Offer A1 with a score of 100 and Offer A2 with a score of

50.
v Category=Smartphones: Offer B1 with a score of 100, Offer B2 with a score of 80,

and offer B3 with a score of 50.
v Category=MP3Players: Offer C1 with a score of 100, Offer C2 with a score of 50.

In this case, there were two duplicate offers that match the first category, three
duplicate offers that match the second category, and two duplicate offers that
match the third category. The offers that are returned would be the highest scoring
offers from each category, which are Offer A1, Offer B1, and Offer C1.

If the getOffers API call requested six offers, this example set
UACINoAttributeDedupeIfFewerOffer to false, so only three offers would be
returned.

If the getOffers API call requested six offers, and this example omitted the
UACINoAttributeDedupeIfFewerOffer parameter, or specifically set it to true, some
of the duplicate offers would be included in the result to satisfy the requested
number.

postEvent
The postEvent method enables you to execute any event defined in the interactive
channel.
function callPostEvent(commandsToExecute, callback) {

var ssId = document.getElementById(’pe_sessionId’).value;
var ev = document.getElementById(’event’).value;
var params = document.getElementById(’parameters’).value;

InteractAPI.postEvent(ssId, ev, getNameValuePairs(params), callback);

}

v sessionID: a string identifying the session ID.
v eventName: a string identifying the name of the event.

Note: The name of the event must match the name of the event as defined in
the interactive channel. This name is case-insensitive.

v eventParameters. NameValuePairImpl objects identifying any parameters that
need to be passed with the event. These values are stored in the session data.
If this event triggers re-segmentation, you must ensure that all data required by
the interactive flowcharts is available in the session data. If any of these values
have not been populated by prior actions (for example, from startSession or
setAudience, or loading the profile table) you must include an eventParameter
for every missing value. For example, if you have configured all profile tables to
load into memory, you must include a NameValuePair for temporal data
required for the interactive flowcharts.
If you are using more than one audience level, you most likely have different
sets of eventParameters for each audience level. You should include some logic
to ensure you are selecting the correct set of parameters for the audience level.

Important: If this event logs to response history, you must pass the treatment
code for the offer. You must define the name for the NameValuePair as
"UACIOfferTrackingCode".

136 IBM Interact Administrator's Guide

You can only pass one treatment code per event. If you do not pass the
treatment code for an offer contact, Interact logs an offer contact for every offer
in the last recommended list of offers. If you do not pass the treatment code for
a response, Interact returns an error.

v callback - If the method was successful, the callback function calls onSuccess. If
the method failed, the callback function calls onError.

v There are several other reserved parameters used with postEvent and other
methods and are discussed later in this section.

Any request for re-segmentation or writing to contact or response history does not
wait for a response.

Re-segmentation does not clear prior segmentation results for the current audience
level. You can use the UACIExecuteFlowchartByName parameter to define specific
flowcharts to run. The getOffers method waits for re-segmentation to finish before
running. Therefore, if you call a postEvent method, which triggers a
re-segmentation immediately before a getOffers call, there might be a delay.

Return value

The runtime server responds to postEvent with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v Profile
v SessionID
v StatusCode

getOffers
The getOffers method enables you to request offers from the runtime server.
function callGetOffers(commandsToExecute, callback) {

var ssId = document.getElementById(’go_sessionId’).value;
var ip = document.getElementById(’go_ipoint’).value;
var nofRequested = 5 ;
var nreqString = document.getElementById(’offersRequested’).value;

InteractAPI.getOffers(ssId, ip, nofRequested, callback);

}

v session ID-a string identifying the current session.
v Interaction point-a string identifying the name of the interaction point this

method references.

Note: This name must match the name of the interaction point defined in
interactive channel exactly.

v nofRequested-an integer identifying the number of offers requested.
v callback - If the method was successful, the callback function calls onSuccess. If

the method failed, the callback function calls onError.

The getOffers method waits the number of milliseconds defined in the
segmentationMaxWaitTimeInMS property for all re-segmentation to complete before

Chapter 8. Classes and methods for the IBM Interact JavaScript API 137

running. Therefore, if you call a postEvent method which triggers a
re-segmentation or a setAudience method immediately before a getOffers call,
there may be a delay.

Return value

The runtime server responds to getOffers with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v Profile
v SessionID
v StatusCode

getOffersForMultipleInteractionPoints
The getOffersForMultipleInteractionPoints method enables you to request offers
from the runtime server for multiple IPs with deduplication.
function callGetOffersForMultipleInteractionPoints(commandsToExecute, callback) {

var ssId = document.getElementById(’gop_sessionId’).value;
var requestDetailsStr = document.getElementById(’requestDetail’).value;

//trim string
var trimmed = requestDetailsStr.replace(/\{/g, "");
var parts = trimmed.split("}");

//sanitize strings
for(i = 0; i < parts.length; i += 1) {

parts[i] = parts[i].replace(/^\s+|\s+$/g, "");
}

//build get offer requests
var getOffReqs = [];
for(var i = 0; i < parts.length; i += 1) {

var getofReqObj = parseGetOfferReq(parts[i]);
if (getofReqObj) {

getOffReqs.push(getofReqObj);

InteractAPI.getOffersForMultipleInteractionPoints
(ssId, getOffReqs, callback);

}

v session ID - a string identifying the current session.
v requestDetailsStr - a string providing an array of GetOfferRequest objects.

Each GetOfferRequest object specifies:
– ipName - The interaction point (IP) name for which the object is requesting

offers
– numberRequested - The number of unique offers it needs for the specified IP
– offerAttributes - Requirements on the attributes of the delivered offers using

an instance of OfferAttributeRequirements
– duplicationPolicy - Duplication policy ID for the offers that will be delivered

Duplication policies determine whether duplicated offers will be returned
across different interaction points in a single method call. (Within an
individual interaction point, duplicated offers are never returned.) Currently,
two duplication policies are supported.

138 IBM Interact Administrator's Guide

- NO_DUPLICATION (ID value = 1). None of the offers that have been
included in the preceding GetOfferRequest instances will be included in
this GetOfferRequest instance (that is, Interact will apply de-duplication).

- ALLOW_DUPLICATION (ID value = 2). Any of the offers satisfying the
requirements specified in this GetOfferRequest instance will be included.
The offers that have been included in the preceding GetOfferRequest
instances will not be reconciled.

– callback - If the method was successful, the callback function calls onSuccess.
If the method failed, the callback function calls onError.

The order of requests in the array parameter is also the priority order when
offers are being delivered.
For example, suppose the IPs in the request are IP1, then IP2, that no duplicated
offers are allowed (a duplication policy ID = 1), and each is requesting two
offers. If Interact finds offers A, B, and C for IP1 and offers A and D for IP2, the
response will contain offers A and B for IP1, and only offer D for IP2.
Also note that when the duplication policy ID is 1, the offers that have been
delivered via an IP with higher priority will not be delivered via this IP.

The getOffersForMultipleInteractionPoints method waits the number of
milliseconds defined in the segmentationMaxWaitTimeInMS property for all
re-segmentation to complete before running. Therefore, if you call a postEvent
method which triggers a re-segmentation or a setAudience method immediately
before a getOffers call, there may be a delay.

Return value

The runtime server responds to getOffersForMultipleInteractionPoints with a
Response object with the following attributes populated:
v AdvisoryMessages
v ApiVersion
v Array of OfferList
v Profile
v SessionID
v StatusCode

setAudience
The setAudience method enables you to set the audience ID and level for a visitor.
function callSetAudience(commandsToExecute, callback) {

var ssId = document.getElementById(’sa_sessionId’).value;
var audId = document.getElementById(’sa_audienceId’).value;
var audLevel = document.getElementById(’sa_audienceLevel’).value;
var params = document.getElementById(’sa_parameters’).value;

InteractAPI.setAudience(ssId, getNameValuePairs(audId),audLevel,
getNameValuePairs(params), callback);

}

v sessionID - a string identifying the session ID.
v audienceID - an array of NameValuePairImpl objects that defines the audience

ID.
v audienceLevel - a string that defines the audience level.

Chapter 8. Classes and methods for the IBM Interact JavaScript API 139

v parameters - NameValuePairImpl objects identifying any parameters that need to
be passed with setAudience. These values are stored in the session data and can
be used for segmentation.
You must have a value for every column in your profile. This is a superset of all
columns in all the tables defined for the interactive channel and any real-time
data. If you have already populated all the session data with startSession or
postEvent, you do not need to send new parameters.

v callback - If the method was successful, the callback function calls onSuccess. If
the method failed, the callback function calls onError.

The setAudience method triggers a re-segmentation. The getOffers method waits
for re-segmentation to finish before running. Therefore, if you call a setAudience
method immediately before a getOffers call, there may be a delay.

The setAudience method also loads the profile data for the audience ID. You can
use the setAudience method to force a reload of the same profile data loaded by
the startSession method.

The setAudience method reloads the while list and the black list table in an
existing session . You can use the setAudience method with the parameters
UACIPurgePriorWhiteListOnLoad and UACIPurgePriorBlackListOnLoad to reload the
white list table and black list table in an existing session.

By default, when the setAudience method is called, all the contents of the black list
is removed. You can set the UACIPurgePriorWhiteListOnLoad and
UACIPurgePriorBlackListOnLoad parameters in the setAudience call as follows:
v If you set UACIPurgePriorBlackListOnLoad= 0, all the contents of the white list

table are preserved.
v If you set UACIPurgePriorWhiteListOnLoad= 1 the contents of the table are

removed and the contents of the white list or black list for the audience ID will
be loaded from the database. Once completed, re-segmentation will start.

Return value

The runtime server responds to setAudience with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v Profile
v SessionID
v StatusCode

getProfile
The getProfile method enables you to retrieve the profile and temporal
information about the visitor visiting the touchpoint.
function callGetProfile(commandsToExecute, callback) {

var ssId = document.getElementById(’gp_sessionId’).value;

InteractAPI.getProfile(ssId, callback);

}

v session ID-a string identifying the session ID.

140 IBM Interact Administrator's Guide

v callback - If the method was successful, the callback function calls onSuccess. If
the method failed, the callback function calls onError.

Return value

The runtime server responds to getProfile with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v ProfileRecord
v SessionID
v StatusCode

endSession
The endSession method marks the end of the runtime session. When the runtime
server receives this method, the runtime server logs to history, clears memory, and
so on.
function callEndSession(commandsToExecute, callback) {

var ssId = document.getElementById(’es_sessionId’).value;

InteractAPI.endSession(ssId, callback);

}

v session ID - Unique string identifying the session.
v callback - If the method was successful, the callback function calls onSuccess. If

the method failed, the callback function calls onError.

If the endSession method is not called, runtime sessions timeout. The timeout
period is configurable with the sessionTimeout property.

Return value

The runtime server responds to the endSession method with the Response object
with the following attributes populated:
v SessionID
v ApiVersion
v OfferList
v Profile
v StatusCode
v AdvisoryMessages

setDebug
The setDebug method enables you to set the logging verbosity level for all code
paths for the session.
function callSetDebug(commandsToExecute, callback) {

var ssId = document.getElementById(’sd_sessionId’).value;
var isDebug = document.getElementById(’isDebug’).value;

Chapter 8. Classes and methods for the IBM Interact JavaScript API 141

InteractAPI.setDebug(ssId, isDebug, callback);

}

v sessionID-a string which identifies the session ID.
v debug-a boolean which enables or disables debug information. Valid values are

true or false. If true, Interact logs debug information to the runtime server log.
v callback - If the method was successful, the callback function calls onSuccess. If

the method failed, the callback function calls onError.

Return value

The runtime server responds to setDebug with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v Profile
v SessionID
v StatusCode

getVersion
The getVersion method returns the version of the current implementation of the
Interact runtime server.
function callGetVersion(commandsToExecute, callback) {

InteractAPI.getVersion(callback);

}

Best practice is to use this method when you initialize the touchpoint with the
Interact API.
v callback - If the method was successful, the callback function calls onSuccess. If

the method failed, the callback function calls onError.

Return value

The runtime server responds to the getVersion with a Response object with the
following attributes populated:
v AdvisoryMessages
v ApiVersion
v OfferList
v Profile
v SessionID
v StatusCode

executeBatch
The executeBatch method enables you to execute several methods with a single
request to the runtime server.

142 IBM Interact Administrator's Guide

function callExecuteBatch(commandsToExecute, callback) {

if (!commandsToExecute)
return ;

InteractAPI.executeBatch(commandsToExecute.ssid,
commandsToExecute.commands, callback);

}

v session ID-A string identifying the session ID. This session ID is used for all
commands run by this method call.

v commands-An array of command objects, one for each command you want to
perform.

v callback - If the method was successful, the callback function calls onSuccess. If
the method failed, the callback function calls onError.

The result of calling this method is equivalent to explicitly calling each method in
the Command array. This method minimizes the number of actual requests to the
runtime server. The runtime server runs each method serially; for each call, any
error or warnings are captured in the Response object that corresponds to that
method call. If an error is encountered, the executeBatch continues with the rest of
the calls in the batch. If the running of any method results in an error, the top level
status for the BatchResponse object reflects that error. If no error occurred, the top
level status reflects any warnings that may have occurred. If no warning occurred,
then the top level status reflects a successful run of the batch.

Return value

The runtime server responds to the executeBatch with a BatchResponse object.

JavaScript API example
function isJavaScriptAPISelected() {

var radios = document.getElementsByName(’api’);
for (var i = 0, length = radios.length; i < length; i++) {

if (radios[i].checked) {
if (radios[i].value === ’JavaScript’)

return true ;
else // only one radio can be logically checked

break;
}

}
return false;

}

function processFormForJSInvocation(e) {

if (!isJavaScriptAPISelected())
return;

if (e.preventDefault) e.preventDefault();

var serverurl = document.getElementById(’serviceUrl’).value ;
InteractAPI.init({ "url" : serverurl });

var commandsToExecute = { "ssid" : null, "commands" : [] };
var callback = InteractAPI.Callback.create(onSuccess, onError);

callStartSession(commandsToExecute, callback);
callGetOffers(commandsToExecute, callback);
callGetOffersForMultipleInteractionPoints(commandsToExecute, callback);
callPostEvent(commandsToExecute, callback);
callSetAudience(commandsToExecute, callback);

Chapter 8. Classes and methods for the IBM Interact JavaScript API 143

callGetProfile(commandsToExecute, callback);
callEndSession(commandsToExecute, callback);
callSetDebug(commandsToExecute, callback);
callGetVersion(commandsToExecute, callback);

callExecuteBatch(commandsToExecute, callback);

// You must return false to prevent the default form behavior
return false;

}

function callStartSession(commandsToExecute, callback) {

//read configured start session
var ssId = document.getElementById(’ss_sessionId’).value;
var icName = document.getElementById(’ic’).value;
var audId = document.getElementById(’audienceId’).value;
var audLevel = document.getElementById(’audienceLevel’).value;
var params = document.getElementById(’ss_parameters’).value;
var relyOldSs = document.getElementById(’relyOnOldSession’).value;
var debug = document.getElementById(’ss_isDebug’).value;

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.

createStartSessionCmd(
icName, getNameValuePairs(audId),
audLevel, getNameValuePairs(params),
relyOldSs, debug));

}
else {

InteractAPI.startSession(ssId, icName,
getNameValuePairs(audId), audLevel,
getNameValuePairs(params), relyOldSs,
debug, callback) ;

}

}

function callGetOffers(commandsToExecute, callback) {

var ssId = document.getElementById(’go_sessionId’).value;
var ip = document.getElementById(’go_ipoint’).value;
var nofRequested = 5 ;
var nreqString = document.getElementById(’offersRequested’).value;
if (!nreqString && nreqString!== ’’)

nofRequested = Number(nreqString);

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.

createGetOffersCmd(ip, nofRequested));
}
else {

InteractAPI.getOffers(ssId, ip, nofRequested, callback);
}

}

function callPostEvent(commandsToExecute, callback) {

var ssId = document.getElementById(’pe_sessionId’).value;

144 IBM Interact Administrator's Guide

var ev = document.getElementById(’event’).value;
var params = document.getElementById(’parameters’).value;

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.

CommandUtil.createPostEventCmd
(ev, getNameValuePairs(params)));

}
else {

InteractAPI.postEvent(ssId, ev, getNameValuePairs(params), callback);
}

}

function callGetOffersForMultipleInteractionPoints
(commandsToExecute, callback) {

var ssId = document.getElementById(’gop_sessionId’).value;
var requestDetailsStr = document.getElementById(’requestDetail’).value;

//trim string
var trimmed = requestDetailsStr.replace(/\{/g, "");
var parts = trimmed.split("}");

//sanitize strings
for(i = 0; i < parts.length; i += 1) {

parts[i] = parts[i].replace(/^\s+|\s+$/g, "");
}

//build get offer requests
var getOffReqs = [];
for(var i = 0; i < parts.length; i += 1) {

var getofReqObj = parseGetOfferReq(parts[i]);
if (getofReqObj) {

getOffReqs.push(getofReqObj);
}

}

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.

createGetOffersForMultiple
InteractionPointsCmd(getOffReqs));

}
else {

InteractAPI.getOffersForMultipleInteractionPoints
(ssId, getOffReqs, callback);

}
}

function parseGetOfferReq(ofReqStr) {

if (!ofReqStr || ofReqStr==="")
return null;

var posIp = ofReqStr.indexOf(’,’);
var ip = ofReqStr.substring(0,posIp);
var posNmReq = ofReqStr.indexOf(’,’, posIp+1);
var numReq = ofReqStr.substring(posIp+1,posNmReq);
var posDup = ofReqStr.indexOf(’,’, posNmReq+1);
var dupPolicy = null;

Chapter 8. Classes and methods for the IBM Interact JavaScript API 145

var reqAttributes = null;

if (posDup===-1)
dupPolicy = ofReqStr.substring(posNmReq+1);

else
dupPolicy = ofReqStr.substring(posNmReq+1,posDup);

//check if request string has attributes
var reqAttrPos = ofReqStr.search(/\(/g);
if (reqAttrPos!==-1) {

var reqAttributesStr = ofReqStr.substring(reqAttrPos);
reqAttributesStr = trimString(reqAttributesStr);
reqAttributesStr = removeOpenCloseBrackets(reqAttributesStr);
reqAttributes = parseReqAttributes(reqAttributesStr);

}

return InteractAPI.GetOfferRequest.create(ip, parseInt(numReq),
parseInt(dupPolicy), reqAttributes);

}

//trim string
function trimString(strToTrim) {

if (strToTrim)
return strToTrim.replace(/^\s+|\s+$/g, "");

else
return null;

}

function trimStrArray(strArray) {
if (!strArray) return ;
for(var i = 0; i < strArray.length; i += 1) {

strArray[i] = trimString(strArray[i]);
}

}

//remove open and close brackets in the end
function removeOpenCloseBrackets(strToUpdate) {

if (strToUpdate)
return strToUpdate.replace(/^\(+|\)+$/g, "");

else
return null;

}

function parseReqAttributes(ofReqAttrStr) {

//sanitize string
ofReqAttrStr = trimString(ofReqAttrStr);
ofReqAttrStr = removeOpenCloseBrackets(ofReqAttrStr);

if (!ofReqAttrStr || ofReqAttrStr==="")
return null;

//get the number requested
var pos = ofReqAttrStr.indexOf(",");
var numRequested = ofReqAttrStr.substring(0,pos);
ofReqAttrStr = ofReqAttrStr.substring(pos+1);

//first part will be attribute and rest will be child attributes
var parts = [];
pos = ofReqAttrStr.indexOf(",");
if (pos!==-1) {

parts.push(ofReqAttrStr.substring(0,pos));
parts.push(ofReqAttrStr.substring(pos+1));

}
else {

parts.push(ofReqAttrStr);
}

146 IBM Interact Administrator's Guide

for(var i = 0; i < parts.length; i += 1) {
//sanitize string
parts[i] = trimString(parts[i]);
parts[i] = removeOpenCloseBrackets(parts[i]);
parts[i] = trimString(parts[i]);

}

//build list of attributes
var attributes = [];
var idx = 0;
if (parts[0]) {

var attParts = parts[0].split(";");
for (idx=0; idx<attParts.length; idx++) {

attParts[idx] = trimString(attParts[idx]);
attParts[idx] = removeOpenCloseBrackets(attParts[idx]);
attParts[idx] = trimString(attParts[idx]);

var atrObj = parseAttribute(attParts[idx]);
if (atrObj) attributes.push(atrObj);

}
}

//build list of child attributes
var childAttributes = [];
if (parts[1]) {

var childAttParts = parts[1].split(")");
for (idx=0; idx<childAttParts.length; idx++) {

childAttParts[idx] = trimString(childAttParts[idx]);
childAttParts[idx] = removeOpenCloseBrackets(childAttParts[idx]);
childAttParts[idx] = trimString(childAttParts[idx]);

//get the number requested
var noReqPos = childAttParts[idx].indexOf(",");
var numReqAt = childAttParts[idx].substring(0,noReqPos);
childAttParts[idx] = childAttParts[idx].substring(noReqPos+1);
childAttParts[idx] = trimString(childAttParts[idx]);

var atrObjParsed = parseAttribute(childAttParts[idx]);
if (atrObjParsed) {

var childReq = InteractAPI.OfferAttributeRequirements.create
(parseInt(numReqAt), [atrObjParsed], null);
childAttributes.push(childReq);

}
}

}

return InteractAPI.OfferAttributeRequirements.create(parseInt(numRequested),
attributes, childAttributes);

}

function parseAttribute(attStr) {

attStr = trimString(attStr);

if (!attStr || attStr==="")
return null;

var pos1 = attStr.indexOf("=");
var pos2 = attStr.indexOf("|");
var nvp = InteractAPI.NameValuePair.create

(attStr.substring(0,pos1),
attStr.substring(pos1+1, pos2),
attStr.substring(pos2+1));

Chapter 8. Classes and methods for the IBM Interact JavaScript API 147

return nvp;
}

function callSetAudience(commandsToExecute, callback) {
if (!document.getElementById(’checkSetAudience’).checked)

return ;

var ssId = document.getElementById(’sa_sessionId’).value;
var audId = document.getElementById(’sa_audienceId’).value;
var audLevel = document.getElementById(’sa_audienceLevel’).value;
var params = document.getElementById(’sa_parameters’).value;

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.

createSetAudienceCmd
(getNameValuePairs(audId), audLevel, getNameValuePairs(params)));

}
else {

InteractAPI.setAudience(ssId, getNameValuePairs(audId),
audLevel, getNameValuePairs(params),
callback);

}
}

function callGetProfile(commandsToExecute, callback) {

var ssId = document.getElementById(’gp_sessionId’).value;

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.
createGetProfileCmd());

}
else {

InteractAPI.getProfile(ssId, callback);
}

}

function callEndSession(commandsToExecute, callback) {

var ssId = document.getElementById(’es_sessionId’).value;

if (commandsToExecute && !commandsToExecute.ssid) {
commandsToExecute.ssid = ssId;

}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.
createEndSessionCmd());

}
else {

InteractAPI.endSession(ssId, callback);
}

}

function callSetDebug(commandsToExecute, callback) {

var ssId = document.getElementById(’sd_sessionId’).value;
var isDebug = document.getElementById(’isDebug’).value;

if (commandsToExecute && !commandsToExecute.ssid) {

148 IBM Interact Administrator's Guide

commandsToExecute.ssid = ssId;
}

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.
createSetDebugCmd(isDebug));

}
else {

InteractAPI.setDebug(ssId, isDebug, callback);
}

}

function callGetVersion(commandsToExecute, callback) {

if (commandsToExecute && commandsToExecute.commands) {
commandsToExecute.commands.push(InteractAPI.CommandUtil.
createGetVersionCmd());

}
else {

InteractAPI.getVersion(callback);
}

}

function callExecuteBatch(commandsToExecute, callback) {

if (!commandsToExecute)
return ;

InteractAPI.executeBatch(commandsToExecute.ssid,
commandsToExecute.commands, callback);

}

function getNameValuePairs(parameters) {

if (parameters === ’’)
return null ;

var parts = parameters.split(’;’);
var nvpArray = new Array(parts.length);

for(i = 0; i < parts.length; i += 1) {
var nvp = parts[i].split(’,’) ;
var value = null;
if (nvp[2]===InteractAPI.NameValuePair.prototype.TypeEnum.NUMERIC) {

if (isNaN(nvp[1])) {
value = nvp[1]; //a non number was provided as number,
pass it to API as it is

}
else {

value = Number(nvp[1]);
}

}
else {

value = nvp[1];
}
//special handling NULL value
if (value && typeof value === ’string’) {

if (value.toUpperCase() === ’NULL’) {
value = null;

}
}
nvpArray[i] = InteractAPI.NameValuePair.create(nvp[0], value, nvp[2]) ;

}

return nvpArray;
}

Chapter 8. Classes and methods for the IBM Interact JavaScript API 149

function showResponse(textDisplay) {
var newWin = open(’’,’Response’,’height=300,width=300,titlebar=no,
scrollbars=yes,toolbar=no,
resizable=yes,menubar=no,location=no,status=no’);

if (newWin.locationbar !== ’undefined’ && newWin.locationbar
&& newWin.locationbar.visible)

newWin.locationbar.visible = false;

var displayHTML = ’<META HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=UTF-8">
<html><head><style>TD { border-width : thin; border-style : solid }</style.’

+ "<script language=’Javascript’>"
+ "var desiredDomain = ’unicacorp.com’; "
+ "if (location.href.indexOf(desiredDomain)>=0) "
+ "{ document.domain = desiredDomain;} "
+ "</script></head><body> "
+ textDisplay
+ "</body></html>" ;

newWin.document.body.innerHTML = displayHTML;
newWin.focus() ;

}

function onSuccess(response) {
showResponse("********Response********
 " + JSON.stringify(response)) ;

}

function onError(response) {
showResponse("********Error********
 " + response) ;

}

function formatResoponse(response) {

}

function printBatchResponse(batResponse) {

}

function printResponse(response) {

}

Example response JavaScript object onSuccesss
This example shows the three variables for the response JavaScript object;
offerLists, messages, and profile.

offerList returns a non null list if you call getOffer or
getOffersForMultipleInteractionPoints as an API or as part of your batch
commands. You should always check null on this before you perform any
operation on this variable.

You should always check the status of the messages JavaScript response.

Profile is returned non null if you use getProfile as an API or part of your batch
commands. If you do not use getProfile, you can ignore this variable. You should
always check null on this before you perform any operation on this variable.
function onSuccess(response)
InteractAPI.ResponseTransUtil._buildResponse = function(response) {

’use strict’;

if (!response) return null;

150 IBM Interact Administrator's Guide

var offerList = null;
//transform offerLists to JS Objects
if (response.offerLists) {

offerList = [];
for (var ofListCt=0; ofListCt<response.offerLists.length;ofListCt++) {

var ofListObj = this._buildOfferList(response.offerLists[ofListCt]);
if (ofListObj) offerList.push(ofListObj);

}
}

var messages = null;
//transform messages to JS Objects
if (response.messages) {

messages = [];
for (var msgCt=0; msgCt<response.messages.length;msgCt++) {

var msgObj = this._buildAdvisoryMessage(response.messages[msgCt]);
if (msgObj) messages.push(msgObj);

}
}

var profile = null;
//transform profile nvps to JS Objects
if (response.profile) {

profile = [];
for (var nvpCt=0; nvpCt<response.profile.length;nvpCt++) {

var nvpObj = this._buildNameValuePair(response.profile[nvpCt]);
if (nvpObj) profile.push(nvpObj);

}
}

return InteractAPI.Response.create(response.sessionId,
response.statusCode, offerList,
profile, response.version,
messages) ;

};

Chapter 8. Classes and methods for the IBM Interact JavaScript API 151

152 IBM Interact Administrator's Guide

Chapter 9. About the ExternalCallout API

Interact offers an extensible macro, EXTERNALCALLOUT, for use with your interactive
flowcharts. This macro enables you to perform custom logic to communicate with
external systems during flowchart runs. For example, if you want to calculate the
credit score of a customer during a flowchart run, you can create a Java class (a
callout) to do so and then use the EXTERNALCALLOUT macro in a Select process in
your interactive flowchart to get the credit score from your callout.

Configuring EXTERNALCALLOUT has two major steps. First, you must create a Java
class which implements the ExternalCallout API. Second, you must configure the
necessary Marketing Platform configuration properties on the runtime server in the
Interact | flowchart | ExternalCallouts category.

In addition to the information in this section, the JavaDoc for the ExternalCallout
API is available on any Interact runtime server in the Interact/docs/
externalCalloutJavaDoc directory.

IAffiniumExternalCallout interface
The ExternalCallout API is contained in the interface IAffiniumExternalCallout.
You must implement the IAffiniumExternalCallout interface to use the
EXTERNALCALLOUT macro.

The class that implements the IAffiniumExternalCallout should have a
constructor with which it can be initialized by the runtime server.
v If there are no constructors in the class, the Java compiler creates a default

constructor and this is sufficient.
v If there are constructors with arguments, a public constructor with no argument

should be provided, which will be used by the runtime server.

When developing your external callout, remember the following:
v Each expression evaluation with an external callout creates a new instance of the

class. You must manage thread safety issues for static members in the class.
v If your external callout uses system resources, such as files or a database

connection, you must manage the connections. The runtime server does not have
a facility to clean up connections automatically.

You must compile your implementation against interact_externalcallout.jar
located in the lib directory of your IBM Interact runtime environment installation.

IAffiniumExternalCallout enables the runtime server to request data from your
Java class. The interface consists of four methods:
v getNumberOfArguments

v getValue

v initialize

v shutdown

© Copyright IBM Corp. 2001, 2018 153

Adding a web service for use with the EXTERNALCALLOUT
macro

Use this procedure to add a web service to use with the EXTERNALCALLOUT macro.
The EXTERNALCALLOUT macro recognizes callouts only if you defined the appropriate
configuration properties.

In Marketing Platform for the runtime environment, add or define the following
configuration properties in the Interact > flowchart > externalCallouts
category.

Configuration property Setting

externalCallouts category Create a category for your external callout

class The class names for your external callout

classpath The classpath to your external callout class files

Parameter Data category If your external callout requires parameters, create new
parameter configuration properties for them and assign
each a value

getNumberOfArguments
The getNumberOfArguments method returns the number of arguments expected by
the Java class with which you are integrating.
getNumberOfArguments()

Return value

The getNumberOfArguments method returns an integer.

Example

The following example shows printing the number of arguments.
public int getNumberOfArguments()
{

return 0;
}

getValue
The getValue method performs the core functionality of the callout and returns the
results.
getValue(audienceID, configData, arguments)

The getValue method requires the following parameters:
v audienceID - a value which identifies the audience ID.
v configData - a map with key-value pairs of configuration data required by the

callout.
v arguments - the arguments required by the callout. Each argument can be a

String, Double, Date, or a List of one of these. A List argument can contain null
values, however, a List cannot contain, for example, a String and a Double.
Argument type checking should be done within your implementation.

If the getValue method fails for any reason, it returns CalloutException.

154 IBM Interact Administrator's Guide

Return value

The getValue method returns a list of Strings.

Example
public List<String> getValue(AudienceId audienceId, Map<String,

String> configurationData, Object... arguments) throws CalloutException
{
Long customerId = (Long) audienceId.getComponentValue("Customer");
// now query scoreQueryUtility for the credit score of customerId
Double score = scoreQueryUtility.query(customerId);
String str = Double.toString(score);
List<String> list = new LinkedList<String>();
list.add(str);
return list;
}

initialize
The initialize method is called once when the runtime server starts. If there are
any operations which may impede performance during runtime, such as loading a
database table, they should be performed by this method.
initialize(configData)

The initialize method requires the following parameter:
v configData - a map with key-value pairs of configuration data required by the

callout.
Interact reads these values from the External Callout parameters defined in the
Interact > Flowchart > External Callouts > [External Callout] > Parameter
Data category.

If the initialize method fails for any reason, it returns CalloutException.

Return value

None.

Example
public void initialize(Map<String, String> configurationData) throws CalloutException
{

// configurationData has the key-value pairs specific to the environment
// the server is running in
// initialize scoreQueryUtility here

}

shutdown
The shutdown method is called once when the runtime server shuts down. If there
are any clean up tasks required by your call out, they should run at this time.
shutdown(configData)

The shutdown method requires the following parameter:
v configData-a map with key-value pairs of configuration data required by the

callout.

If the shutdown method fails for any reason, it returns CalloutException.

Chapter 9. About the ExternalCallout API 155

Return value

None.

Example
public void shutdown(Map<String, String> configurationData) throws CalloutException
{

// shutdown scoreQueryUtility here
}

ExternalCallout API example
This example creates an external callout that gets a credit score.

Create an external callout that gets a credit score:
1. Create a file that is called GetCreditScore.java with the following contents.

This file assumes that there is a class that is called ScoreQueryUtility that
fetches a score from a modeling application.

import java.util.Map;
import com.unicacorp.interact.session.AudienceId;
import com.unicacorp.interact.flowchart.macrolang.storedobjs.IAffiniumExternalCallout;
import com.unicacorp.interact.flowchart.macrolang.storedobjs.CalloutException;
import java.util.Random;

public class GetCreditScore implements IAffiniumExternalCallout
{
// the class that has the logic to query an external system for a customer’s credit score
private static ScoreQueryUtility scoreQueryUtility;
public void initialize(Map<String, String> configurationData) throws CalloutException
{
// configurationData has the key- value pairs specific to the environment the server is running in
// initialize scoreQueryUtility here

}

public void shutdown(Map<String, String> configurationData) throws CalloutException
{
// shutdown scoreQueryUtility here
}

public int getNumberOfArguments()
{
// do not expect any additional arguments other than the customer’s id
return 0;

}

public List<String> getValue(AudienceId audienceId, Map<String, String> configurationData,
Object... arguments) throws CalloutException

{
Long customerId = (Long) audienceId.getComponentValue("Customer");
// now query scoreQueryUtility for the credit score of customerId
Double score = scoreQueryUtility.query(customerId);
String str = Double.toString(score);
List<String> list = new LinkedList<String>();
list.add(str);
return list;

}
}

2. Compile GetCreditScore.java to GetCreditScore.class.
3. Create a JAR file called creditscore.jar containing GetCreditScore.class and

the other class files it uses.

156 IBM Interact Administrator's Guide

4. Copy the JAR file to some location on the runtime server, for example
/data/interact/creditscore.jar.

5. Create an External Callout with name GetCreditScore and classpath as
/data/interact/creditscore.jar in the externalCallouts category on the
Manage Configurations page.

6. In an interactive flowchart, the callout can be used as
EXTERNALCALLOUT('GetCreditScore').

IInteractProfileDataService interface
The Profile Data Services API is contained in the interface
iInteractProfileDataService. This interface allows you to import hierarchical data
into an Interact session via one or more external data sources (such as a flat file,
web service, and so on) at the time the Interact session starts or the audience ID of
an Interact session changes.

To develop hierarchical data import using the Profile Data Services API, you must
write a Java class that pulls information from any data source and maps it to an
ISessionDataRootNode object, then refer to that mapped data using the
EXTERNALCALLOUT macro in a Select process of an interactive flowchart.

You must compile your implementation against interact_externalcallout.jar
located in the lib directory of your IBM Interact runtime environment installation.

For a complete set of Javadoc documentation for using this interface, view the files
in Interact_home/docs/externalCalloutJavaDoc with any web browser.

For a sample implementation of how to use the Profile Data Service, including
commented descriptions of how the example was implemented, see
Interact_home/samples/externalcallout/XMLProfileDataService.java.

Note: The sample implementation is intended to be used only as an example. You
should not use this sample in your implementation.

Adding a data source for use with Profile Data Services
Use this procedure to add a data source to use with the Profile Data Services.

The EXTERNALCALLOUT macro recognizes a data source for Profile Data Services
hierarchical data import only if you defined the appropriate configuration
properties.

In Marketing Platform for the runtime environment, add or define the following
configuration properties in the Interact > profile > Audience Levels >
[AudienceLevelName] > Profile Data Services category.

Configuration property Setting

New category Name category The name of the data source you are defining. The name
that you enter here must be unique among the data sources
for the same audience level.

enabled Indicates whether the data source is enabled for the
audience level in which it is defined.

className The fully qualified name of the data source class that
implements IInteractProfileDataService

Chapter 9. About the ExternalCallout API 157

Configuration property Setting

classPath The classpath to your Profile Data Services class files. If
you omit it, the class path of the containing application
server is used by default.

priority category The priority of this data source within this audience level.
It must be a unique value among all of the data sources for
each audience level. (That is, if a priority is set to 100 for a
data source, no other data source within the audience level
can have a priority of 100.)

IParameterizableCallout interface
The Parameterizable Callout API is contained in the interface
IParameterizableCallout.

This interface is the base interface of the exposed API interfaces that can accept
parameters from the configuration via Marketing Platform. Since this is a base
interface, it should not be directly implemented. The parameter are retrieved from
the child nodes of the Parameter Data node under the category that references this
implementation. In the following example, ESB is a custom implementation of the
profile data service, which in turn implements the IParameterizableCallout
interface. The parameters endPoint and login, together with their values are passed
into this implementation class when Interact engine tries to initialize and terminate
it.
Profile Data Services
...ESB

...Parameter Data
...endPoint
...login

The interface consists of two methods:
v initialize

v shutdown

initialize
The initialize method initializes this implementation class.
void initialize(java.util.Map<java.lang.String,java.lang.String> configurationData)

throws CalloutException

The initialize method requires the following parameter:
v configurationData - a map with name value pairs of parameters configured by

users

Throws
CalloutException

shutdown
The shutdown method shuts down this implementation class.
void shutdown(java.util.Map<java.lang.String,java.lang.String> configurationData)

throws CalloutException

The shutdown method requires the following parameter:

158 IBM Interact Administrator's Guide

v configurationData - a map with name value pairs of parameters configured by
users

Throws
CalloutException

ITriggeredMessageAction interface
The Triggered Message Action API is contained in the interface
ITriggeredMessageAction. This interface allows you to get and set the name of this
instance.

The ITriggeredMessageAction interface serves as a base interface for other
interfaces and should never be directly implemented.

The interface consists of two methods:
v getName

v setName

getName
The getName method returns the name of the ITriggeredMessageAction instance.
java.lang.String getName()

setName
The setName method sets the name of the ITriggeredMessageAction instance.
void setName(java.lang.String name)

While you initialize the implementation class of this interface, Interact sets the
name of the interface with the name given in the configuration UI.

In the following example, the name of this gateway is InteractLog.
triggeredMessage

...gateways
...InteractLog

The setName method requires the following parameter:
v name - the name you want to set for the ITriggeredMessageAction instance.

IChannelSelector interface
The Channel Selector API is contained in the interface IChannelSelector. This
interface allows you to selects the outbound channels based on the offer to be sent
and session attributes.

For a sample implementation of how to use the Triggered Message Action,
including commented descriptions of how the example was implemented, see
Interact_home/samples/triggeredmessage/SampleChannelSelector.java.

Note: The sample implementation is intended to be used only as an example. You
should not use this sample in your implementation.

You should try to use this implementation instead of writing your own.

The interface consists of one method:

Chapter 9. About the ExternalCallout API 159

v selectChannels

selectChannels
The selectChannels method selects the outbound channels that the passed-in offer
should be sent to with the IChannelSelector interface.
java.util.List<java.lang.String> selectChannels

(java.util.Map<java.lang.String,java.util.Map<java.lang.String,
java.lang.Object>> availableChannels,
com.unicacorp.interact.api.Offer offer,
com.unicacorp.interact.treatment.
optimization.IInteractSessionData sessionData)

Interact tries to send this offer to all those returned channels.

The selectChannels method requires the following parameters:
v availableChannels - a map of available outbound channels, which are

configured in the Triggered Message UI in the Interact design time settings. In
each entry of the map, the key is the name of the channel and the value is the
configured parameters for that channel in the Interact design time. The iteration
order of this map matches the order defined on that UI. If Profile Preferred
Channel is used on the Triggered Message UI, it is replaced by the actual
channel before this method is invoked. In addition, if the same channel occurs
multiple times on the UI, only the occurrence with the highest priority is kept
and all the duplicates are removed.

v offer - the offer to be delivered
v sessionData - the attributes currently stored in the associated Interact session

IDispatcher interface
The Dispatcher API is contained in the interface IDispatcher. This interface sends
offers to targeted gateways.

Since there is only one instance of this class for each configured dispatcher, the
implementation of this interface must be stateless from the perspective of Interact.

For a sample implementation of how to use the Triggered Message Action,
including commented descriptions of how the example was implemented, see
Interact_home/samples/triggeredmessage/SampleDispatcher.java.

Note: The sample implementation is intended to be used only as an example. You
should not use this sample in your implementation.

You should try to use this implementation instead of writing your own.

The interface consists of one method:
v dispatch

dispatch
The dispatch method sends offers to the target gateways in the IDispatcher
interface.
boolean dispatch(java.lang.String channel,

java.lang.String gatewayName,
java.util.Collection<com.unicacorp.interact.api.Offer> offers,
com.unicacorp.interact.api.NameValuePair[] profileData)
throws com.unicacorp.interact.exceptions.InteractException

160 IBM Interact Administrator's Guide

Once outbound channels are selected for a candidate offer, Interact tries to send the
candidate offers to the handlers associated to the channel. The handlers are
attempted based on their defined priorities from high to low. For each handler,
Interact invokes this method of the configured dispatcher. It is up to the
implementation of this dispatcher instance how to route the offer to the target
gateway, which is configured in the same handler. If there are multiple offers sent
to the same handler as a result of the same triggered message evaluation, Interact
tries to send all these offers in one batch.

The dispatch method requires the following parameters:
v channel - the outbound channel these offers are sent to
v gatewayName - the name of the target gateway
v offers - the offers to be sent to the gateway in a batch
v profileData - profile attributes populated by IGateway.validate and are passed

to IGateway.deliver

Return value

The dispatch method returns if the dispatch succeeded or failed

Throws
com.unicacorp.interact.exceptions.InteractException

IGateway interface
The Gateway API is contained in the interface IGateway. This interface receives
offers from Interact and sends the offers to their destination.

Each implementation of this interface communicates with a particular destination.
The destination must perform the necessary data transformation, attribute
population, and similar destination related work.

For a sample implementation of how to use the Triggered Message Action,
including commented descriptions of how the example was implemented, see
Interact_home/samples/triggeredmessage/SampleOutboundGateway.java.

Note: The sample implementation is intended to be used only as an example. You
should not use this sample in your implementation.

The interface consists of two methods:
v deliver

v validate

deliver
The deliver method is called to send the offer or offers to a destination in the
IGateway interface.
void deliver(java.util.Collection<com.unicacorp.interact.api.Offer> offers,

com.unicacorp.interact.api.NameValuePair[] profileData,
java.lang.String channel)

The deliver method requires the following parameters:
v offers - the offer to be sent

Chapter 9. About the ExternalCallout API 161

v profileData - the profile attributes the validate method populates in
parameterMap

v channel - the outbound channel these offers will be sent to

validate
The validate method validates candidate offers in the IGateway interface.
java.util.Collection<com.unicacorp.interact.api.Offer> validate

(com.unicacorp.interact.treatment.optimization.
IInteractSessionData sessionData,

java.util.Collection<com.unicacorp.interact.api.Offer> candidateOffers,
java.util.Map<java.lang.String,java.lang.Object> parameterMap,
java.lang.String channel)

The Interact engine invokes this method to validate the candidate offers. The
implementation of this method should check the offers, offer attributes, and session
attributes against the requirements of the destination to determine which offer or
offers can be sent through this gateway. In addition, it may add necessary
parameters into the passed-in map, which is passed back to deliver method.

The validate method requires the following parameters:
v sessionData - the attributes currently stored in the associated Interact session
v candidateOffers - the offers Interact selected based on the offer selection

method, its parameters, and other factors. These offers are eligible to be
delivered from the perspective of Interact, but still subject to the gateway.

v parameterMap - a map the implementation of this method should use to pass
parameters to its deliver method

v channel - the outbound channel these offers will be sent to

162 IBM Interact Administrator's Guide

Chapter 10. IBM Interact utilities

This section describes the administrative utilities available with Interact.

Run Deployment Utility (runDeployment.sh/.bat)
The runDeployment command-line tool lets you deploy an interactive channel for a
specific server group from the command line, using the settings provided by a
deployment.properties file that outlines all the possible parameters and is
available in the same location as the runDeployment tool itself. The ability to run an
interactive channel deployment from the command line is specifically useful when
you are using the OffersBySQL feature. For example, you might configure a
Campaign batch flowchart to run on a periodic basis. When the flowchart run
completes, a trigger can be called to initialize deployment of the offers in the
OffersBySQL table using this command line tool.

Description

You can find the runDeployment command-line tool installed automatically on the
Interact Design Time server, in the following location:

Interact_home/interactDT/tools/deployment/runDeployment.sh (or
runDeployment.bat on a Windows server)

The only argument passed in to the command is the location of a file called
deployment.properties that describes all of the possible parameters needed to
deploy the interactive channel/runtime server group combination. A sample file is
provided for reference.

Note: Before using the runDeployment utility, you must first edit it with any text
editor to provide the location of the Java runtime environment on the server. For
example, you might specify Interact_home/jre or Platform_home/jre as the path,
if either of those directories contains the Java runtime you want the utility to use.
Alternatively, you could provide the path to any Java runtime environment that is
supported for use with this release of the IBM products.

Using the runDeployment utility in a secure (SSL) environment

To use the runDeployment utility when security has been enabled on the Interact
server (and therefore connecting over an SSL port), you need to add the trust store
Java property as follows:
1. When you are editing the deployment.properties file for your interactive

channel deployment, modify the deploymentURL property to use the secure SSL
URL, as in this example:
deploymentURL=https://<HOST>.<DOMAIN>:<PORT>/Campaign/interact/
InvokeDeploymentServlet

2. Edit the runDeployment.sh or runDeployment.bat script using any text editor to
add the following argument to the line beginning with ${JAVA_HOME}:
-Djavax.net.ssl.trustStore=<TrustStorePath>

For example, the line might look like this after you add the trust store
argument:

© Copyright IBM Corp. 2001, 2018 163

${JAVA_HOME}/bin/java -Djavax.net.ssl.trustStore=<TrustStorePath>
-cp ${CLASSPATH}com.unicacorp.Campaign.interact.deployment.tools.
InvokeDeploymentClient $1

Replace <TrustStorePath> with the path to the actual SSL trust store.

Running the utility

After you have edited the utility to provide the Java runtime environment, and
you have customized a copy of the deployment.properties file to match your
environment, you can run the utility with this command:

Interact_home/interactDT/tools/deployment/runDeployment.sh
deployment.properties

Replace Interact_home with the actual value of the Interact design time installation,
and replace deployment.properties with the actual path and name of the properties
file you have customized for this deployment.

Sample deployment.properties file

The sample deployment.properties file contains a commented listing of all of the
parameters you must customize to match your own environment. The sample file
also contains comments that explain what each parameter is, and why you might
need to customize a particular value.
###
#
The following properties feed into the InvokeDeploymentClient program.
The program will look for a deploymentURL setting. The program will post a
request against that url; all other settings are posted as parameters in
that request. The program then checks the status of the deployment and
returns back when the deployment is at a terminal state (or if the
specified waitTime has been reached).
#
the output of the program will be of this format:
<STATE> : <Misc Detail>
#
where state can be one of the following:
ERROR
RUNNING
SUCCESS
#
Misc Detail is data that would normally populate the status message area
in the deployment gui of the IC summary page. NOTE: HTML tags may exist
in the Misc Detail
#
###

###
deploymentURL: url to the InvokeDeployment servlet that resides in Interact
Design time. should be in the following format:
http://dt_host:port/Campaign/interact/InvokeDeploymentServlet
###
deploymentURL=http://localhost:7001/Campaign/interact/InvokeDeploymentServlet

###
dtLogin: this is the login that you would use to login to the Design Time if
you had wanted to deploy the IC via the deployment gui inside the IC summary
page.
###
dtLogin=asm_admin

###

164 IBM Interact Administrator's Guide

dtPW: this is the PW that goes along with the dtLogin
###
dtPW=

###
icName: this is the name of the Interactive Channel that you want to deploy
###
icName=ic1

###
partition: this is the name of the partition
###
partition=partition1

###
request: this is the type of request that you want this tool to execute
currently, there two behaviors. If the value is "deploy", then the deployment
will be executed. All other values would cause the tool to simply return the
status of the last deployment of the specified IC.
###
request=deploy

###
serverGroup: this is the name of the server group that you would like to
deploy the IC.
###
serverGroup=defaultServerGroup

###
serverGroupType: this will indicate whether or not this deployment is going
against production server group or a test server group. 1 denotes production
2 denotes test.
###
serverGroupType=1

###
rtLogin: this is the account used to authenticate against the server group
that you are deploying to.
###
rtLogin=asm_admin

###
rtPW: this is the password associated to the rtLogin
###
rtPW=

###
waitTime: Once the tool submits the deployment request, the tool will check
the status of the deployment. If the deployment has not completed (or
failed), then the tool will continue to poll the system for the status until
a completed state has been reached, OR until the specified waitTime (in
seconds) has been reached.
###
waitTime=5

###
pollTime: If the status of a deployment is still in running state, then the
tool will continue to check the status. It will sleep in between status
checks a number of seconds based on the pollTime setting .
###
pollTime=3

###
global: Setting to false will make the tool NOT deploy the global settings.
Non-availability of the property will still deploy the global settings.
###
global=true

Chapter 10. IBM Interact utilities 165

166 IBM Interact Administrator's Guide

Chapter 11. About the Learning API

Interact offers a learning module which uses a naive-bayesian algorithm to monitor
visitor actions and propose optimal offers (in terms of acceptance). You can
implement the same Java interface with your own algorithms using the Learning
API to create your own learning module.

Note: If you use External learning, the example reports regarding learning
(Interactive Offer Learning Details and the Interactive Segment Lift Analysis
reports) do not return valid data.

At the simplest level, the learning API provides methods to collect data from the
runtime environment and to return an ordered list of recommended offers.

You can collect the following data from Interact
v Offer contact data
v Offer acceptance data
v All session data
v Campaign specific offer data
v Configuration properties defined in the learning category for the design

environment and the offerserving category for the runtime environment

You can use this data in your algorithms to create a list of proposed offers. You
then return a list of recommended offers, in order of highest to lowest
recommendation.

Although not shown in the diagram, you can also use the learning API to collect
data for your learning implementation. You can keep this data in memory, or log it
to a file or database for further analysis.

After creating your Java classes, you can convert them to jar files. Once you create
your jar files, you must also configure the runtime environment to recognize your

© Copyright IBM Corp. 2001, 2018 167

external learning module by editing configuration properties. You must copy your
Java classes or jar files to every runtime server using your external learning
module.

Besides the information in this guide, the JavaDoc for the learning optimizer API is
available on any runtime server in the Interact/docs/learningOptimizerJavaDoc
directory.

You must compile your implementation against interact_learning.jar located in
the lib directory of your Interact runtime environment installation.

When writing your custom learning implementation, you should keep the
following guidelines in mind.
v Performance is critical.
v Must work with multi-threading and be thread safe.
v Must manage all external resources with failure modes and performance in

mind.
v Use exceptions, logging (log4j), and memory appropriately.

Configuring the runtime environment to recognize external learning
modules

You can use the Learning Java API to write your own learning module. You must
configure the runtime environment to recognize your learning utility in Marketing
Platform.

You must restart the Interact runtime server for these changes to take effect.
1. In Marketing Platform for the runtime environment, edit the following

configuration properties in the Interact > offerserving category. The
configuration properties for the learning optimizer API exist in Interact >
offerserving > External Learning Config category.

Configuration property Setting

optimizationType ExternalLearning

externalLearningClass class name for the external learning

externalLearningClassPath The path to the class or JAR files on the runtime
server for the external learning. If you are using a
server group and all the runtime servers reference
the same instance of Marketing Platform, every
server must have a copy of the class or JAR files in
the same location.

2. Restart the Interact runtime server for these changes to take effect.

ILearning interface
The learning API is built around the ILearning interface. You must implement the
ILearning interface to support the customized logic of your learning module.

Among other things, the ILearning interface enables you to collect data from the
runtime environment for your Java class, and to send a list of recommended offers
back to the runtime server.

168 IBM Interact Administrator's Guide

initialize
The initialize method is called once when the runtime server starts. If there are
any operations that do not need to be repeated, but may impede performance
during runtime, such as loading static data from a database table, they should be
performed by this method.
initialize(ILearningConfig config, boolean debug)

v config - an ILearningConfig object defines all the configuration properties
relevant to learning.

v debug - a boolean. If true, indicates the logging level verbosity for the runtime
environment system is set to debug. For best results, select this value before
writing to a log.

If the initialize method fails for any reason, it throws an LearningException.

Return value

None.

logEvent
The logEvent method is called by the runtime server whenever the Interact API
posts an event that is configured to log as a contact or response. Use this method
to log contact and response data to a database or file for reporting and learning
purposes. For example, if you want to algorithmically determine the likelihood of a
customer accepting an offer based on criteria, use this method to log the data.
logEvent(ILearningContext context,

IOffer offer,
IClientArgs clientArgs,
IInteractSession session,
boolean debug)

v context-an ILearningContext object defining the learning context of the event,
for example, contact, accept, or reject.

v offer-an IOffer object defining the offer about which this event is being logged.
v clientArgs-an IClientArgs object defining any parameters. Currently, logEvent,

does not require any clientArgs, so this parameter may be empty.

Chapter 11. About the Learning API 169

v session-an IInteractSession object defining all session data.
v debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before
writing to a log.

If the logEvent method fails, it throws a LearningException.

Return value

None.

optimizeRecommendList
The optimizeRecommendList method should take the list of recommended offers
and the session data and return a list containing the requested number of offers.
The optimizeRecommendList method should order the offers in some way, with
your own learning algorithm. The list of offers must be ordered so that the offers
you want to serve first are at the beginning of the list. For example, if your
learning algorithm gives a low score to the best offers, the offers should be ordered
1, 2, 3. If your learning algorithm gives a high score to the best offers, the offers
should be ordered 100, 99, 98.
optimizeRecommendList(list(ITreatment) recList,

IClientArgs clientArg, IInteractSession session,
boolean debug)

The optimizeRecommendList method requires the following parameters:
v recList-a list of the treatment objects (offers) recommended by the runtime

environment.
v clientArg-an IClientArgs object containing at least the number of offers

requested by the runtime environment.
v session-an IInteractSession object containing all the session data.
v debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before
writing to a log.

If the optimizeRecommendList method fails, it throws a LearningException.

Return value

The optimizeRecommendList method returns a List of ITreatment objects.

170 IBM Interact Administrator's Guide

reinitialize
The runtime environment calls the reinitialize method every time there is a new
deployment. This method passes all learning configuration data. If you have any
services required by the learning API that read configuration properties, this
interface should restart them.
reinitialize(ILearningConfig config,

boolean debug)

New Interact

deployment reinitialize

Reload configuration

parameters

Restart any services

required by API

v config-an ILearningConfig object which contains all the configuration properties.
v debug-a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before
writing to a log.

If the logEvent method fails, it throws a LearningException.

Return value

None.

shutdown
The runtime environment calls the shutdown method when the runtime server
shuts down. If there are any clean up tasks required by your learning module, they
should execute at this time.
shutdown(ILearningConfig config, boolean debug)

The shutdown method requires the following parameters.
v config - an ILearningConfig object which defines all the configuration

properties.
v debug - a boolean. If true, indicates the logging level verbosity for the runtime

environment system is set to debug. For best results, select this value before
writing to a log.

If the shutdown method fails for any reason, it throws a LearningException.

Return value

None.

Chapter 11. About the Learning API 171

IAudienceID interface
The IAudienceID interface supports the IInteractSession interface. This is an
interface to the audience ID. Since your audience ID may be made of several parts,
this interface enables you to access all the elements of the audience ID as well as
the audience level name.

getAudienceLevel
The getAudienceLevel method returns audience level.
getAudienceLevel()

Return value

The getAudienceLevel method returns a string that defines the audience level.

getComponentNames
The getComponentNames method gets a set of the names of the components which
comprise the audience ID. For example, if your audience ID is consists of the
values of customerName and accountID, getComponentNames would return a set
containing the strings customerName and accountID.
getComponentNames()

Return value

A set of strings containing the names of the components of the audience ID.

getComponentValue
The getComponentValue method returns the value for the named component.
getComponentValue(String componentName)

v componentName-a string defining the name of the component for which you
want to retrieve the value. This string is case insensitive.

Return value

The getComponentValue method returns an object that defines the value of the
component.

IClientArgs
The IClientArgs interface supports the ILearning interface. This interface is an
abstraction to cover any data passed into the server from the touchpoint that is not
already covered by the session data. For example, the number of offers requested
by the Interact API getOffers method. This data is stored in a map.

getValue
The getValue method returns the value of the requested map element.
getValue(int clientArgKey)

The following elements are required in the map.
v 1 - NUMBER_OF_OFFERS_REQUESTED. The number of offers requested by the

getOffers method of the Interact API. This constant returns an integer.

172 IBM Interact Administrator's Guide

Return value

The getValue method returns an object that defines value of the requested map
constant.

IInteractSession
The IInteractSession interface supports the ILearning interface. This is an
interface to the current session in the runtime environment.

getAudienceId
The getAudienceId method returns an AudienceID object. Use the IAudienceID
interface to extract the values.
getAudienceId()

Return value

The getAudienceId method returns an AudienceID object.

getSessionData
The getSessionData method returns an unmodifiable map of session data where
the name of the session variable is the key. The name of the session variable is
always uppercased. Use the IInteractSessionData interface to extract values.
getSessionData()

Return value

The getSessionData method returns an IInteractSessionData object.

IInteractSessionData interface
The IInteractSessionData interface supports the ILearning interface. This is an
interface to the runtime session data for the current visitor. Session data is stored
as a list of name-value pairs. You can also use this interface to change the value of
data in the runtime session.

getDataType
The getDataType method returns the data type for the specified parameter name.
getDataType(string parameterName)

Return value

The getDataType method returns an InteractDataType object. IntearctDataType is a
Java enum represented by Unknown, String, Double, Date, or List.

getParameterNames
The getParameterNames method returns a set of all the names of the data in the
current session.
getParameterNames()

Chapter 11. About the Learning API 173

Return value

The getParameterNames method returns a set of names for which values have been
set. Each name in the set can be passed into getValue(String) to return a value.

getValue
The getValue method returns the object value corresponding to the specified
parameterName. Object can either be a String, Double, or a Date.
getValue(parameterName)

The getValue method requires the following parameter:
v parameterName-a string defining the name of the session data name-value pair.

Return value

The getValue method returns an object containing the value of the parameter
named.

setValue
The setValue method enables to set a value for the specified parameterName. The
value can be can either be a String, Double, or a Date.
setValue(string parameterName, object value)

The setValue method requires the following parameters:
v parameterName - a string defining the name of the session data name-value

pair.
v value - an object defining the value of the designated parameter.

Return value

None.

ILearningAttribute
The ILearningAttribute interface supports the ILearningConfig interface. This is
an interface to the learning attributes defined in configuration properties in the
learningAttributes category.

getName
The getName method returns the name of the learning attribute.
getName()

Return value

The getName method returns a string that defines the name of the learning
attribute.

174 IBM Interact Administrator's Guide

ILearningConfig
The ILearningConfig interface supports the ILearning interface. This is an interface
to the configuration properties for learning. All of these methods return the value
of the property.

The interface consists of 15 methods:
v getAdditionalParameters - returns a map of any additional properties defined in

the External Learning Config category
v getAggregateStatsIntervalInMinutes - returns an int
v getConfidenceLevel - returns an int
v getDataSourceName - returns a string
v getDataSourceType - returns a string
v getInsertRawStatsIntervalInMinutes - returns an int
v getLearningAttributes - returns a list of ILearningAttribute objects
v getMaxAttributeNames - returns an int
v getMaxAttributeValues - returns an int
v getMinPresentCountThreshold - returns an int
v getOtherAttributeValue - returns a string
v getPercentRandomSelection - returns an int
v getRecencyWeightingFactor - returns a float
v getRecencyWeightingPeriod - returns an int
v isPruningEnabled - returns a boolean

ILearningContext
The ILearningContext interface supports the ILearning interface.

getLearningContext
The getLearningContext method return the constant that tells us whether or not
this is a contact, accept or reject scenario.
getLearningContext()

v 1-LOG_AS_CONTACT
v 2-LOG_AS_ACCEPT
v 3-LOG_AS_REJECT

4 and 5 are reserved for future use.

Return value

The getLearningContext method returns an integer.

getResponseCode
The getResponseCode method returns response code assigned to this offer. This
value must exist in the UA_UsrResponseType table in the Campaign system tables.
getResponseCode()

Return value

The getResponseCode method returns a string that defines the response code.

Chapter 11. About the Learning API 175

IOffer
The IOffer interface supports the ITreatment interface. This is an interface to the
offer object defined in the design environment. Use the IOffer interface to collect
the offer details from the runtime environment.

getCreateDate
The getCreateDate method returns the date the offer was created.
getCreateDate()

Return value

The getCreateDate method returns a date that defines the date the offer was
created.

getEffectiveDateFlag
The getEffectiveDateFlag method returns a number that defines the effective date
of the offer.
getEffectiveDateFlag()

v 0-the effective date is an absolute date, such as March 15, 2010.
v 1-the effective date is the date of recommendation.

Return value

The getEffectiveDateFlag method returns an integer that defines the effective date
of the offer.

getExpirationDateFlag
The getExpirationDateFlag method returns an integer value that describes the
expiration date of the offer.
getExpirationDateFlag()

v 0-an absolute date, for example March 15, 2010.
v 1-some number of days after the recommendation, for example 14.
v 2-end of month after recommendation. If an offer is presented on March 31st, the

offer expires that day.

Return value

The getExpirationDateFlag method returns an integer that describes the expiration
date of the offer.

getOfferAttributes
The getOfferAttributes method returns offer attributes defined for the offer as an
IOfferAttributes object.
getOfferAttributes()

Return value

The getOfferAttributes method returns an IOfferAttributes object.

176 IBM Interact Administrator's Guide

getOfferCode
The getOfferCode method returns the offer code of the offer as defined in
Campaign.
getOfferCode()

Return value

The getOfferCode method returns an IOfferCodeobject.

getOfferDescription
The getOfferDescription method returns the description of the offer defined in
Campaign.
getOfferDescription()

Return value

The getOfferDescription method returns a string.

getOfferID
The getOfferID method returns the offer ID as defined in Campaign.
getOfferID()

Return value

The getOfferID method returns a long that defines the offer ID.

getOfferName
The getOfferName method returns the name of the offer as defined in Campaign.
getOfferName()

Return value

The getOfferName method returns a string.

getUpdateDate
The getUpdateDate method returns date of when the offer was last updated.
getUpdateDate()

Return value

The getUpdateDate method returns a date that defines when the offer was last
updated.

IOfferAttributes
The IOfferAttributes interface supports the IOffer interface. This is an interface
to the offer attributes that are defined for an offer in the design environment. Use
the IOfferAttributes interface to collect the offer attributes from the runtime
environment.

Chapter 11. About the Learning API 177

getParameterNames
The getParameterNames method returns a list of the offer parameter names.
getParameterNames()

Return value

The getParameterNames method returns a set that defines the list of offer parameter
names.

getValue
The getValue method returns an object that defines the value of the offer attribute.
getValue(String parameterName)

The getValue method returns value of the given offer attribute.

Return value

IOfferCode interface
The IOfferCode interface supports the ILearning interface. This is an interface to
the offer code that was defined for an offer in the design environment. An offer
code can be made of one to many Strings. Use the IOfferCode interface to collect
the offer code from the runtime environment.

getPartCount
The getPartCount method returns the number of parts that make up an offer code.
getPartCount()

Return value

The getPartCount method returns an integer defining the number of parts of the
offer code.

getParts
The getParts method gets an unmodifiable list of the offer code parts.
getParts()

Return value

The getParts method returns an unmodifiable list of the offer code parts.

LearningException
The LearningException class supports the ILearning interface. Some methods
within the interface will require implementations to throw a LearningException
which is a simple subclass of java.lang.Exception. It is highly recommended for
debugging purposes that the LearningException be constructed with the root
exception if a root exception exists.

IScoreOverride
The IScoreOverride interface supports ITreatment interface. This interface enables
you to read the data defined in the score override or default offers table.

178 IBM Interact Administrator's Guide

getOfferCode
The getOfferCode method returns the value of the offer code columns in the score
override table for this audience member.
getOfferCode()

Return value

The getOfferCode method returns an IOfferCode object that defines the value of
the offer code columns in the score override table.

getParameterNames
The getParameterNames method returns the list of parameters.
getParameterNames()

Return value

The getParameterNames method returns a set that defines the list of parameters.

The IScoreOverride method contains the following parameters. Unless otherwise
stated, theses parameters are the same as the score override table.
v ADJ_EXPLORE_SCORE_COLUMN
v CELL_CODE_COLUMN
v ENABLE_STATE_ID_COLUMN
v ESTIMATED_PRESENT_COUNT - For overriding estimated present count

(during offer weight calculation)
v FINAL_SCORE_COLUMN
v LIKELIHOOD_SCORE_COLUMN
v MARKETER_SCORE
v OVERRIDE_TYPE_ID_COLUMN
v PREDICATE_COLUMN - For creating a boolean expression to determine offer

eligibility
v PREDICATE_SCORE - For creating an expression that results in a numeric score
v SCORE_COLUMN
v ZONE_COLUMN

You can also reference any column you add to the score override or default offers
table using the same name as the column.

getValue
The getValue method returns the value of the zone column in the score override
table for this audience member.
getValue(String parameterName)

v parameterName-a string defining the name of the parameter for which you
want the value.

Return value

The getValue method returns an object defining the value of the requested
parameter.

Chapter 11. About the Learning API 179

ISelectionMethod
The ISelection interface indicates the method used to come up with the
recommended list. The default value for the Treatment object is
EXTERNAL_LEARNING so you do not have to set this value. The value is
ultimately stored into Detailed Contact History for reporting purposes.

You can extend this interface beyond the existing constants if you want to store the
data for analysis later. For example, you could create two different learning
modules and implement them on separate server groups. You could extend the
ISelection interface to include SERVER_GROUP_1 and SERVER_GROUP_2. You
could then compare the results of your two learning modules.

ITreatment interface
The ITreatment interface supports the ILearning interface as an interface to the
Treatment information. A treatment represents the offer assigned to a particular cell
as defined in the design environment. From this interface, you can obtain cell and
offer information as well as the assigned marketing score.

getCellCode
The getCellCode method returns the cell code as defined in Campaign. The cell is
the cell assigned to the smart segment associated with this offer.
getCellCode()

Return value

The getCellCode method returns a string that defines the cell code.

getCellId
The getCellId method returns the internal ID of the cell as defined in Campaign.
The cell is the cell assigned to the smart segment associated with this offer.
getOfferName()

Return value

The getCellId method returns a long that defines the cell ID.

getCellName
The getCellName method returns the name of the cell as defined in Campaign. The
cell is the cell assigned to the smart segment associated with this offer.
getCellName()

Return value

The getCellName method returns a string that defines the cell name.

getLearningScore
The getLearningScore method returns the score for this treatment.
getLearningScore()

The precedence is as follows.

180 IBM Interact Administrator's Guide

1. Return the override value, if present in Override values map keyed by
IScoreoveride.PREDICATE_SCORE_COLUMN

2. Return predicate score if the value is not null
3. Return the marketers score, if present in Override values map keyed by

IScoreoveride.SCORE

4. Return the marketers score

Return value

The getLearningScore method returns an integer that defines the score determined
by the learning algorithm.

getMarketerScore
The getMarketerScore method returns the marketer's score defined by the slider on
the interaction strategy tab for the offer.
getMarketerScore()

To retrieve a marketer's score defined by the interaction strategy tab advanced
options, use getPredicateScore.

To retrieve the marketer's score actually used by the treatment, use
getLearningScore.

Return value

The getMarketerScore method returns an integer that defines the marketer's score.

getOffer
The getOffer method returns the offer for the treatment.
getOffer()

Return value

The getOffer method returns an IOffer object that defines the offer for this
treatment.

getOverrideValues
The getOverrideValues method returns overrides defined in the default offers or
score override table.
getOverrideValues()

Return value

The getOverrideValues method returns an IScoreOverride object.

getPredicate
The getPredicate method returns the predicate defined by the predicate column of
the default offers table, score override table or the treatment rules advanced
options.
getPredicate()

Chapter 11. About the Learning API 181

Return value

The getPredicate method returns a string that defines predicate defined by the
predicate column of the default offers table, score override table or the treatment
rules advanced options.

getPredicateScore
The getPredicateScore method returns the score set by the predicate column of
the default offers table, score override table or the treatment rules advanced
options.
getPredicateScore()

Return value

The getPredicateScore method returns a double that defines the score set by the
predicate column of the default offers table, score override table, or the treatment
rules advanced options.

getScore
The getScore method returns the marketing score that is defined either by the
interaction strategy in Campaign or by the score override table.
getScore()

The getScore method returns one of the following:
v The marketing score of the offer as defined on the interaction strategy tab in

Campaign if the enableScoreOverrideLookup property is set to false.
v The score of the offer as defined by the scoreOverrideTable if the

enableScoreOverrideLookup property is set to true.

Return value

The getScore method returns an integer that represents the score of the offer.

getTreatmentCode
The getTreatmentCode method returns the treatment code.
getTreatmentCode()

Return value

The getTreatmentCode method returns a string that defines the treatment code.

setActualValueUsed
Use the setActualValueUsed method to define what values are used at various
stages in the learning algorithm execution.
setActualValueUsed(string parmName, object value)

For example, if you use this method to write to the contact and response history
tables, and modify the existing sample reports, you can include data from your
learning algorithm in reporting.
v parmName-a string defining the name of the parameter you are setting.
v value-an object defining the value of the parameter you are setting.

182 IBM Interact Administrator's Guide

Return value

None.

Learning API example
This section contains a sample implementation of the ILearningInterface. Note that
this implementation is just a sample and is not designed to be used in a
production environment.

This example keeps track of accept and contact counts and uses the ratio of accept
to contacts for a particular offer as the acceptance probability rate for the offer.
Offers not presented get higher priority for recommending. Offers with at least one
contact are be ordered based on descending acceptance probability rate.

In this example, all counts are kept in memory. This is not a realistic scenario as
the runtime server will run out of memory. In a real production scenario, the
counts should be persisted into a database.

package com.unicacorp.interact.samples.learning.v2;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import com.unicacorp.interact.samples.learning.SampleOptimizer.MyOfferSorter;
import com.unicacorp.interact.treatment.optimization.IClientArgs;
import com.unicacorp.interact.treatment.optimization.IInteractSession;
import com.unicacorp.interact.treatment.optimization.ILearningConfig;
import com.unicacorp.interact.treatment.optimization.ILearningContext;
import com.unicacorp.interact.treatment.optimization.IOffer;
import com.unicacorp.interact.treatment.optimization.LearningException;
import com.unicacorp.interact.treatment.optimization.v2.ILearning;
import com.unicacorp.interact.treatment.optimization.v2.ITreatment;

/**
* This is a sample implementation of the learning optimizer.
* The interface ILearning may be found in the interact.jar library.
*
* To actually use this implementation, select ExternalLearning as the optimizationType in the offerServing node
* of the Interact application within the Platform configuration. Within the offerserving node there is also
* an External Learning config category - within there you must set the name of the class to this:
* com.unicacorp.interact.samples.learning.v2.SampleLearning. Please note however, this implementation is just a sample
* and was not designed to be used in a production environment.
*
*
* This example keeps track of accept and contact counts and uses the ratio of accept to contacts
* for a particular offer as the acceptance probability rate for the offer.
*
*
* Offers not presented will get higher priority for recommending.
* Offers with at least one contact will be ordered based on descending acceptance probability rate.
*
* Note: all counts are kept in memory. This is not a realistic scenario since you would run out of memory sooner or
* later. In a real production scenario, the counts should be persisted into a database.
*
*/

public class SampleLearning implements ILearning
{

// A map of offer ids to contact count for the offer id
private Map<Long,Integer> _offerToContactCount = new HashMap<Long, Integer>();

// A map of offer ids to contact count for the offer id
private Map<Long,Integer> _offerToAcceptCount = new HashMap<Long, Integer>();

/* (non-Javadoc)

Chapter 11. About the Learning API 183

* @see com.unicacorp.interact.treatment.optimization.v2.ILearning#initialize
* (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig, boolean)
*/
public void initialize(ILearningConfig config, boolean debug) throws LearningException
{

// If any remote connections are required, this is a good place to initialize those connections as this
// method is called once at the start of the interact runtime webapp.
// This example does not have any remote connections and prints for debugging purposes that this method will
// be called
System.out.println("Calling initialize for SampleLearning");

}

/* (non-Javadoc)
* @see com.unicacorp.interact.treatment.optimization.v2.ILearning#reinitialize
* (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig, boolean)
*/
public void reinitialize(ILearningConfig config, boolean debug) throws LearningException
{

// If an IC is deployed, this reinitialize method is called to allow the implementation to
// refresh any updated configuration settings
System.out.println("Calling reinitialize for SampleLearning");

}

/* (non-Javadoc)
* @see com.unicacorp.interact.treatment.optimization.v2.ILearning#logEvent
* (com.unicacorp.interact.treatment.optimization.v2.ILearningContext,
* com.unicacorp.interact.treatment.optimization.v2.IOffer,
* com.unicacorp.interact.treatment.optimization.v2.IClientArgs,
* com.unicacorp.interact.treatment.optimization.IInteractSession, boolean)
*/
public void logEvent(ILearningContext context, IOffer offer, IClientArgs clientArgs,
IInteractSession session, boolean debug) throws LearningException
{

System.out.println("Calling logEvent for SampleLearning");

if(context.getLearningContext()==ILearningContext.LOG_AS_CONTACT)
{

System.out.println("adding contact");

// Keep track of all contacts in memory
synchronized(_offerToAcceptCount)
{

Integer count = _offerToAcceptCount.get(offer.getOfferId());
if(count == null)

count = new Integer(1);
else

count++;
_offerToAcceptCount.put(offer.getOfferId(), ++count);

}

}
else if(context.getLearningContext()==ILearningContext.LOG_AS_ACCEPT)
{

System.out.println("adding accept");
// Keep track of all accept counts in memory by adding to the map
synchronized(_offerToAcceptCount)
{

Integer count = _offerToAcceptCount.get(offer.getOfferId());
if(count == null)

count = new Integer(1);
else

count++;
_offerToAcceptCount.put(offer.getOfferId(), ++count);

}
}

}

/* (non-Javadoc)
* @see com.unicacorp.interact.treatment.optimization.v2.ILearning#optimizeRecommendList
* (java.util.List, com.unicacorp.interact.treatment.optimization.v2.IClientArgs,
* com.unicacorp.interact.treatment.optimization.IInteractSession, boolean)
*/
public List<ITreatment> optimizeRecommendList(List<ITreatment> recList,

IClientArgs clientArgs, IInteractSession session, boolean debug)
throws LearningException

{

184 IBM Interact Administrator's Guide

System.out.println("Calling optimizeRecommendList for SampleLearning");

// Sort the candidate treatments by calling the sorter defined in this class and return the sorted list
Collections.sort(recList,new MyOfferSorter());

// now just return what was asked for via "numberRequested" variable
List<ITreatment> result = new ArrayList<ITreatment>();

for(int x=0;x<(Integer)clientArgs.getValue(IClientArgs.NUMBER_OF_OFFERS_REQUESTED) && x<recList.size();x++)
{

result.add(recList.get(x));
}
return result;

}

/* (non-Javadoc)
* @see com.unicacorp.interact.treatment.optimization.v2.ILearning#shutdown
* (com.unicacorp.interact.treatment.optimization.v2.ILearningConfig, boolean)
*/
public void shutdown(ILearningConfig config, boolean debug) throws LearningException
{

// If any remote connections exist, this would be a good place to gracefully
// disconnect from them as this method is called at the shutdown of the Interact runtime
// webapp. For this example, there is nothing really to do
// except print out a statement for debugging.
System.out.println("Calling shutdown for SampleLearning");

}
// Sort by:
// 1. offers with zero contacts - for ties, order is based on original input
// 2. descending accept probability rate - for ties, order is based on original input

public class MyOfferSorter implements Comparator<ITreatment>
{

private static final long serialVersionUID = 1L;

/* (non-Javadoc)
* @see java.lang.Comparable#compareTo(java.lang.Object)
*/
public int compare(ITreatment treatment1, ITreatment treatment2)
{

// get contact count for both treatments
Integer contactCount1 = _offerToContactCount.get(treatment1.getOffer().getOfferId());
Integer contactCount2 = _offerToContactCount.get(treatment2.getOffer().getOfferId());

// if treatment hasn’t been contacted, then that wins
if(contactCount1 == null || contactCount1 == 0)

return -1;

if(contactCount2 == null || contactCount2 == 0)
return 1;

// get accept counts
Integer acceptCount1 = _offerToAcceptCount.get(treatment1.getOffer().getOfferId());
Integer acceptCount2 = _offerToAcceptCount.get(treatment2.getOffer().getOfferId());

float acceptProbability1 = (float) acceptCount1 / (float) contactCount1;
float acceptProbability2 = (float) acceptCount2 / (float) contactCount2;

// descending order
return (int) (acceptProbability2 - acceptProbability1);

}
}

}

Chapter 11. About the Learning API 185

186 IBM Interact Administrator's Guide

Chapter 12. IBM Interact WSDL

The Interact installation includes two WDSL (Web Services Description Language)
XML files that describe the available web services and how to access them. You can
view these files in your Interact home directory, and an example is shown here.

After you have installed Interact, you can find the Interact WSDL files in the
following location:
v <Interact_home>/conf/InteractService.wsdl

v <Interact_home>/conf/InteractAdminService.wsdl

With each software release or fix pack, there can be changes to the Interact WDSL.
See the Interact Release Notes or the readme files with the release for details.

A copy of the InteractService.wsdl is shown here for reference. To ensure that
you are using the latest information, see the WDSL files that are installed with
Interact.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns0="http://soap.api.interact.unicacorp.com" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" bloop="http://api.interact.unicacorp.com/xsd"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" targetNamespace="http://soap.api.interact.unicacorp.com">
<wsdl:types>
<xs:schema xmlns:ns="http://soap.api.interact.unicacorp.com" attributeFormDefault="qualified"
elementFormDefault="qualified" targetNamespace="http://soap.api.interact.unicacorp.com">
<xs:element name="executeBatch">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="commands" nillable="false" type="ns1:CommandImpl"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="executeBatchResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:BatchResponse"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="endSession">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="endSessionResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="getOffers">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
<xs:element minOccurs="1" name="iPoint" nillable="false" type="xs:string"/>
<xs:element minOccurs="1" name="numberRequested" type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="getOffersResponse">
<xs:complexType>

© Copyright IBM Corp. 2001, 2018 187

<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="getProfile">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="getProfileResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="getVersionResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="postEvent">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
<xs:element minOccurs="1" name="eventName" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="eventParameters"
nillable="true" type="ns1:NameValuePairImpl"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="postEventResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="setAudience">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID" nillable="false" type="ns1:NameValuePairImpl"/>
<xs:element minOccurs="1" name="audienceLevel" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="parameters" nillable="true" type="ns1:NameValuePairImpl"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="setAudienceResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="setDebug">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>
<xs:element minOccurs="1" name="debug" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="setDebugResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="startSession">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="sessionID" nillable="false" type="xs:string"/>

188 IBM Interact Administrator's Guide

<xs:element minOccurs="1" name="relyOnExistingSession" type="xs:boolean"/>
<xs:element minOccurs="1" name="debug" type="xs:boolean"/>
<xs:element minOccurs="1" name="interactiveChannel" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID" nillable="false" type="ns1:NameValuePairImpl"/>
<xs:element minOccurs="1" name="audienceLevel" nillable="false" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="parameters" nillable="true" type="ns1:NameValuePairImpl"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="startSessionResponse">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" name="return" nillable="false" type="ns1:Response"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
<xs:schema xmlns:ax21="http://api.interact.unicacorp.com/xsd" attributeFormDefault="qualified"
elementFormDefault="qualified" targetNamespace="http://api.interact.unicacorp.com/xsd">
<xs:complexType name="Command">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID" nillable="true" type="ax21:NameValuePair"/>
<xs:element minOccurs="1" name="audienceLevel" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="debug" type="xs:boolean"/>
<xs:element minOccurs="1" name="event" nillable="true" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="eventParameters" nillable="true" type="ax21:NameValuePair"/>
<xs:element minOccurs="1" name="interactionPoint" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="interactiveChannel" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="methodIdentifier" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="numberRequested" type="xs:int"/>
<xs:element minOccurs="1" name="relyOnExistingSession" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="NameValuePair">
<xs:sequence>
<xs:element minOccurs="1" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="valueAsDate" nillable="true" type="xs:dateTime"/>
<xs:element minOccurs="1" name="valueAsNumeric" nillable="true" type="xs:double"/>
<xs:element minOccurs="1" name="valueAsString" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="valueDataType" nillable="true" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="CommandImpl">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="1" name="audienceID" nillable="true" type="ax21:NameValuePairImpl"/>
<xs:element minOccurs="1" name="audienceLevel" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="debug" type="xs:boolean"/>
<xs:element minOccurs="1" name="event" nillable="true" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="1" name="eventParameters" nillable="true" type="ax21:NameValuePairImpl"/>
<xs:element minOccurs="1" name="interactionPoint" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="interactiveChannel" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="methodIdentifier" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="numberRequested" type="xs:int"/>
<xs:element minOccurs="1" name="relyOnExistingSession" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="NameValuePairImpl">
<xs:sequence>
<xs:element minOccurs="1" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="valueAsDate" nillable="true" type="xs:dateTime"/>
<xs:element minOccurs="1" name="valueAsNumeric" nillable="true" type="xs:double"/>
<xs:element minOccurs="1" name="valueAsString" nillable="true" type="xs:string"/>
<xs:element minOccurs="1" name="valueDataType" nillable="true" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="BatchResponse">
<xs:sequence>
<xs:element minOccurs="0" name="batchStatusCode" type="xs:int"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="responses" nillable="false" type="ax21:Response"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Response">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="advisoryMessages" nillable="true" type="ax21:AdvisoryMessage"/>
<xs:element minOccurs="0" name="apiVersion" nillable="false" type="xs:string"/>
<xs:element minOccurs="0" name="offerList" nillable="true" type="ax21:OfferList"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="profileRecord" nillable="true" type="ax21:NameValuePair"/>
<xs:element minOccurs="0" name="sessionID" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="statusCode" type="xs:int"/>

Chapter 12. IBM Interact WSDL 189

</xs:sequence>
</xs:complexType>
<xs:complexType name="AdvisoryMessage">
<xs:sequence>
<xs:element minOccurs="0" name="detailMessage" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="message" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="messageCode" type="xs:int"/>
<xs:element minOccurs="0" name="statusLevel" type="xs:int"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="OfferList">
<xs:sequence>
<xs:element minOccurs="0" name="defaultString" nillable="true" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="recommendedOffers" nillable="true" type="ax21:Offer"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Offer">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="additionalAttributes" nillable="true" type="ax21:NameValuePair"/>
<xs:element minOccurs="0" name="description" nillable="true" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="offerCode" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="offerName" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="score" type="xs:int"/>
<xs:element minOccurs="0" name="treatmentCode" nillable="true" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>
</wsdl:types>
<wsdl:message name="setAudienceRequest">
<wsdl:part name="parameters" element="ns0:setAudience"/>
</wsdl:message>
<wsdl:message name="setAudienceResponse">
<wsdl:part name="parameters" element="ns0:setAudienceResponse"/>
</wsdl:message>
<wsdl:message name="postEventRequest">
<wsdl:part name="parameters" element="ns0:postEvent"/>
</wsdl:message>
<wsdl:message name="postEventResponse">
<wsdl:part name="parameters" element="ns0:postEventResponse"/>
</wsdl:message>
<wsdl:message name="getOffersRequest">
<wsdl:part name="parameters" element="ns0:getOffers"/>
</wsdl:message>
<wsdl:message name="getOffersResponse">
<wsdl:part name="parameters" element="ns0:getOffersResponse"/>
</wsdl:message>
<wsdl:message name="startSessionRequest">
<wsdl:part name="parameters" element="ns0:startSession"/>
</wsdl:message>
<wsdl:message name="startSessionResponse">
<wsdl:part name="parameters" element="ns0:startSessionResponse"/>
</wsdl:message>
<wsdl:message name="getVersionRequest"/>
<wsdl:message name="getVersionResponse">
<wsdl:part name="parameters" element="ns0:getVersionResponse"/>
</wsdl:message>
<wsdl:message name="setDebugRequest">
<wsdl:part name="parameters" element="ns0:setDebug"/>
</wsdl:message>
<wsdl:message name="setDebugResponse">
<wsdl:part name="parameters" element="ns0:setDebugResponse"/>
</wsdl:message>
<wsdl:message name="executeBatchRequest">
<wsdl:part name="parameters" element="ns0:executeBatch"/>
</wsdl:message>
<wsdl:message name="executeBatchResponse">
<wsdl:part name="parameters" element="ns0:executeBatchResponse"/>
</wsdl:message>
<wsdl:message name="getProfileRequest">
<wsdl:part name="parameters" element="ns0:getProfile"/>
</wsdl:message>
<wsdl:message name="getProfileResponse">
<wsdl:part name="parameters" element="ns0:getProfileResponse"/>
</wsdl:message>
<wsdl:message name="endSessionRequest">
<wsdl:part name="parameters" element="ns0:endSession"/>
</wsdl:message>
<wsdl:message name="endSessionResponse">
<wsdl:part name="parameters" element="ns0:endSessionResponse"/>

190 IBM Interact Administrator's Guide

</wsdl:message>
<wsdl:portType name="InteractServicePortType">
<wsdl:operation name="setAudience">
<wsdl:input message="ns0:setAudienceRequest" wsaw:Action="urn:setAudience"/>
<wsdl:output message="ns0:setAudienceResponse" wsaw:Action="urn:setAudienceResponse"/>
</wsdl:operation>
<wsdl:operation name="postEvent">
<wsdl:input message="ns0:postEventRequest" wsaw:Action="urn:postEvent"/>
<wsdl:output message="ns0:postEventResponse" wsaw:Action="urn:postEventResponse"/>
</wsdl:operation>
<wsdl:operation name="getOffers">
<wsdl:input message="ns0:getOffersRequest" wsaw:Action="urn:getOffers"/>
<wsdl:output message="ns0:getOffersResponse" wsaw:Action="urn:getOffersResponse"/>
</wsdl:operation>
<wsdl:operation name="startSession">
<wsdl:input message="ns0:startSessionRequest" wsaw:Action="urn:startSession"/>
<wsdl:output message="ns0:startSessionResponse" wsaw:Action="urn:startSessionResponse"/>
</wsdl:operation>
<wsdl:operation name="getVersion">
<wsdl:input message="ns0:getVersionRequest" wsaw:Action="urn:getVersion"/>
<wsdl:output message="ns0:getVersionResponse" wsaw:Action="urn:getVersionResponse"/>
</wsdl:operation>
<wsdl:operation name="setDebug">
<wsdl:input message="ns0:setDebugRequest" wsaw:Action="urn:setDebug"/>
<wsdl:output message="ns0:setDebugResponse" wsaw:Action="urn:setDebugResponse"/>
</wsdl:operation>
<wsdl:operation name="executeBatch">
<wsdl:input message="ns0:executeBatchRequest" wsaw:Action="urn:executeBatch"/>
<wsdl:output message="ns0:executeBatchResponse" wsaw:Action="urn:executeBatchResponse"/>
</wsdl:operation>
<wsdl:operation name="getProfile">
<wsdl:input message="ns0:getProfileRequest" wsaw:Action="urn:getProfile"/>
<wsdl:output message="ns0:getProfileResponse" wsaw:Action="urn:getProfileResponse"/>
</wsdl:operation>
<wsdl:operation name="endSession">
<wsdl:input message="ns0:endSessionRequest" wsaw:Action="urn:endSession"/>
<wsdl:output message="ns0:endSessionResponse" wsaw:Action="urn:endSessionResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="InteractServiceSOAP11Binding" type="ns0:InteractServicePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="setAudience">
<soap:operation soapAction="urn:setAudience" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="postEvent">
<soap:operation soapAction="urn:postEvent" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getOffers">
<soap:operation soapAction="urn:getOffers" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="startSession">
<soap:operation soapAction="urn:startSession" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getVersion">
<soap:operation soapAction="urn:getVersion" style="document"/>

Chapter 12. IBM Interact WSDL 191

<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="setDebug">
<soap:operation soapAction="urn:setDebug" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="executeBatch">
<soap:operation soapAction="urn:executeBatch" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getProfile">
<soap:operation soapAction="urn:getProfile" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="endSession">
<soap:operation soapAction="urn:endSession" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="InteractServiceSOAP12Binding" type="ns0:InteractServicePortType">
<soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<wsdl:operation name="setAudience">
<soap12:operation soapAction="urn:setAudience" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="postEvent">
<soap12:operation soapAction="urn:postEvent" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getOffers">
<soap12:operation soapAction="urn:getOffers" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="startSession">
<soap12:operation soapAction="urn:startSession" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

192 IBM Interact Administrator's Guide

<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getVersion">
<soap12:operation soapAction="urn:getVersion" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="setDebug">
<soap12:operation soapAction="urn:setDebug" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="executeBatch">
<soap12:operation soapAction="urn:executeBatch" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getProfile">
<soap12:operation soapAction="urn:getProfile" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="endSession">
<soap12:operation soapAction="urn:endSession" style="document"/>
<wsdl:input>
<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap12:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="InteractServiceHttpBinding" type="ns0:InteractServicePortType">
<http:binding verb="POST"/>
<wsdl:operation name="setAudience">
<http:operation location="InteractService/setAudience"/>
<wsdl:input>
<mime:content part="setAudience" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="setAudience" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="postEvent">
<http:operation location="InteractService/postEvent"/>
<wsdl:input>
<mime:content part="postEvent" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="postEvent" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getOffers">
<http:operation location="InteractService/getOffers"/>
<wsdl:input>
<mime:content part="getOffers" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="getOffers" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="startSession">

Chapter 12. IBM Interact WSDL 193

<http:operation location="InteractService/startSession"/>
<wsdl:input>
<mime:content part="startSession" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="startSession" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getVersion">
<http:operation location="InteractService/getVersion"/>
<wsdl:input>
<mime:content part="getVersion" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="getVersion" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="setDebug">
<http:operation location="InteractService/setDebug"/>
<wsdl:input>
<mime:content part="setDebug" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="setDebug" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="executeBatch">
<http:operation location="InteractService/executeBatch"/>
<wsdl:input>
<mime:content part="executeBatch" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="executeBatch" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getProfile">
<http:operation location="InteractService/getProfile"/>
<wsdl:input>
<mime:content part="getProfile" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="getProfile" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="endSession">
<http:operation location="InteractService/endSession"/>
<wsdl:input>
<mime:content part="endSession" type="text/xml"/>
</wsdl:input>
<wsdl:output>
<mime:content part="endSession" type="text/xml"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="InteractService">
<wsdl:port name="InteractServiceSOAP11port_http" binding="ns0:InteractServiceSOAP11Binding">
<soap:address location="http://localhost:7001/interact/services/InteractService"/>
</wsdl:port>
<wsdl:port name="InteractServiceSOAP12port_http" binding="ns0:InteractServiceSOAP12Binding">
<soap12:address location="http://localhost:7001/interact/services/InteractService"/>
</wsdl:port>
<wsdl:port name="InteractServiceHttpport" binding="ns0:InteractServiceHttpBinding">
<http:address location="http://localhost:7001/interact/services/InteractService"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

194 IBM Interact Administrator's Guide

Chapter 13. Interact runtime environment configuration
properties

This section describes all the configuration properties for the Interact runtime
environment.

Interact | general
These configuration properties define general settings for your runtime
environment environment, including the default logging level and the locale
setting.

log4jConfig

Description

The location of the file containing the log4j properties. This path must be
relative to the INTERACT_HOME environment variable. INTERACT_HOME is the
location of the Interact installation directory.

Default value

./conf/interact_log4j.properties

asmUserForDefaultLocale

Description

The asmUserForDefaultLocale property defines the IBM Marketing
Software user from which Interact derives its locale settings.

The locale settings define what language displays in the design time and
what language advisory messages from the Interact API are in. If the locale
setting does not match your machines operating system settings, Interact
still functions, however the design time display and advisory messages
may be in a different language.

Default value

asm_admin

Interact | general | learningTablesDataSource
These configuration properties define the data source settings for the built-in
learning tables. You must define this data source if you are using Interact built-in
learning.

If you create your own learning implementation using the Learning API, you can
configure your custom learning implementation to read these values using the
ILearningConfig interface.

jndiName

Description

© Copyright IBM Corp. 2001, 2018 195

Use this jndiName property to identify the Java Naming and Directory
Interface (JNDI) data source that is defined in the application server
(Websphere or WebLogic) for the learning tables accessed by Interact
runtime servers.

The learning tables are created by the aci_lrntab ddl file and contain the
following tables (among others): UACI_AttributeValue and
UACI_OfferStats.

Default value

No default value defined.

type

Description

The database type for the data source used by the learning tables accessed
by the Interact runtime servers.

The learning tables are created by the aci_lrntab ddl file and contain the
following tables (among others): UACI_AttributeValue and
UACI_OfferStats.

Default value

SQLServer

Valid Values

SQLServer | DB2 | ORACLE

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure for the learning tables. Interact automatically tries to reconnect to
the database for this length of time before reporting a database error or
failure. If the value is set to 0, Interact will retry indefinitely; if the value is
set to -1, no retry will be attempted.

The learning tables are created by the aci_lrntab ddl file and contain the
following tables (among others): UACI_AttributeValue and
UACI_OfferStats.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the learning tables. If the value is set to -1, no retry will be
attempted.

The learning tables are created by the aci_lrntab ddl file and contain the
following tables (among others): UACI_AttributeValue and
UACI_OfferStats.

Default value

196 IBM Interact Administrator's Guide

-1

schema

Description

The name of the schema containing the tables for the built-in learning
module. Interact inserts the value of this property before all table names,
for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema,
Interact assumes that the owner of the tables is the same as the schema.
You should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | prodUserDataSource
These configuration properties define the data source settings for the production
profile tables. You must define this data source. This is the data source the runtime
environment references when running interactive flowcharts after deployment.

jndiName

Description

Use this jndiName property to identify the Java Naming and Directory
Interface (JNDI) data source that is defined in the application server
(Websphere or WebLogic) for the customer tables accessed by Interact
runtime servers.

Default value

No default value defined.

type

Description

The database type for the customer tables accessed by Interact runtime
servers.

Default value

SQLServer

Valid Values

SQLServer | DB2 | ORACLE

aliasPrefix

Description

The AliasPrefix property specifies the way Interact forms the alias name
that Interact creates automatically when using a dimension table and
writing to a new table in the customer tables accessed by Interact runtime
servers..

Note that each database has a maximum identifier length; check the
documentation for the database you are using to be sure that the value you
set does not exceed the maximum identifier length for your database.

Default value

Chapter 13. Interact runtime environment configuration properties 197

A

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure for the runtime customer tables. Interact automatically tries to
reconnect to the database for this length of time before reporting a
database error or failure. If the value is set to 0, Interact will retry
indefinitely; if the value is set to -1, no retry will be attempted.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the Interact runtime customer tables. If the value is set to -1, no
retry will be attempted.

Default value

-1

schema

Description

The name of the schema containing your profile data tables. Interact inserts
the value of this property before all table names, for example,
UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema,
Interact assumes that the owner of the tables is the same as the schema.
You should set this value to remove ambiguity.

When you use a DB2 database, the schema name must be upper case.

Default value

No default value defined.

Interact | general | systemTablesDataSource
These configuration properties define the data source settings for the system tables
for runtime environment. You must define this data source.

jndiName

Description

Use this jndiName property to identify the Java Naming and Directory
Interface (JNDI) data source that is defined in the application server
(Websphere or WebLogic) for the runtime environment tables.

The runtime environment database is the database populated with the
aci_runtime and aci_populate_runtime dll scripts and, for example,
contains the following tables (among others): UACI_CHOfferAttrib and
UACI_DefaultedStat.

198 IBM Interact Administrator's Guide

Default value

No default value defined.

type

Description

The database type for the runtime environment system tables.

The runtime environment database is the database populated with the
aci_runtime and aci_populate_runtime dll scripts and, for example,
contains the following tables (among others): UACI_CHOfferAttrib and
UACI_DefaultedStat.

Default value

SQLServer

Valid Values

SQLServer | DB2 | ORACLE

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure for the runtime system tables. Interact automatically tries to
reconnect to the database for this length of time before reporting a
database error or failure. If the value is set to 0, Interact will retry
indefinitely; if the value is set to -1, no retry will be attempted.

The runtime environment database is the database populated with the
aci_runtime and aci_populate_runtime dll scripts and, for example,
contains the following tables (among others): UACI_CHOfferAttrib and
UACI_DefaultedStat.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the Interact runtime system tables. If the value is set to -1, no
retry will be attempted.

The runtime environment database is the database populated with the
aci_runtime and aci_populate_runtime dll scripts and, for example,
contains the following tables (among others): UACI_CHOfferAttrib and
UACI_DefaultedStat.

Default value

-1

schema

Description

Chapter 13. Interact runtime environment configuration properties 199

The name of the schema containing the tables for the runtime environment.
Interact inserts the value of this property before all table names, for
example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema,
Interact assumes that the owner of the tables is the same as the schema.
You should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | systemTablesDataSource | loaderProperties
These configuration properties define the settings a database loader utility for the
system tables for runtime environment. You need to define these properties if you
are using a database loader utility only.

databaseName

Description

The name of the database the database loader connects to.

Default value

No default value defined.

LoaderCommandForAppend

Description

The LoaderCommandForAppend parameter specifies the command issued to
invoke your database load utility for appending records to the contact and
response history staging database tables in Interact. You need to set this
parameter to enable the database loader utility for contact and response
history data.

This parameter is specified as a full path name either to the database load
utility executable or to a script that launches the database load utility.
Using a script allows you to perform additional setup before invoking the
load utility.

Most database load utilities require several arguments to be successfully
launched. These can include specifying the data file and control file to load
from and the database and table to load into. The tokens are replaced by
the specified elements when the command is run.

Consult your database load utility documentation for the correct syntax to
use when invoking your database load utility.

This parameter is undefined by default.

Tokens available to LoaderCommandForAppend are described in the following
table.

Token Description

<CONTROLFILE> This token is replaced with the full path and
filename to the temporary control file that
Interact generates according to the template
that is specified in the
LoaderControlFileTemplate parameter.

200 IBM Interact Administrator's Guide

Token Description

<DATABASE> This token is replaced with the name of the
data source into which Interact is loading
data. This is the same data source name
used in the category name for this data
source.

<DATAFILE> This token is replaced with the full path and
filename to the temporary data file created
by Interact during the loading process. This
file is in the Interact Temp directory,
UNICA_ACTMPDIR.

<DBCOLUMNNUMBER> This token is replaced with the column
ordinal in the database.

<FIELDLENGTH> This token is replaced with the length of the
field being loaded into the database.

<FIELDNAME> This token is replaced with the name of the
field being loaded into the database.

<FIELDNUMBER> This token is replaced with the number of
the field being loaded into the database.

<FIELDTYPE> This token is replaced with the literal
"CHAR()". The length of this field is
specified between the (). If your database
happens to not understand the field type,
CHAR, you can manually specify the
appropriate text for the field type and use
the <FIELDLENGTH> token. For example,
for SQLSVR and SQL2000 you would use
"SQLCHAR(<FIELDLENGTH>)"

<NATIVETYPE> This token is replaced with the type of
database into which this field is loaded.

<NUMFIELDS> This token is replaced with the number of
fields in the table.

<PASSWORD> This token is replaced with the database
password from the current flowchart
connection to the data source.

<TABLENAME> This token is replaced with the database
table name into which Interact is loading
data.

<USER> This token is replaced with the database
user from the current flowchart connection
to the data source.

Default value

Chapter 13. Interact runtime environment configuration properties 201

No default value defined.

LoaderControlFileTemplateForAppend

Description

The LoaderControlFileTemplateForAppend property specifies the full path
and filename to the control file template that has been previously
configured in Interact. When this parameter is set, Interact dynamically
builds a temporary control file based on the template that is specified here.
The path and name of this temporary control file is available to the
<CONTROLFILE> token that is available to the LoaderCommandForAppend
property.

Before you use Interact in the database loader utility mode, you must
configure the control file template that is specified by this parameter. The
control file template supports the following tokens, which are dynamically
replaced when the temporary control file is created by Interact.

See your database loader utility documentation for the correct syntax
required for your control file. Tokens available to your control file template
are the same as those for the LoaderControlFileTemplate property.

This parameter is undefined by default.

Default value

No default value defined.

LoaderDelimiterForAppend

Description

The LoaderDelimiterForAppend property specifies whether the temporary
Interact data file is a fixed-width or delimited flat file, and, if it is
delimited, the character or set of characters used as delimiters.

If the value is undefined, Interact creates the temporary data file as a fixed
width flat file.

If you specify a value, it is used when the loader is invoked to populate a
table that is not known to be empty. Interact creates the temporary data file
as a delimited flat file, using the value of this property as the delimiter.

This property is undefined by default.

Default value

Valid Values

Characters, which you may enclose in double quotation marks, if desired.

LoaderDelimiterAtEndForAppend

Description

Some external load utilities require that the data file be delimited and that
each line end with the delimiter. To accommodate this requirement, set the
LoaderDelimiterAtEndForAppend value to TRUE, so that when the loader is
invoked to populate a table that is not known to be empty, Interact uses
delimiters at the end of each line.

Default value

FALSE

202 IBM Interact Administrator's Guide

Valid Values

TRUE | FALSE

LoaderUseLocaleDP

Description

The LoaderUseLocaleDP property specifies, when Interact writes numeric
values to files to be loaded by a database load utility, whether the
locale-specific symbol is used for the decimal point.

Set this value to FALSE to specify that the period (.) is used as the decimal
point.

Set this value to TRUE to specify that the decimal point symbol appropriate
to the locale is used.

Default value

FALSE

Valid Values

TRUE | FALSE

Interact | general | testRunDataSource
These configuration properties define the data source settings for the test run
tables for the Interact design environment. You must define this data source for at
least one of your runtime environments. These are the tables used when you
perform a test run of your interactive flowchart.

jndiName

Description

Use this jndiName property to identify the Java Naming and Directory
Interface (JNDI) data source that is defined in the application server
(Websphere or WebLogic) for the customer tables accessed by the design
environment when executing interactive flowcharts test runs.

Default value

No default value defined.

type

Description

The database type for the customer tables accessed by the design
environment when executing interactive flowcharts test runs.

Default value

SQLServer

Valid Values

SQLServer | DB2 | ORACLE

aliasPrefix

Description

The AliasPrefix property specifies the way Interact forms the alias name
that Interact creates automatically when using a dimension table and

Chapter 13. Interact runtime environment configuration properties 203

writing to a new table for the customer tables accessed by the design
environment when executing interactive flowcharts test runs.

Note that each database has a maximum identifier length; check the
documentation for the database you are using to be sure that the value you
set does not exceed the maximum identifier length for your database.

Default value

A

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure for the test run tables. Interact automatically tries to reconnect to
the database for this length of time before reporting a database error or
failure. If the value is set to 0, Interact will retry indefinitely; if the value is
set to -1, no retry will be attempted.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the test run tables. If the value is set to -1, no retry will be
attempted.

Default value

-1

schema

Description

The name of the schema containing the tables for interactive flowchart test
runs. Interact inserts the value of this property before all table names, for
example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema,
Interact assumes that the owner of the tables is the same as the schema.
You should set this value to remove ambiguity.

Default value

No default value defined.

Interact | general | contactAndResponseHistoryDataSource
These configuration properties define the connection settings for the contact and
response history data source required for the Interact cross-session response
tracking. These settings are not related to the contact and response history module.

jndiName

Description

204 IBM Interact Administrator's Guide

Use this jndiName property to identify the Java Naming and Directory
Interface (JNDI) data source that is defined in the application server
(WebSphere or WebLogic) for the contact and response history data source
required for the Interact cross-session response tracking.

Default value

type

Description

The database type for the data source used by the contact and response
history data source required for the Interact cross-session response
tracking.

Default value

SQLServer

Valid Values

SQLServer | DB2 | ORACLE

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure for the Interact cross-session response tracking. Interact
automatically tries to reconnect to the database for this length of time
before reporting a database error or failure. If the value is set to 0, Interact
will retry indefinitely; if the value is set to -1, no retry will be attempted.

Default value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the Interact cross-session response tracking. If the value is set to
-1, no retry will be attempted.

Default value

-1

schema

Description

The name of the schema containing the tables for the Interact cross-session
response tracking. Interact inserts the value of this property before all table
names, for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You do not have to define a schema. If you do not define a schema,
Interact assumes that the owner of the tables is the same as the schema.
You should set this value to remove ambiguity.

Default value

No default value defined.

Chapter 13. Interact runtime environment configuration properties 205

Interact | general | idsByType
These configuration properties define settings for ID numbers used by the contact
and response history module.

initialValue

Description

The initial ID value used when generating IDs using the UACI_IDsByType
table.

Default value

1

Valid Values

Any value greater than 0.

retries

Description

The number of retries before generating an exception when generating IDs
using the UACI_IDsByType table.

Default value

20

Valid Values

Any integer greater than 0.

Interact | flowchart
This section defines configuration settings for interactive flowcharts.

defaultDateFormat

Description

The default date format used by Interact to convert Date to String and
String to Date.

Default value

MM/dd/yy

idleFlowchartThreadTimeoutInMinutes

Description

The number of minutes Interact allows a thread dedicated to an interactive
flowchart to be idle before releasing the thread.

Default value

5

idleProcessBoxThreadTimeoutInMinutes

Description

The number of minutes Interact allows a thread dedicated to an interactive
flowchart process to be idle before releasing the thread.

206 IBM Interact Administrator's Guide

Default value

5

maxSizeOfFlowchartEngineInboundQueue

Description

The maximum number of flowchart run requests Interact holds in queue. If
this number of requests is reached, Interact will stop taking requests.

Default value

1000

maxNumberOfFlowchartThreads

Description

The maximum number of threads dedicated to interactive flowchart
requests.

Default value

25

maxNumberOfProcessBoxThreads

Description

The maximum number of threads dedicated to interactive flowchart
processes.

Default value

50

maxNumberOfProcessBoxThreadsPerFlowchart

Description

The maximum number of threads dedicated to interactive flowchart
processes per flowchart instance.

Default value

3

minNumberOfFlowchartThreads

Description

The minimum number of threads dedicated to interactive flowchart
requests.

Default value

10

minNumberOfProcessBoxThreads

Description

The minimum number of threads dedicated to interactive flowchart
processes.

Default value

Chapter 13. Interact runtime environment configuration properties 207

20

sessionVarPrefix

Description

The prefix for session variables.

Default value

SessionVar

Interact | flowchart | ExternalCallouts | [ExternalCalloutName]
This section defines the class settings for custom external callouts you have written
with the external callout API.

class

Description

The name of the Java class represented by this external callout.

This is the Java class that you can access with the IBM Macro
EXTERNALCALLOUT.

Default value

No default value defined.

classpath

Description

The classpath for the Java class represented by this external callout. The
classpath must reference jar files on the runtime environment server. If you
are using a server group and all runtime servers are using the same
Marketing Platform, every server must have a copy of the jar file in the
same location. The classpath must consist of absolute locations of jar files,
separated by the path delimiter of the operating system of the runtime
environment server, for example a semi-colon (;) on Windows and a colon
(:) on UNIX systems. Directories containing class files are not accepted. For
example, on a Unix system: /path1/file1.jar:/path2/file2.jar.

This classpath must be less than 1024 characters. You can use the manifest
file in a .jar file to specify other .jar files so only one .jar file has to appear
in your class path

This is the Java class that you can access with the IBM Macro
EXTERNALCALLOUT.

Default value

No default value defined.

Interact | flowchart | ExternalCallouts | [ExternalCalloutName] |
Parameter Data | [parameterName]

This section defines the parameter settings for a custom external callout you have
written with the external callout API.

208 IBM Interact Administrator's Guide

value

Description

The value for any parameter required by the class for the external callout.

Default value

No default value defined.

Example

If the external callout requires host name of an external server, create a
parameter category named host and define the value property as the
server name.

Interact | monitoring
This set of configuration properties enables you to define JMX monitoring settings.
You need to configure these properties only if you are using JMX monitoring.
There are separate JMX monitoring properties to define for the contact and
response history module in the configuration properties for Interact design
environment.

protocol

Description

Define the protocol for the Interact messaging service.

If you choose JMXMP you must include the following JAR files in your
class path in order:
Interact/lib/InteractJMX.jar;Interact/lib/jmxremote_optional.jar

Default value

JMXMP

Valid Values

JMXMP | RMI

port

Description

The port number for the messaging service.

Default value

9998

enableSecurity

Description

A boolean which enables or disables JMXMP messaging service security for
the Interact runtime server. If set to true, you must supply a user name
and password to access the Interact runtime JMX service. This user
credential is authenticated by the Marketing Platform for the runtime
server. Jconsole does not allow empty password login.

This property has no effect if the protocol is RMI. This property has no
effect on JMX for Campaign (the Interact design time).

Default value

Chapter 13. Interact runtime environment configuration properties 209

True

Valid Values

True | False

Interact | monitoring | activitySubscribers
This set of configuration properties enables the root node for the settings that are
related to remote subscribers that can receive periodic update on basic performance
data in the Interact runtime environment.

heartbeatPeriodInSecs

Description

The interval in seconds when each runtime instance sends an update to
subscribers.

Default value
60

Interact | monitoring | activitySubscribers | (target)

(target)

Description

The root node for the settings of a subscriber.

URL

Description

The URL of this subscriber. This endpoint must be able to accept JSON
messages transported through HTTP.

continuousErrorsForAbort

Description

The number of continuous failed updates before the runtime instance stops
sending more updates to this subscriber.

Default value

5

timeoutInMillis

Description

The time-out in milliseconds the send process times out during sending
update to this subscriber.

Default value

1000

Valid Values

Enabled

Description

Whether this subscriber is enabled or disabled.

210 IBM Interact Administrator's Guide

Default value

True

Valid Values

True or False

type

Description

The type of this data store. When this option is selected, the parameter
className must be added with the value being the fully qualified name of
this implementation class. classPath needs to be added with the URI of
the JAR file if it is not in the class path of the Interact run time.

Default value

InteractLog

Valid Values

InteractLog, RelationalDB, and Custom

jmxInclusionCycles

Description

The interval in the multiplier of heartbeatPeriodInSecs that detailed JMX
statistics are sent to this subscriber.

Default value

5

Valid Values

Interact | profile
This set of configuration properties control several of the optional offer serving
features, including offer suppression and score override.

enableScoreOverrideLookup

Description

If set to True, Interact loads the score override data from the
scoreOverrideTable when creating a session. If False, Interact does not
load the marketing score override data when creating a session.

If true, you must also configure the Interact | profile | Audience
Levels | (Audience Level) | scoreOverrideTable property. You need to
define the scoreOverrideTable property for the audience levels you require
only. Leaving the scoreOverrideTable blank for an audience level disables
the score override table for the audience level.

Default value

False

Valid Values

True | False

Chapter 13. Interact runtime environment configuration properties 211

enableOfferSuppressionLookup

Description

If set to True, Interact loads the offer suppression data from the
offerSuppressionTable when creating a session. If False, Interact does not
load the offer suppression data when creating a session.

If true, you must also configure the Interact | profile | Audience
Levels | (Audience Level) | offerSuppressionTable property. You need
to define the enableOfferSuppressionLookup property for the audience
levels you require only.

Default value

False

Valid Values

True | False

enableProfileLookup

Description

In a new installation of Interact, this property is deprecated. In an
upgraded installation of Interact, this property is valid until the first
deployment.

The load behavior for a table used in an interactive flowchart but not
mapped in the interactive channel. If set to True, Interact loads the profile
data from the profileTable when creating a session.

If true, you must also configure the Interact | profile | Audience
Levels | (Audience Level) | profileTable property.

The Load this data in to memory when a visit session starts setting in the
interactive channel table mapping wizard overrides this configuration
property.

Default value

False

Valid Values

True | False

defaultOfferUpdatePollPeriod

Description

The number of seconds the system waits before updating the default offers
in the cache from the default offers table. If set to -1, the system doesn't
update the default offers in the cache after the initial list is loaded into the
cache when the runtime server starts.

Default value

-1

Interact | profile | Audience Levels | [AudienceLevelName]
This set of configuration properties enables you to define the table names required
for additional Interact features. You are only required to define the table name if
you are using the associated feature.

212 IBM Interact Administrator's Guide

New category name

Description

The name of your audience level.

scoreOverrideTable

Description

The name of the table containing the score override information for this
audience level. This property is applicable if you have set
enableScoreOverrideLookup to true. You have to define this property for
the audience levels for which you want to enable a score override table. If
you have no score override table for this audience level, you can leave this
property undefined, even if enableScoreOverrideLookup is set to true.

Interact looks for this table in the customer tables accessed by Interact
runtime servers, defined by the prodUserDataSource properties.

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_ScoreOverride. If you enter a fully-qualified name, for
example, mySchema.UACI_ScoreOverride, Interact does not prepend the
schema name.

Default value

UACI_ScoreOverride

offerSuppressionTable

Description

The name of the table containing the offer suppression information for this
audience level. You have to define this property for the audience levels for
which you want to enable an offer suppression table. If you have no offer
suppression table for this audience level, you can leave this property
undefined. If enableOfferSuppressionLookup is set to true, this property
must be set to a valid table.

Interact looks for this table in the customer tables accessed by runtime
servers, defined by the prodUserDataSource properties.

Default value

UACI_BlackList

contactHistoryTable

Description

The name of the staging table for the contact history data for this audience
level.

This table is stored in the runtime environment tables
(systemTablesDataSource).

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_CHStaging. If you enter a fully-qualified name, for example,
mySchema.UACI_CHStaging, Interact does not prepend the schema name.

If contact history logging is disabled, this property does not need to be set.

Chapter 13. Interact runtime environment configuration properties 213

Default value

UACI_CHStaging

chOfferAttribTable

Description

The name of the contact history offer attributes table for this audience
level.

This table is stored in the runtime environment tables
(systemTablesDataSource).

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_CHOfferAttrib. If you enter a fully-qualified name, for
example, mySchema.UACI_CHOfferAttrib, Interact does not prepend the
schema name.

If contact history logging is disabled, this property does not need to be set.

Default value

UACI_CHOfferAttrib

responseHistoryTable

Description

The name of the response history staging table for this audience level.

This table is stored in the runtime environment tables
(systemTablesDataSource).

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_RHStaging. If you enter a fully-qualified name, for example,
mySchema.UACI_RHStaging, Interact does not prepend the schema name.

If response history logging is disabled, this property does not need to be
set.

Default value

UACI_RHStaging

crossSessionResponseTable

Description

The name of the table for this audience level required for cross-session
response tracking in the contact and response history tables accessible for
the response tracking feature.

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_XSessResponse. If you enter a fully-qualified name, for
example, mySchema.UACI_XSessResponse, Interact does not prepend the
schema name.

If cross session response logging is disabled, this property does not need to
be set.

Default value

214 IBM Interact Administrator's Guide

UACI_XSessResponse

userEventLoggingTable

Description

This is the name of the database table that is used for logging user-defined
event activities. Users defined events on the Events tab of the Interactive
Channel summary pages in the Interact interface. The database table you
specify here stores information such as the event ID, name, how many
times this event occurred for this audience level since the last time the
event activity cache was flushed, and so on.

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_UserEventActivity. If you enter a fully-qualified name, for
example, mySchema.UACI_UserEventActivity, Interact does not prepend the
schema name.

Default value

UACI_UserEventActivity

patternStateTable

Description

This is the name of the database table that is used for logging event
pattern states, such as whether the pattern condition has been met or not,
whether the pattern is expired or disabled, and so on.

If you have defined the schema property for this data source, Interact
prepends this table name with the schema, for example,
schema.UACI_EventPatternState. If you enter a fully-qualified name, for
example, mySchema.UACI_EventPatternState, Interact does not prepend the
schema name.

A patternStateTable is required for each audience level even if you do not
use event patterns. The patternStateTable is based on the ddl of the
included UACI_EventPatternState. The following is an example where the
audience ID has two components; ComponentNum and ComponentStr.
CREATE TABLE UACI_EventPatternState_Composite
(

UpdateTime bigint NOT NULL,
State varbinary(4000),
ComponentNum bigint NOT NULL,
ComponentStr nvarchar(50) NOT NULL,
CONSTRAINT PK_CustomerPatternState_Composite PRIMARY KEY
(ComponentNum,ComponentStr,UpdateTime)

)

Default value

UACI_EventPatternState

Interact | profile | Audience Levels | [AudienceLevelName] |
Offers by Raw SQL

This set of configuration properties enables you to define the table names required
for additional Interact features. You are only required to define the table name if
you are using the associated feature.

Chapter 13. Interact runtime environment configuration properties 215

enableOffersByRawSQL

Description

If set to True, Interact enables the offersBySQL feature for this audience
level that allows you to configure SQL code to be executed to create a
desired set of candidate offers at runtime.. If False, Interact does not use
the offersBySQL feature.

If you set this property to true, you may also configure the Interact |
profile | Audience Levels | (Audience Level) | Offers by Raw SQL |
SQL Template property to define one or more SQL templates.

Default value

False

Valid Values

True | False

cacheSize

Description

Size of cache used to store results of the OfferBySQL queries. Note that
using a cache may have negative impact if query results are unique for
most sessions.

Default value

-1 (off)

Valid Values

-1 | Value

cacheLifeInMinutes

Description

If the cache is enabled, this indicates the number of minutes before the
system will clear the cache to avoid staleness.

Default value

-1 (off)

Valid Values

-1 | Value

defaultSQLTemplate

Description

The name of the SQL template to use if one is not specified via the API
calls.

Default value

None

Valid Values

SQL template name

216 IBM Interact Administrator's Guide

name

Configuration category
Interact | profile | Audience Levels | [AudienceLevelName] | Offers
by Raw SQL | (SQL Templates)

Description

The name you want to assign to this SQL query template. Enter a
descriptive name that will be meaningful when you use this SQL template
in API calls. Note that if you use a name here that is identical to a name
defined in the Interact List process box for an offerBySQL treatment, the
SQL in the process box will be used rather than the SQL you enter here.

Default value

None

SQL

Configuration category
Interact | profile | Audience Levels | [AudienceLevelName] | Offers
by Raw SQL | (SQL Templates)

Description

Contains the SQL query to be called by this template. The SQL query may
contain references to variable names that are part of the visitor's session
data (profile). For example, select * from MyOffers where category =
${preferredCategory} would rely on the session containing a variable
named preferredCategory.

You should configure the SQL to query the specific offer tables you created
during design time for use by this feature. Note that stored procedures are
not supported here.

Default value

None

Interact | profile | Audience Levels | [AudienceLevelName] | SQL
Template
These configuration properties let you define one or more SQL query templates
used by the offersBySQL feature of Interact.

name

Description

The name you want to assign to this SQL query template. Enter a
descriptive name that will be meaningful when you use this SQL template
in API calls. Note that if you use a name here that is identical to a name
defined in the Interact List process box for an offerBySQL treatment, the
SQL in the process box will be used rather than the SQL you enter here.

Default value

None

SQL

Description

Contains the SQL query to be called by this template. The SQL query may
contain references to variable names that are part of the visitor's session

Chapter 13. Interact runtime environment configuration properties 217

data (profile). For example, select * from MyOffers where category =
${preferredCategory} would rely on the session containing a variable
named preferredCategory.

You should configure the SQL to query the specific offer tables you created
during design time for use by this feature. Note that stored procedures are
not supported here.

Default value

None

Interact | profile | Audience Levels | [AudienceLevelName |
Profile Data Services | [DataSource]

This set of configuration properties enables you to define the table names required
for additional Interact features. You are only required to define the table name if
you are using the associated feature. The Profile Data Services category provides
information about a built-in data source (called Database) that is created for all
audience levels, and which is pre-configured with a priority of 100. However, you
can choose to modify or disable it. This category also contains a template for
additional external data sources. When you click the template called External Data
Services you can complete the configuration settings described here.

New category name

Description

(Not available for the default Database entry.) The name of the data source
you are defining. The name you enter here must be unique among the data
sources for the same audience level.

Default value

None

Valid Values

Any text string is allowed.

enabled

Description

If set to True, this data source is enabled for the audience level to which it
is assigned. If False, Interact does not use this data source for this
audience level.

Default value

True

Valid Values

True | False

className

Description

(Not available for the default Database entry.) The fully-qualified name of
the data source class that implements IInteractProfileDataService.

Default value

None.

218 IBM Interact Administrator's Guide

Valid Values

A string providing a fully-qualified class name.

classPath

Description

(Not available for the default Database entry.) An optional configuration
setting providing the path to load this data source implementation class. If
you omit it, the class path of the containing application server is used by
default.

Default value

Not shown, but the class path of the containing application server is used
by default if no value is provided here.

Valid Values

A string providing the class path.

priority

Description

The priority of this data source within this audience level. It has to be a
unique value among all of the data sources for each audience level. (That
is, if a priority is set to 100 for a data source, no other data source within
the audience level may have a priority of 100.)

Default value

100 for the default Database, 200 for user-defined data source

Valid Values

Any non-negative integer is allowed.

Interact | offerserving
These configuration properties define the generic learning configuration properties.
If you are using built-in learning, to tune your learning implementation, use the
configuration properties for the design environment.

offerTieBreakMethod

Description

The offerTieBreakMethod property defines the behavior of offer serving
when two offers have equivalent (tied) scores. If you set this property to its
default value of Random, Interact presents a random choice from among
the offers that have equivalent scores. If you set this configuration to
Newer Offer, Interact serves up the newer offer (based on having a higher
offer ID) ahead of the older offer (lower offer ID) in the case where the
scores among the offers are the same.

Note:

Interact has an optional feature that allows the administrator to configure
the system to return the offers in random order independent of the score,
by setting the percentRandomSelection option (Campaign | partitions |
[partition_number] | Interact | learning | percentRandomSelection).

Chapter 13. Interact runtime environment configuration properties 219

The offerTieBreakMethod property described here is used only when
percentRandomSelection is set to zero (disabled).

Default value

Random

Valid Values

Random | Newer Offer

optimizationType

Description

The optimizationType property defines whether Interact uses a learning
engine to assist with offer assignments. If set to NoLearning, Interact does
not use learning. If set to BuiltInLearning, Interact uses the Bayesian
learning engine built with Interact. If set to ExternalLearning, Interact uses
a learning engine you provide. If you select ExternalLearning, you must
define the externalLearningClass and externalLearningClassPath
properties.

Default value

NoLearning

Valid Values

NoLearning | BuiltInLearning | ExternalLearning

segmentationMaxWaitTimeInMS

Description

The maximum number of milliseconds that the runtime server waits for an
interactive flowchart to complete before getting offers.

Default value

5000

treatmentCodePrefix

Description

The prefix prepended to treatment codes.

Default value

No default value defined.

effectiveDateBehavior

Description

Determines whether Interact should use an offer's effective date in filtering
out offers that are presented to a visitor. Values include:
v -1 tells Interact to ignore the effective date on the offer.

0 tells Interact to use the effective date to filter the offer, so that if the
offer effective date is earlier than or equal to the current date, the offer
effective date, the offer is served to visitors.
If there is an effectiveDateGracePeriod value set, the grace period is
also applied to determine whether to serve the offer.

220 IBM Interact Administrator's Guide

v Any positive integer tells Interact to use the current date plus the value
of this property to determine whether to serve the offer to visitors, so
that if the offer effective date is earlier than the current date plus the
value of this property, the offer is served to visitors.
If there is an effectiveDateGracePeriod value set, the grace period is
also applied to determine whether to serve the offer.

Default value

-1

effectiveDateGracePeriodOfferAttr

Description

Specifies the name of the custom attribute in an offer definition that
indicates the effective date grace period. For example, you might configure
this property with a value of AltGracePeriod. You would then define offers
with a custom attribute called AltGracePeriod that is used to specify the
number of days to use as a grace period with the effectiveDateBehavior
property.

Suppose you create a new offer template with an effective date of 10 days
from the current date, and include a custom attribute called
AltGracePeriod. When you create an offer using the template, if you set
the value of AltGracePeriod to 14 days, the offer would be served to
visitors, because the current date is within the grace period of the offer
effective date.

Default value

Blank

alwaysLogLearningAttributes

Description

Indicates whether Interact should write information about visitor attributes
used by the learning module to the log files. Note that settings this value
to true may affect learning performance and log file sizes.

Default value

False

Interact | offerserving | Built-in Learning Config
These configuration properties define the database write settings for built-in
learning. To tune your learning implementation, use the configuration properties
for the design environment.

version

Description

You can select 1 or 2. Version 1 is the basic configuration version that does
not use parameters to set thread and record limits. Version 2 is the
enhanced configuration version that lets you set thread and record
parameter to improve performance. These parameters perform aggregation
and deletion when these parameter limits are reached.

Default value

1

Chapter 13. Interact runtime environment configuration properties 221

insertRawStatsIntervalInMinutes

Description

The number of minutes the Interact learning module waits before inserting
more rows into the learning staging tables. You may need to modify this
time based on the amount of data the learning module is processing in
your environment.

Default value

5

Valid Values

A positive integer

aggregateStatsIntervalInMinutes

Description

The number of minutes the Interact learning module waits between
aggregating data in the learning stats tables. You may need to modify this
time based on the amount of data the learning module is processing in
your environment.

Default value

15

Valid Values

An integer greater than zero.

autoAdjustPercentage

Description

The value that determines the percentage of data the run of aggregation
tries to process based on the metrics of the previous run. By default, this
value is set to zero, which means the aggregator processes all staging
records, and this auto adjustment functionality is disabled.

Default value

0

Valid Values

A number between 0 and 100.

enableObservationModeOnly

Description

If set to True, enables a learning mode where Interact collects data for
learning without using that data for recommendations or offer arbitration.
This allows you to operate self-learning in a startup mode until you
determine that enough data is collected for recommendations.

Default value

False

Valid Values

True | False

222 IBM Interact Administrator's Guide

excludeAbnormalAttribute

Description

The setting that determines whether to mark those attributes as invalid. If
set to IncludeAttribute, abnormal attributes are included not marked as
invalid. If set to ExcludeAttribute, abnormal attributes are excluded and
marked as invalid.

Default value

IncludeAttribute

Valid Values

IncludeAttribute | ExcludeAttribute

saveOriginalValues

Description

You can set the values as “All Values”, “Binned Values”, or “None”. This
will control what values will be logged in table
UACI_LearningAttributeHist.

If “All Values” is selected then all learning attributes will be logged in the
table. If this parameter is set to “Binned Values” then only those attributes
will be logged in the table for which bins are created under “Interact->
Global Learning”.

If set to “None” no values will be logged in UACI_LearningAttributeHist .

By default this is set to “None”.

Default value

None

Valid Values

All Values | Binned Values | None

Interact | offerserving | Built-in Learning Config | Parameter
Data | [parameterName]

These configuration properties define any parameters for your external learning
module.

numberOfThreads

Description

The maximum number of threads the learning aggregator uses to process
the data. A valid value is a positive integer, and should not be more than
the maximum number of connections that are configured in the learning
data source. This parameter is used only by aggregator version 2.

Default value

10

maxLogTimeSpanInMin

Description

If aggregator version 1 is selected, you can process the staging records in
iterations to avoid overly large database batches. In this case, those staging

Chapter 13. Interact runtime environment configuration properties 223

records are processed by chunks; iteration by iteration in a single
aggregation cycle. The value of this parameter specifies the maximum time
span of staging records the aggregator tries to process in each iteration.
This time span is based on LogTime field that is associated to each staging
record, and only the records whose LogTime falls into the earliest time
window is processed. A valid value is an integer that is not negative. If the
value is 0, there is no limit, which means all the staging records are
processed in a single iteration.

Default value

0

maxRecords

Description

If aggregator version 2 is selected, you can process the staging records in
iterations to avoid overly large database batches. In this case, those staging
records are processed in chunks; iteration by iteration in a single
aggregation cycle. The value of this parameter specifies the maximum
number of staging records the aggregator tries to process in each iteration.
A valid value is an integer that is not negative. If the value is 0, there is no
limit, which means all the staging records are processed in a single
iteration.

Default value

0

value

Description

The value for any parameter that is required by the class for a built-in
learning module.

Default value

No default value defined.

Interact | offerserving | External Learning Config
These configuration properties define the class settings for an external learning
module you wrote using the learning API.

class

Description

If optimizationType is set to ExternalLearning, set externalLearningClass
to the class name for the external learning engine.

Default value

No default value defined.

Availability

This property is applicable only if optimizationType is set to
ExternalLearning.

classPath

Description

224 IBM Interact Administrator's Guide

If optimizationType is set to ExternalLearning, set externalLearningClass
to the classpath for the external learning engine.

The classpath must reference jar files on the runtime environment server. If
you are using a server group and all runtime servers are using the same
Marketing Platform, every server must have a copy of the jar file in the
same location. The classpath must consist of absolute locations of jar files,
separated by the path delimiter of the operating system of the runtime
environment server, for example a semi-colon (;) on Windows and a colon
(:) on UNIX systems. Directories containing class files are not accepted. For
example, on a Unix system: /path1/file1.jar:/path2/file2.jar.

This classpath must be less than 1024 characters. You can use the manifest
file in a .jar file to specify other .jar files so only one .jar file has to appear
in your class path

Default value

No default value defined.

Availability

This property is applicable only if optimizationType is set to
ExternalLearning.

Interact | offerserving | External Learning Config | Parameter
Data | [parameterName]

These configuration properties define any parameters for your external learning
module.

value

Description

The value for any parameter required by the class for an external learning
module.

Default value

No default value defined.

Example

If the external learning module requires a path to an algorithm solver
application, you would create a parameter category called solverPath and
define the value property as the path to the application.

Interact | offerserving | Constraints
These configuration properties define the constraints placed upon the offer serving
process.

maxOfferAllocationInMemoryPerInstance

Description

The size of a block of offers. Interact keeps a pool of offers in memory so
that the system does not have to query to database each time an offer is
returned. Every time an offer is returned, the pool is adjusted. When the
pool is exhausted, Interact gets another block of offers to fill the pool.

Default value

1000

Chapter 13. Interact runtime environment configuration properties 225

Valid Values

An integer greater than 0.

maxDistributionPerIntervalPerInstanceFactor

Description

The constraint percentage for a given offer allocation for a runtime server
to support the distribution across runtime servers.

Default value

100

Valid Values

An integer between 0 and 100.

constraintCleanupIntervalInDays

Description

How often the disabled counts from the UACI_OfferCount table are
cleaned up. A value less than 1 disables this feature.

Default value

7

Valid Values

An integer greater than 0.

Interact | services
The configuration properties in this category define settings for all the services
which manage collecting contact and response history data and statistics for
reporting and writing to the runtime environment system tables.

externalLoaderStagingDirectory

Description

This property defines the location of the staging directory for a database
load utility.

Default value

No default value defined.

Valid Values

A path relative to the Interact installation directory or an absolute path to a
staging directory.

If you enable a database load utility, you must set the cacheType property
in the contactHist and responstHist categories to External Loader File.

Interact | services | contactHist
The configuration properties in this category define the settings for the service that
collects data for the contact history staging tables.

enableLog

Description

226 IBM Interact Administrator's Guide

If true, enables the service which collects data for recording the contact
history data. If false, no data is collected.

Default value

True

Valid Values

True | False

cacheType

Description

Defines whether the data collected for contact history is kept in memory
(Memory Cache) or in a file (External Loader file). You can use External
Loader File only if you have configured Interact to use a database loader
utility.

If you select Memory Cache, use the cache category settings. If you select
External Loader File, use the fileCache category settings.

Default value

Memory Cache

Valid Values

Memory Cache | External Loader File

Interact | services | contactHist | cache
The configuration properties in this category define the cache settings for the
service that collects data for the contact history staging table.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected contact history data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | contactHist | contactStatusCodes
The configuration properties in this category defines the settings for the custom
contact status type which can be passed into Interact together with contact events..

New category name

Description

This property defines the name of contact status code category.

Chapter 13. Interact runtime environment configuration properties 227

Code

Description

This property defines the custom code for your contact type. This defined
code must exist in IBM Campaign system table UA_ContactStatus.

action

Description

The action corresponding to the custom contact type code. The action
defined here will override the action defined for in the IBM Campaign
System table UA_ContactStatus..

Default value

None

Valid value

LogContact | None

Interact | services | contactHist | fileCache
The configuration properties in this category define the cache settings for the
service that collects contact history data if you are using a database loader utility.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected contact history data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | defaultedStats
The configuration properties in this category define the settings for the service that
collects the statistics regarding the number of times the default string for the
interaction point was used.

enableLog

Description

If true, enables the service that collects the statistics regarding the number
of times the default string for the interaction point was used to the
UACI_DefaultedStat table. If false, no default string statistics are collected.

If you are not using IBM reporting, you can set this property to false since
the data collection is not required.

Default value

228 IBM Interact Administrator's Guide

True

Valid Values

True | False

Interact | services | defaultedStats | cache
The configuration properties in this category define the cache settings for the
service that collects the statistics regarding the number of times the default string
for the interaction point was used.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected default string statistics to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | eligOpsStats
The configuration properties in this category define the settings for the service that
writes the statistics for eligible offers.

enableLog

Description

If true, enables the service that collects the statistics for eligible offers. If
false, no eligible offer statistics are collected.

If you are not using IBM reporting, you can set this property to false since
the data collection is not required.

Default value

True

Valid Values

True | False

Interact | services | eligOpsStats | cache
The configuration properties in this category define the cache settings for the
service that collects the eligible offer statistics.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected eligible offer statistics to the database.

Chapter 13. Interact runtime environment configuration properties 229

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | eventActivity
The configuration properties in this category define the settings for the service that
collects the event activity statistics.

enableLog

Description

If true, enables the service that collects the event activity statistics. If
false, no event statistics are collected.

If you are not using IBM reporting, you can set this property to false since
the data collection is not required.

Default value

True

Valid Values

True | False

Interact | services | eventActivity | cache
The configuration properties in this category define the cache settings for the
service that collects the event activity statistics.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected event activity statistics to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | eventPattern
The configuration properties in the eventPattern category define the settings for
the service that collects the event pattern activity statistics.

230 IBM Interact Administrator's Guide

persistUnknownUserStates

Description

Determines whether the event pattern states for an unknown audience ID
(visitor) is retained in the database. By default, when a session ends, the
statuses of all the updated event patterns associated with the visitor's
audience ID are stored in the database, provided that the audience ID is
known (that is, the visitor's profile can be found in the profile data source).

The persistUnknownUserStates property determines what happens if the
audience ID is not known. By default, this property is set to False, and for
unknown audience IDs, the event pattern states are discarded at the end of
the session.

If you set this property to True, the event pattern states of unknown users
(whose profile cannot be find in the configured profile data service) will be
persisted.

Default value

False

Valid Values

True | False

mergeUnknowUserInSessionStates

Description

Determines how the event pattern states for unknown audience IDs
(visitors) are retained. If the audience ID switches in the middle of a
session, Interact tries to load the saved event pattern states for the new
audience ID from the database table. When the audience ID was unknown
previously, and you set the mergeUnknowUserInSessionStates property is to
True, the user event activities belonging to the previous audience ID in the
same session will be merged into the new audience ID.

Default value

False

Valid Values

True | False

enableUserEventLog

Description

Determines whether user event activities are logged in the database.

Default value

False

Valid Values

True | False

Interact | services | eventPattern | userEventCache
The configuration properties in the userEventCache category define the settings
that determine when event activity is moved from the cache to persist in the
database.

Chapter 13. Interact runtime environment configuration properties 231

threshold

Description

Determines the maximum number of event pattern states that can be
stored in the event pattern state cache. When the limit is reached, the
least-recently used states are flushed from the cache.

Default value

100

Valid Values

The desired number of event pattern states to retain in the cache.

insertPeriodInSecs

Description

Determines the maximum length of time in seconds that user event
activities are queued in memory. When the time limit specified by this
property is reached, those activities are persisted into the database.

Default value

3600 (60 minutes)

Valid Values

The desired number of seconds.

Interact | services | eventPattern | advancedPatterns
The configuration properties in this category control whether integration with
Interact Advanced Patterns is enabled, and they define the timeout intervals for
connections with Interact Advanced Patterns.

enableAdvancedPatterns

Description

If true, enables integration with Interact Advanced Patterns. If false,
integration is not enabled. If integration was previously enabled, Interact
uses the most recent pattern states received from Interact Advanced
Patterns.

Default value

True

Valid Values

True | False

connectionTimeoutInMilliseconds

Description

Maximum time it can take to make an HTTP connection from the Interact
real time environment to Interact Advanced Patterns. If the request times
out, Interact uses the last saved data from patterns.

Default value

30

232 IBM Interact Administrator's Guide

readTimeoutInMilliseconds

Description

After an HTTP connection is established between the Interact real time
environment and Interact Advanced Patterns,and a request is sent to the
Interact Advanced Patterns to get the status of an event pattern, the
maximum time it can take to receive data. If the request times out, Interact
uses the last saved data from patterns.

Default value

100

connectionPoolSize

Description

Size of the HTTP connection pool for communication between the Interact
real time environment and Interact Advanced Patterns.

Default value

10

Interact | services | eventPattern | advancedPatterns |
autoReconnect
The configuration properties in this category specify parameters for the automatic
reconnection feature in the integration with Interact Advanced Patterns.

enable

Description

Determines whether the system to reconnects automatically if connection
problems occur between the Interact real time environment and Interact
Advanced Patterns. The default value of True enables this feature.

Default value

True

Valid Values

True | False

durationInMinutes

Description

This property specifies the time interval, in minutes, during which the
system to evaluates repeated connection problems occurring between the
Interact real time environment and Interact Advanced Patterns.

Default value

10

numberOfFailuresBeforeDisconnect

Description

This property specifies the number of connection failures allowed during
the specified time period before the system automatically disconnects from
Interact Advanced Patterns.

Default value

Chapter 13. Interact runtime environment configuration properties 233

3

consecutiveFailuresBeforeDisconnect

Description

Determines whether the automatic reconnection feature evaluates only
consecutive failures of the connection between the Interact real time
environment with Interact Advanced Patterns. If you set this value to
False, all failures within the specified time interval are evaluated.

Default value

True

sleepBeforeReconnectDurationInMinutes

Description

The system waits the number of minutes specified in this property before
reconnecting after the system disconnects due to repeated failures as
specified in the other properties in this category.

Default value

5

sendNotificationAfterDisconnect

Description

This property determines whether the system sends an email notification
when a connection failure occurs. The notification message includes the
Interact real time instance name for which failure occurred and the amount
of time before reconnection occurs, as specified in the
sleepBeforeReconnectDurationInMinutes property. The default value of
True means that notifications are sent.

Default value

True

Interact | services | customLogger
The configuration properties in this category define the settings for the service that
collects custom data to write to a table (an event which uses the
UACICustomLoggerTableName event parameter).

enableLog

Description

If true, enables the custom log to table feature. If false, the
UACICustomLoggerTableName event parameter has no effect.

Default value

True

Valid Values

True | False

234 IBM Interact Administrator's Guide

Interact | services | customLogger | cache
The configuration properties in this category define the cache settings for the
service that collects custom data to a table (an event which uses the
UACICustomLoggerTableName event parameter).

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected custom data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | responseHist
The configuration properties in this category define the settings for the service that
writes to the response history staging tables.

enableLog

Description

If true, enables the service that writes to the response history staging
tables. If false, no data is written to the response history staging tables.

The response history staging table is defined by the responseHistoryTable
property for the audience level. The default is UACI_RHStaging.

Default value

True

Valid Values

True | False

cacheType

Description

Defines whether the cache is kept in memory or in a file. You can use
External Loader File only if you configured Interact to use a database
loader utility.

If you select Memory Cache, use the cache category settings. If you select
External Loader File, use the fileCache category settings.

Default value

Memory Cache

Valid Values

Memory Cache | External Loader File

Chapter 13. Interact runtime environment configuration properties 235

actionOnOrphan

Description

This setting determines what to do with response events that do not have
corresponding contact events. If set to NoAction, the response event is
processed as if the corresponding contact event was posted. If set to
Warning, the response event is processed as if the corresponding contact
event was posted, but a warning message is written into interact.log. If
set to Skip, the response even is not processed, and an error message is
written into interact.log. The setting that you choose here is effective
regardless if response history logging is enabled.

Default value

NoAction

Valid Values

NoAction | Warning | Skip

Interact | services | responseHist | cache
The configuration properties in this category define the cache settings for the
service that collects the response history data.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected response history data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | response Hist | responseTypeCodes
The configuration properties in this category define the settings for the response
history service.

New category name

Description
The name of your response type code.

code

Description

The custom code for your response type.

Default value

The custom code added in the UA_UsrResponseType table.

236 IBM Interact Administrator's Guide

action

Description

The action corresponding to the custom response type code.

The action defined for the event this is posted overrides the action defined
here. Therefore, if a logAccept event is posted without responseTypeCode,
this event is treated as an acceptance event. If a logAccept event is posted
with a responseTypeCode that exists in this configuration, the configured
action is used to determine if it is an acceptance event. If a logAccept event
is posted with a responseTypeCode that does not exist in this
configuration, this event is not treated as an acceptance event. When an
event is treated as an acceptance event, the learning statistics are updated
accordingly if learning is enabled. Offer expression rules are evaluated if
there is one based on the acceptance of this offer.

Default value

None

Valid Values

LogAccept | LogReject | None

Interact | services | responseHist | fileCache
The configuration properties in this category define the cache settings for the
service that collects the response history data if you are using a database loader
utility.

threshold

Description

The number of records accumulated before Interact writes them to the
database.

responseHist - The table defined by the responseHistoryTable property for
the audience level. The default is UACI_RHStaging.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the database.

Default value

3600

Interact | services | crossSessionResponse
The configuration properties in this category define general settings for the
crossSessionResponse service and the xsession process. You only need to configure
these settings if you are using Interact cross-session response tracking.

enableLog

Description

Chapter 13. Interact runtime environment configuration properties 237

If true, enables the crossSessionResponse service and Interact writes data
to the cross-session response tracking staging tables. If false, disables the
crossSessionResponse service.

Default value

False

xsessionProcessIntervalInSecs

Description

The number of seconds between runs of the xsession process. This process
moves data from the cross-session response tracking staging tables to the
response history staging table and the built-in learning module.

Default value

180

Valid Values

An integer greater than zero

purgeOrphanResponseThresholdInMinutes

Description

The number of minutes the crossSessionResponse service waits before
marking any responses that do not match contacts in the contact and
response history tables.

If a response has no match in the contact and response history tables, after
purgeOrphanResponseThresholdInMinutes minutes, Interact marks the
response with a value of -1 in the Mark column of the xSessResponse
staging table. You can then manually match or delete these responses.

Default value

180

Interact | services | crossSessionResponse | cache
The configuration properties in this category define the cache settings for the
service that collects cross-session response data.

threshold

Description

The number of records accumulated before the flushCacheToDB service
writes the collected cross-session response data to the database.

Default value

100

insertPeriodInSecs

Description

The number of seconds between forced writes to the XSessResponse table.

Default value

3600

238 IBM Interact Administrator's Guide

Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] | TrackingCodes |
byTreatmentCode

The properties in this section define how cross-session response tracking matches
treatment codes to contact and response history.

SQL

Description

This property defines whether Interact uses the System Generated SQL or
custom SQL defined in the OverrideSQL property.

Default value

Use System Generated SQL

Valid Values

Use System Generated SQL | Override SQL

OverrideSQL

Description

If you do not use the default SQL command to match the treatment code
to the contact and response history, enter the SQL or stored procedure
here.

This value is ignored if SQL is set to Use System Generated SQL.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored
procedure which matches the treatment code to the contact and response
history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

false

Valid Values

true | false

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table
in the runtime environment tables. Unless you revise the
UACI_TrackingType table, the Type must be 1.

Default value

1

Valid Values

An integer defined in the UACI_TrackingType table.

Chapter 13. Interact runtime environment configuration properties 239

Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] | TrackingCodes |
byOfferCode

The properties in this section define how cross-session response tracking matches
offer codes to contact and response history.

SQL

Description

This property defines whether Interact uses the System Generated SQL or
custom SQL defined in the OverrideSQL property.

Default value

Use System Generated SQL

Valid Values

Use System Generated SQL | Override SQL

OverrideSQL

Description

If you do not use the default SQL command to match the offer code to the
contact and response history, enter the SQL or stored procedure here.

This value is ignored if SQL is set to Use System Generated SQL.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored
procedure which matches the offer code to the contact and response
history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

false

Valid Values

true | false

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table
in the runtime environment tables. Unless you revise the
UACI_TrackingType table, the Type must be 2.

Default value

2

Valid Values

An integer defined in the UACI_TrackingType table.

240 IBM Interact Administrator's Guide

Interact | services | crossSessionResponse |
OverridePerAudience | [AudienceLevel] | TrackingCodes |
byAlternateCode

The properties in this section define how cross-session response tracking matches a
user-defined alternate code to contact and response history.

Name

Description

This property defines the name for the alternate code. This must match the
Name value in the UACI_TrackingType table in the runtime environment
tables.

Default value

OverrideSQL

Description

The SQL command or stored procedure to match the alternate code to the
contact and response history by offer code or treatment code.

Default value

useStoredProcedure

Description

If set to true, the OverrideSQL must contain a reference to a stored
procedure which matches the alternate code to the contact and response
history.

If set to false, the OverrideSQL, if used, must be an SQL query.

Default value

false

Valid Values

true | false

Type

Description

The associated TrackingCodeType defined in the UACI_TrackingType table
in the runtime environment tables.

Default value

3

Valid Values

An integer defined in the UACI_TrackingType table.

Interact | services | threadManagement |
contactAndResponseHist

The configuration properties in this category define thread management settings
for the services which collect data for the contact and response history staging
tables.

Chapter 13. Interact runtime environment configuration properties 241

corePoolSize

Description

The number of threads to keep in the pool, even if they are idle, for
collecting the contact and response history data.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for collecting the
contact and response history data.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum
time that excess idle threads will wait for new tasks before terminating for
collecting the contact and response history data.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for collecting the contact
and response history data.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to
wait for service threads to complete collecting the contact and response
history data.

Default value

5

Interact | services | threadManagement | allOtherServices
The configuration properties in this category define the thread management
settings for the services which collect the offer eligibility statistics, event activity
statistics, default string usage statistics, and the custom log to table data.

corePoolSize

Description

242 IBM Interact Administrator's Guide

The number of threads to keep in the pool, even if they are idle, for the
services which collect the offer eligibility statistics, event activity statistics,
default string usage statistics, and the custom log to table data.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for the services
which collect the offer eligibility statistics, event activity statistics, default
string usage statistics, and the custom log to table data.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum
time that excess idle threads wait for new tasks before terminating for the
services which collect the offer eligibility statistics, event activity statistics,
default string usage statistics, and the custom log to table data.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for the services which
collect the offer eligibility statistics, event activity statistics, default string
usage statistics, and the custom log to table data.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to
wait for service threads to complete for the services which collect the offer
eligibility statistics, event activity statistics, default string usage statistics,
and the custom log to table data.

Default value

5

Interact | services | threadManagement | flushCacheToDB
The configuration properties in this category define the thread management
settings for the threads that write collected data in cache to the runtime
environment database tables.

Chapter 13. Interact runtime environment configuration properties 243

corePoolSize

Description

The number of threads to keep in the pool for scheduled threads that write
cached data to the data store.

Default value

5

maxPoolSize

Description

The maximum number of threads to keep in the pool for scheduled
threads that that write cached data to the data store.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum
time that excess idle threads wait for new tasks before terminating for
scheduled threads that that write cached data to the data store.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for scheduled threads that
that write cached data to the data store.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to
wait for service threads to complete for scheduled threads that that write
cached data to the data store.

Default value

5

Interact | services | threadManagement | eventHandling
The configuration properties in this category define the thread management
settings for the services which collect data for event handling.

corePoolSize

Description

244 IBM Interact Administrator's Guide

The number of threads to keep in the pool, even if they are idle, for
collecting event handling data.

Default value

1

maxPoolSize

Description

The maximum number of threads to keep in the pool for the services
which collect the event handling data.

Default value

5

keepAliveTimeSecs

Description

When the number of threads is greater than the core, this is the maximum
time that excess idle threads wait for new tasks before terminating for
collecting the event handling data.

Default value

5

queueCapacity

Description

The size of the queue used by the thread pool for collecting event handling
data.

Default value

1000

termWaitSecs

Description

At the shutdown of the runtime server, this is the number of seconds to
wait for service threads to complete for the services which collect the event
handling data.

Default value

5

Interact | services | configurationMonitor
The configuration properties in this category allow you to enable or disable
integration with Interact Advanced Patterns without having to restart Interact real
time, and they define the interval for polling the property value that enables the
integration.

enable

Description

If true, enables the service that refreshes the value of the Interact |
services | eventPattern | advancedPatterns enableAdvancedPatterns

Chapter 13. Interact runtime environment configuration properties 245

property. If false, you must restart Interact real time when you change the
value of the Interact | services | eventPattern | advancedPatterns
enableAdvancedPatterns property.

Default value

False

Valid Values

True | False

refreshIntervalInMinutes

Description

Defines the time interval for polling the value of the Interact | services |
eventPattern | advancedPatterns enableAdvancedPatterns property.

Default value

5

Interact | cacheManagement
This set of configuration properties defines settings for selecting and configuring
each of the supported cache managers that you can use to improve the
performance of Interact, such as EHCache, which is built-in to your Interact
installationWebSphere eXtreme Scale caching, which is an optional add-on, or
another external caching system.

Use the Interact | cacheManagement | Cache Managers configuration properties
to configure the cache manager you want to use. Use the Interact |
cacheManagement | caches configuration properties to specify which cache
manager Interact should use to improve performance.

Interact | cacheManagement | Cache Managers
The Cache Managers category specifies the parameters for the cache management
solutions you plan to use with Interact.

Interact | cacheManagement | Cache Managers | EHCache
The EHCache category specifies the parameters for the EHCache cache
management solution, so that you can customize it to improve the performance of
Interact.

Interact | Cache Managers | EHCache | Parameter Data
The configuration properties in this category control how the EHCache cache
management system works to improve the performance of Interact.

cacheType

Description

You can configure the Interact runtime servers in a server group to use a
multicast address for sharing cache data. This is referred to as a distributed
cache. The cacheType parameter specifies whether you are using the built-in
EHCache caching mechanism in local (stand-alone) mode or distributed
(as with a runtime server group).

Note:

246 IBM Interact Administrator's Guide

If you select Distributed for the cacheType, all of the servers sharing the
cache must be part of the same, single server group. You must also enable
multicast to work between all members of a server group.

Default value

Local

Valid Values

Local | Distributed

multicastIPAddress

Description

If you specify that the cacheType parameter is "distributed," you are
configuring the cache to operate via multicast between all members of an
Interact runtime server group. The multicastIPAddress value is the IP
address that all the Interact servers for the server group use for listening.

The IP address must be unique across your server groups.

Default value

230.0.0.1

multicastPort

Description

If you specify that the cacheType parameter is "distributed," the
multicastPort parameter indicates the port that all of the Interact servers
for the server group use for listening.

Default value

6363

overflowToDisk

Description

The EHCache cache manager manages the session information using
available memory. For environments where the session size is large due to
a large profile, the number of sessions to be supported in memory may not
be large enough to support the customer scenario. For situations where this
is the case, EHCache has an optional feature to allow cache information
greater than the amount that can be kept in memory to be written
temporarily to the hard drive instead.

If you set the overflowToDisk property to "yes," each Java virtual machine
(JVM) can handle more concurrent sessions than the memory alone would
have allowed.

Default value

No

Valid Values

No | Yes

diskStore

Description

Chapter 13. Interact runtime environment configuration properties 247

When the configuration property overflowToDisk is set to Yes, this
configuration property specifies the disk directory that will hold the cache
entries that are overflowed from memory. If this configuration property
does not exist or its value is not valid, the disk directory is automatically
created in the operating system's default temporary directory.

Default value

None

Valid Values

A directory to which the web application hosting Interact run time has
write privileges.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with
the cache manager. You can set up any parameter name, and the value it
must have.

To create a custom parameter, click (Parameter) and complete the name
and the value you want to assign to that parameter. When you click Save
Changes, the parameter you have created is added to the list in the
Parameter Data category.

Default value

None

Interact | cacheManagement | Cache Managers | Extreme Scale
The Extreme Scale category specifies the parameters for the adapter to use the
WebSphere eXtreme Scale cache management solution, so that you can customize it
to improve the performance of Interact.

ClassName

Description

The fully-qualified name of the class that connects Interact to the
WebSphere eXtreme Scale server. It must be
com.unicacorp.interact.cache.extremescale.ExtremeScaleCacheManager.

Default value

com.unicacorp.interact.cache.extremescale.ExtremeScaleCacheManager

ClassPath

Description

The URI of the location of the file interact_wxs_adapter.jar, such as
file:///IBM/IMS/Interact/lib/interact_wxs_adapter.jar or
file:///C:/IBM/IMS/Interact/lib/interact_wxs_adapter.jar. However, if
this jar file is already included in the class path of the hosting application
server, this field should be left blank.

Default value

Blank

248 IBM Interact Administrator's Guide

Interact | Cache Managers | Extreme Scale | Parameter Data
The configuration properties in this category control the WebSphere eXtreme Scale
adapter that is optionally included with your Interact installation. These settings
must be configured for each Interact run time server that is acting as a client to the
eXtreme Scale server grid.

catalogPropertyFile

Description

The URI of the location of the property file used to start the WebSphere
eXtreme Scale catalog server. If the Extreme Scale Adapter is used to start
the catalog server, this property must be set. Otherwise, it will not be used.

Default value

file:///C:/depot/Interact/dev/main/extremescale/config/
catalogServer.props

containerPropertyFile

Description

The URI of the location of the property file used to start the WebSphere
eXtreme Scale container instances. If the included server component is
used to start the WebSphere eXtreme Scale container servers, this property
must be set. Otherwise, it is not used.

Default value

file:///C:/depot/Interact/dev/main/extremescale/config/
containerServer.props

deploymentPolicyFile

Description

The URI of the location of the deployment policy file used to start the
WebSphere eXtreme Scale catalog server. If the included server component
is used to start the WebSphere eXtreme Scale catalog server, this property
must be set. Otherwise, it is not used.

Default value

file:///C:/depot/Interact/dev/main/extremescale/config/
deployment.xml

objectGridConfigFile

Description

The URI of the location of the object grid configuration file used to start
the WebSphere eXtreme Scale catalog server and also the near-cache
component that runs together with the Interact run time server in the same
Java Virtual Machine (JVM).

Default value

file:///C:/depot/Interact/dev/main/extremescale/config/
objectgrid.xml

gridName

Description

Chapter 13. Interact runtime environment configuration properties 249

The name of the WebSphere eXtreme Scale grid that holds all Interact
caches.

Default value

InteractGrid

catalogURLs

Description

A URL containing the host name or IP address and the port on which the
WebSphere eXtreme Scale catalog server is listening for connections.

Default value

None

(Parameter)

Description

A template that you can use to create a custom parameter to be used with
the cache manager. You can set up any parameter name, and the value it
must have.

To create a custom parameter, click (Parameter) and complete the name
and the value you want to assign to that parameter. When you click Save
Changes, the parameter you have created is added to the list in the
Parameter Data category.

Default value

None

Interact | caches
Use this set of configuration properties to specify which supported cache manager
you want to use to improve the performance of Interact, such as Ehcache or
WebSphere eXtreme Scale caching, and to configure specific cache properties for
the runtime server you are configuring.

This includes the caches for storing session data, event pattern states, and
segmentation results. By adjusting those settings, you can specify which cache
solution to use for each type of caching, and you can specify individual settings to
control how the cache works.

Interact | cacheManagement | caches | InteractCache
The InteractCache category configures the caching for all session objects, including
the profile data, segmentation results, most recently delivered treatments,
parameters passed through API methods, and other objects used by the Interact
run time.

The InteractCache category is required for Interact to work properly.

The InteractCache category can also be configured through an external EHCache
configuration for settings that are not supported in Interact | cacheManagement |
Caches. If you use EHCache, you must ensure that InteractCache is configured
properly.

CacheManagerName

Description

250 IBM Interact Administrator's Guide

The name of the cache manager that handles the Interact cache. The value
you enter here must be one of the cache managers defined in the Interact |
cacheManagement | Cache Managers configuration properties, such as
EHCache or Extreme Scale.

Default value

EHCache

Valid Values

Any cache manager defined in the Interact | cacheManagement | Cache
Managers configuration property.

maxEntriesInCache

Description

The maximum number of session data objects to store in this cache. When
the maximum number of session data objects has been reached, and data
for an additional session need to be stored, the least-recently used object is
deleted.

Default value

100000

Valid Values

Integer greater than 0.

timeoutInSecs

Description

The time in seconds that have elapsed since a session data object has been
used or updated that are used to determine when the object is removed
from the cache.

Note: If you upgraded from a version prior to 9.1, then you will need to
reconfigure timeoutInSecs property because the property moved.

Default value

300

Valid Values

Integer greater than 0.

Interact | Caches | Interact Cache | Parameter Data
The configuration properties in this category control the Interact Cache that is
automatically used by your Interact installation. These settings must be configured
individually for each Interact run time server.

asyncIntervalMillis

Description

The time in millisecond that the cache manager EHCache should wait
before it replicates any changes to other Interact run time instances. If the
value is not positive, those changes will be replicated synchronously.

This configuration property is not created by default. If you create this
property, it is used only when EHCache is the cache manager, and when
the ehCache cacheType property is set to distributed.

Chapter 13. Interact runtime environment configuration properties 251

Default value

None.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with
the Intearct Cache. You can set up any parameter name, and the value it
must have.

To create a custom parameter, click (Parameter) and complete the name
and the value you want to assign to that parameter. When you click Save
Changes, the parameter you have created is added to the list in the
Parameter Data category.

Default value

None

Interact | cacheManagement | caches | PatternStateCache
The PatternStateCache category is used to host the states of event patterns and real
time offer suppression rules. By default, this cache is configured as a read-through
and write-through cache, so that Interact attempts to use the cache first event
pattern and offer suppression data. If the requested entry does not exist in the
cache, the cache implementation loads it from the data source, through either the
JNDI configuration or directly using a JDBC connection.

To use a JNDI connection, Interact connects to an existing data source provider that
has been defined through the specified server using the JNDI name, URL, and so
on. For a JDBC connection, you must provide a set of JDBC settings that include
the JDBC driver class name, database URL, and authentication information.

Note that if you define multiple JNDI and JDBC sources, the first enabled JNDI
source is used, and if there is no enabled JNDI sources, the first enabled JDBC
source is used.

The PatternStateCache category is required for Interact to work properly.

The PatternStateCache category can also be configured through an external
EHCache configuration for settings that are not supported in Interact |
cacheManagement | Caches. If you use EHCache, you must ensure that
PatternStateCache is configured properly.

CacheManagerName

Description

The name of the cache manager that handles the Interact pattern state
cache. The value you enter here must be one of the cache managers
defined in the Interact | cacheManagement | Cache Managers
configuration properties, such as EHCache or Extreme Scale.

Default value

EHCache

Valid Values

Any cache manager defined in the Interact | cacheManagement | Cache
Managers configuration property.

252 IBM Interact Administrator's Guide

maxEntriesInCache

Description

The maximum number of event pattern states to store in this cache. When
the maximum number of event pattern states has been reached, and data
for an additional event pattern state need to be stored, the least-recently
used object is deleted.

Default value

100000

Valid Values

Integer greater than 0.

timeoutInSecs

Description

Specifies the amount of time, in seconds, for an event pattern state object
to time out in the event pattern state cache. When such a state object has
been idling in the cache for timeoutInSecs number of seconds, it may be
ejected from the cache based on the least-recently-used rule. Note that the
value of this property should be larger than that defined in the
sessionTimeoutInSecs property.

Note: If you upgraded from a version prior to 9.1, then you will need to
reconfigure timeoutInSecs property because the property moved.

Default value

300

Valid Values

Integer greater than 0.

Interact | Caches | PatternStateCache | Parameter Data:

The configuration properties in this category control the Pattern State Cache used
to host the states of event patterns and real time offer suppression rules.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with
the Pattern State Cache. You can set up any parameter name, and the value
it must have.

To create a custom parameter, click (Parameter) and complete the name
and the value you want to assign to that parameter. When you click Save
Changes, the parameter you have created is added to the list in the
Parameter Data category.

Default value

None

Interact | cacheManagement | caches | PatternStateCache | loaderWriter:

The loaderWriter category contains the configuration of the loader that interacts
with external repositories for the retrieval and persistence of event patterns.

Chapter 13. Interact runtime environment configuration properties 253

className

Description

The fully-qualified class name for this loader. This class must comply with
the chosen cache manager's requirement.

Default value

com.unicacorp.interact.cache.ehcache.loaderwriter.
PatternStateEHCacheLoaderWriter

Valid Values

A fully-qualified class name.

classPath

Description

The path to the loader's class file. If you leave this value blank or the entry
is invalid, the class path used for running Interact is used.

Default value

None

Valid Values

A valid class path.

writeMode

Description

Specifies the mode for the writer to persist the new or updated event
pattern states in the cache. Valid options are:
v WRITE_THROUGH. Every time there is a new entry or an existing entry

is updated, that entry is written into the repositories immediately.
v WRITE_BEHIND. The cache manager waits for some time to collect a

number of changes, and then persists them into the repositories in a
batch.

Default value

WRITE_THROUGH

Valid Values

WRITE_THROUGH or WRITE_BEHIND.

batchSize

Description

The maximum number of event pattern state objects the writer will persist
in a batch. This property is used only when writeMode is set to
WRITE_BEHIND.

Default value

100

Valid Values

Integer value.

254 IBM Interact Administrator's Guide

maxDelayInSecs

Description

The maximum time in seconds that the cache manager waits before an
event pattern state object is persisted. This property is used only when
writeMode is set to WRITE_BEHIND.

Default value

5

Valid Values

Integer value.

Interact | Caches | PatternStateCache | loaderWriter | Parameter Data:

The configuration properties in this category control the Pattern State Cache loader.

(Parameter)

Description

A template that you can use to create a custom parameter to be used with
the Pattern State Cache loader. You can set up any parameter name, and
the value it must have.

To create a custom parameter, click (Parameter) and complete the name
and the value you want to assign to that parameter. When you click Save
Changes, the parameter you have created is added to the list in the
Parameter Data category.

Default value

None

Interact | cacheManagement | caches | PatternStateCache | loaderWriter |
jndiSettings:

The jndiSettings category contains the configuration for the JNDI data source the
loader will use to communicate with the backing database. To create a new set of
JNDI settings, expand the jdniSettings category and click the (jndiSetting)
property.

(jndiSettings)

Note: When the WebSphere Application Server is used, the loaderWriter is not get
connected with the jndiSettings.

Description

When you click this category, a form appears. To define a JNDI data
source, complete the following values:
v New category name is the name you want to use to identify this JNDI

connection.
v enabled lets you indicate whether you want this JNDI connection to be

available for use or not. Set this to True for new connections.
v jdniName is the JNDI name that has already been defined in the data

source when it was set up.

Chapter 13. Interact runtime environment configuration properties 255

v providerUrl is the URL to find this JNDI data source. If you leave this
field blank, the URL of the web application that hosts the Interact run
time is used.

v Initial context factory is the fully qualified class name of the initial
context factory class for connecting to the JNDI provider. If the web
application hosting the Interact run time is used for the providerUrl,
leave this field blank.

Default value

None.

Interact | cacheManagement | caches | PatternStateCache | loaderWriter |
jdbcSettings:

The jdbcSettings category contains the configuration for the JDBC connections the
loader will use to communicate with the backing database. To create a new set of
JDBC settings, expand the jdbcSettings category and click the (jdbcSetting)
property.

(jdbcSettings)

Description

When you click this category, a form appears. To define a JDBC data
source, complete the following values:
v New category name is the name you want to use to identify this JDBC

connection.
v enabled lets you indicate whether you want this JDBC connection to be

available for use or not. Set this to True for new connections.
v driverClassName is the fully-qualified class name of the JDBC driver.

This class must exist in the class path configured for starting the hosting
cache server.

v databaseUrl is the URL to find this JDBC data source.
v asmUser is the name of the IBM Marketing Software user that has been

configured with the credentials for connecting to the database in this
JDBC connection.

v asmDataSource the name of IBM Marketing Software data source that
has been configured with the credentials for connecting to the database
in this JDBC connection.

v maxConnection is the maximum number of concurrent connections that
are allowed to be made the database in this JDBC connection.

Default value

None.

Interact | triggeredMessage
The configuration properties in this category define settings for all triggered
messages and offer channel delivery.

backendProcessIntervalMin

Description

256 IBM Interact Administrator's Guide

This property defines the time period in minutes that the backend thread
loads and processes delayed offer deliveries. This value must be an integer.
If the value is zero or negative, the backend process is disabled.

Valid Values

A positive integer

autoLogContactAfterDelivery

Description

If this property is set to true, a contact event is automatically posted as
soon as this offer is dispatched or this offer is queued for delayed delivery
If this property is set to false, no contact event is automatically posted for
the outbound offers. This is the default behavior.

Note:

v If you want to capture additional attributes in the contact history when
the outbound message is triggered, you can add the additional custom
attributes as columns in the contact history. While posting an event, that
would trigger the outbound triggered message, you can pass values for
the attributes in the postEvent method as the name value parameters

v To parametrize an offer to an outbound channel, you could assign offers
in the associated strategy, deploy the channel, personalize the offer, and
in the triggered message choose Automatically select next best offer.

Valid Values

True | False

waitForFlowchart

Description

This property determines if the flowchart should wait for the currently
running segmentation to finish, and the behavior if that wait times out.

DoNotWait: The processing of a triggered message starts regardless if
segmentation is currently running or not. However, if segments are used in
the eligibility rule and/or NextBestOffer is selected as the offer selection
method, the TM execution still waits.

OptionalWait : The processing of a triggered message waits until the
currently running segmentation finishes or times out. If the wait times out,
a warning is logged, and the processing of this triggered message
continues. This is the default.

MandatoryWait: The processing of a triggered message waits until the
currently running segmentation finishes or times out. If the wait times out,
an error is logged, and the processing of this triggered message aborts.

Valid Values

DoNotWait | OptionalWait | MandatoryWait

Interact | triggeredMessage | offerSelection
The configuration properties in this category define settings for offer selection in
triggered messages.

Chapter 13. Interact runtime environment configuration properties 257

maxCandidateOffers

Description

This property defines the maximum number of eligible offers that the
engine returns to get the best offer for delivery. There is a chance that none
of those returned eligible offers can be sent based on the selected channel.
The more candidate offers there are, the less this case happens. However,
more candidate offers can increase processing time.

Valid Values

A positive integer

defaultCellCode

Description

If the delivered offer is the result of evaluating a strategic rule or a table
driven record, there is a target cell associated to it, and the information of
this cell is used in all the related logging. However, if a list of specific
offers are used as the input to the offer selection, no target cell is available.
In this case, the value of this configuration setting is used. You must make
sure this target cell and its campaign are included in the deployment. The
easiest method to achieve this is to add the cell into a deployed strategy.

Interact | triggeredMessage | dispatchers
The configuration properties in this category define settings for all dispatchers in
triggered messages.

dispatchingThreads

Description

This property defines the number of threads the engine uses to
asynchronously call the dispatchers. If the value is 0 or a negative number,
the invocation of dispatchers is synchronous. The default value is 0.

Valid Values

An integer

Interact | triggeredMessage | dispatchers | <dispatcherName>
The configuration properties in this category define settings for a specific
dispatcher in triggered messages.

category name

Description

This property defines the name of this dispatcher. The name must be
unique among all dispatchers.

type

Description

This property defines the disptacher type.

Valid Values

InMemoryQueue | JMSQueue | Custom

258 IBM Interact Administrator's Guide

Note: If you use JMSQueue or Custom, to integrate Interact with IBM MQ,
Interact runtime must be on appserver with JDK 1.7. For WebSphere and
WebLogic, it is recommended to use the latest supplied JDK fix pack
version.

JMSQueue only supports WebLogic. You cannot use JMSQueue if you use
WebSphere Application Server.

className

Description

This property defines the fully qualified class name of this dispatcher
implementation. If the type is InMemoryQueue the value should be empty.
If the type is custom, this setting must have the value
com.unicacorp.interact.eventhandler.triggeredmessage.dispatchers.
IBMMQDispatcher.

classPath

Description

This property defines the URL to the JAR file that includes the
implementation of this dispatcher.

If the type is custom, this setting much have the value
file://<Interact_HOME>/lib/interact_ibmmqdispatcher.jar;file://
<Interact_HOME>/lib/com.ibm.mq.allclient.jar;file://<Interact_HOME>/
lib/jms.jar

Interact | triggeredMessage | dispatchers | <dispatcherName> |
Parameter Data
The configuration properties in this category define parameters for a specific
dispatcher in triggered messages.

You can choose between three types of dispatchers. InMemoryQueue is the internal
dispatcher for Interact. Custom is used for IBM MQ. JMSQueue is used to connect
to a JMS provider via JNDI.

cateogry name

Description

This property defines the name of this parameter. The name must be
unique among all parameters for that dispatcher.

value

Description

This property defines the parameters, in the format of name value pairs,
needed by this dispatcher.

Note: All parameters for trigger messages are case sensitive and should be
entered as shown here.

If the type is InMemoryQueue, the following parameter is supported.
v queueCapacity: Optional. The maximum offers that can be waiting in the

queue to be dispatched. When specified, this property must be a positive
integer. If not specified or invalid, the default value (1000) is used.

If the type is Custom, the following parameters are supported.

Chapter 13. Interact runtime environment configuration properties 259

v providerUrl: <hostname>:port (case sensitive)
v queueManager: The name of the queue manager that was created on the

IBM MQ server.
v messageQueueName: The name of the message queue that was created

on the IBM MQ server.
v enableConsumer: This property must be set to true.
v asmUserforMQAuth: The user name for logging into the server. It is

required when the server enforces authentication. Otherwise, it should
not be specified.

v authDS: The password associated with the user name for logging into
the server. It is required when the server enforces authentication.
Otherwise, it should not be specified.

If the type is JMSQueue, the following parameter is supported.
v providerUrl: The URL to the JNDI provider (case sensitive).
v connectionFactoryJNDI: The JNDI name of the JMS connection factory.
v messageQueueJNDI: The JNDI name of the JMS queue where the

triggered messages are sent to and retrieved from.
v enableConsumer: Whether a consumer of those triggered messages

should be started in Interact. This property must be set to true. If not
specified, the default value (false) is used.

v initialContextFactory: The fully qualified name of the JNDI initial context
factory class. IF you use WebLogic, the value of this parameter should
be weblogic.jndi.WLInitialContextFactory.

Interact | triggeredMessage | gateways | <gatewayName>
The configuration properties in this category define settings for a specific gateway
in triggered messages.

Interact does not support multiple instances of the same gateway. All of the
gateway configuration files should be accessible from every Interact Runtime node.
In the case of a distributed setup, ensure that the gateway files are kept at a shared
location.

category name

Description

This proerpty defines the name of this gateway. It must be unique among
all gateways.

className

Description

This property defines the fully qualified class name of this gateway
implementation.

classPath

Description

This property defines the URI of the JAR file that includes the
implementation of this gateway. If left empty, the class path of the hosting
Interact application is used.

260 IBM Interact Administrator's Guide

For example in a windows system, if the gateway JAR file is available in
the directory, C:\IBM\EMM\EmailGateway\
IBM_Interact_OMO_OutboundGateway_Silverpop_1.0\lib\
OMO_OutboundGateway_Silverpop.jar, the classPath should be
file:///C:/IBM/EMM/EmailGateway/
IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/lib/
OMO_OutboundGateway_Silverpop.jar. In a unix system, if the gateway jar
file is available in the directory, /opt/IBM/EMM/EmailGateway/
IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/lib/
OMO_OutboundGateway_Silverpop.jar, the classpath should be
file:///opt/IBM/EMM/EmailGateway/
IBM_Interact_OMO_OutboundGateway_Silverpop_1.0/lib/
OMO_OutboundGateway_Silverpop.jar.

Interact | triggeredMessage | gateways | <gatewayName> |
Parameter Data
The configuration properties in this category define parameters for a specific
gateway in triggered messages.

cateogry name

Description

This property defines the name of this parameter. The name must be
unique among all parameters for that gateway.

value

Description

This property defines the parameters, in the format of name value pairs,
needed by this gateway. For all gateways, the following parameters are
supported.

Note: All parameters for trigger messages are case sensitive and should be
entered as shown here.
v validationTimeoutMillis: The duration in milliseconds that the validation

of an offer through this gateway timeouts. The default value is 500.
v deliveryTimeoutMillis: The duration in milliseconds that the delivery of

an offer using this gateway timeouts. The default value is 1000.

Interact | triggeredMessage | channels
The configuration properties in this category define settings for all channels in
triggered messages.

type

Description

This property defines the root node for settings related to a specific
gateway. Default uses the built in channel selector, which is based on the
list of channels defined on in the triggered messages UI. If default is
selected, className and classPath values should be left blank. Custom
uses the customer implementation of IChannelSelector.

Valid Values

Default | Custom

Chapter 13. Interact runtime environment configuration properties 261

className

Description

This property defines the fully qualified class name of the customer
implementation of channel selector. This setting is required if the type is
Custom.

classPath

Description

This property defines the URL to the JAR file that includes the
implementation of the customer implementation of channel selector. If left
empty, the class path of the hosting Interact application is used.

Interact | triggeredMessage | channels | Parameter Data
The configuration properties in this category define parameters for a specific
channel in triggered messages.

category name

Description

This property defines the name of this parameter. The name must be
unique among all parameters for that channel.

value

Description

This property defines the parameters, in the format of name value pairs,
needed by the channel selector.

If you use Customer Preferred Channels for your channel, you must
create

Interact | triggeredMessage | channels | <channelName>
The configuration properties in this category define settings for a specific channel
in triggered messages.

category name

Description

This property defines the name of the channel through which offers are
sent. It should match those defined in the design time under Campaign |
partitions | <partition[N]> | Interact | outboundChannels.

Interact | triggeredMessage | channels | <channelName> |
<handlerName>
The configuration properties in this category define settings for a specific handler
in triggered messages that is used to sent offers.

category name

Description

This property defines the name of the handler which the channel will use
to send offers.

262 IBM Interact Administrator's Guide

dispatcher

Description

This property defines the name of the dispatcher through which this
handler uses send offers to the gateway. It must be one of those defined
under interact | triggeredMessage | dispatchers.

gateway

Description

This property defines the name of the gateway to which this handler send
offers ultimately. It must be one of those defined under interact |
triggeredMessage | gateways.

mode

Description

This property defines the usage mode of this handler. If Failover is
selected, this handler is used only when all the handlers with higher
priorities defined within this channel failed to send offers. If Addon is
selected, this handler is used no matter if other handlers have successfully
sent offers.

priority

Description

This property defines the priority of this handler. The engine first tries to
use the handler with the highest priority for sending offers.

Valid Values

Any integer

Default

100

Interact | activityOrchestrator
The activity orchestrator category specifies the receivers and gateways for your
Interact inbound gateway activity.

Use the Interact | activityOrchestrator | receivers configuration properties to
configure your Interact receivers. Use the Interact | activityOrchestrator |
gateways configuration properties to configure your gateways to use in Interact.

Interact | activityOrchestrator | receivers
The activity orchestrator receivers category specifies the event receivers for your
Interact inbound gateway activity.

Category name

Description

The name of your receiver.

Chapter 13. Interact runtime environment configuration properties 263

Type

Description
The type of receiver. You can choose between IBM MQ and Custom. Custom
requires you to use an implementation of the iReceiver.

Enabled

Description
Select True to enable the receiver or false to disable the receiver.

className

Description
This property defines the fully qualified class name of this receiver
implementation. It is used only when the type is Custom.

classPath

Description
This property defines the URI to the JAR file that includes the
implementation of this receiver. If left empty, the class path of the hosting
Interact application is used. It is used only when the type is Custom.

Interact | activityOrchestrator | receivers | Parameter Data

You can add receiver parameters, such as queueManager and messageQueueName
to define your receiver queue.

Interact | activityOrchestrator | gateways
The activity orchestrator gateway category specifies the gateways for your Interact
inbound gateway activity.

Category name

Description

The name of your gateway.

className

Description
This property defines the fully qualified class name of this gateway
implementation.

classPath

Description
This property defines the URI to the JAR file that includes the
implementation of this gateway. If left empty, the class path of the hosting
Interact application is used. It is used only when the type is Custom.

Interact | activityOrchestrator | gateways | Parameter Data

You can add gateway parameters for your gateway configuration files, such as
OMO-conf_inbound_UBX_interactEventNameMapping and OMO-
conf_inbound_UBX_interactEventPayloadMapping.

264 IBM Interact Administrator's Guide

Interact | ETL | patternStateETL
The configuration properties in this category define the settings for the ETL
process.

New category name

Description

Provide a name that uniquely identifies this configuration. Note that you
must provide this exact name when you run the stand-alone ETL process.
For convenience in specifying this name on the command line, you may
want to avoid a name containing spaces or punctuation, such as
ETLProfile1.

runOnceADay

Description

Determines whether the stand-alone ETL process in this configuration
should run once each day. Valid answers are Yes or No. If you answer No
here, the processSleepIntervalInMinutes determines the run schedule for
the process.

preferredStartTime

Description

The preferred time at which the stand-alone ETL process should start.
Specify the time in the format HH:MM:SS AM/PM, as in 01:00:00 AM.

preferredEndTime

Description

The preferred time at which the stand-alone ETL process should stop.
Specify the time in the format HH:MM:SS AM/PM, as in 08:00:00 AM.

processSleepIntervalInMinutes

Description

If you have not configured the stand-alone ETL process to run once a day
(as specified in the runOnceADay property), this property specifies the
interval between ETL process runs. For example, if you specify 15 here, the
stand-alone ETL process will wait for 15 minutes after it stops running
before starting the process again.

maxJDBCInsertBatchSize

Description

The maximum number of records of a JDBC batch before committing the
query. By default, this is set to 5000. Note that this is not the maximum
number of records that the ETL processes in one iteration. During each
iteration, the ETL processes all available records from the
UACI_EVENTPATTERNSTATE table. However, all those records are
broken into maxJDBCInsertSize chunks.

maxJDBCFetchBatchSize

Description

Chapter 13. Interact runtime environment configuration properties 265

The maximum number of records of a JDBC batch to fetch from the staging
database.

You may need to increase this value to tune the performance of the ETL.

communicationPort

Description

The network port on which the standalone ETL process listens for a stop
request. Under normal circumstances, there should be no reason to change
this from the default value.

queueLength

Description

A value used for performance tuning. Collections of pattern state data are
fetched and transformed into objects that are added to a queue to be
processed and written to the database. This property controls the size of
the queue.

completionNotificationScript

Description

Specifies the absolute path to a script to run when the ETL process is
completed. If you specify a script, three arguments are passed to the
completion notification script: start time, end time, and total number of
event pattern records processed. The start time and end time are numeric
values representing number of milliseconds elapsed since 1970.

Interact | ETL | patternStateETL | <patternStateETLName> |
RuntimeDS

The configuration properties in this category define the settings for the ETL
Runtime DS.

type

Description

A list of the supported database types for the data source you are defining.

dsname

Description

The JNDI name of the data source. This name must also be used in the
user's data source configuration to ensure that the user has access to the
target and runtime data sources.

driver

Description

The name of the JDBC driver to us, such as any of the following:

Oracle: oracle.jdbc.OracleDriver

Microsoft SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

IBM DB2: com.ibm.db2.jcc.DB2Driver

266 IBM Interact Administrator's Guide

serverURL

Description

The data source URL, such as any of the following:

Oracle: jdbc:oracle:thin:@
<your_db_host>:<your_db_port>:<your_db_service_name>

Microsoft SQL Server: jdbc:sqlserver:// <your_db_host>:<your_db_port>
;databaseName= <your_db_name>

IBM DB2: jdbc:db2:// <your_db_host>:<your_db_port>/<your_db_name>

connectionpoolSize

Description

A value indicating the size of the connection pool, provided for
performance tuning. Pattern state data is read and transformed
concurrently depending upon the available database connections.
Increasing the connection pool size allows for more concurrent database
connections, subject to limitations of memory and database read/write
capabilities. For example, if this value is set to 4, four jobs will run
concurrently. If you have a large amount of data, you might need to
increase this value to a number such as 10 or 20, as long as sufficient
memory and database performance is available.

schema

Description

The name of the database schema to which this configuration is
connecting.

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure. Interact automatically tries to reconnect to the database for this
length of time before reporting a database error or failure. If the value is
set to 0, Interact retries indefinitely; if the value is set to -1, no retry is
attempted.

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure. If the value is set to -1, no retry is attempted.

Interact | ETL | patternStateETL | <patternStateETLName> |
TargetDS

The configuration properties in this category define the settings for the ETL Target
DS.

Chapter 13. Interact runtime environment configuration properties 267

type

Description

A list of the supported database types for the data source you are defining.

dsname

Description

The JNDI name of the data source. This name must also be used in the
user's data source configuration to ensure that the user has access to the
target and runtime data sources.

driver

Description

The name of the JDBC driver to us, such as any of the following:

Oracle: oracle.jdbc.OracleDriver

Microsoft SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

IBM DB2: com.ibm.db2.jcc.DB2Driver

serverURL

Description

The data source URL, such as any of the following:

Oracle: jdbc:oracle:thin:@
<your_db_host>:<your_db_port>:<your_db_service_name>

Microsoft SQL Server: jdbc:sqlserver:// <your_db_host>:<your_db_port>
;databaseName= <your_db_name>

IBM DB2: jdbc:db2:// <your_db_host>:<your_db_port>/<your_db_name>

connectionpoolSize

Description

A value indicating the size of the connection pool, provided for
performance tuning. Pattern state data is read and transformed
concurrently depending upon the available database connections.
Increasing the connection pool size allows for more concurrent database
connections, subject to limitations of memory and database read/write
capabilities. For example, if this value is set to 4, four jobs will run
concurrently. If you have a large amount of data, you might need to
increase this value to a number such as 10 or 20, as long as sufficient
memory and database performance is available.

schema

Description

The name of the database schema to which this configuration is
connecting.

connectionRetryPeriod

Description

268 IBM Interact Administrator's Guide

The ConnectionRetryPeriod property specifies the amount of time in
seconds Interact automatically retries the database connection request on
failure. Interact automatically tries to reconnect to the database for this
length of time before reporting a database error or failure. If the value is
set to 0, Interact retries indefinitely; if the value is set to -1, no retry is
attempted.

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure. If the value is set to -1, no retry is attempted.

Interact | ETL | patternStateETL | <patternStateETLName> |
Report

The configuration properties in this category define the settings for the ETL report
aggregation process.

enable

Description
Enable or disable the report integration with ETL. This property is set to
disable by default.

If set to disable, this property disables updates on table
UARI_DELTA_PATTERNS Table . It does not disable reporting completely .

Note: To disable the report integration with ETL, you must also alter the
trigger TR_AGGREGATE_DELTA_PATTERNS to disable on
UACI_ETLPATTERNSTATERUN staging table.

retryAttemptsIfAggregationRunning

Description
The number of times the ETL attempts to check whether the report
aggregation is completed if the lock flag is set. This property is set to 3 by
default.

sleepBeforeRetryDurationInMinutes

Description
Sleep time in minutes between consecutive attempts. This property is set to
5 minutes by default.

aggregationRunningCheckSql

Description
This property lets you define a custom SQL, which can be run to see
whether the report aggregation lock flag is set. By default this property is
empty.

When this property is not set, the ETL runs the following SQL to get the
lock flag.
select count(1) AS ACTIVERUNS from uari_pattern_lock where islock=’Y’
=> If ACTIVERUNS is > 0, lock is set

Chapter 13. Interact runtime environment configuration properties 269

aggregationRunningCheck

Description
Enable or disable the check if the report aggregation is running before the
ETL run is performed. This property is set to enable by default.

270 IBM Interact Administrator's Guide

Chapter 14. Interact Simulator

This section describes all the configuration properties for the Interact simulator.

Interact | simulator
The configuration category defines the parameters to be defined to run the
coverage analysis scenario of Simulator module..

numberOfThreads

Description

The number of threads used to run the simulation

Default Value

1

maxOffersToInclude

Description

The maximum number of offers returned in each getOffers call for each
audience id in the coverage analysis scenario.

Default Value

10

insertBatchSize

Description

Define the size of each batch for persisting the resulting records.

Default Value

1000

Interact | simulator|scenarioDataSource
These configurations are required to run Simulator Coverage Analysis scenario

jndiName

Description

Use this jndiName property to identify the Java Naming and Directory

Interface (JNDI) data source that is defined in the application server

(Websphere or WebLogic) for the Interact Design Time tables.

Default Value

No default value defined.

Schema

Description

© Copyright IBM Corp. 2001, 2018 271

The name of the schema containing the tables for the Interact design time
data source

module. Interact inserts the value of this property before all table names,

for example, UACI_IntChannel becomes schema.UACI_IntChannel.

You have to define a schema. If you do not define a schema, Interact
assumes that the owner of the tables is the same as the schema. It is
required to specify schema name to run coverage scenario successfully.

Default Value

No Default value defined.

type

Description

The database type for the data source used by the Interact Design time
tables accessed

by the Interact Simulator.

Default Value

sqlserver

Valid Value

sqlserver | Db2 | Oracle

connectionRetryPeriod

Description

The ConnectionRetryPeriod property specifies the amount of time in

seconds Interact automatically retries the database connection request on

failure for the learning tables. Interact automatically tries to reconnect to

the database for this length of time before reporting a database error or

failure. If the value is set to 0, Interact will retry indefinitely; if the value is

set to -1, no retry will be attempted.

Default Value

-1

connectionRetryDelay

Description

The ConnectionRetryDelay property specifies the amount of time in
seconds Interact waits before it tries to reconnect to the database after a
failure for the learning tables. If the value is set to -1, no retry will be

attempted.

Default Value

-1

272 IBM Interact Administrator's Guide

Error Handling for Simulator

This section lists the status codes the application writes into the table
UACI_SimulationHistory which is present in the Interact Design time database.

In case of an error the application will show the scenario failed message on the
Simulator run page. The detailed status code can be found in the database table
UACI_SimulationHistory.

The following are the list of possible status codes that a scenario run history could
have:

// status code 0-99 are for information

Status Code Severity level Http Status Possible UI
message

SUCCESS 0 INFO OK Running simulation
succeeded

RUNNING 1 INFO OK Running

CANCELING 2 INFO OK Cancelling

CANCELED 3 INFO OK Cancelled

EXPORTING_TO_CSV 4 INFO OK Exporting to CSV

EXPORTED_TO_CSV 5 INFO OK Exported to CSV

// status code 101-999 are for errors

Status Code Severity
level

Http Status Possible UI
message

NOT_ENABLED 101 WARN SERVICE_UNAVAILABLE Simulation is
not enabled
on this run
time server

ERROR_RETRIEVE_SCENARIO 102 ERROR INTERNAL_SERVER_ERROR Error
retrieving
the scenario
information
for
simulation

INVALID_SCENARIO 103 ERROR BAD_REQUEST Invalid
scenario
information
of simulation

ERROR_CREATE_RESULT_TABLE 104 ERROR INTERNAL_SERVER_ERROR Error
creating the
table for
storing
results for
simulation

ERROR_RETRIEVE_AUDIENCE 105 ERROR INTERNAL_SERVER_ERROR Error
retrieving
audience IDs
for
simulation

Chapter 14. Interact Simulator 273

ERROR_CONNECT_DATABASE 106 ERROR INTERNAL_SERVER_ERROR Error
connecting
to {0}
database for
simulation

ERROR_PERSIST_RESULT 107 ERROR INTERNAL_SERVER_ERROR Error
persisting
results to
database for
simulation

SCENARIO_NOT_FOUND 108 ERROR NOT_FOUND Cannot find
a scenario
ready to run

GENERIC_ERROR 109 ERROR INTERNAL_SERVER_ERROR Server error
running
simulation

ERROR_UPDATE_RESULT 110 ERROR INTERNAL_SERVER_ERROR Error
updating
result for
simulation

ERROR_INVALID_IC 111 ERROR BAD_REQUEST Interactive
channel is
not deployed

// // status code 1001 and above are for UI only, will not be stored in database

Status Code Severity
level

Http Status Possible UI
message

SIMULATION_ALREADY_RUNNING 1001 WARNPRECONDITION_FAILED A simulation
is already
running for
this scenario

SIMULATION_NOT_FOUND 1002 WARNNO_CONTENT No ongoing
simulation
found for
this scenario

SIMULATION_RUNNING 1003 INFO OK Running

SIMULATION_NOT_RUNNING 1004 INFO OK Simulation
not running

274 IBM Interact Administrator's Guide

Chapter 15. Interact design environment configuration
properties

This section describes all the configuration properties for Interact design
environment.

Campaign | partitions | partition[n] | reports
The Campaign | partitions | partition[n] | reports property defines the different
types of folders for reports.

offerAnalysisTabCachedFolder

Description

The offerAnalysisTabCachedFolder property specifies the location of the
folder that contains the specification for bursted (expanded) offer reports
listed on the Analysis tab when you reach it by clicking the Analysis link
on the navigation pane. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='offer']/folder[@name='cached']

segmentAnalysisTabOnDemandFolder

Description

The segmentAnalysisTabOnDemandFolder property specifies the location of
the folder that contains the segment reports listed on the Analysis tab of a
segment. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='segment']/folder[@name='cached']

offerAnalysisTabOnDemandFolder

Description

The offerAnalysisTabOnDemandFolder property specifies the location of the
folder that contains the offer reports listed on the Analysis tab of an offer.
The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='offer']

segmentAnalysisTabCachedFolder

Description

The segmentAnalysisTabCachedFolder property specifies the location of the
folder that contains the specification for bursted (expanded) segment

© Copyright IBM Corp. 2001, 2018 275

reports listed on the Analysis tab when you reach it by clicking the
Analysis link on the navigation pane. The path is specified by using the
XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='segment']

analysisSectionFolder

Description

The analysisSectionFolder property specifies the location of the root
folder where report specifications are stored. The path is specified by using
the XPath notation.

Default value

/content/folder[@name='Affinium Campaign']

campaignAnalysisTabOnDemandFolder

Description

The campaignAnalysisTabOnDemandFolder property specifies the location of
the folder that contains the campaign reports listed on the Analysis tab of a
campaign. The path is specified by using the XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='campaign']

campaignAnalysisTabCachedFolder

Description

The campaignAnalysisTabCachedFolder property specifies the location of
the folder that contains the specification for bursted (expanded) campaign
reports listed on the Analysis tab when you reach it by clicking the
Analysis link on the navigation pane. The path is specified by using the
XPath notation.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='campaign']/folder[@name='cached']

campaignAnalysisTabEmessageOnDemandFolder

Description

The campaignAnalysisTabEmessageOnDemandFolder property specifies the
location of the folder that contains the eMessage reports listed on the
Analysis tab of a campaign. The path is specified by using the XPath
notation.

Default value

/content/folder[@name='Affinium Campaign']/folder[@name='eMessage
Reports']

276 IBM Interact Administrator's Guide

campaignAnalysisTabInteractOnDemandFolder

Description

Report server folder string for Interact reports.

Default value

/content/folder[@name='Affinium Campaign']/folder[@name='Interact
Reports']

Availability

This property is applicable only if you install Interact.

interactiveChannelAnalysisTabOnDemandFolder

Description

Report server folder string for Interactive Channel analysis tab reports.

Default value

/content/folder[@name='Affinium Campaign - Object Specific
Reports']/folder[@name='interactive channel']

Availability

This property is applicable only if you install Interact.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking

These configuration properties define settings for the Interact contact and response
history module.

isEnabled

Description

If set to yes, enables the Interact contact and response history module
which copies the Interact contact and response history from staging tables
in the Interact runtime to the Campaign contact and response history
tables. The property interactInstalled must also be set to yes.

Default value

no

Valid Values

yes | no

Availability

This property is applicable only if you have installed Interact.

runOnceADay

Description

Specifies whether to run the Contact and Response History ETL once a
day. If you set this property to Yes, the ETL runs during the scheduled
interval specified by preferredStartTime and preferredEndTime.

If ETL takes more than 24 hours to execute, and thus misses the start time
for the next day, it will skip that day and run at the scheduled time the

Chapter 15. Interact design environment configuration properties 277

following day. For example, if ETL is configured to run between 1AM to
3AM, and the process starts at 1AM on Monday and completes at 2AM on
Tuesday, the next run, originally scheduled for 1AM on Tuesday, will be
skipped, and the next ETL will start at 1AM on Wednesday.

ETL scheduling does not account for Daylight Savings Time changes. For
example, if ETL scheduled to run between 1AM and 3AM, it could run at
12AM or 2AM when the DST change occurs.

Default value

No

Availability

This property is applicable only if you have installed Interact.

processSleepIntervalInMinutes

Description

The number of minutes the Interact contact and response history module
waits between copying data from the Interact runtime staging tables to the
Campaign contact and response history tables.

Default value

60

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

preferredStartTime

Description

The preferred time to start the daily ETL process. This property, when used
in conjunction with the preferredEndTime property, sets up the preferred
time interval during which you want the ETL to run. The ETL will start
during the specified time interval and will process at most the number of
records specified using maxJDBCFetchBatchSize. The format is HH:mm:ss
AM or PM, using a 12-hour clock.

Default value

12:00:00 AM

Availability

This property is applicable only if you have installed Interact.

preferredEndTime

Description

The preferred time to complete the daily ETL process. This property, when
used in conjunction with the preferredStartTime property, sets up the
preferred time interval during which you want the ETL to run. The ETL
will start during the specified time interval and will process at most the
number of records specified using maxJDBCFetchBatchSize. The format is
HH:mm:ss AM or PM, using a 12-hour clock.

278 IBM Interact Administrator's Guide

Default value

2:00:00 AM

Availability

This property is applicable only if you have installed Interact.

purgeOrphanResponseThresholdInMinutes

Description

The number of minutes the Interact contact and response history module
waits before purging responses with no corresponding contact. This
prevents logging responses without logging contacts.

Default value

180

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

maxJDBCInsertBatchSize

Description

The maximum number of records of a JDBC batch before committing the
query. This is not the max number of records that the Interact contact and
response history module processes in one iteration. During each iteration,
the Interact contact and response history module processes all available
records from the staging tables. However, all those records are broken into
maxJDBCInsertSize chunks.

Default value

1000

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

maxJDBCFetchBatchSize

Description

The maximum number of records of a JDBC batch to fetch from the staging
database. You may need to increase this value to tune the performance of
the contact and response history module.

For example, to process 2.5 million contact history records a day, you
should set maxJDBCFetchBatchSize to a number greater than 2.5M so that
all records for one day will be processed.

You could then set maxJDBCFetchChunkSize and maxJDBCInsertBatchSize to
smaller values (in this example, perhaps to 50,000 and 10,000, respectively).
Some records from the next day may be processed as well, but would then
be retained until the next day.

Chapter 15. Interact design environment configuration properties 279

Default value

1000

Valid Values

Any integer greater than zero

maxJDBCFetchChunkSize

Description

The maximum number of a JDBC chunk size of data read during ETL
(extract, transform, load). In some cases, a chunk size greater than insert
size can improve the speed of the ETL process.

Default value

1000

Valid Values

Any integer greater than zero

deleteProcessedRecords

Description

Specifies whether to retain contact history and response history records
after they have been processed.

Default value

Yes

completionNotificationScript

Description

Specifies the absolute path to a script to run when the ETL is completed. If
you specify a script, five arguments are passed to the completion
notification script: start time, end time, total number of CH records
processed, total number of RH records processed and status. The start time
and end time are numeric values representing number of milliseconds
elapsed since 1970. The status argument indicates whether the ETL job was
a success or failure. 0 indicates a successful ETL job. 1 indicates a failure
and that there are some errors in the ETL job.

Default value

None

fetchSize

Description

Allow you to set the JDBC fetchSize when retrieving records from staging
tables.

On Oracle databases especially, adjust the setting to the number of records
that the JDBC should retrieve with each network round trip. For large
batches of 100K or more, try 10000. Be careful not to use too large a value
here, because that will have an impact on memory usage and the gains
will become negligible, if not detrimental.

Default value

280 IBM Interact Administrator's Guide

None

daysBackInHistoryToLookupContact

Description

Limits the records that are searched during response history queries to
those within the past specified number of days. For databases with a large
number of response history records, this can reduce processing time on
queries by limiting the search period to the number of days specified.

The default value of 0 indicates that all records are searched.

Default value

0 (zero)

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | runtimeDataSources |
[runtimeDataSource]

These configuration properties define the data source for the Interact contact and
response history module.

jndiName

Description

Use the systemTablesDataSource property to identify the Java Naming and
Directory Interface (JNDI) data source that is defined in the application
server (Websphere or WebLogic) for the Interact runtime tables.

The Interact runtime database is the database populated with the
aci_runtime and aci_populate_runtime dll scripts and, for example,
contains the following tables (among others): UACI_CHOfferAttrib and
UACI_DefaultedStat.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Interact.

databaseType

Description

Database type for the Interact runtime data source.

Default value

SQLServer

Valid Values

SQLServer | Oracle | DB2

Availability

This property is applicable only if you have installed Interact.

schemaName

Description

Chapter 15. Interact design environment configuration properties 281

The name of the schema containing the contact and response history
module staging tables. This should be the same as the runtime
environment tables.

You do not have to define a schema.

Default value

No default value defined.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | contactTypeMappings

These configuration properties define the contact type from campaign that maps to
a 'contact' for reporting or learning purposes.

contacted

Description

The value assigned to the ContactStatusID column of the
UA_DtlContactHist table in the Campaign system tables for an offer
contact. The value must be a valid entry in the UA_ContactStatus table. See
the Campaign Administrator's Guide for details on adding contact types.

Default value

2

Valid Values

An integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact |
contactAndResponseHistTracking | responseTypeMappings

These configuration properties define the responses for accept or reject for
reporting and learning.

accept

Description

The value assigned to the ResponseTypeID column of the
UA_ResponseHistory table in the Campaign system tables for an accepted
offer. The value must be a valid entry in the UA_UsrResponseType table. You
should assign the CountsAsResponse column the value 1, a response.

See the Campaign Administrator's Guide for details on adding response
types.

Default value

3

Valid Values

An integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

282 IBM Interact Administrator's Guide

reject

Description

The value assigned to the ResponseTypeID column of the
UA_ResponseHistory table in the Campaign system tables for a rejected
offer. The value must be a valid entry in the UA_UsrResponseType table. You
should assign the CountsAsResponse column the value 2, a reject. See the
Campaign Administrator's Guide for details on adding response types.

Default value

8

Valid Values

Any integer greater than zero.

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | report
These configuration properties define the report names when integrating with
Cognos.

interactiveCellPerformanceByOfferReportName

Description

Name for Interactive Cell Performance by Offer report. This name must
match the name of this report on the Cognos server.

Default value

Interactive Cell Performance by Offer

treatmentRuleInventoryReportName

Description

Name for Treatment Rule Inventory report. This name must match the
name of this report on the Cognos server.

Default value

Channel Treatment Rule Inventory

deploymentHistoryReportName

Description

Name for Deployment History Report report. This name must match the
name of this report on the Cognos server

Default value

Channel Deployment History

Campaign | partitions | partition[n] | Interact | learning
These configuration properties enable you to tune the built-in learning module.

Chapter 15. Interact design environment configuration properties 283

confidenceLevel

Description

A percentage indicating how confident you want the learning utility to be
before switching from exploration to exploitation. A value of 0 effectively
shuts off exploration.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Default value

95

Valid Values

An integer between 0 and 95 divisible by 5 or 99.

validateonDeployment

Description

If set to No, Interact does not validate the learning module when you
deploy. If set to yes, Interact validates the learning module when you
deploy.

Default value

No

Valid Values

Yes | No

maxAttributeNames

Description

The maximum number of learning attributes the Interact learning utility
monitors.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Default value

10

Valid Values

Any integer.

maxAttributeValues

Description

The maximum number of values the Interact learning module tracks for
each learning attribute.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Default value

284 IBM Interact Administrator's Guide

5

otherAttributeValue

Description

The default name for the attribute value used to represent all attribute
values beyond the maxAttributeValues.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Default value

Other

Valid Values

A string or number.

Example

If maxAttributeValues is set to 3 and otherAttributeValue is set to other, the
learning module tracks the first three values. All of the other values are
assigned to the other category. For example, if you are tracking the visitor
attribute hair color, and the first five visitors have the hair colors black,
brown, blond, red, and gray, the learning utility tracks the hair colors
black, brown, and blond. The colors red and gray are grouped under the
otherAttributeValue, other.

percentRandomSelection

Description

The percent of the time the learning module presents a random offer. For
example, setting percentRandomSelection to 5 means that 5% of the time (5
out of every 100 recommendations), the learning module presents a
random offer, independent of the score. Enabling percentRandomSelection
overrides the offerTieBreakMethod configuration property. When
percentRandomSelection is enabled, this property is set regardless if
learning is on or off or if built-in or external learning is used.

Default value

5

Valid Values

Any integer from 0 (which disables the percentRandomSelection feature)
up to 100.

recencyWeightingFactor

Description

The decimal representation of a percentage of the set of data defined by
the recencyWeightingPeriod. For example, the default value of .15 means
that 15% of the data used by the learning utility comes from the
recencyWeightingPeriod.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Chapter 15. Interact design environment configuration properties 285

Default value

0.15

Valid Values

A decimal value less than 1.

recencyWeightingPeriod

Description

The size in hours of data granted the recencyWeightingFactor percentage
of weight by the learning module. For example, the default value of 120
means that the recencyWeightingFactor of the data used by the learning
module comes from the last 120 hours.

This property is applicable only if optimizationType is set to
builtInLearning.

Default value

120

minPresentCountThreshold

Description

The minimum number of times an offer must be presented before its data
is used in calculations and the learning module enters the exploration
mode.

Default value

0

Valid Values

An integer greater than or equal to zero.

enablePruning

Description

If set to Yes, the Interact learning module algorithmically determines when
a learning attribute (standard or dynamic) is not predictive. If a learning
attribute is not predictive, the learning module will not consider that
attribute when determining the weight for an offer. This continues until the
learning module aggregates learning data.

If set to No, the learning module always uses all learning attributes. By not
pruning non-predictive attributes, the learning module may not be as
accurate as it could be.

Default value

Yes

Valid Values

Yes | No

Campaign | partitions | partition[n] | Interact | learning |
learningAttributes | [learningAttribute]

These configuration properties define the learning attributes.

286 IBM Interact Administrator's Guide

attributeName

Description

Each attributeName is the name of a visitor attribute you want the learning
module to monitor. This must match the name of a name-value pair in
your session data.

This property is applicable if the Interact > offerserving >
optimizationType property for Interact runtime is set to BuiltInLearning
only.

Default value

No default value defined.

Campaign | partitions | partition[n] | Interact | deployment
These configuration properties define deployment settings.

chunkSize

Description

The maximum size of fragmentation in KB for each Interact deployment
package.

Default value

500

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | serverGroups |
[serverGroup]

These configuration properties define server group settings.

serverGroupName

Description

The name of the Interact runtime server group. This is the name that
appears on the interactive channel summary tab.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | serverGroups |
[serverGroup] | instanceURLs | [instanceURL]

These configuration properties define the Interact runtime servers.

instanceURL

Description

Chapter 15. Interact design environment configuration properties 287

The URL of the Interact runtime server. A server group can contain several
Interact runtime servers; however, each server must be created under a
new category.

Default value

No default value defined.

Example

http://server:port/interact

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | flowchart
These configuration properties define the Interact runtime environment used for
test runs of interactive flowcharts.

serverGroup

Description

The name of the Interact server group Campaign uses to execute a test run.
This name must match the category name you create under serverGroups.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Interact.

dataSource

Description

Use the dataSource property to identify the physical data source for
Campaign to use when performing test runs of interactive flowcharts. This
property should match the data source defined by the Campaign >
partitions > partitionN > dataSources property for the test run data
source defined for Interact design time.

Default value

No default value defined.

Availability

This property is applicable only if you have installed Interact.

eventPatternPrefix

Description

The eventPatternPrefix property is a string value that is prepended to
event pattern names to allow them to be used in expressions in Select or
Decision processes within interactive flowcharts.

Note that if you change this value, you must deploy global changes in the
interactive channel for this updated configuration to take effect.

Default value

288 IBM Interact Administrator's Guide

EventPattern

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | whiteList |
[AudienceLevel] | DefaultOffers

These configuration properties define the default cell code for the default offers
table. You need to configure these properties only if you are defining global offer
assignments.

DefaultCellCode

Description

The default cell code Interact uses if you do not define a cell code in the
default offers table.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Campaign

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | whiteList |
[AudienceLevel] | offersBySQL

These configuration properties define the default cell code for the offersBySQL
table. You need to configure these properties only if you are use SQL queries to get
a desired set of candidate offers.

DefaultCellCode

Description

The default cell code Interact uses for any offer in the OffersBySQL table(s)
that has a null value in the cell code column (or if the cell code column is
missing altogether. This value must be a valid cell code.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Campaign

Availability

This property is applicable only if you have installed Interact.

Chapter 15. Interact design environment configuration properties 289

Campaign | partitions | partition[n] | Interact | whiteList |
[AudienceLevel] | ScoreOverride

These configuration properties define the default cell code for the score override
table. You need to configure these properties only if you are defining individual
offer assignments.

DefaultCellCode

Description

The default cell code Interact uses if you do not define a cell code in the
score override table.

Default value

No default value defined.

Valid Values

A string that matches the cell code format defined in Campaign

Availability

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | server | internal
Properties in this category specify integration settings and the internalID limits for
the selected Campaign partition. If your Campaign installation has multiple
partitions, set these properties for each partition that you want to affect.

internalIdLowerLimit

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

The internalIdUpperLimit and internalIdLowerLimit properties constrain
the Campaign internal IDs to be within the specified range. Note that the
values are inclusive: that is, Campaign may use both the lower and upper
limit.

Default value

0 (zero)

internalIdUpperLimit

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

The internalIdUpperLimit and internalIdLowerLimit properties constrain
the Campaign internal IDs to be within the specified range. The values are
inclusive: that is, Campaign may use both the lower and upper limit. If
Distributed Marketing is installed, set the value to 2147483647.

Default value

4294967295

290 IBM Interact Administrator's Guide

eMessageInstalled

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

Indicates that eMessage is installed. When you select Yes, eMessage
features are available in the Campaign interface.

The IBM installer sets this property to Yes for the default partition in your
eMessage installation. For additional partitions where you installed
eMessage, you must configure this property manually.

Default value

No

Valid Values

Yes | No

interactInstalled

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

After installing the Interact design environment, this configuration
property should be set to Yes to enable the Interact design environment in
Campaign.

If Interact is not installed, set to No. Setting this property to No does not
remove Interact menus and options from the user interface. To remove
menus and options, you must manually unregister Interact using the
configTool utility.

Default value

No

Valid Values

Yes | No

Availability

This property is applicable only if you installed Interact.

MO_UC_integration

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

Enables integration with Marketing Operations for this partition, if the
integration is enabled in the Platform configuration settings. For more
information, see the IBM Marketing Operations and Campaign Integration
Guide.

Default value

No

Valid Values

Chapter 15. Interact design environment configuration properties 291

Yes | No

MO_UC_BottomUpTargetCells

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

For this partition, allows bottom-up cells for Target Cell Spreadsheets, if
MO_UC_integration is enabled. When set to Yes, both top-down and
bottom-up target cells are visible, but bottom-up target cells are read-only.
For more information, see the IBM Marketing Operations and Campaign
Integration Guide.

Default value

No

Valid Values

Yes | No

Legacy_campaigns

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

For this partition, enables access to campaigns created before Marketing
Operations and Campaign were integrated. Applies only if
MO_UC_integration is set to Yes. Legacy campaigns also include
campaigns created in Campaign 7.x and linked to Plan 7.x projects. For
more information, see the IBM Marketing Operations and Campaign
Integration Guide.

Default value

No

Valid Values

Yes | No

IBM Marketing Operations - Offer integration

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

Enables the ability to use Marketing Operations to perform offer lifecycle
management tasks on this partition, if MO_UC_integration is enabled for
this partition. Offer integration must be enabled in your Platform
configuration settings. For more information, see the IBM Marketing
Operations and Campaign Integration Guide.

Default value

No

Valid Values

Yes | No

292 IBM Interact Administrator's Guide

UC_CM_integration

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

Enables Digital Analytics online segment integration for a Campaign
partition. If you set this value to Yes, the Select process box in a flowchart
provides the option to select Digital Analytics Segments as input. To
configure the Digital Analytics integration for each partition, choose
Settings > Configuration > Campaign | partitions | partition[n] |
Coremetrics.

Default value

No

Valid Values

Yes | No

numRowsReadToParseDelimitedFile

Configuration category
Campaign|partitions|partition[n]|server|internal

Description

This property is used when mapping a delimited file as a user table. It is
also used by the Score process box when importing a score output file
from IBM SPSS® Modeler Advantage Enterprise Marketing Management
Edition. To import or map a delimited file, Campaign needs to parse the
file to identify the columns, data types (field types), and column widths
(field lengths).

The default value of 100 means Campaign examines the first 50 and the
last 50 line entries in the delimited file. Campaign then allocates the field
length based on the largest value it finds within those entries. In most
cases, the default value is sufficient to determine field lengths. However, in
very large delimited files, a later field might exceed the estimated length
that Campaign computes, which can cause an error during flowchart
runtime. Therefore, if you are mapping a very large file, you can increase
this value to make Campaign examine more line entries. For example, a
value of 200 makes Campaign examine the first 100 line entries and the
last 100 line entries of the file.

A value of 0 examines the entire file. Typically, this is necessary only if you
are importing or mapping files that have variable data widths of fields
which cannot be identified by reading the first and last few lines. Reading
the entire file for extremely large files can increase the required processing
time for table mapping and Score process box runs.

Default value
100

Valid Values

0 (all lines) or any positive integer

Chapter 15. Interact design environment configuration properties 293

Campaign | monitoring
Properties in the this category specify whether the Operational Monitoring feature
is enabled, the URL of the Operational Monitoring server, and caching behavior.
Operational Monitoring displays and allows you to control active flowcharts.

cacheCleanupInterval

Description

The cacheCleanupInterval property specifies the interval, in seconds,
between automatic cleanups of the flowchart status cache.

This property is not available in versions of Campaign earlier than 7.0.

Default value

600 (10 minutes)

cacheRunCompleteTime

Description

The cacheRunCompleteTime property specifies the amount of time, in
minutes, that completed runs are cached and display on the Monitoring
page.

This property is not available in versions of Campaign earlier than 7.0.

Default value

4320

monitorEnabled

Description

The monitorEnabled property specifies whether the monitor is turned on.

This property is not available in versions of Campaign earlier than 7.0.

Default value

FALSE

Valid values

TRUE | FALSE

serverURL

Description

The Campaign > monitoring > serverURL property specifies the URL of the
Operational Monitoring server. This is a mandatory setting; modify the
value if the Operational Monitoring server URL is not the default.

If Campaign is configured to use Secure Sockets Layer (SSL)
communications, set the value of this property to use HTTPS. For example:
serverURL=https://host:SSL_port/Campaign/OperationMonitor where:
v host is the name or IP address of the machine on which the web

application is installed
v SSL_Port is the SSL port of the web application.

Note the https in the URL.

294 IBM Interact Administrator's Guide

Default value

http://localhost:7001/Campaign/OperationMonitor

monitorEnabledForInteract

Description

If set to TRUE, enables Campaign JMX connector server for Interact.
Campaign has no JMX security.

If set to FALSE, you cannot connect to the Campaign JMX connector server.

This JMX monitoring is for the Interact contact and response history
module only.

Default value

FALSE

Valid Values

TRUE | FALSE

Availability

This property is applicable only if you have installed Interact.

protocol

Description

Listening protocol for the Campaign JMX connector server, if
monitorEnabledForInteract is set to yes.

This JMX monitoring is for the Interact contact and response history
module only.

Default value

JMXMP

Valid Values

JMXMP | RMI

Availability

This property is applicable only if you have installed Interact.

port

Description

Listening port for the Campaign JMX connector server, if
monitorEnabledForInteract is set to yes.

This JMX monitoring is for the Interact contact and response history
module only.

Default value

2004

Valid Values

An integer between 1025 and 65535.

Availability

Chapter 15. Interact design environment configuration properties 295

This property is applicable only if you have installed Interact.

Campaign | partitions | partition[n] | Interact | outboundChannels
These configuration properties enable you to tune the outbound channels for
triggered messages.

category name

Description

This property defines the name of this outbound channel. The name must
be unique among all outbound channels.

name

Description

The name of your outbound channel.

Note: You must restart your application server for the changes to take effect.

Campaign | partitions | partition[n] | Interact |
outboundChannels | Parameter Data

These configuration properties enable you to tune the outbound channels for
triggered messages.

cateogry name

Description

This property defines the name of this parameter. The name must be
unique among all parameters for that outbound channnel.

value

Description

This property defines the parameters, in the format of name value pairs,
needed by this outbound gateway.

Campaign | partitions | partition[n] | Interact | Simulator
These configuration properties define the server group you want to use to run API
simulations.

serverGroup

Description

Specify the runtime server group that is used to run API simulations.

Default value

defaultServerGroup

296 IBM Interact Administrator's Guide

Chapter 16. Real-time offer personalization on the client side

There may be situations where you want to provide real-time offer personalization
without implementing low-level Java code or SOAP calls to the Interact server. For
example, when a visitor initially loads a web page where Javascript content is your
only extended programming available, or when a visitor opens an email message
where only HTML content is possible. IBM Interact provides several connectors
that provide real-time offer management in situations where you have control only
over the web content that is loaded on the client side, or where you want to
simplify your interface to Interact.

Your Interact installation includes two connectors for offer personalization that is
initiated on the client side:
v “About the Interact Message Connector.” Using the Message Connector, web

content in email messages (for example) or other electronic media can contain
image and link tags to make calls to the Interact server for page-load offer
presentation and click-through landing pages.

v “About the Interact Web Connector” on page 306. Using the Web Connector
(also called the JS Connector) web pages can use client-side JavaScript to
manage offer arbitration, presentation, and contact/response history through
page-load offer presentation and click-through landing pages.

About the Interact Message Connector
The Interact Message Connector allows email messages and other electronic media
to make calls to IBM Interact to allow personalized offers to be presented at
open-time, and when the customer clicks-through the message to the specified site.
This is accomplished through the use of two key tags: The image tag (IMG), which
loads the personalized offers at open-time, and the link tag (A), which captures
information about click-through and redirects the customer to a specific landing
page.

Example

The following example shows some HTML code that you might include in a
marketing spot (for example, within an email message) that contains both an IMG
tag URL (which passes information when the document opens to the Interact
server and retrieves the appropriate offer image in response) and an A tag URL
(which determines what information is passed to the Interact server on
click-through):

<a href="http://www.example.com/MessageConnector/
offerClickthru.jsp?msgId=1234&linkId=1&userid=1&referral=test"><img
src="http:// www.example.com/MessageConnector/offerImage.jsp?msgId=1234
&linkId=1&userid=1&incomeLevel=5&incomeType=numeric"/>

In the following example, an IMG tag is enclosed in an A tag, causes the following
behavior:
1. When the email message is opened, the Message Connector receives a request

containing the information encoded in the IMG tag: the msgID and linkID for
this message, and customer parameters that include userid, income level, and
income type.

© Copyright IBM Corp. 2001, 2018 297

2. This information is passed through an API call to the Interact runtime server.
3. The runtime server returns an offer to the Message Connector, which retrieves

the URL of the offer image, and provides that URL (with any additional
parameters included) and redirects the image request to that offer URL.

4. The customer sees the offer as an image.

At that point, the customer may click that image to respond to the offer in some
way. That click-through, using the A tag and its specified HREF attribute (which
specifies the destination URL) sends another request to the Message Connector for
a landing page linked to that offer's URL. The customers browser is then redirected
to the landing page as configured in the offer.

Note that a click-through A tag is not strictly necessary; the offer may consist of an
image only, such as a coupon for the customer to print.

Installing the Message Connector
The files you require to install, deploy, and run the Message Connector have
automatically been included with your IBM Interact runtime server installation.
This section summarizes the steps needed to get the Message Connector ready for
use.

Installing and deploying the Message Connector involves the following tasks:
v Optionally, configuring the default settings for the Message Connector as

described in “Configuring the Message Connector.”
v Creating the database tables needed to store the Message Connector transaction

data as described in “Creating the Message Connector Tables” on page 302.
v Installing the Message Connector web application as described in “Deploying

and running the Message Connector” on page 303.
v Creating the IMG and A tags in your marketing spots (email or web pages, for

example) needed to call Message Connector offers on open and click-through, as
described in “Creating the Message Connector links” on page 304.

Configuring the Message Connector
Before you deploy the Message Connector, you must customize the configuration
file included with your installation to match your specific environment. You can
modify the XML file called MessageConnectorConfig.xml found in your Message
Connector directory on the Interact runtime server, similar to <Interact_home>/
msgconnector/config/MessageConnectorConfig.xml.

The MessageConnectorConfig.xml file contains some configuration settings that are
required, and some that are optional. The settings that you use must be customized
for your specific installation. Follow the steps here to modify the configuration.
1. If the Message Connector is deployed and running on your web application

server, undeploy the Message Connector before continuing.
2. On the Interact runtime server, open the MessageConnectorConfig.xml file in

any text or XML editor.
3. Modify the configuration settings as needed, making sure that the following

required settings are correct for your installation.
v

<interactUrl>, the URL of the Interact runtime server to which the Message
Connector page tags should connect, and on which the Message Connector is
running.

v

298 IBM Interact Administrator's Guide

<imageErrorLink>, the URL to which the Message Connector will redirect if
an error occurs while processing a request for an offer image.

v
<landingPageErrorLink>, the URL to which the Message Connector will
redirect if an error occurs while processing a request for an offer landing
page.

v
<audienceLevels>, a section of the configuration file that contains one or
more set of audience level settings, and which specifies the default audience
level if none is specified by the Message Connector link. There must be at
least one audience level configured.

All of the configuration settings are described in greater detail in “Message
Connector Configuration Settings.”

4. When you have completed the configuration changes, save and close the
MessageConnectorConfig.xml file.

5. Continue setting up and deploying the Message Connector.

Message Connector Configuration Settings:

To configure the Message Connector, you can modify the XML file called
MessageConnectorConfig.xml found in your Message Connector directory on the
Interact runtime server, usually <Interact_home>/msgconnector/config/
MessageConnectorConfig.xml. Each of the configurations in this XML file are
described here. Be aware that if you modify this file after the Message Connector is
deployed and running, be sure to undeploy and redeploy the Message Connector
or restart the application server to reload these settings after you are done
modifying the file.

General Settings

The following table contains a list of the optional and required settings contained
in the generalSettings section of the MessageConnectorConfig.xml file.

Table 24. Message Connector General Settings

Element Description Default Value

<interactURL> The URL of the Interact runtime server
to handle the calls from the Message
Connector page tags, such as the
runtime server on which the Message
Connector is running. This element is
required.

http://localhost:7001/interact

<defaultDateTimeFormat> The default date format. MM/dd/yyyy

<log4jConfigFileLocation> The location of the Log4j property file. It
is relative to
$MESSAGE_CONNECTOR_HOME
environment variable if it is set;
otherwise, this value is relative to the
root path of Message Connector web
application.

config/
MessageConnectorLog4j.properties

Chapter 16. Real-time offer personalization on the client side 299

Default Parameter Values

The following table contains a list of the optional and required settings contained
in the defaultParameterValues section of the MessageConnectorConfig.xml file.

Table 25. Message Connector Default Parameter Settings

Element Description Default Value

<interactiveChannel> The name of the default interactive
channel.

<interactionPoint> The name of the default interaction
point.

<debugFlag> Determines whether debugging is
enabled. The allowed values are true
and false.

false

<contactEventName> The default name of the contact event
that is posted.

<acceptEventName> The default name of the accept event
that is posted.

<imageUrlAttribute> The default offer attribute name that
contains the URL for the offer image, if
none is specified in the Message
Connector link.

<landingPageUrlAttribute> The default URL for the click-through
landing page if none is specified in the
Message Connector link.

Behavior Settings

The following table contains a list of the optional and required settings contained
in the behaviorSettings section of the MessageConnectorConfig.xml file.

Table 26. Message Connector Behavior Settings

Element Description Default Value

<imageErrorLink> The URL to which the connector
redirects if an error occurs while
processing a request for an offer image.
This setting is required.

/images/default.jpg

<landingPageErrorLink> The URL to which the connector
redirects if an error occurs while
processing a request for a click-through
landing page. This setting is required.

/jsp/default.jsp

<alwaysUseExistingOffer> Determines whether the cached offer
should be returned, even if it already
expired. The allowed values are true
and false.

false

<offerExpireAction> The action to take if the original offer is
found, but is already expired. Allowed
values are:

v GetNewOffer

v RedirectToErrorPage

v ReturnExpiredOffer

RedirectToErrorPage

300 IBM Interact Administrator's Guide

Storage Settings

The following table contains a list of the optional and required settings contained
in the storageSettings section of the MessageConnectorConfig.xml file.

Table 27. MessageConnector Storage Settings

Element Description Default Value

<persistenceMode> When the cache persists new entries
into the database. The allowed values
are WRITE-BEHIND (where data is
written to the cache initially, and
updated to the database at a later
time) and WRITE-THROUGH (where data
is written to the cache and to the
database at the same time).

WRITE-THROUGH

<maxCacheSize> The maximum number of entries in
the memory cache.

5000

<maxPersistenceBatchSize> The maximum batch size while
persisting entries into the database.

200

<macCachePersistInterval> The maximum time in seconds an
entry stays in the cache before it is
persisted into the database.

3

<maxElementOnDisk> The maximum number of entries in
the disk cache.

5000

<cacheEntryTimeToExpireInSeconds> The maximum amount of time for
the entries in the disk cache to persist
before expiring.

60000

<jdbcSettings> A section of the XML file containing
specific information if a JDBC
connection is used. It is mutually
exclusive with the
<dataSourceSettings> section.

Configured by default to connect to a
SQLServer database configured on
the local server, but if you enable this
section you must provide the actual
JDBC settings and credentials to log
in.

<dataSourceSettings> A section of the XML file containing
specific information if a data source
connection is used. It is mutually
exclusive with the <jdbcSettings>
section.

Configured by default to connect to
the InteractDS data source defined on
the local web application server.

Audience Levels

The following table contains a list of the optional and required settings contained
in the audienceLevels section of the MessageConnectorConfig.xml file.

Note that the audienceLevels element is optionally used to specify the default
audience level to use if none is specified in the Message Connector link, as in the
following example:

<audienceLevels default="Customer">

In this example, the value for the default attribute matches the name of an
audienceLevel defined in this section. There must be at least one audience level
defined in this configuration file.

Chapter 16. Real-time offer personalization on the client side 301

Table 28. MessageConnector Audience Level Settings

Element Element Description Default Value

<audienceLevel> The element containing the
audience level configuration.
Provide a name attribute, as in
<audienceLevel name="Customer">

<messageLogTable> The name of the log table. This
value is required.

UACI_MESSAGE_CONNECTOR_LOG

<fields> <field> The definition of one or more
audience ID fields for this
audienceLevel.

<name> The name of the audience ID field,
as specified in the Interact runtime.

<httpParameterName> The corresponding parameter
name for this audience ID field.

<dbColumnName> The corresponding column name
in the database for this audience
ID field.

<type> The type of the audience ID field,
as specified in the Interact runtime.
Values can be string or numeric.

Creating the Message Connector Tables
Before you can deploy the IBM Interact Message Connector, you must first create
the tables in the database where the Interact runtime data is stored. You'll create
one table for each audience level you have defined. For each audience level,
Interact will use the tables you create to record information about Message
Connector transactions.

Use your database client to run the Message Connector SQL script against the
appropriate database or schema to create the necessary tables. The SQL scripts for
your supported database are installed automatically when you install the Interact
runtime server. See the worksheets you completed in the IBM Interact Installation
Guide for details about connecting to the database that contains the Interact
runtime tables.
1. Launch your database client and connect to the database in which your Interact

runtime tables are currently stored.
2. Run the appropriate script in the <Interact_home>/msgconnector/scripts/ddl

directory. The following table lists the sample SQL scripts you can use to
manually create the Message Connector tables:

Table 29. Scripts for creating the Message Connector tables

Data source type Script name

IBM DB2 db_scheme_db2.sql

Microsoft SQL Server db_scheme_sqlserver.sql

Oracle db_scheme_oracle.sql

Note that these scripts are provided as samples. You may use a different
naming convention or structure for audience ID values, so you may need to
modify the script before running it. In general, it is a best practice to have one
table dedicated to each audience level.
The tables are created to contain the following information:

302 IBM Interact Administrator's Guide

Table 30. Information created by the sample SQL scripts

Column Name Description

LogId The primary key of this entry.

MessageId The unique identifier of each messaging instance.

LinkId The unique identifier of each link in the electronic media (such as
an email message).

OfferImageUrl The URL to the related image of the returned offer.

OfferLandingPageUrl The URL to the related landing page of the returned offer.

TreatmentCode The treatment code of the returned offer.

OfferExpirationDate The expiration date and time of the returned offer.

OfferContactDate The date and time that the offer was returned to the client.

AudienceId The audience ID of the electronic media.

Note the following about this table:
v Depending on the audience level, there will be one AudienceId column for

each component of the audience key.
v The combination of MessageId, LinkId, and AudienceId(s) forms a unique

key of this table.
When the script has finished running, you have created the necessary tables for
the Message Connector.

You are now ready to deploy the Message Connector web application.

Deploying and running the Message Connector
The IBM Interact Message Connector is deployed as a stand-alone web application
on a supported web application server.

Before you can deploy the Message Connector, be sure that the following tasks
have been complete:
v You must have installed the IBM Interact runtime server. The deployable

Message Connector application is automatically installed along with the runtime
server, and is ready to deploy from your Interact home directory.

v You must also have run the SQL scripts provided with your installation to create
the necessary tables in the Interact runtime database for use by the Message
Connector as described in “Creating the Message Connector Tables” on page 302

Just as you deploy other IBM applications on a web application server before you
can run them, you must deploy the Message Connector application to make it
available for serving offers.
1. Connect to your web application server management interface with the

necessary privileges to deploy an application.
2. Follow the instructions for your web application server to deploy and run the

file called <Interact_home>/msgconnector/MessageConnector.war Replace
<Interact_home> with the actual directory into which the Interact runtime server
is installed.

The Message Connector is now available for use. After you have configured your
Interact installation to create the underlying data that the Message Connector will
use to provide offers, such as interactive channels and strategies, flowcharts, offers,
and so on, you can create the links in your electronic media that the Message
Connector will accept.

Chapter 16. Real-time offer personalization on the client side 303

Creating the Message Connector links
To use the Message Connector to provide custom offer images when an end-user
interacts with your electronic media (such as by opening an email message), and
custom landing pages when the end-user clicks through the offer, you need to
create the links to embed in your message. This section provides a summary of the
HTML tagging of those links.

Regardless of the system you use to generate your outgoing messages to end users,
you need to generate the HTML tagging to contain the appropriate fields
(provided in the HTML tags as attributes) containing information you want to pass
to the Interact runtime server. Follow the steps below to configure the minimum
information needed for a Message Connector message.

Note that although the instructions here refer specifically to messages containing
Message Connector links, you can follow the same steps and configuration to add
links to web pages or any other electronic media.
1. Create the IMG link that will appear in your message with, at a minimum, the

following parameters:
v msgID, indicating the unique identifier for this message.
v linkID, indicating the unique identifier for the link in the message.
v audienceID, the identifier of the audience to which the recipient of the

message belongs.
Note that if the audience ID is a composite ID, all of those components must
be included in the link.

You may also include optional parameters that include audience level,
interactive channel name, interaction point name, image location URL, and
your own custom parameters not specifically used by the Message Connector.

2. Optionally, create an A link that encloses the IMG link so that, when the user
clicks the image, the browser loads a page containing the offer for the user. The
A link must also contain the three parameters listed above (msgID, linkID, and
audienceID), plus any optional parameters (audience level, interactive channel
name, and interactive point name) and custom parameters not specifically used
by the Message Connector. Note that the A link will most likely contain a
Message Connector IMG link, but can also stand alone on the page as needed. If
the link does contain an IMG link, the IMG link should contain the same set of
parameters as the enclosing A link (including any optional or custom
parameters).

3. When the links are correctly defined, generate and send the email messages.

For detailed information on the available parameters, and sample links, see “"IMG"
and "A" tag HTTP Request parameters”

"IMG" and "A" tag HTTP Request parameters
When Message Connector receives a request, either because an end user opened an
email containing a Message Connector-encoded IMG tag or because the end user
clicked-through an A tag, it parses the parameters included with the request to
return the appropriate offer data. This section provides a list of the parameters that
can be included in the requesting URL (either the IMG tag (loaded automatically
when a tagged image is displayed when the email is opened) or the A tag (loaded
when the person viewing the email clicks through the message to the specified
site).

304 IBM Interact Administrator's Guide

Parameters

When Message Connector receives a request, it parses the parameters included
with the request. These parameters include some or all of the following:

Parameter Name Description Required? Default Value

msgId The unique identifier of the
email instance or web page.

Yes None. This is provided by the system creating the
unique instance of the email message or web page
containing the tag.

linkId The unique identifier of the link
in this email or web page.

Yes None. This is provided by the system creating the
unique instance of the email message or web page
containing the tag.

audienceLevel The audience level to which the
recipient of this communication
belongs.

No The audienceLevel specified as the default in the
audienceLevels element found in the
MessageConnectorConfig.xml file.

ic The name of the target
interactive channel (IC)

No The value of the interactiveChannel element found
in the defaultParameterValues section of the
MessageConnectorConfig.xml file, which is
"interactiveChannel" by default.

ip The name of the applying
interaction point (IP)

No The value of the interactionPoint element found in
the defaultParameterValues section of the
MessageConnectorConfig.xml file, which is
"headBanner" by default.

offerImageUrl The URL of the target offer
image for the IMG URL in the
message.

No None.

offerImageUrlAttr The name of the offer attribute
that has the URL of the target
offer image

No The value of the imageUrlAttribute element found
in the defaultParameterValues section of the
MessageConnectorConfig.xml file.

offerLandingPageUrl The URL of the landing page
corresponding to the target offer.

No None.

offerLandingPageUrlAttr The name of the offer attribute
that has the URL of the landing
page corresponding to the target
offer.

No The value of the landingPageUrlAttribute element
found in the defaultParameterValues section of the
MessageConnectorConfig.xml file.

contactEvent The name of the contact event. No The value of the contactEventName element found in
the defaultParameterValues section of the
MessageConnectorConfig.xml file, which is "contact"
by default.

responseEvent The name of the accept event. No The value of the acceptEventName element found in
the defaultParameterValues section of the
MessageConnectorConfig.xml file, which is "accept"
by default.

debug The debug flag. Set this
parameter to "true" only for
troubleshooting and at the
instruction of IBM technical
support.

No The value of the debugFlag element found in the
defaultParameterValues section of the
MessageConnectorConfig.xml file, which is "false" by
default.

<audience id> The audience ID of this user. The
name of this parameter is
defined in the configuration file.

Yes None.

When the Message Connector receives a parameter that is unrecognized (that is,
does not appear in the above list), it is handled in one of two possible ways:
v If an unrecognized parameter is provided (for example, "attribute", as in

attribute="attrValue") and there is a matching parameter of the same name
plus the word "Type" (for example, "attributeType", as in
attributeType="string"), this causes the Message Connector to create a
matching Interact parameter and pass it to the Interact runtime.

Chapter 16. Real-time offer personalization on the client side 305

The values for the Type parameter can be any of the following:
– string
– numeric
– datetime

For a parameter of type "datetime," the Message Connector also looks for a
parameter of the same name plus the word "Pattern" (for example,
"attributePattern") whose value is a valid date/time format. For example, you
might provide the parameter attributePattern="MM/dd/yyyy".
Note that if you specify a parameter type of "datetime" but do not provide a
matching date pattern, the value specified in the Message Connector
configuration file (found in <installation_directory>/msgconnector/config/
MessageConnectorConfig.xml) on the Interact server is used.

v If an unrecognized parameter is provided and there is no matching Type value,
Message Connector passes that parameter to the target redirect URL.

For all unrecognized parameters, the Message Connector passes them to the
Interact runtime server without processing or saving them.

Example Message Connector Code

The following A tag contains an example of a set of Message Connector links that
might appear in an email message:
<a href="http://www.example.com/MessageConnector/offerClickthru.jsp?msgId=234

&linkId=1&userid=1&referral=xyz">
<img src="http://www.example.com/MessageConnector/offerImage.jsp?msgId=234&linkId=1

&userid=1&incomeCode=3&incomeType=numeric"/>

In this example, the IMG tag loads automatically when the email message is
opened. By retrieving the image from the specified page, the message passes the
parameters for the unique message identifier (msgID), unique link identifier
(linkID), and unique user identifier (userid), along with two additional parameters
(incomeCode and incomeType) to be passed to the Interact runtime.

The A tag provides the HREF (Hypertext Reference) attribute that turns the offer
image into a clickable link in the email message. If the viewer of the message,
upon seeing the image, clicks through to the landing page, the unique message
identifier (msgId), link identifier (linkId), and user identifier (userid) are passed
through to the server, as well as one additional parameter (referral) that is passed
to the target redirect URL.

About the Interact Web Connector
The Interact WebConnector (also referred to as the JavaScript Connector, or
JSConnector) provides a service on the Interact runtime server that allows
JavaScript code to call the Interact Java API. This enables web pages to make calls
to Interact for real-time offer personalization using only embedded JavaScript code,
without having to rely on web development languages (such as Java, PHP, JSP, and
so on). For example, you might embed a small snippet of JavaScript code on each
page of your web site that serve offers recommended by Interact, so that each time
the page loads, calls are made to the Interact API to ensure that the best offers are
displayed on the loading page for the site visitor.

Use the Interact Web Connector in situations where you want to display offers to
visitors on a page where you may not have server-side programmatic control over

306 IBM Interact Administrator's Guide

the page display (as you would with, for example, PHP or other server-based
scripting), but can still embed JavaScript code in your page content that will be
executed by the visitor's web browser.

Tip: The Interact Web Connector files are installed automatically onto your Interact
runtime server, in the directory <Interact_home>/jsconnector. In the directory
<Interact_home>/jsconnector, you'll find a ReadMe.txt containing important notes
and details about the Web Connector features, as well as sample files and the Web
Connector source code to use as the basis for developing your own solutions. If
you do not find information to answer your questions here, see the jsconnector
directory for more information.

Installing the Web Connector on the runtime server
An instance of the Web Connector is installed automatically with your IBM Interact
runtime server, and is enabled by default. However, there are some settings you
must modify before you can configure and use the Web Connector.

The settings you must modify before you can use the Web Connector that is
installed on the runtime server are added to the web application server's
configuration. For that reason, you will need to restart the web application server
after completing these steps.
1. For the web application server on which the Interact runtime server is installed,

set the following Java properties:
-DUI_JSCONNECTOR_ENABLE_INPROCESS=true

-DUI_JSCONNECTOR_HOME=<jsconnectorHome>

Replace <jsconnectorHome> with the path to the jsconnector directory on the
runtime server, which is <Interact_Home>/jsconnector.
The way in which you set the Java properties depends on your web application
server. For example, in WebLogic, you would edit the startWebLogic.sh or
startWebLogic.cmd file to update the JAVA_OPTIONS setting, as in this example:
JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -DUI_JSCONNECTOR_HOME=/UnicaFiles/
jsconnector"

In WebSphere Application Server, you would set this property in the Java
virtual machine panel of the administration console.
See your web application server documentation for specific instructions on
setting Java properties.

2. Restart your web application server if it was already running, or start your web
application server now, to make sure that the new Java properties are used.

When the web application server has completed its startup process, you have
finished installing the Web Connector on the runtime server. The next step is to
connect to its Configuration web page at http://<host>:<port>/interact/jsp/
WebConnector.jsp, where <host> is the Interact runtime server name, and <port> is
the port on which the Web Connector is listening, as specified by the web
application server.

Installing the Web Connector as a separate web application
An instance of the Web Connector is installed automatically with your IBM Interact
runtime server, and is enabled by default. However, you can also deploy the Web
Connector as its own web application (for example, in a web application server on
a separate system) and configure it to communicate with the remote Interact
runtime server.

Chapter 16. Real-time offer personalization on the client side 307

These instructions describe the process of deploying the Web Connector as a
separate web application with access to a remote Interact runtime server.

Before you can deploy the Web Connector, you must have installed the IBM
Interact runtime server, and you must have a web application server on another
system with network access (not blocked by any firewall) to the Interact runtime
server.
1. Copy the jsconnector directory containing the Web Connector files from your

Interact runtime server to the system where the web application server (such as
WebSphere Application Server) is already configured and running. You can find
the jsconnector directory in your Interact installation director.

2. On the system where you'll be deploying the Web Connector instance,
configure the jsconnector/jsconnector.xml file using any text or XML editor to
modify the interactURL attribute.
This is set by default to http://localhost:7001/interact, but you must modify
it to match the URL of the remote Interact runtime server, such as
http://runtime.example.com:7011/interact.
After you deploy the Web Connector, you can use a web interface to customize
the remaining settings in the jsconnector.xml file. See “Configuring the Web
Connector” on page 309 for more information.

3. For the web application server on which you will be deploying the Web
Connector, set the following Java property:
-DUI_JSCONNECTOR_HOME=<jsconnectorHome>

Replace <jsconnectorHome> with the actual path to where you copied the
jsconnector directory onto the web application server.
The way in which you set the Java properties depends on your web application
server. For example, in WebLogic, you would edit the startWebLogic.sh or
startWebLogic.cmd file to update the JAVA_OPTIONS setting, as in this example:
JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -DUI_JSCONNECTOR_HOME=/InteractFiles/
jsconnector"

In WebSphere Application Server, you would set this property in the Java
virtual machine panel of the administration console.
See your web application server documentation for specific instructions on
setting Java properties.

4. Restart your web application server if it was already running, or start your web
application server in this step, to make sure that the new Java property is used.
Wait for the web application server to complete its startup process before
continuing.

5. Connect to your web application server management interface with the
necessary privileges to deploy an application.

6. Follow the instructions for your web application server to deploy and run the
following file: jsConnector/jsConnector.war

The Web Connector is now deployed in the web application. After you have your
fully-configured Interact server up and running, the next step is to connect to the
Web Connector Configuration web page at http:// <host>: <port>/interact/jsp/
WebConnector.jsp, where <host> is the system running the web application server
on which you just deployed the Web Connector, and <port> is the port on which
the Web Connector is listening, as specified by the web application server.

308 IBM Interact Administrator's Guide

Configuring the Web Connector
Configuration settings for the Interact Web Connector are stored in a file called
jsconnector.xml that is stored on the system where the Web Connector is
deployed (such as the Interact runtime server itself, or a separate system running a
web application server). You can edit the jsconnector.xml file directly using any
text editor or XML editor; however, an easier way to configure almost all of the
available configuration settings is to use the Web Connector Configuration page
from your web browser.

Before you can use the web interface to configure the Web Connector, you must
install and deploy the web application that provides the Web Connector. On the
Interact runtime server, an instance of the Web Connector is installed automatically
when you install and deploy Interact. On any other web application server, you
must install and deploy the Web Connector web application as described in
“Installing the Web Connector as a separate web application” on page 307.
1. Open your supported web browser and open a URL similar to the following:

http://<host>:<port>/interact/jsp/WebConnector.jsp

v Replace <host> with the server on which the Web Connector is running, such
as the host name of the runtime server or the name of the server on which
you deployed a separate instance of the Web Connector.

v Replace <port> with the port number on which the Web Connector web
application is listening for connections, which usually matches the web
application server's default port.

2. On the Configurations page that appears, complete the following sections:

Table 31. Web Connector Configuration Settings Summary.

Section Settings

Basic Settings Use the Basic Settings page to configure the overall Web Connector
behavior for the site on which you'll be rolling out the tagged pages. These
settings include the base URL for the site, information that Interact needs
to use about the visitors to the site, and similar settings that apply to all of
the pages you plan to tag with Web Connector code.

See “WebConnector Configuration Basic Options” on page 311 for details.

HTML
Display Types

Use the HTML Display Types page to determine the HTML code that will
be provided for each interaction point on the page. You can choose from
the list of default templates (.flt files) that contain some combination of
cascading style sheet (CSS) code, HTML code, and Javascript code to use
for each interaction point. You can use the templates as provided,
customize them as needed, or create your own.

Configuration settings on this page correspond to the interactionPoints
section of the jsconnector.xml configuration file.

See “WebConnector Configuration HTML Display Types” on page 312 for
details.

Chapter 16. Real-time offer personalization on the client side 309

Table 31. Web Connector Configuration Settings Summary (continued).

Section Settings

Enhanced
Pages

Use the Enhanced Pages page to map page-specific settings to a URL
pattern. For example, you might set up a page mapping such that any URL
containing the text "index.htm" displays your general welcome page, with
specific page load events and interaction points defined for that mapping.

Configuration settings on this page correspond to the pageMapping section
of the jsconnector.xml configuration file.

See “WebConnector Configuration Enhanced Pages” on page 315 for
details.

3. On the Basic Settings page, verify that the site-wide settings are valid for your
installation, and optionally specify debug mode (not recommended unless you
are troubleshooting a problem), Digital Analytics for On Premises Page Tag
integration, and the default settings for most Interaction Points, then click the
HTML Display Types link under Configurations.

4. On the HTML Display types page, follow these steps to add or modify display
templates that define the interaction points on the customer web page.
By default, display templates (.flt files) are stored in <jsconnector_home>/conf/
html.
a. Select the .flt file from the list that you want to examine or use as your

starting point, or click Add a Type to create a new, blank Interaction Point
template to use.
Information about the template's contents, if any, appears next to the
template list.

b. Optionally, modify the name of the template in the File name for this
display type field. For a new template, update CHANGE_ME.flt to something
more meaningful.
If you rename the template here, the Web Connector creates a new file with
that name the next time the template is saved. Templates are saved when
you modify the body of the text, and then navigate to any other field.

c. Modify or complete the HTML Snippet information as needed, including
any stylesheet (CSS), JavaScript, and HTML code you want to include. Note
that you can also include variables that will be replaced by Interact
parameters at runtime. For example, ${offer.HighlightTitle} is
automatically replaced by the offer title in the specified location of the
Interaction Point.
Use the examples that appear below the HTML Snippet field for indications
of how to format your CSS, JavaScript, or HTML code blocks.

5. Use the Enhanced Pages page as needed to set up the page mappings that
determine how specific URL patterns are handled on the pages.

6. When you have finished setting the configuration properties, click Roll Out the
Changes. Clicking Roll Out the Changes performs the following actions:
v Displays the IBM Interact Web Connector page tag, which contains the

JavaScript code that you can copy from the Web Connector page and insert
onto your web pages.

v Backs up the existing Web Connector configuration file on the Interact server
(the jsconnector.xml file on the server where the Web Connector is installed)
and creates a new configuration file with the settings you've defined.
Backup configuration files are stored in <jsconnector_home>/conf/archive/
jsconnector.xml.<date>.<time>, as in

310 IBM Interact Administrator's Guide

jsconnector.xml.20111113.214933.750-0500 (where the date string is
20111113 and the time string, including the time zone indicator, is
214933.750-0500)

You have now completed configuring the Web Connector.

To modify your configuration, you can either return to the beginning of these steps
and perform them again with new values, or you can open the configuration file
(<Interact_home>/jsconnector/conf/jsconnector.xml) in any text or XML editor
and modify it as needed.

WebConnector Configuration Basic Options
Use the Basic Settings page of the Web Connector Configurations page to configure
the overall Web Connector behavior for the site on which you'll be rolling out the
tagged pages. These settings include the base URL for the site, information that
Interact needs to use about the visitors to the site, and similar settings that apply
to all of the pages you plan to tag with Web Connector code.

Site-wide Settings

The Site-wide Settings configuration options are global settings that affect the
overall behavior of the installation of the Web Connector you are configuring. You
can specify the following values:

Table 32. Site-wide settings for the Web Connector installation

Setting Description
Equivalent setting in
jsconnector.xml

Interact API URL The base URL of the Interact runtime
server.
Note: This setting is used only if the
Web Connector is not running inside
of the Interact runtime server (that is,
you have deployed it separately).

<interactURL>

Web Connector URL The base URL used to generate the
click-through URL.

<jsConnectorURL>

Interactive Channel name for the
target website

The name of the interactive channel
you have defined on the Interact
server that represents this page
mapping.

<interactiveChannel>

Audience Level of Visitors The Campaign audience level for the
inbound visitor; used in the API call
to the Interact runtime.

<audienceLevel>

Audience ID Field Name in the
Profile Table

Name of the audienceId field that
will be used in the API call to
Interact. Note that there is currently
no support for multi-field audience
identifiers.

<audienceIdField>

Data type of the Audience ID Field The data type of the Audience ID
field (either "numeric" or "string") to
be used in the API call to Interact.

<audienceIdFieldType>

Cookie Name that represents the
Session ID

The name of the cookie that will
contain the session ID.

<sessionIdCookie>

Cookie Name that represents the
Visitor ID

The name of the cookie that will
contain the visitor ID.

<visitorIdCookie>

Chapter 16. Real-time offer personalization on the client side 311

Optional Features

The Optional Features configuration options are optional global settings for the
installation of the Web Connector you are configuring. You can specify the
following values:

Table 33. Optional site-wide settings for the Web Connector installation

Setting Description
Equivalent setting in
jsconnector.xml

Enable Debug Mode Specifies (with a yes or no answer)
whether to use a special debug mode.
If you enable this feature, the content
returned from the Web Connector
includes a Javascript call to 'alert',
informing the client of the particular
page mapping that just occurred. The
client must have an entry in the file
specified by the
<authorizedDebugClients> setting in
order to get the alert.

<enableDebugMode>

Authorized Debugging Clients Host
File

The path to a file that contains the
list of hosts or IP (Internet Protocol)
addresses that qualify for debug
mode. A client's host name or IP
address must appear in the specified
file for debug information to be
collected.

<authorizedDebugClients>

Enable Digital Analytics for On
Premises Page Tag Integration

Specifies (with a yes or no answer)
whether the Web Connector should
attach the specified IBM Digital
Analytics for On Premises tag at the
end of the page content.

<enableNetInsightTagging>

Digital Analytics for On Premises Tag
HTML Template File

The HTML/Javascript template used
to integrate a call to the Digital
Analytics for On Premises tag. In
general, you should accept the
default setting unless you are
instructed to provide a different
template.

<netInsightTag>

WebConnector Configuration HTML Display Types
Use the HTML Display Types page to determine the HTML code that will be
provided for each interaction point on the page. You can choose from the list of
default templates (.flt files) that contain some combination of cascading style sheet
(CSS) code, HTML code, and JavaScript code to use for each interaction point. You
can use the templates as provided, customize them as needed, or create your own.

Note: Configuration settings on this page correspond to the interactionPoints
section of the jsconnector.xml configuration file.

The interaction point can also contain placeholders (zones) into which offer
attributes can be dropped automatically. For example, you might include
${offer.TREATMENT_CODE}which would be replaced with the treatment code
assigned to that offer during the interaction.

312 IBM Interact Administrator's Guide

The templates that appear on this page are loaded automatically from the files
stored in <Interact_home>/jsconnector/conf/html directory of the Web Connector
server. Any new templates you create here are also stored in that directory.

To use the HTML Display Types page to view or modify any of the existing
templates, select the .flt file from the list.

To create a new template on the HTML Display Types page, click Add a Type.

Regardless of the method you choose to create or modify a template, the following
information appears next to the template list:

Setting Description
Equivalent setting in
jsconnector.xml

File name for this display type The name assigned to the template
you are editing. This name must be
valid for the operating system on
which the Web Connector is running;
for example, you cannot use a slash
(/) in the name if the operating
system is Microsoft Windows.

If you are creating a new template,
this field is preset to CHANGE_ME.flt.
You must change this to a
meaningful value before continuing.

<htmlSnippet>

Chapter 16. Real-time offer personalization on the client side 313

Setting Description
Equivalent setting in
jsconnector.xml

HTML Snippet The specific content that Web
Connector should insert into the
Interaction Point on the web page.
This snippet can contain HTML code,
CSS formatting information, or
JavaScript to be executed on the
page.

Each of those three types of content
must be enclosed by BEGIN and
END codes, as in the following
examples:

v ${BEGIN_HTML} <your HTML
content> ${END_HTML}

v ${BEGIN_CSS} <your Interaction
Point-specific stylesheet information>
${END_CSS}

v ${BEGIN_JAVASCRIPT} <your
Interaction Point-specific JavaScript
code> ${END_JAVASCRIPT}

You can also enter a number of
pre-defined special codes that are
replaced automatically when the
page is loaded, including the
following:

v ${logAsAccept} : A macro that
takes two parameters (a target
URL, and the TreatmentCode used
to identify the acceptance of the
offer) and replaces it with the
click-through URL.

v ${offer.AbsoluteLandingPageURL}

v ${offer.OFFER_CODE}

v ${offer.TREATMENT_CODE}

v ${offer.TextVersion}

v $offer.AbsoluteBannerURL}

Each of the offer codes listed here
represent offer attributes defined in
the offer template in IBM Campaign
that was used by the marketer to
create the offers that Interact is
returning.

Note that the Web Connector uses a
template engine called FreeMarker
that provides many additional
options that you may find useful in
setting up codes on your page
templates. See http://freemarker.org/
docs/index.html for more
information.

No equivalent because the HTML
snippet resides in its own file
separate from jsconnector.xml.

314 IBM Interact Administrator's Guide

http://freemarker.org/docs/index.html
http://freemarker.org/docs/index.html

Setting Description
Equivalent setting in
jsconnector.xml

Example Special Codes Contains samples of the type of
special codes, including codes that
identify blocks as HTML, CSS, or
JAVASCRIPT, and droppable zones
you can insert to refer to specific
offer metadata.

No equivalent.

Your changes to this page are saved automatically when you navigate to another
Web Connector configuration page.

WebConnector Configuration Enhanced Pages
Use the Enhanced Pages page to map page-specific settings to a URL pattern. For
example, you might set up a page mapping such that any incoming URL
containing the text "index.htm" displays your general welcome page, with specific
page load events and interaction points defined for that mapping.

Note: Configuration settings on this page correspond to the pageMapping section of
the jsconnector.xml configuration file.

To use the Enhanced Pages page to create a new page mapping, click the Add a
Page link and complete the necessary information for the mapping.

Page Info

The Page Info configuration options for the page mapping define the URL pattern
that acts as the trigger for this mapping, plus some additional settings for the way
this page mapping is handled by Interact.

Setting Description
Equivalent setting in
jsconnector.xml

URL contains This is the URL pattern that the Web
Connector should watch for in the
incoming page request. For example,
if the requesting URL contains
"mortgage.htm" you might match
that to your mortgage information
page.

<urlPattern>

Friendly name for this page or set of
pages

A meaningful name for your own
reference that describes what this
page mapping is for, such as
"Mortgage Information Page".

<friendlyName>

Also return offers as JSON data for
JavaScript use

A drop-down list to indicate whether
you want the Web Connector to
include the raw offer data in
JavaScript Object Notation
(http://www.json.org/) format at the
end of the page content.

<enableRawDataReturn>

Chapter 16. Real-time offer personalization on the client side 315

http://www.json.org/

Events to fire (onload) when a visit is made to this page or set of
pages

These set of configuration options for the page mapping define the URL pattern
that acts as the trigger for this mapping, plus some additional settings for the way
this page mapping is handled by Interact.

Note: Configuration settings in this section correspond to the <pageLoadEvents>
section of the jsconnector.xml.

Setting Description
Equivalent setting in
jsconnector.xml

Individual events A list of events that are available for
this page or set of pages. The events
in this list are those that you have
defined in Interact, Select one or
more events that you want to occur
when the page is loaded.

The sequence of Interact API calls is
the following:

1. startSession

2. postEvent for each individual
page load event (provided you
have defined the individual
events in Interact)

3. For each Interaction Point:

v getOffers

v postEvent(ContactEvent)

<event>

Interaction Points (offer display locations) on this page or set of pages

These set of configuration options for the page mapping allow you to select which
Interaction Points appear on the pageInteract.

Note: Configuration settings in this section correspond to the <pageMapping> |
<page> | <interactionPoints> section of the jsconnector.xml.

Setting Description
Equivalent setting in
jsconnector.xml

Interaction Point name checkbox Each Interaction Point that has been
defined in the configuration file
appears in this section of the page.
Selecting the checkbox next to the
name of the Interaction Point
displays a number of options
available for that Interaction Point.

<interactionPoint>

HTML Element ID (Interact will set
the innerHTML)

The name of the HTML element that
should receive the content for this
Interaction Point. For example, if you
specified <div id="welcomebanner">
on the page, you would enter
welcomebanner (the ID value) in this
field.

<htmlElementId>

316 IBM Interact Administrator's Guide

Setting Description
Equivalent setting in
jsconnector.xml

HTML Display Type A drop-down list that allows you to
select the HTML Display Type (the
HTML snippets, or .flt files, defined
on a previous Web Connector
configuration page) to use for this
Interaction Point.

<htmlSnippet>

Maximum number of offers to
present (if this is a carousel or
flipbook)

The maximum number of offers that
the Web Connector should retrieve
from the Interact server for this
Interaction Point This field is
optional, and applies only for an
Interaction Point that regularly
updates the offers presented without
reloading the page, as in the carousel
scenario where multiple offers are
retrieved so that they can be made
available one at a time.

<maxNumberOfOffers>

Event to fire when the offer is
presented

The name of the contact event to be
posted for this Interaction Point.

<contactEvent>

Event to fire when the offer is
accepted

The name of the accept event to be
posted for this Interaction Point at
the time that the offer link is clicked.

<acceptEvent>

Event to fire when the offer is
rejected

The name of the reject event to be
posted for this Interaction Point.
Note: At this time, this feature is not
yet used

<rejectEvent>

Web Connector Configuration Options
In general, you can use a graphical Web Connector interface to configure your Web
Connector settings. All of the settings you specify are also stored in a file called
jsconnector.xml, found in your jsconnector/conf directory. Each of the parameters
that are saved in the jsconnector.xml configuration file is described here.

Parameters and their descriptions

The following parameters are stored in the jsconnector.xml file and are used for
Web Connector interactions. There are two ways to modify these settings:
v Using the Web Connector Configuration web page that is automatically available

after you have deployed and started the Web Connector application. To use the
Configuration web page, use your web browser to open a URL similar to the
following: http://<host>:<port>/interact/jsp/WebConnector.jsp.
The changes you make on the Administration web page are stored in the
jsconnector.xml file on the server where the Web Connector is deployed.

v Edit the jsconnector.xml file directly using any text editor or XML editor. Be
sure that you are comfortable editing XML tags and values before using this
method.

Note: Any time you edit the jsconnector.xml file manually, you can reload
those settings by opening the Web Connector Administration Page (found at
http://<host>:<port>/interact/jsp/jsconnector.jsp) and clicking Reload
Configuration.

Chapter 16. Real-time offer personalization on the client side 317

The following table describes the configuration options you can set as they appear
in the jsconnector.xml file.

Table 34. Web Connector configuration options

Parameter Group Parameter Description

defaultPageBehavior

friendlyName A human-readable identifier for the URL
Pattern for display on the Web Connector's
web configuration page.

interactURL The base URL of the Interact runtime server.
Note: You need to set this parameter only if
the Web Connector (jsconnector) service is
running as a deployed web application. You
do not need to set this parameter if the
WebConnector is running automatically as
part of the Interact runtime server.

jsConnectorURL The base URL used to generate the
click-through URL, such as
http://host:port/jsconnector/clickThru

interactiveChannel Name of the interactive channel that
represents this page mapping.

sessionIdCookie Name of the cookie that contains the session
ID that is used in the API calls to Interact.

visitorIdCookie Name of the cookie to contain the audience
ID.

audienceLevel The campaign audience level for the
inbound visitor, used in the API call to the
Interact runtime.

audienceIdField Name of the audienceId field used in the
API call to the Interact runtime.
Note: Note: There is currently no support
for multi-field audience identifiers.

audienceIdFieldType The datatype of the audience ID field
[numeric | string] used in the API call to
the Interact runtime

audienceLevelCookie Name of the cookie that to contain the
audience level. This is optional. If you do
not set this parameter, the system uses what
is defined for audienceLevel.

relyOnExistingSession Used in the API call to the Interact runtime.
In general, this parameter is set to "true".

enableInteractAPIDebug Used in the API call to the Interact runtime
to enable debugging output to the log files.

pageLoadEvents The event that will be posted once this
particular page is loaded. Specify one or
more events within this tag, in the format
similar to <event>event1</event>.

interactionPointValues All items in this category act as default
values for missing values in the IP specific
categories.

interactionPointValuescontactEvent Default name of contact event to be posted
for this particular interaction point.

318 IBM Interact Administrator's Guide

Table 34. Web Connector configuration options (continued)

Parameter Group Parameter Description

interactionPointValuesacceptEvent Default name of accept event to be posted
for this particular interaction point.

interactionPointValuesrejectEvent Default name of the reject event to be
posted for this particular interaction point.
(Note: at this time, this feature is not used.)

interactionPointValueshtmlSnippet Default name of HTML template to be
served for this interaction point.

interactionPointValuesmaxNumberOfOffers Default max number of offers to be
retrieved from Interact for this interaction
point.

interactionPointValueshtmlElementId Default name of HTML element to receive
the content for this interaction point.

interactionPoints This category contains the configuration for
each interaction point. For any missing
properties the system will rely on what's
configured under the
interactionPointValues category.

interactionPointname Name of the Interaction Point (IP).

interactionPointcontactEvent Name of contact event to be posted for this
particular IP.

interactionPointacceptEvent Name of accept event to be posted for this
particular IP.

interactionPointrejectEvent Name of the reject event to be posted for
this particular IP. (Note that this feature is
not yet in use.)

interactionPointhtmlSnippet Name of the HTML template to be served
for this IP.

interactionPointmaxNumberOfOffers Max number of offers to be retrieved from
Interactfor this IP

interactionPointhtmlElementId Name of the HTML element to receive the
content for this interaction point.

enableDebugMode Boolean flag (acceptable values: true or
false) to turn on special debug mode. If
you set this to true, the content returned
from the Web Connector includes a
JavaScript call to 'alert' informing the client
of the particular page mapping that just
occurred. The client must have an entry in
the authorizedDebugClients file to generate
the alert.

authorizedDebugClients A file used by the special debug mode that
contains the list of host names or Internet
Protocol (IP) addresses that qualify for
debug mode.

enableRawDataReturn A Boolean flag (acceptable values: true or
false) to determine whether the Web
Connector attaches the raw offer data in
JSON format at the tail end of the content.

Chapter 16. Real-time offer personalization on the client side 319

Table 34. Web Connector configuration options (continued)

Parameter Group Parameter Description

enableNetInsightTagging A Boolean flag (acceptable values: true or
false) to determine whether the Web
Connector attaches a Digital Analytics for
On Premises tag at the end of the content.

apiSequence Represents an implementation of the
APISequence interface, which dictates the
sequence of API calls made by the Web
Connector when a pageTag is called. By
default, the implementation uses a sequence
of StartSession, pageLoadEvents, getOffers,
and logContact, where the last two are
specific to each Interaction Point.

clickThruApiSequence Represents an implementation of the
APISequence interface, which dictates the
sequence of API calls made by the Web
Connector when a clickThru is called. By
default, the implementation uses a sequence
of StartSession and logAccept.

netInsightTag Represents the HTML and JavaScript
template used to integrate a call to the
Digital Analytics for On Premises tag. In
general, you should not need to change this
option.

Using the Web Connector Admin Page
The Web Connector includes an administration page that provides some tools to
help manage and test the configuration as it might be used with specific URL
patterns. You can also use the Admin Page to reload a configuration that you have
modified.

About the Admin Page

Using any supported web browser, you can open http://host:port/interact/jsp/
jsconnector.jsp, where host:port is the host name on which the Web Connector is
running and the port on which it is listening for connections, such as
runtime.example.com:7001

You can use the Admin Page in any of the following ways:

Table 35. Web Connector Admin Page Options

Option Purpose

Reload
Configuration

Click the Reload Configuration link to reload any configuration
changes that have been saved on disk into memory. This is necessary
when you have made changes directly to the Web Connector
jsconnector.xml configuration file rather than using the configuration
web pages.

320 IBM Interact Administrator's Guide

Table 35. Web Connector Admin Page Options (continued)

Option Purpose

View Config View the WebConnector configuration based on the URL pattern you
enter into the View Config field. When you enter the URL of a page
and click View Config, the Web Connector returns the configuration
that the system will use based on that that pattern mapping. If no
match is found, the default configuration is returned. This is useful
for testing whether the correct configuration is being used for a
particular page.

Execute Page Tag Completing the fields on this page and clicking Execute Page Tag
causes the Web Connector to return the pageTag result based on the
URL pattern. This simulates the calling of a page tag.

The difference between calling the pageTag from this tool and using
a real web site is that using this Admin Page will cause any errors
or exceptions to be displayed. For a real website, exceptions are not
returned and are visible only in the Web Connector log file.

Sample Web Connector Page
As an example, a file called WebConnectorTestPageSA.html has been included with
the Interact Web Connector (in the directory <Interact_Home/jsconnector/webapp/
html) that demonstrates how many of the features of the Web Connector would be
tagged in a page. For convenience, that sample page is also shown here.

Sample Web Connector HTML Page
<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<meta http-equiv="CACHE-CONTROL" content="NO-CACHE" />

<script language="javascript" type="text/javascript">
//<![CDATA[
/* ###
This is a test page that contains the WebConnector pageTag. Because the
name of this file has TestPage embedded, the WebConnector will detect a URL
pattern match to the url pattern "testpage" in the default version of the
jsconnector.xml - the configuration definition mapped to that "testpage"
URL pattern will apply here. That means there should this page the
corresponding html element ids that correspond to the IPs for this URL
pattern (ie. ’welcomebanner’, ’crosssellcarousel’, and ’textservicemessage’)
*/

/* ##
This section sets the cookies for sessionId and visitorId.
Note that in a real production website, this is done most likely by the login
component. For the sake of testing, it’s done here... the name of the cookie
has to match what’s configured in the jsconnector xml.
*/

function setCookie(c_name,value,expiredays)
{
var exdate=new Date();
exdate.setDate(exdate.getDate()+expiredays);
document.cookie=c_name+ "=" +escape(value)+
((expiredays==null) ? "" : ";expires="+exdate.toGMTString());

}
setCookie("SessionID","123");
setCookie("CustomerID","1");

Chapter 16. Real-time offer personalization on the client side 321

/* ###
Now set up the html element IDs that correspond to the IPs
*/

document.writeln("<div id=’welcomebanner’> This should change, "
+ "otherwise something is wrong <\/div>");

document.writeln("<div id=’crosssellcarousel’> This should change, "
+ "otherwise something is wrong <\/div>");

document.writeln("<div id=’textservicemessage’> This should change, "
+ "otherwise something is wrong <\/div>");
//]]>

</script><!--
###
this is what is pasted from the pageTag.txt file in the conf directory of
the WebConnector installation... the var unicaWebConnectorBaseURL needs to be
tweaked to conform to your local WebConnector environment
###
-->
<!-- BEGIN: IBM Interact Web Connector Page Tag -->
<!--
**
Licensed Materials - Property of IBM
IBM Interact
(c) Copyright IBM Corporation 2001, 2012.
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
**
-->
<script language="javascript" type="text/javascript">
//<![CDATA[

var unicaWebConnectorBaseURL=
"[CHANGE ME - http://host:port/<jsconnector>/pageTag]";

var unicaURLData = "ok=Y";
try {
unicaURLData += "&url=" + escape(location.href)
} catch (err) {}
try {
unicaURLData += "&title=" + escape(document.title)
} catch (err) {}
try {
unicaURLData += "&referrer=" + escape(document.referrer)
} catch (err) {}
try {
unicaURLData += "&cookie=" + escape(document.cookie)
} catch (err) {}
try {
unicaURLData += "&browser=" + escape(navigator.userAgent)
} catch (err) {}
try {
unicaURLData += "&screensize=" +
escape(screen.width + "x" + screen.height)
} catch (err) {}
try {
if (affiliateSitesForUnicaTag) {

var unica_asv = "";
document.write("<style id=\"unica_asht1\" type=\"text/css\"> "

+ "p#unica_ashtp a {border:1px #000000 solid; height:100px "
+ "!important;width:100px "
+ "!important; display:block !important; overflow:hidden "
+ "!important;} p#unica_ashtp a:visited {height:999px !important;"
+ "width:999px !important;} <\/style>");

var unica_ase = document.getElementById("unica_asht1");
for (var unica_as in affiliateSitesForUnicaTag) {
var unica_asArr = affiliateSitesForUnicaTag[unica_as];
var unica_ashbv = false;
for (var unica_asIndex = 0; unica_asIndex <

unica_asArr.length && unica_ashbv == false;
unica_asIndex++)

322 IBM Interact Administrator's Guide

{
var unica_asURL = unica_asArr[unica_asIndex];
document.write("<p id=\"unica_ashtp\" style=\"position:absolute; "

+ "top:0;left:-10000px;height:20px;width:20px;overflow:hidden; \
margin:0;padding:0;visibility:visible;\"> \
" + unica_as + " <\/a><\/p>");

var unica_ae = document.getElementById("unica_ashtp").childNodes[0];
if (unica_ae.currentStyle) {
if (parseFloat(unica_ae.currentStyle["width"]) > 900)

unica_ashbv = true
} else if (window.getComputedStyle) {
if (parseFloat(document.defaultView.getComputedStyle

(unica_ae, null).getPropertyValue("width")) > 900)
unica_ashbv = true

}
unica_ae.parentNode.parentNode.removeChild(unica_ae.parentNode)
}
if (unica_ashbv == true) {
unica_asv += (unica_asv == "" ? "" : ";") + unica_as
}
}
unica_ase.parentNode.removeChild(unica_ase);
unicaURLData += "&affiliates=" + escape(unica_asv)

}
} catch (err) {}
document.write("<script language=’javascript’ "

+ " type=’text/javascript’ src=’" + unicaWebConnectorBaseURL + "?"
+ unicaURLData + "’><\/script>");
//]]>

</script>
<style type="text/css">
/*<![CDATA[*/

.unicainteractoffer {display:none !important;}
/*]]>*/

</style>
<title>Sample Interact Web Connector Page</title>
</head>
<body>
<!-- END: IBM Interact Web Connector Page Tag -->
<!--

##
end of pageTag paste
##
-->

</body>
</html>

Chapter 16. Real-time offer personalization on the client side 323

324 IBM Interact Administrator's Guide

Chapter 17. Interact and Digital Recommendations integration

IBM Interact can integrate with IBM Digital Recommendations to provide
Interact-driven product recommendations. Both products can provide product
recommendations for offers, but using different methods. Digital Recommendations
uses a visitor's web behavior (collaborative filter) to build correlations between
visitors and recommended offers. Interact is based on customer's past behavior,
attributes, history, and less on view-level offers, learning which offers best match a
customer's behavior profile (based on demographics and other information about
the customer). Offer acceptance rates help to build a predictive model through
self-learning. Using the best of both products, Interact can use a personal profile to
define offers that will pass a category ID to Digital Recommendations and retrieve
recommended products based on popularity (the "wisdom of the crowds") for
display to the visitor as part of the selected offers. This can provide better
recommendations for customers that will result in more click-throughs and better
outcomes than either product acting alone.

The following sections describe how this integration works, and how to use the
sample application provided to create your own custom offer integration.

Overview of Interact integration with Digital Recommendations
This section describes how IBM Interact can integrate with IBM Digital
Recommendations to provide Interact-driven product recommendations, including
a description of the process, and the mechanisms by which the integration takes
place.

IBM Interact integrates with IBM Digital Recommendations via a Representational
state transfer (REST) application programming interface (API), made available from
the Digital Recommendations installation. By making the REST API calls with the
appropriate category ID, Interact can retrieve recommended products and include
them in the offer information displayed on the customized page that the visitor is
viewing.

When a visitor views the URL of the web page (such as the sample JSP page
included with your Interact installation), the page calls Interact to fetch an offer.
Assuming the offer has been configured within Interact with the correct
parameters, the following steps occur, in the simplest case:
1. The page logic identifies the Customer ID of the visitor.
2. An API call to Interact is made, passing in the required information to generate

an offer for that customer.
3. The returned offer provides the web page with at least three attributes: the

URL for the offer image, the URL of the landing page when the customer clicks
through, and the category ID to use for determining which products to
recommend.

4. The category ID is then used to call Digital Recommendations to retrieve the
recommended products. This set of products is in JSON (JavaScript Object
Notation) format in order by top-selling products in that category.

5. The offer and products are then displayed in the visitor's browser.

© Copyright IBM Corp. 2001, 2018 325

This integration is useful for combining offer recommendation and product
recommendations together. For example, on one web page you might have two
interaction points: one for an offer, and one for recommendations matching that
offer. To accomplish this, the web page makes a call to Interact to make a real-time
segmentation to determine best offer (say, for 10% off all small appliances). When
the page receives the offer from Interact, that offer would contain the category ID
(in this example, for small appliances). The page would then pass the category ID
for small appliances to Digital Recommendations using an API call, and receive in
response the best product recommendations for that category based on popularity.

A simpler example might be where a web page makes a call to Interact from only
to find out a category (say, high-end cutlery) that matches the customer profile. It
would then pass the received category ID to Digital Recommendations, and get
cutlery product recommendations.

Integration Prerequisites
Before you can use the Digital Recommendations - Interact integration, you must
make sure that you meet the prerequisites described in this section.

Be sure that the following prerequisites are true:
v You are familiar with the use of the Interact API as documented elsewhere in

Administrator's Guide and online help.
v You are familiar with the Digital Recommendations REST API as described in

your Digital Recommendations developer documentation.
v You have a basic understanding of HTML, JavaScript, CSS, and JSON (JavaScript

Object Notation).
JSON is important because the Digital Recommendations REST API returns the
product information you request in as JSON-formatted data.

v You are familiar with server-side coding of web pages, because the
demonstration application provided with Interact uses JSP (although JSP is not
required).

v You have a valid Digital Recommendations account and the list of category IDs
you plan to have Interact to retrieve product recommendations (the top-selling
or most popular products in the category you specify).

v You have the Digital Recommendations REST API link (a URL for your Digital
Recommendations environment).
See the sample application included with yourInteract installation for an
example, or see the sample code in “Using the Integration Sample Project” on
page 327 for more information.

Configuring an offer for Digital Recommendations integration
Before your web page can call Digital Analytics Digital Recommendations to
retrieve a recommended product, you must first configure the IBM Interact offer
with the necessary information to pass to Digital Recommendations.

To set up an offer to link to Digital Recommendations, make sure the following
conditions are in place first:
v Make sure that your Interact runtime server is set up and running correctly.
v Ensure that the runtime server can establish a connection with the Digital

Recommendations server, including making sure that your firewall does not
prevent the outgoing establishment of a standard web connection (port 80).

326 IBM Interact Administrator's Guide

To set up an offer for integration with Digital Recommendations, perform the
following steps.
1. Create or edit an offer for Interact.

For information on creating and modifying offers, see the IBM Interact User's
Guide, and the IBM Campaign documentation.

2. In addition to the other settings in the offer, make sure that the offer includes
the following offer attributes:
v The URL (uniform resource locator) that links to the image for the offer.
v The URL that links to the landing page for the offer.
v An Digital Recommendations category ID associated with this offer.

You can retrieve the category ID manually from your Digital
Recommendations configuration. Interact cannot retrieve category ID values
directly.

In the demonstration web application included with your Interact installation,
these offer attributes are called ImageURL, ClickThruURL, and CategoryID. The
names can be any that are meaningful to you, as long as your web application
matches the values that the offer is expecting.
For example, you might define an offer called "10PercentOff" that contains
these attributes, where the Category ID (as retrieved from your Digital
Recommendations configuration) is PROD1161127, the URL of the offer
click-through is http://www.example.com/success, and the URL of the image to
display for the offer is http://localhost:7001/sampleIO/img/
10PercentOffer.jpg (a URL that is, in this case, local to the Interact runtime
server).

3. Define the treatment rules for an interactive channel to include this offer, and
deploy the interactive channel as usual.

The offer is now defined with the information required for Digital
Recommendations integration. The remaining work to allow Digital
Recommendations to provide product recommendations to Interact is accomplished
by configuring your web pages to make the appropriate API calls.

When you configure your web application to serve the integrated page to visitors,
make sure that the following files are included in the WEB-INF/lib directory:
v Interact_Home/lib/interact_client.jar, required to handle calls from your

web page to the Interact API.
v Interact_Home/lib/JSON4J_Apache.jar, required to handle the data returned

from the call to the Digital Recommendations REST API, which returns
JSON-formatted data.

See “Using the Integration Sample Project” for more information on how to serve
the offers to your customers.

Using the Integration Sample Project
Every Interact run time installation includes a sample project that demonstrates the
Digital Recommendations - Interact integration process. The sample project
provides a complete, end-to-end demonstration of creating a web page that calls an
offer that contains a category ID, which is then passed to Digital Recommendations
to retrieve a recommended product list for presentation in the interaction points of
the page.

Chapter 17. Interact and Digital Recommendations integration 327

Overview

You can use the included sample project as it is provided, if you want to test the
integration process, or you can use it as a starting point to develop your own
custom pages. The sample project is found in the following file:

Interact_home/samples/IntelligentOfferIntegration/MySampleStore.jsp

This file, in addition to containing a full, working example of the integration
process, also contains extensive comments that explain what to set up in Interact,
what to customize in the .jsp file, and how to deploy the page properly to run
with your installation.

MySampleStore.jsp

For convenience, the MySampleStore.jsp file is shown here. This sample may be
updated with subsequent releases of Interact, so use the file included with your
installation as a starting point for any examples you need.

<!--

Licensed Materials - Property of IBM
IBM Interact
(c) Copyright IBM Corporation 2001, 2011.
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

-->

<%@ page contentType="text/html; charset=UTF-8" language="java" %>
<%@ page import="java.net.URL,

java.net.URLConnection,
java.io.InputStreamReader,
java.io.BufferedReader,
com.unicacorp.interact.api.*,
com.unicacorp.interact.api.jsoverhttp.*,
org.apache.commons.json.JSONObject,
org.apache.commons.json.JSONArray" %>

<%

/***
* This sample jsp program demonstrates integration of Interact and Digital Recommendations.
*
* When the URL for this jsp is accessed via a browser. the logic will call Interact
* to fetch an Offer. Based on the categoryID associated to the offer, the logic
* will call Digital Recommendations to fetch recommended products. The offer and products
* will be displayed.
* To toggle the customerId in order to demonstrate different offers, one can simply
* append cid=<id> to the URL of this JSP.
*
* Prerequisites to understand this demo:
* 1) familiarity of Interact and its java API
* 2) familiarity of IntelligentOffer and its RestAPI
* 3) some basic web background (html, css, javascript) to mark up a web page
* 4) Technology used to generate a web page (for this demo, we use JSP executed on the server side)
*
*
* Steps to get this demo to work:
* 1) set up an Interact runtime environment that can serve up offers with the following
* offer attributes:
* ImageURL : url that links to the image of the offer
* ClickThruURL : url that links to the landing page of the offer
* CategoryID : Digital Recommendations category id associated to the offer
* NOTE: alternate names for the attributes may be used as long as the references to those
* attributes in this jsp are modified to match.
* 2) Obtain a valid REST API URL to the Intelligent Offer environment
* 3) Embed this JSP within a Java web application
* 4) Make sure interact_client.jar is in the WEB-INF/lib directory (communication with Interact)
* 5) Make sure JSON4J_Apache.jar (from interact install) is in the

328 IBM Interact Administrator's Guide

* WEB-INF/lib directory (communication with IO)
* 6) set the environment specific properties in the next two sections
**/

/***
* *****************CHANGE THESE SETTINGS TO REFLECT YOUR ENV********************
* Set your Interact environment specific properties here...
**/

final String sessionId="123";
final String interactiveChannel = "SampleIO";
final String audienceLevel = "Customer";
final String audienceColumnName="CustomerID";
final String ip="ip1";
int customerId=1;
final String interactURL="http://localhost:7011/interact/servlet/InteractJSService";
final boolean debug=true;
final boolean relyOnExistingSession=true;

/***
*****************CHANGE THESE SETTINGS TO REFLECT YOUR ENV********************

* Set your Digital Recommendations environment specific properties here...
**/

final String ioURL="http://recs.coremetrics.com/iorequest/restapi";
final String zoneID="ProdRZ1";
final String cID="90007517";

/***
**/

StringBuilder interactErrorMsg = new StringBuilder();
StringBuilder intelligentOfferErrorMsg = new StringBuilder();

// get the customerID if passed in as a parameter
String cid = request.getParameter("cid");
if(cid != null)
{
customerId = Integer.parseInt(cid);
}

// call Interact to get offer
Offer offer=getInteractOffer(interactURL,sessionId,interactiveChannel,audienceLevel,

audienceColumnName,ip,customerId,debug,relyOnExistingSession,interactErrorMsg);

// get specific attributes from the offer (img url, clickthru url, & category id)
String offerImgURL=null;
String offerClickThru=null;
String categoryId="";

if(offer != null)
{
for(NameValuePair offerAttribute : offer.getAdditionalAttributes())

{
if(offerAttribute.getName().equalsIgnoreCase("ImageURL"))
{
offerImgURL=offerAttribute.getValueAsString();
}
else if(offerAttribute.getName().equalsIgnoreCase("ClickThruURL"))
{
offerClickThru=offerAttribute.getValueAsString();
}
else if(offerAttribute.getName().equalsIgnoreCase("CategoryID"))
{
categoryId=offerAttribute.getValueAsString();
}

}
}

// call Digital Recommendations to get products
JSONObject products=getProductsFromIntelligentOffer(ioURL, cID, zoneID, categoryId,

intelligentOfferErrorMsg);

%>

<html>
<head>

Chapter 17. Interact and Digital Recommendations integration 329

<title>My Favorite Store</title>

<script language="javascript" type="text/javascript">
var unicacarousel=(function(){var g=false;var h;var j=0;var k=0;var l=0;var m=40;

var n=new Array(0,2,6,20,40,60,80,88,94,97,99,100);var o=function(a){var b=a.parentNode;
h=b.getElementsByTagName("UL")[0];var c=h.getElementsByTagName("LI");j=c[0].offsetWidth;
k=c.length;l=Math.round((b.offsetWidth/j));unicacarousel.recenter()};var p=function(a)
{var b=parseFloat(h.style.left);if(isNaN(b))b=0;for(var i=0;i<n.length;i++)
{setTimeout("unicacarousel.updateposition("+(b+(a*(n[i]/100)))+");",((i*m)+50))}
setTimeout("unicacarousel.recenter();",((i*m)+50))};return{gotonext:function(a,b)
{if(!g){o(a);g=true;p((-1*b*j))}},gotoprev:function(a,b){if(!g){o(a);g=true;p((b*j))}},
updateposition:function(a){h.style.left=a+"px"},recenter:function(){var a=parseFloat(h.style.left);
if(isNaN(a))a=0;var b=j*Math.round(((l-k)/2));var c=Math.abs(Math.round((b-a)/j));
if(a<b){var d=h.getElementsByTagName("LI");var e=new Array();
for(var i=0;i<c;i++){e[e.length]=d[i]}for(var i=0;i<e.length;i++)
{h.insertBefore(e[i],null)}unicacarousel.updateposition(b)}else
if(a>b){var d=h.getElementsByTagName("LI");var e=new Array();
for(var i=0;i<c;i++){e[e.length]=d[d.length-c+i]}var f=d[0];
for(var i=0;i<e.length;i++){h.insertBefore(e[i],f)}unicacarousel.updateposition(b)}g=false}}})();

</script>

<style type="text/css">
.unicaofferblock_container {width:250px; position:relative; display:block;

text-decoration:none; color:#000000; cursor: pointer;}
.unicaofferblock_container .unicateaserimage {margin:0px 0.5em 0.25em 0px; float:left;}
.unicaofferblock_container .unicabackgroundimage {position:absolute; top:0px; left:0px;}
.unicaofferblock_container .unicabackgroundimagecontent {width:360px; height:108px;

padding:58px 4px 4px 20px; position:relative; top:0px;}
.unicaofferblock_container h4 {margin:0px; padding:0px; font-size:14px;}

.unicacarousel {width:588px; position:relative; top:0px;}

.unicacarousel_sizer {width:522px; height:349px; margin:0px 33px; padding:0;
overflow:hidden; position:relative;}

.unicacarousel_rotater {height:348px; width:1000px; margin:0 !important;
padding:0; list-style:none; position:absolute; top:0px;
left:0px;}

.unicacarousel li {width:167px; height:349px; float:left; padding:0 4px;
margin:0px !important; list-style:none !important;
text-indent:0px !important;}

.unicacarousel_gotoprev, .unicacarousel_gotonext {width:18px; height:61px;
top:43px; background:url(../img/carouselarrows.png) no-repeat;
position:absolute; z-index:2; text-align:center; cursor:pointer;
display:block; overflow:hidden; text-indent:-9999px;
font-size:0px; margin:0px !important;}

.unicacarousel_gotoprev {background-position:0px 0; left:0;}

.unicacarousel_gotonext {background-position:-18px 0; right:0;}

</style>

</head>

<body>

Welcome To My Store Mr/Mrs. <%=customerId %>

<% if(offer != null) { %>
<!-- Interact Offer HTML -->

<div onclick="location.href=’<%=offerClickThru %>’" class="unicaofferblock_container">
<div class="unicabackgroundimage">
<a href="<%=offerClickThru %>"><img src="<%=offerImgURL %>" height="170"

width="695" border="0">
</div>
</div>

<% } else { %>
No offer available..

<%=interactErrorMsg.toString() %>
<% } %>

<% if(products != null) { %>
<!-- IntelligentOffer Products HTML -->

<div class="unicacarousel">
<div class="unicacarousel_sizer">
<ul class="unicacarousel_rotater">

330 IBM Interact Administrator's Guide

<% JSONArray recs = products.getJSONObject("io").getJSONArray("recs");
if(recs != null)
{
for(int x=0;x< recs.length();x++)
{
JSONObject rec = recs.getJSONObject(x);
if(rec.getString("Product Page") != null &&

rec.getString("Product Page").trim().length()>0) {
%>

<a href="<%=rec.getString("Product Page") %>" title="<%=rec.getString("Product Name") %>">

<img src="<%=rec.getString("Image") %>" width="166" height="148" border="0" />
<%=rec.getString("Product Name") %>

<% }
}
}
%>

</div>
<p class="unicacarousel_gotoprev" onclick="unicacarousel.gotoprev(this,1);"></p>
<p class="unicacarousel_gotonext" onclick="unicacarousel.gotonext(this,1);"></p>
</div>
<% } else { %>
<div>

No products available...

<%=intelligentOfferErrorMsg.toString() %>
</div>
<% } %>

</body>
</html>

<%!
/***
* The following are convenience functions that will fetch from Interact and
* Digital Recommendations
**/

/***
* Call Digital Recommendations to retrieve recommended products
**/
private JSONObject getProductsFromIntelligentOffer(String ioURL, String cID,

String zoneID, String categoryID, StringBuilder intelligentOfferErrorMsg)
{

try
{

ioURL += "?cm_cid="+cID+"&cm_zoneid="+zoneID+"&cm_targetid="+categoryID;
System.out.println("CoreMetrics URL:"+ioURL);
URL url = new java.net.URL(ioURL);

URLConnection conn = url.openConnection();

InputStreamReader inReader = new InputStreamReader(conn.getInputStream());
BufferedReader in = new BufferedReader(inReader);

StringBuilder response = new StringBuilder();

while(in.ready())
{
response.append(in.readLine());
}

in.close();

intelligentOfferErrorMsg.append(response.toString());

System.out.println("CoreMetrics:"+response.toString());

if(response.length()==0)

Chapter 17. Interact and Digital Recommendations integration 331

return null;

return new JSONObject(response.toString());
}
catch(Exception e)
{
intelligentOfferErrorMsg.append(e.getMessage());
e.printStackTrace();
}

return null;

}

/***
* Call Interact to retrieve offer
**/
private Offer getInteractOffer(String interactURL,String sessionId,String interactiveChannel,

String audienceLevel,
String audienceColumnName,String ip, int customerId,boolean debug,

boolean relyOnExistingSession, StringBuilder interactErrorMsg)
{
try
{
InteractAPI api = InteractAPI.getInstance(interactURL);
NameValuePairImpl custId = new NameValuePairImpl();

custId.setName(audienceColumnName);
custId.setValueAsNumeric(Double.valueOf(customerId));

custId.setValueDataType(NameValuePair.DATA_TYPE_NUMERIC);
NameValuePairImpl[] audienceId = { custId };

// call startSession
Response response = api.startSession(sessionId, relyOnExistingSession,

debug, interactiveChannel, audienceId, audienceLevel, null);

if(response.getStatusCode() == Response.STATUS_ERROR)
{
printDetailMessageOfWarningOrError("startSession",response, interactErrorMsg);

}

// call getOffers
response = api.getOffers(sessionId, ip, 1);
if(response == null || response.getStatusCode() == Response.STATUS_ERROR)
{
printDetailMessageOfWarningOrError("getOffers",response, interactErrorMsg);

}

OfferList offerList=response.getOfferList();

if(offerList != null && offerList.getRecommendedOffers() != null)
{
return offerList.getRecommendedOffers()[0];
}

}
catch(Exception e)
{
interactErrorMsg.append(e.getMessage());
e.printStackTrace();
}
return null;
}

private void printDetailMessageOfWarningOrError(String command, Response response,
StringBuilder interactErrorMsg)

{
StringBuilder sb = new StringBuilder();

sb.append("Calling "+command).append("
");
AdvisoryMessage[] messages = response.getAdvisoryMessages();

for(AdvisoryMessage msg : messages)
{
sb.append(msg.getMessage()).append(":");
sb.append(msg.getDetailMessage());
sb.append("
");
}
interactErrorMsg.append(sb.toString());

}
%>

332 IBM Interact Administrator's Guide

Chapter 18. Interact and Digital Data Exchange integration

With Digital Data Exchange, your website can link to Interact to provide a
powerful omni-channel execution engine that delivers the best offers to the
optimum channels and evolves (learns) from the offer feedback to continuously
increase marketing effectiveness.

You can use this tool if your marketing team uses Interact for omni-channel offer
management and wants to extend these personalized intelligent offers to your
websites.

IBM Digital Data Exchange integrates IBM and third party marketing solutions
with digital customer insights through a real-time data syndication API and an
enterprise-grade tag management solution.

Without IBM Digital Data Exchange, marketers depend on IT to link Interact to
their website and call theInteract API from various webpages. With IBM Digital
Data Exchange, marketers can bypass IT and go directly to IBM Digital Data
Exchange to include IBM Digital Data Exchange tags on various webpages.

Prerequisites
Before you can use the Interact and Digital Data Exchange integration, you must
make sure that you meet the prerequisites described in this section.

Be sure that the following prerequisites are true.
v You are familiar with the Interact JavaScript API as documented elsewhere in

Administrator's Guide and online help.
v You are familiar with the Digital Data Exchange tagging and page groups.
v You have a valid Digital Data Exchange account.
v Your interactapi.js file is publicly hosted so it can be accessed in Vendor

settings.

Integrating IBM Interact with your website through IBM Digital Data
Exchange

Use these steps to integrate Interact with your website through Digital Data
Exchange.
1. Specify the location of the Interactapi.js file.

a. Navigate to Vendors > Vendor Settings in Digital Data Exchange.
b. Select IBM Interact from the Vendor drop-down.
c. In Library Path, enter the URL where you hosted the Interactapi.js. Do

not include the protocol (http or https) in this URL.
d. In Path To Public Rest Servlet, add the path to the Rest Servlet.

2. Navigate to Manage > Global Settings in Digital Data Exchange to specify the
object name to use as the page identifier in Unique Page Identifier. For
example, you can set the object name to digitalData.pageInstanceID.

© Copyright IBM Corp. 2001, 2018 333

3. Include the eluminate.js file and an identifier on the web page where you
want Digital Data Exchange to insert the tags. You should give each web page
a unique identifier so Digital Data Exchange can distinguish between various
pages.
For example, you can add the following script to your home page.
<!-- Setting Page Identifier -->

<script>
digitalData={pageInstanceID:"INTERACT_HomePage"};

</script>

<!-- Including eluminate script -->
<script type="text/javascript" src="http://libs.

coremetrics.com/eluminate.js">
</script>
<script type="text/javascript">

cmSetClientID("51310000|INTERACTTEST",false,"data.
coremetrics.com",document.domain);

</script>

4. In Digital Data Exchange create tags, code segments, functions, and other items
you want to add to your web page.

5. Create page groups to define what you want filed on each page.
See the IBM Digital Data Exchange User Guide for more information.

Interact tags in Digital Data Exchange
Use the default Digital Data Exchange tags to define variations of the tags that are
appropriate to web pages where data is represented from different locations. Once
defined, these tags are added to the Interact tag list. Tags may not have fields to
define or may not have required tag fields and can be used directly.

The following Interact tags are available in Digital Data Exchange under Tags.
v End Session
v Get Offers
v Load Library
v Post Event
v Set Audience
v Start Session

To use the Interact tags, edit the tags to define the Tag Field, Method, Object
Name, Data Type, and Modifier for each Interact tag.

The Post Event, Set Audience, and Start Sessions tags accept custom tag fields. Use
the Tag Field Add icon, the click the Edit icon to define the custom parameter. The
process is the same as any parameter definition with the exception that the name
of the parameter can be edited and must include the parameter name, a colon, and
the parameter data type. Custom parameter order in the tag can be modified with
the up and down arrows.

Tags can also be bound to JavaScript functions or HTML objects so that they fire
after the function fires or on an HTML object event.

For more information on how to define, bind, and work with tags, see the IBM
Digital Data Exchange User Guide.

334 IBM Interact Administrator's Guide

http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en
http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en
http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en

For detailed use cases of the Interact and Digital Data Exchange integration, see
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/
wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and
%20IBM%20Digital%20Data%20Exchange%20Integration.

End Session
The End Session tag marks the end of a web session.

The following tag fields are available for the End Session tag.

Table 36. End Session tags

Tag Field Description

*Session ID Identifies the Session ID.

On Success Callback Function
Name

Defines the name of the function to be called when
the end session method is successful.

On Failure Callback Function Name Defines the name of the function to be called when
the end session method fails.

Any Tag Field marked with an * is required.

Get Offers
Use the Get Offers tag to request offers from the runtime server.

The following tag fields are available for the Get Offers tag.

Table 37. Get Offers tags

Tag Field Description

*Session ID Identifies the Session ID.

*Interact Point Name Identifies the name of the interaction point this
method references. This name must match the name
of the interaction point defined in interactive channel
exactly.

*Number Requested Identifies the number of offers requested.

On Success Callback Function
Name

Defines the name of the function to be called when
the get offers method is successful.

On Failure Callback Function Name Defines the name of the function to be called when
the get offers method fails.

Any Tag Field marked with an * is required.

The Get Offers tag should be assigned to a page group whose container is set to
Default.

Load Library
The Load Library tag loads the Interact JavaScript library in the head section of the
page.

The Load Library tag has no parameters. It takes the library location from the
Library Path in Vendor Settings. It should be included in a page group using a
container set to Head and should run on every page that has Interact tagging.

Chapter 18. Interact and Digital Data Exchange integration 335

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration

Important: None of the other tags will work if the load library tag is not included.
The interact.js is not loaded if this tag is not included.

Post Event
Use the Post Event tag to execute any event defined in the interactive channel.

The following tag fields are available for the Post Event tag.

Table 38. Post Event tags

Tag Field Description

*Session ID Identifies the Session ID.

*Event Name Identifies the name of the event. The name of the
event must match the name of the event as defined
in the interactive channel. This name is
case-insensitive.

On Success Callback Function
Name

Defines the name of the function to be called when
the post event method is successful.

On Failure Callback Function Name Defines the name of the function to be called when
the post event method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag
names must consist of the parameter name, a colon, and the data type.

Set Audience
Use the Set Audience tag to set the audience ID and level for a visitor.

The following tag fields are available for the Set Audience tag.

Table 39. Set Audience tags

Tag Field Description

*Session ID Identifies the Session ID.

*Audience ID Identifies the Audience ID. The names must match
the physical column names of any table containing
the Audience ID. The Audience ID cannot contain
more that 17 significant digits. If an Audience ID is
more than 17 significant digits must be partitioned or
the Audience ID must be changed to a string.

*Audience Level Defines the Audience Level.

On Success Callback Function
Name

Defines the name of the function to be called when
the set audience method is successful.

On Failure Callback Function Name Defines the name of the function to be called when
the set audience method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag
names must consist of the parameter name, a colon, and the data type.

336 IBM Interact Administrator's Guide

Start Session
The Start Session tag creates and defines a web session.

The following tag fields are available for the Start Session tag.

Table 40. Start Session tags

Tag Field Description

*Session ID Identifies the Session ID.

*Interact Channel Defines the name of the interactive channel this
session refers to. This name must match the name of
the interactive channel defined in Campaign exactly.

*Audience ID Identifies the Audience ID. The names must match
the physical column names of any table containing
the Audience ID.

*Audience Level Defines the Audience Level.

*Rely on Existing Session Defines whether this session uses a new or an
existing session

*Debug Enables or disables debug information.

On Success Callback Function
Name

Defines the name of the function to be called when
the start session method is successful.

On Failure Callback Function Name Defines the name of the function to be called when
the start session method fails.

Any Tag Field marked with an * is required.

Optional parameters can be added with the custom tag field feature. Custom tag
names must consist of the parameter name, a colon, and the data type.

The Start Session tag should be assigned to a page group whose container is set to
Default.

Example tag settings
This example shows a simple configuration of the Start Session, Post Event, Get
Offers, and End Session tag settings.

For any tag, you can get the tag field values from the cookie with the cookie
method or from the JavaScript object with the javascriptobject method.

These tags support additional parameters that this simple example does not show.
You can find more information on the additional parameters in the IBM Digital
Data Exchange User Guide.

For detailed use cases of the Interact and Digital Data Exchange integration, see
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/
wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and
%20IBM%20Digital%20Data%20Exchange%20Integration.

Example Start Session tag settings

Click Tags > IBM Tags > IBM Interact > Type: Start Session to create a Start
Session tag. Edit the tag with the following settings.

Chapter 18. Interact and Digital Data Exchange integration 337

http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en
http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20and%20IBM%20Digital%20Data%20Exchange%20Integration

Session ID settings
v Method: Constant
v Constant: 5555
v Data Type: String
v Modifier: <null>

Interactive Channel settings
v Method: Constant
v Constant: WSCDemo
v Data Type: String
v Modifier: <null>

Audience ID settings
v Method: Constant
v Constant: USERS_ID,2002,numeric
v Data Type: String
v Modifier: <null>

Audience Level settings
v Method: Constant
v Constant: WSCUserId
v Data Type: String
v Modifier: <null>

Rely On Existing Session settings
v Method: Constant
v Constant: False
v Data Type: Boolean
v Modifier: <null>

Debug
v Method: Constant
v Constant: True
v Data Type: Boolean
v Modifier: <null>

On Success Callback Function Name settings
v Method: Unassigned
v Value: <null>

On Failure Callback Function Name settings
v Method: Unassigned
v Value:<null>

Example Get Offers tag settings

Click Tags > IBM Tags > IBM Interact > Type: Get Offers to create a Get Offers
tag. Edit the tag with the following settings.

338 IBM Interact Administrator's Guide

Session ID settings
v Method: Constant
v Constant: 5555
v Data Type: String
v Modifier: <null>

Interact Point Name settings
v Method: Constant
v Constant: AuroraHomepageHeaderBannerLeft
v Data Type: String
v Modifier: <null>

Number Requested settings
v Method: Constant
v Constant: 1
v Data Type: integer
v Modifier: <null>

On Success Callback Function Name settings
v Method: Constant
v Constant: onOfferReturnSuccess
v Data Type: string
v Modifier: <null>

On Failure Callback Function Name settings
v Method: Constant
v Constant: onOfferReturnError
v Data Type: string
v Modifier: <null>

Example Post Event tag settings

Click Tags > IBM Tags > IBM Interact > Type: Post Event to create a Post Event
tag. Edit the tag with the following settings.

Session ID settings
v Method: Constant
v Constant: 5555
v Data Type: String
v Modifier: <null>

Event Name settings
v Method: Constant
v Constant: ACCEPTOFFER
v Data Type: String
v Modifier: <null>

On Success Callback Function Name settings
v Method: Constant

Chapter 18. Interact and Digital Data Exchange integration 339

v Constant: onSuccessTestFunction
v Data Type: String
v Modifier: <null>

On Failure Callback Function Name settings
v Method: Constant
v Constant: onErrorTestFunction
v Data Type: String
v Modifier: <null>

Additional parameter field settings
v Tag Field: UACIOfferTrackingCode:string
v Method: JavaScriptObject
v Object Name: oa.treatmentCode
v Data Type: String
v Modifier: <null>

Example End Session tag settings

Click Tags > IBM Tags > IBM Interact > Type: End Session to create an End
Session tag. Edit the tag with the following settings.

Session ID settings
v Method: Constant
v Constant: 5555
v Data Type: String
v Modifier: <null>

On Success Callback Function Name settings
v Method: Unassigned
v Value: <null>

On Failure Callback Function Name settings
v Method: Unassigned
v Value: <null>

Example functions

For the functions used for the On Success Callback Function Name and On Failure
Callback Function Name settings, you only have to specify the function name
when you create a new tag if the function is already present on your webpage.

You can also use the Digital Data Exchange Utilities to create functions and add
them to your webpages.

The following example shows how to display an offer returned from Interact on
your webpage. You must include this script on the page or use the Digital Data
Exchange code snippet to inject it.
<script>
oa = {treatmentCode: ""};
function acceptOffer(treatmentCode) {
oa.treatmentCode = treatmentCode;

340 IBM Interact Administrator's Guide

}
function onOfferReturnSuccess(response) {
var offer = response.offerList[0].offers[0];
var attributes = offer.attributes;
var offerText = "";
var offerLinkURL = "#";
for(var i = 0; i<attributes.length; i++)
{
if(attributes[i].n == "OfferTerms")
{
offerText = attributes[i].v;
}
else if(attributes[i].n == "OfferLinkURL")
{
offerLinkURL = attributes[i].v;
}
}

var link = "<a href=\"’+offerLinkURL+"\" onclick=\"acceptOffer
(’"+offer.treatmentCode+"’)\">"+offerText+"";
document.getElementById("offerContainer").innerHTML="
<div style=\"text-align:center;padding:
10px 0;background-color:#f5f5f5;\">"+link+"</div>";
}
function onOfferReturnError(response) {
(JSON.stringify(response));
}
</script>

Verify your integration configuration
Use the Digital Data Exchange test tool and the Interact.log file to troubleshoot
any configuration problems.

You can use the Digital Data Exchange test tool to check the encyclopedia to see if
your configuration works as expected. To open the test tool, click Deployment >
Test Tool in Digital Data Exchange.

See the IBM Digital Data Exchange User Guide for more information on the test
tool.

You can view the Interact.log file to see details about the various Interact API
calls that are made. Add the On Success Callback Function and On Failure
Callback Function to each tag to debug the various calls.

Chapter 18. Interact and Digital Data Exchange integration 341

http://doc.unica.com/kc/SSPG9M/DDX/DDX/DDX_KC_map-gentopic1.html?lang=en

342 IBM Interact Administrator's Guide

Chapter 19. Configure gateways for triggered messages

Use triggered message gateways to send and receive offer information from
inbound and outbound channels.

You can use the following inbound and outbound gateways with triggered
messages.
v IBM Interact Inbound Gateway for IBM Universal Behavior Exchange
v IBM Interact Outbound Gateway for IBM Universal Behavior Exchange
v IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
v IBM Interact Outbound Gateway for IBM Mobile Push Notification

For more information, see https://www.ibm.com/developerworks/community/
wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM
%20Interact%20Triggered%20Messages.

Using the IBM Interact Inbound Gateway for IBM Universal Behavior
Exchange

To use the IBM Interact Inbound Gateway for IBM Universal Behavior Exchange,
you must configure Interact, configure a UBX subscriber endpoint, and create an
endpoint and event in UBX.

Use the following configurations as an example for your configuration.

You can download the subscriber gateway from http://www.ibm.com/support/
fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement
&product=ibm/Other+software/Unica+Interact&release=All&platform=All
&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0
&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc.

Configuring Interact for the IBM Interact Inbound Gateway for
IBM Universal Behavior Exchange

Use the following steps to configure Interact.
1. In the Interact | activityOrceshtrator | receivers configuration property, add

a new receiver. Set Type to IBMMQ or Custom. If you choose Custom, enter
ClassName and ClassPath. If you choose IBMMQ, leave ClassPath and
ClassName blank.

2. Add providerURL, queueManager, messageQueueName, authDS, and
asmUserFor...." parameters for your receiver.

3. In the Interact | activityOrceshtrator | gateways configuration property, add
a new gateway. Set ClassPath to the URI of the location of the
OMO_InteractGateway_UBX.jar file and ClassName to
com.ibm.interact.offerorchestration.inboundgateway.ubx.
UBXInboundGateway

4. Create a Interactubx11 folder under the UBX folder of the inbound gateway
and copy the properties files to this new folder. The folder name should
match the name of the subscriber endpoint that you created in UBX.

© Copyright IBM Corp. 2001, 2018 343

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20Triggered%20Messages
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20Triggered%20Messages
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W214f7731a379_4712_a1ce_5d7a833d4cca/page/IBM%20Interact%20Triggered%20Messages
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc

5. In the interactEventNamemapping.properties file, add an entry to map the
value of the payload event field to the Interact event name. For example,
recommededOffers=recommendedOffers.

6. In the interactEventPayloadMapping.properties file, add your field
definitions with the names of these parameters set to OMO-
conf_inbound_UBX_interactEventNameMapping and OMO-
conf_inbound_UBX_interactEventNameMapping, respectively
For example:
[SessionID]=(String)interactprofileid
[EventName]=(String)code
[AudienceIDFieldNames]=(String)"CustomerID"
[AudienceIDFieldValues]=(Numeric)interactprofileid
[AudienceLevel]=(String)"Customer"
[InteractChannel]=(String"UBX_MM"

7. Add the locations of your Interactubx11/interactEven
tNameMapping.properties and Interactubx11/interactEven
tPayloadMapping.properties as parameters for your gateway under Interact |
activityOrceshtrator | gateways | [gatewayname] | Parameter Data.

8. Create an interactive channel and add an event to the interactive channel.
9. Add a triggered messages rule with the recommendedOffers event and assign

an offer to the rule.
10. Deploy the interactive channel.
11. Restart the Interact server.
12. Post an event to UBX with a REST API client.

Example event body:
{

"channel" : "mobile",
"identifiers" : [
{
"name" : "interactprofileid",
"value" : "55"

}
],

"events" : [
{
"code" : "recommendedOffers",
"timestamp" : "2015-12-28T20:16:12Z"
}
]

}

13. Check the Interact log to see if the triggered messages event is triggered.

Configuring the IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange endpoint

This is a sample endpoint that you can use as an example.

You should also use the instructions to complete the following configurations.
v UBX endpoint with IBM MQ
v Endpoint ubxInboundEndpoint.properties file
v Endpoint inboundProducerNameConfig.properties file
v Endpoint inboundQueueNameConfig.properties file
v Endpoint log4j.properties file

344 IBM Interact Administrator's Guide

Deploying the IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange and endpoint
1. Download and unzip IBM_Interact_OMO_Gateway_for_UBX_Subscriber_2.0.zip

to the directory in which you installed Interact on the Interact runtime server.
2. Download and unzip IBM_Interact_OMO_Endpoint_for_UBX_Subscriber_2.0.zip

to any directory (for example, c:\ubxInboundEndpoint) on a publicly accessible
JavaEE enabled application server or web server. This server will post data to
the Interact inbound JMS Queue to be later consumed by the IBM Interact
Inbound Gateway for IBM Universal Behavior Exchange.

Configuring IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange Interact Inbound Gateway endpoint

The IBM Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint
is configured to accept requests from Universal Behavior Exchange and send it to
the IBM Interact Inbound Gateway for IBM Universal Behavior Exchange.

You must complete the following tasks to configure the Universal Behavior
Exchange Subscriber Gateway endpoint
1. A new Java system property (-DubxInboundEndpointConfigPath) needs to be

configured by editing the configuration file in the web server or in the
administrative console of application server. The -D property should point to
the endpoint install directory in the server. This directory contains
configuration files for the target JMS queue and various logging levels for the
endpoint. For example -DubxInboundEndpointConfigPath=c:\
ubxInboundEndpoint.

2. Deploy the IBM Interact Inbound Gateway for IBM Universal Behavior
Exchange endpoint web archive file (ubxInboundEndpoint.war) from the install
directory as described in the web server or application server documentation.

To verify that the endpoint was installed correctly, enter the following address into
any browser and look for message UBX End Point is UP.
http://[Server]:[Port]/[ContextRoot]/UBXEndPoint

Note: You should protect the publicly accessible IBM Interact Inbound Gateway
for IBM Universal Behavior Exchange endpoint by adding necessary firewall rules
to accept http request from IBM Universal Behavior Exchange Server only.

For example, you can use the following instructions to configure and deploy IBM
Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint on
WebSphere Application Server.
1. Open the administrative console.
2. Select Servers > (Expand Server Types) > server_name > (Expand Java™ and

Process Management) > Process Definition > Java Virtual Machine.
3. In the generic JVM arguments, add the property-

DubxInboundEndpointConfigPath=<Universal Behavior Exchange Subscriber
Gateway endpoint install dir on the application server>. For example, add the
property -DubxInboundEndpointConfigPath=C:\ubxInboundEndpoint.

4. Click OK to save the changes to the master configuration.
5. Restart the application server.

Deploy the endpoint in WebSphere Application Server.
1. Log in to the administrative console.

Chapter 19. Configure gateways for triggered messages 345

2. Navigate to Applications > Application Types > Websphere enterprise
applications. Click Install.

3. Use the Preparing for the application installation option to locate the endpoint
war file (ubxInboundEndpoint.war) to be installed and then click Next.

4. Click Next in subsequent pages to reach Map context roots for Web modules.
5. Use the Map context roots for Web modules to locate the Context Root and

change value to /UBXEndPoint, this becomes the context root. Click next.
6. Click Finish.
7. Once the application finished installing, click Save to keep the changes on the

master configuration.
8. Back in the listed and installed applications, mark the checkbox for

ubxInboundEndpoint_war and click Start to load.

Configuring the IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange endpoint with IBM MQ (optional)

By default, the IBM Interact Inbound Gateway for IBM Universal Behavior
Exchange endpoint works with ActiveMQ. Use the following instructions to
configure the endpoint with IBM MQ.

Preparing the IBM MQ JAR files:

The client that runs the endpoint must have certain IBM MQ JAR files available in
order for the connection factories to work.

If IBM MQ is already installed on the endpoint machine, the JAR files you need
are already packaged with the IBM MQ installation. Add the following two JAR
files to the system-level CLASSPATH environment variable. In Windows, the JAR
files are automatically added to the classpath when IBM MQ is installed.
[MQ_HOME]\java\bin\com.ibm.mq.jar
[MQ_HOME]\java\bin\com.ibm.mqjms.jar

If IBM MQ is not installed on the machine, you should instead copy
com.ibm.mq.allclient.jar and jms.jar from your MQ server to your endpoint server
and manually add them to CLASSPATH.

For more information about installing or relocating IBM MQ JAR files, see
http://www.ibm.com/support/docview.wss?uid=swg21376217.

Your application server needs to be running Java 1.7 or higher, as IBM MQ v8 JAR
files do not support Java 1.6.

WebSphere Application Server comes pre-packaged with IBM MQ support and
does not require any additional JAR files.

Configuring the endpoint
1. Go to the <endpoint install dir on the application server> directory.
2. Back up or rename ubxInboundEndpoint-spring.xml and

ubxInboundEndpoint.properties.
3. Navigate to the IBMMQ subdirectory. It will contain alternate versions of the

above files.
4. Add your MQ server connection information to this version of

ubxInboundEndpoint.properties.

346 IBM Interact Administrator's Guide

http://www.ibm.com/support/docview.wss?uid=swg21376217.

5. Copy ubxInboundEndpoint-spring.xml andubxInboundEndpoint.properties
from /ubxInbdoundEndpoint/IBMMQ to the main/ubxInboundEndpoint directory.

Configuring the IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange endpoint ubxInboundEndpoint.properties file

Use the ubxInboundEndpoint.properties file to configure where to send Universal
Behavior Exchange event payload to IBM Interact Inbound Gateway for IBM
Universal Behavior Exchange. The ubxInboundEndpoint.properties file is in the
<gateway endpoint install dir on the application server> directory.

jmsBrokerUrl
Required - The JMS queue information where the producer writes the data.

jmsMaximumRetries
Required - The maximum number of retries to send a message to the JMS
queue.

jmsRetryDelay
Required - The redelivery delay in milliseconds.

maximumEndPointThreadPoolSize
Required - The maximum number of threads for the thread pool to handle
IBM Universal Behavior Exchange event data and write to JMS queue. This
integer number defines the size of the thread pool.

clientIDFieldName
Optional - The field name used in the payload for the client id (sub
category). A sub category is used when this program is running on
multiple instances of the same product. For example:
clientIDFieldName=clientID

A restart of the gateway endpoint webapp (ubxInboundEndpoint.war) is required
in web server or application server for any changes in this file to take effect.

Configuring the IBM Interact Inbound Gateway for IBM Universal
Behavior Exchange endpoint
inboundProducerNameConfig.properties file (optional)

The IBM Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint
sends the event to Interact by writing to a JMS queue. The default event message
uses the producer name value UBX. Use the inboundProducerNameConfig.properties
file to override the producer name based on the UBX source field value from the
payload. This is typically the UBX endpoint name. The
inboundProducerNameConfig.properties file is in the <gateway endpoint install dir
on the application server> directory.

SOURCE.{UBX source name}={producer name}
Example: SOURCE.CustomerAEndpoint=UBX-CustomerAEndpoint.

A restart of the gateway endpoint webapp (ubxInboundEndpoint.war) is required
in web server or application server for any changes in this file to take effect.

Configuring the gateway endpoint
inboundQueueNameConfig.properties file (optional)

The IBM Interact Inbound Gateway for IBM Universal Behavior Exchange endpoint
sends the event to Interact by writing to a JMS queue. The default queue name is
the same as the producer name. Use the inboundQueueNameConfig.properties file

Chapter 19. Configure gateways for triggered messages 347

to override the default JMS queue name by the producer name. The default
producer name is UBX unless it's overridden in the
inboundQueueNameConfig.properties file. The
inboundProducerNameConfig.properties file is in the <gateway endpoint install dir
on the application server> directory.

{producer name}={JMS queue name}
Example:
UBX=UBXInboundQueue.
UBX-CustomerAEndpoint=UBX-CustomerAEndpointQueue

A restart of gateway endpoint webapp (ubxInboundEndpoint.war) is required in
web server or application server for any changes in this file to take effect.

Configuring the gateway endpoint log4j.properties file

Use the log4j.properties file to configure different log level for the endpoint. The
log4j.properties file is in the <gateway endpoint install dir on the application
server> directory.

Description

Set the log level for log4j.logger.com.ibm.x1solution.jms.producer,
log4j.logger.com.ibm.web.offerorchestration.inbound.common and
log4j.logger.com.ibm.web.offerorchestration.inbound.ubx accordingly.

Configuring the interactEventNameMapping.properties file

Use this file to map the value of the payload event field that is defined in the
interactEventPayloadMapping.properties file as [EventName] to the Interact event
name. The fallback is to use the event name as it comes in with the Universal
Behavior Exchange event payload. The interactEventNameMapping.properties file
is in the <Install dir>\conf\inbound\UBX directory.

{UBX event name}={Interact event name}

Example: matchedIdentity=recommendedOfferEven

If support for payload data from specific source is necessary, this file may also be
placed in the <Install dir>\conf\inbound\UBX\{source} directory. The value for
source should match the value of source field in the Universal Behavior Exchange
event payload, typically the Universal Behavior Exchange endpoint name. If
support for data using specific versions is necessary, this file may also be placed in
the <Install dir>\conf\inbound\UBX\{source}\version-{version} directory. The
value for version should match the value of version field in the Universal Behavior
Exchange event payload. To support multiple Universal Behavior Exchange
instance data, this file may also be placed in the <Install dir>\conf\inbound\
UBX\{source}\version-{version}\account-{clientID} directory. The value for clientID
should match the value of clientID in the Universal Behavior Exchange event
payload.

Configuring the interactEventPayloadMapping.properties file

Use the interactEventPayloadMapping.properties file to map the inbound field to
the Interact API parameters. The interactEventPayloadMapping.properties file is
in the <Install dir>\conf\inbound\UBX directory.

Interact API parameters: The value must start with a field type definition, followed
by either a static value when the value is in double quotes, or a field name from

348 IBM Interact Administrator's Guide

the payload data. (FIELD_TYPE)"STATIC_VALUE" or
(FIELD_TYPE)PAYLOAD_FIELD_NAME. FIELD_TYPE can be either String,
Numeric, or DateTime.
Example:
[SessionID]=(String)interactprofileid
[EventName]=(String)code
[AudienceIDFieldNames]=(String)"change_me"
[AudienceIDFieldValues]=(String)interactprofileid
[AudienceLevel]=(String)"change_me"
[InteractChannel]=(String)"change_me"

Event data: These properties are used to map the event attributes that can be used
in your outbound channel communications. The left side contains the variable
names you use in your outbound channel communication.

The value must start with a field type definition, followed by either a static value
when the value is in double quotes, or a field name from the payload data.
(FIELD_TYPE)"STATIC_VALUE" or (FIELD_TYPE)PAYLOAD_FIELD_NAME.
FIELD_TYPE can be either String, Numeric, or DateTime.

If support for payload data from specific source is necessary, this file may also be
placed in the <Install dir>\conf\inbound\UBX\{source} directory. The value for
source should match the value of source field in the Universal Behavior Exchange
event payload, typically the Universal Behavior Exchange endpoint name. If
support for data using specific versions is necessary, this file may also be placed in
the <Install dir>\conf\inbound\UBX\{source}\version-{version} directory. The
value for version should match the value of version field in the Universal Behavior
Exchange event payload. To support multiple Universal Behavior Exchange
instance data, this file may also be placed in the <Install dir>\conf\inbound\
UBX\{source}\version-{version}\account-{clientID} directory. The value for clientID
should match the value of clientID in the Universal Behavior Exchange event
payload.

Creating an endpoint and event in UBX

This is a sample endpoint and event that you can use as an example.

Use the following steps to create an endpoint and event in UBX.
1. Use the REST API client to post the requests to UBX.
2. Register an endpoint in UBX with JSON. See the following example.

Method Call: PUT
URL: https://ubx-qa1-api.adm01.com/v1/endpoint
Headers:
Content-Type: application/json
Accept-Charset: UTF-8
Authorization: Bearer 912586bf-190d-48f9-8488-26f1bf532ef3
(Note: This is the Auth Key generated from the UBX UI.)
Body
{
"name":"Interactubxdk1",
"description":"Interactubxdk1",
"providerName":"IBM", "
"url":"http://169.38.71.122:9081/ubxEndPoint/UBXEndPoint",
"endpointTypes":{

"event":{
"source":{
"enabled":true

},
"destination":{

Chapter 19. Configure gateways for triggered messages 349

"enabled":true,
"url":"http://169.38.71.122:9081/UBXEndPoint/UBXEndPoint",
"destinationType":"push"
}

}
},
"marketingDatabasesDefinition":{

"marketingDatabases":[
{

"name":"IDSync",
"identifiers":[
{

"name":"interactprofileid",
"type":"INTERACTID"

}
]

}
]

}
}

3. Register an eventtype in UBX with JSON. See the following example.
Event Registration for Interact Event in UBX
Method Call: POST
URL: https://ubx-qa1-api.adm01.com/v1/eventtype

Headers:
Content-Type: application/json
Accept-Charset: UTF-8
Authorization: Bearer 912586bf-190d-48f9-8488-26f1bf532ef3
Note: This is the Auth Key generated from the UBX UI.)
Bearer 912586bf-190d-48f9-8488-26f1bf532ef3
Body
{

"name": "recommendedOffers",
"description": "recommended offers by OMO",
"code": "recommendedOffers"

}

4. Post an event to UBX with JSON. See the following example.
{

"channel" : "mobile",
"identifiers" : [
{

"name" : "interactprofileid",
"value" : "55"

}
],

"events" : [
{
"code" : "recommendedOffers",
"timestamp" : "2015-12-28T20:16:12Z"
}
]

}

Using the IBM Interact Outbound Gateway for IBM Universal Behavior
Exchange

To use the IBM Interact Outbound Gateway for IBM Universal Behavior Exchange,
you must configure Interact, UBX, and the gateway.

Use the following configurations as an example for your configuration.

350 IBM Interact Administrator's Guide

If you use UBX as an outbound channel, Interact acts as publisher type of
endpoint, which publish events to UBX. From UBX these events can be sent to
subscriber.

Before you begin the configuration, request for outbound access to host machine.
You need net access to be enabled for the host machine.

You can download the gateway from http://www.ibm.com/support/fixcentral/
swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/
Other+software/Unica+Interact&release=All&platform=All&function=fixId
&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1
&includeSupersedes=0&downloadMethod=http&source=fc.

Registering endpoints and events in UBX
1. From UBX, navigate to the EndPoints tab. Click Register new endpoint to get

an auth key. The auth key generated from UBX should be used for publisher
endpoint and adding event. For the subscriber endpoint, the new auth key
should be generated from UBX. Make note of the key.

2. Register your publisher endpoint.
a. Open the REST API client tool.
b. Select the method as PUT.
c. Pass the headers as

Content-Type : application/json
Accept-Charset : UTF-8
Authorization : Bearer 520301d7-7855-4ea7-b19d-0b395c1e6ae4
(authKey generated in UBX)

d. Pass the URL as
URL: https://ubx-qa1-api.adm01.com/v1/endpoint

e. For the body, pass the appropriate name for the publisher endpoint.
For example:
{

"name":"Interact_Publisher",
"description":"Endpoint for server created on 30thJan",
"providerName":"IBM", "url":"",
"endpointTypes":{

"event":{
"source":{

"enabled":true
}

}
},
"marketingDatabasesDefinition":{

"marketingDatabases":[
{

"name":"IDSync",
"identifiers":[
{

"name":"interactprofileid",
"type":"INTERACTID"

}
]

}
]

}
}

3. Register your event. Make note of the [Event] code passed in body. This needs
to be mapped in the ubxContentMapping.properties file. This is case sensitive.

Chapter 19. Configure gateways for triggered messages 351

http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_Gateway_for_UBX_Publisher_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc

a. Open the REST API client tool.
b. Select the method as POST.
c. Pass the same headers you used for your endpoint in the previous step.
d. Pass the URL as

URL: https://ubx-qa1-api.adm01.com/v1/eventtype

e. For the body, pass the appropriate name for the event.
For example:
{

"name": "recommendedOffer",
"description": "recommended

contact frm UBX", "code":
"recommendedOffer"}

Note: The Event code that is passed must be mapped in the
ubxContentMapping.properties file. The event code is case sensitive.

4. Add the subscriber endpoint.
a. Open the REST API client tool.
b. Select the method as PUT.
c. Pass the same headers you used for your endpoint in the previous step.
d. For registering the subscriber endpoint, create a new auth key in UBX.
e. Pass the URL as

URL: https://ubx-qa1-api.adm01.com/v1/endpoint

f. For the body, pass the appropriate name for the publisher endpoint.
For example:
{

"name":"UBX_Subscriber",
"description":"UBX_Subscriber for Subscribing Events ",
"providerName":"IBM",
"url":"http://ubxeventconsumer.mybluemix.net/ubxeventconsumer",
"endpointTypes":{

"event":{
"source":{

"enabled":true
},

"destination":{
"enabled":true,
"url":"http://ubxeventconsumer.mybluemix.net
/ubxeventconsumer",

}
}

},
"marketingDatabasesDefinition": {

"marketingDatabases":[
{

"name":"IDSync",
"identifiers":[

{
"name":"interactprofileid",

"type":"INTERACTID"
}

]
}

]
}

5. After adding publisher and subscriber endpoints and event, you must subscribe
the events from the publisher to the subscriber in UBX .
a. In UBX, click Subscribe to events on the Events tab.

352 IBM Interact Administrator's Guide

b. Select the event and destination.
c. Click Subscribe.

Configuring Interact and the gateway
1. Add the UBX gateway under the Interact | triggeredMessage | gateways

configuration property. Set ClassPath to file:///root/opt/OMO/lib/
OMO_OutboundGateway_UBX.jar and ClassName to
com.ibm.interact.offerorchestration.outboundgateway.ubx.
UBXOutboundGateway

2. Unzip the OMO_OutboundGateway_UBX.zip file on your host machine and point
to the UBX jar from the extracted path.

3. Add OMO-conf_outbound_common_httpConnectionConfig as a parameter under
Interact | triggeredMessage | gateways | [gatewayName] | Parameter Data.
Set the value to file:///opt/Interact<version>/Interact/OMO/conf/
outbound/common/httpConnectionConfig.properties. This is the Interact
installation directory. The gateway installer downloads the gateway directory
to the Interact installed directory.
In the httpConnectionConfig.properties file in the Interact folder, specify the
timeout.
For example:
connectTimeoutMs=180000

4. Add OMO-conf_outbound_ubx_ubxConfig as a parameter under Interact |
triggeredMessage | gateways | [gatewayName] | Parameter Data. Set the
value to the path of the ubxConfig.properties file in the Interact folder.
In the ubxConfig.properties file, specify the ubxURL, authKey, and
interactProfileIdFieldName.
For example:
authKey=912586bf-190d-48f9-8488-26f1bf532ef3
[Auth Key used to register publisher endpoint and event in UBX]
interactProfileIdFieldName=interactprofileid
[Field name from the ubxContentMapping.properties file]

5. Add OMO-conf_outbound_ubx_ubxContentAdditionalAttributes as a parameter
under Interact | triggeredMessage | gateways | [gatewayName] |
Parameter Data. Set the value to the path of the
ubxContentAdditionalAttributes.properties file in the Interact folder.

6. Add OMO-conf_outbound_ubx_ubxContentMapping as a parameter under
Interact | triggeredMessage | gateways | [gatewayName] | Parameter Data.
Set the value to the path of the ubxContentMapping.properties file in the
Interact folder.
Update the alues for interactprofileid and eventName in the
ubxContentMapping.properties file.
You can Pass Event Name in 3 formats: when the value is in double quotes, it
is a static value; when the value is in the offer.offerAttributeName format, it
maps to the offer attribute offerAttributeName; and when the value is in the
profile.profileAttributeName format, it maps to the profile attribute
profileAttributeName. The Event Name value should match the code used to
register the event in UBX . This is case sensitive.
For example:
eventName="abandoned_shopping_carts"
eventName=offer.Card
eventName=profile.EMAIL

7. Add a channel under the Interact | triggeredMessage | channel
configuration property.

Chapter 19. Configure gateways for triggered messages 353

8. Define the same channel in design time under Campaign | partitions |
partition [n] |Interact | outboundChannels

9. Restart the application server.
10. Create a triggered messages rule with an event name and that uses the

channel you added in the previous steps.
11. Deploy the interactive channel.
12. From the API Test client, start the session for interactive channel where

triggered message rule is configured and the post event which triggers the
offer to UBX.

Using IBM Interact Outbound Gateway for IBM Mobile Push
Notification

To use this mobile push outbound or publisher gateway, you must configure
Interact, IBM Marketing Cloud, and the gateway.

Use the following configurations as an example for your configuration.

You can download this gateway from https://www-945.ibm.com/support/
fixcentral/swg/downloadFixes

Configuring IBM Marketing Cloud
1. Make sure you have an IBM Marketing Cloud account with push access. Also

make note of your Client ID, Client Secret, and Refresh Token.
2. On the Data tab, create a new database. Add a new Mobile User ID to the

database along with the default fields.
3. On the Search tab, search by the Mobile User ID field. Hover the mouse key on

first No email field. You will see the recipient ID at the bottom of browser
window. Add this recipient ID to the Interact profile table.

Configuring the IBM Interact Outbound Gateway for IBM Mobile
Push Notification
1. Download and install the mobile push outbound gateway from

https://www-945.ibm.com/support/fixcentral/swg/downloadFixes
2. Configure the silverpopEngagePushConfig.properties file.

For example:
OauthServiceURL=https://apipilot.silverpop.com/oauth/token
pushServiceURL=https://apipilot.silverpop.com/rest/channels/push/sends

3. Configure the silverpopEngagePushContentMapping.properties file.
For example:
Interact Profile table attributes:
appKey=appKey
engageRecipientId=recipientId
mobileUserId=mobileUserId
deviceType=deviceType

Interact Offer attributes:
simpleSubject=simpleSubjectAttr
simpleMessage=simpleMessageAttr
simpleActionData=simpleActionDataAttr
simpleActionType=simpleActionTypeAttr
simpleActionLabel=simpleActionLabelAttr
personalizeAttributeList=personalizeAttributeList
contentId=ContentID
campaignId=campaignId

354 IBM Interact Administrator's Guide

https://www-945.ibm.com/support/fixcentral/swg/downloadFixes
https://www-945.ibm.com/support/fixcentral/swg/downloadFixes
https://www-945.ibm.com/support/fixcentral/swg/downloadFixes

Configuring Interact
1. Create the following offer attributes.

simpleActionDataAttr: string
simpleActionLabelAttr: String
simpleActionTypeAttr: string
simpleMessageAttr: string
simpleSubjectAttr: string
contentID: string
campaignId=string
personalizeAttributeList=string

2. Create an offer template with the offer attributes and the following offer
values.
simpleActionDataAttr: www.ibm.com
simpleActionLabelAttr: Open URL
simpleActionTypeAttr: url
simpleMessageAttr: <Enter your message text here>
simpleSubjectAttr: <Enter subject here>
contentID: ID of the push message template that is created in Engage.
PersonalizeAttributeList: A comma separated list of attribute name
value pairs that you want to put in the personalizationDefaults
section of the payload to be sent to Engage.

When you use the contentID attribute, the other simple.. attributes are
ignored as the complete details are picked up from the Engage template.
Example personalizedAttributeList
personalizeAttributeList=discount=10,Offercost=20
campaignId=campaignname that you want to use for this campaign.

3. Your profile table has the following columns and values.
appKey: gcsTQo6v79
recipientId: 13472242
deviceType: android or ios

4. Add the gateway under the Interact | triggeredMessage | gateways
configuration property. Set ClassName to
com.ibm.interact.offerorchestration.outboundgateway.silverpop.engage.push.
SilverpopEngagePushOutboundGateway

Set the ClassPath to file://<EngagePushGateway_home_dir>/lib/
OMO_OutboundGateway_Silverpop_Engage_Push.jar.

5. Add OMO-silverpopEngagePushConfig as a parameter under Interact |
triggeredMessage | gateways | [gatewayName] | Parameter Data. Set the
value to the file path of your silverpopEngagePushConfig.properties file.

6. Add OMO-silverpopEngagePushContentMapping as a parameter under Interact |
triggeredMessage | gateways | [gatewayName] | Parameter Data. Set the
value to the file path of your silverpopEngagePushContentMapping.properties
file.

7. Add OMO-conf_outbound_common_httpConnectionConfig as a parameter under
Interact | triggeredMessage | gateways | [gatewayName] | Parameter Data.
Set the value to the file path of your httpConnectionConfig.properties file.
In the httpConnectionConfig.properties file in the Interact folder, specify the
timeout.
For example:
connectTimeoutMs=6000

8. Create a channel and a handler under Interact | triggeredMessage and use
the [Mobile_Push] gateway that you created above in that channel. This
channel is used in the triggred message to send push messages.

Chapter 19. Configure gateways for triggered messages 355

9. Create an interactive channel and add a triggered message that uses the offer
you created previously to the trigger rule.

10. Deploy the interactive channel.
11. From the API Test client, perform a startSession for interactive channel

where triggered message rule is configured and the postEvent which triggers
the offer to Mobile Push.

12. Check the Interact logs to make sure the push was sent successfully. The
status code 202 means successful delivery.

Using the IBM Interact Email (Transact) Outbound Gateway for IBM
Marketing Cloud

You can use this integration with Silverpop, Interact and IBM Interact Email
(Transact) Outbound Gateway for IBM Marketing Cloud to send triggered email
offers to your customers.

Be sure that the following prerequisites are true.
v Create a customer audience profile table with an email column. Use this profile

table for your interactive channel.
v Request that net access to the host machine is enabled for your outbound

channel.
v Copy and extract the OMO_OutboundGateway_Silverpop.zip file on host machine

You can download the gateway from http://www.ibm.com/support/fixcentral/
swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/
Other+software/Unica+Interact&release=All&platform=All&function=fixId
&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0
&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc.

Adding a dispatcher for the gateway integration
The dispatcher adds your offer into a queue for the IBM Interact Email (Transact)
Outbound Gateway for IBM Marketing Cloud so that your offer email can be sent.

You must add a dispatcher to use the IBM Interact Email (Transact) Outbound
Gateway for IBM Marketing Cloud.
1. Navigate to Interact | triggeredMessage | dispatchers | <dispatcherName> in

configuration properties.
2. Add a New category name for your dispatcher.
3. Select a type. You can choose from InMemoryQueue, JMSQueue, and Custom.
4. Enter the className.
5. Enter the classPath.

Adding a gateway for the IBM Interact Email (Transact)
Outbound Gateway for IBM Marketing Cloud

In the integration, the gateway sends eligible offers to your customers by email.

You must add a gateway for the integration.

Note: Interact does not support multiple instances of the same gateway.
1. Navigate to Interact | triggeredMessage | gateways | <gatewayName> in

configuration properties.

356 IBM Interact Administrator's Guide

http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc
http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Enterprise%2BMarketing%2BManagement&product=ibm/Other+software/Unica+Interact&release=All&platform=All&function=fixId&fixids=IBM_Interact_OMO_OutboundGateway_Silverpop_2.0&includeRequisites=1&includeSupersedes=0&downloadMethod=http&source=fc

2. Add a New category name for your gateway.
3. Set the className to the following path.

com.ibm.interact.offerorchestration.outboundgateway.
silverpop.SilverpopEmailOutboundGateway

4. Set the classPath to the location of the outbound gateway jar path from the
extracted folder.
For example:
file:///opt/OMO_SilverPop/OMO_OutboundGateway_Silverpop/lib/
OMO_OutboundGateway_Silverpop.jar

5. Add the following parameters to your gateway.
OMO-conf_outbound_common_httpConnectionConfig
OMO-conf_outbound_silverpop_silverpopConfig
OMO-conf_outbound_silverpop_silverpopContentMapping
deliveryTimeoutMillis

Configuring the OMO-
conf_outbound_common_httpConnectionConfig parameter
You must configure the OMO-conf_outbound_common_httpConnectionConfig
parameter for your gateway.
1. Navigate to Interact | triggeredMessage | gateways |

<SilverpopGatewayName> | OMO-
conf_outbound_common_httpConnectionConfig in configuration properties.

2. Set the value to file:///opt/Interact<version>/Interact/OMO/conf/outbound/
common/httpConnectionConfig.properties. This is the Interact installation
directory. The Interact installer downloads the
httpConnectionConfig.properties file to the Interact installation directory.

3. In the httpConnectionConfig.properties file in the Interact folder, specify the
timeout.
For example:
connectTimeoutMs=60000

Configuring the OMO-conf_outbound_silverpop_silverpopConfig
parameter
You must configure the OMO-conf_outbound_silverpop_silverpopConfig
parameter for your gateway.
1. Navigate to Interact | triggeredMessage | gateways |

<SilverpopGatewayName> | OMO-
conf_outbound_silverpop_silverpopConfig in configuration properties.

2. Set the value to the path of the silverpopConfig.properties file in your
OMO_OutboundGateway_silverpop folder.
For example:
file:///opt/OMO_SilverPop/OMO_OutboundGateway_Silverpop/conf/outbound/
silverpop/silverpopConfig.properties

3. In the silverpopConfig.properties file in the extracted
OMO_OutboundGateway_Silverpop.zip folder, set values for OauthServiceURL,
xmlAPIServiceURL, clientID, clientSecret, and refreshToken. Consult your
Marketing Cloud administrator to get customer specific values from the
transact.xml file.

Configuring the OMO-conf_outbound_silverpop_silverpop
ContentMapping parameter
You must configure the OMO-conf_outbound_silverpop_silverpopContentMapping
parameter for your gateway.

Chapter 19. Configure gateways for triggered messages 357

1. Navigate to Interact | triggeredMessage | gateways |
<SilverpopGatewayName> | OMO-
conf_outbound_silverpop_silverpopContentMapping in configuration
properties.

2. Set the value to the path of the silverpopContentMapping.properties file in
your OMO_OutboundGateway_silverpop folder.

3. In the silverpopContentMapping.properties file in the
OMO_OutboundGateway_Silverpop.zip folder, set the values for your content
mapping.
a. Set the campaignId property. The value for this property is an offer attribute

name that is specified in your offer templates.
b. Set the email property. The value for this property is the column name in

your profile table. Add an emailcolumn in your profile table and specify the
email IDs. These are the mail IDs of the recipients.

c. Define your offer attributes in additionalOfferPfAttributesUsedInEmail.
This property sets the attributes from your offer template that are needed
for the mailing template. You can use
additionalProfilePfAttributesUsedInEmail to define fields from your
profile table. You can use * to consider all offer attributes and column
values.

Configuring the deliveryTimeoutMillis parameter
To increase the Interact server timeout to connect with Marketing Cloud server, set
the deliveryTimeoutMills parameter.
1. Navigate to Interact | triggeredMessage | gateways |

<SilverpopGatewayName> | deliveryTimeoutMillis in configuration
properties.

2. Set the value. For example, you could set value to 60000. This would increase
the server timeout to 60000 milliseconds.

Add a channel handler for the IBM Interact Email (Transact)
Outbound Gateway for IBM Marketing Cloud

Add a channel handler in the Interact runtime environment.
1. Navigate to Interact | triggeredMessage | channels |

<SilverpopChannelName> | <handlerName> in configuration properties.
2. Add a New category name for your channel handler.
3. Set the name of the dispatcher you previously added.
4. Set the name of the gateway you previously added.
5. Set the mode. If Failover is selected, this handler is used only when all the

handlers with higher priorities defined within this channel failed to send offers.
If Addon is selected, this handler is used no matter if other handlers have
successfully sent offers.

6. Set the priority for this handler.

Adding an outbound channel for the IBM Interact Email
(Transact) Outbound Gateway for IBM Marketing Cloud

Add an outbound channel in the Interact design environment.
1. Navigate to Campaign | partitions | partition[n] | Interact |

outboundChannels in configuration properties.
2. Add a New category name for your outbound channel.

358 IBM Interact Administrator's Guide

3. Add a name for your outbound channel. Make sure the channel name is the
same as the channel name you added in the Interact | triggeredMessage |
channels | <SilverpopChannelName> configuration property.

Configuring the transactional mailing with the IBM Interact
Email (Transact) Outbound Gateway for IBM Marketing Cloud

You must configure your transactional mailing to send your email offer.
1. In the Marketing Cloud (Transact), click Data > Create Database. Then click

Create to create a profile table. You can also import the profile table where you
added the email column.

2. Click Automation > Transactional messages > Create Group. Select Transact
for the Event Trigger. You also need to select the datasource you previously
created. Click Save & Activate.
The offer that is sent through The Marketing Cloud should have the same
attribute you set for the campaignId in the
silverpopContentMapping.properties file. The value for this offer attribute is
the campaignId that is generated for the automated message group.

3. Click Content > Create Mailings and select the content source from the
previous step. Enter the mailing body. Click Automate. Select Assign Mailing
to Existing Group of Automated Messages. Click Submit & Activate.
The mailing subject line and body can be personalized using offer attributes
and profile attributes. Use the %%Attribute_Name%% syntax to define attributes.

4. The Marketing Cloud server only accepts outbound gateways submissions from
IP addresses set up in advance. To add an IP address, navigate to Settings >
Org Admin > Security Settings > Access Restrictions.

5. If you use the WebSphere Application Server, you need to import the
Marketing Cloud SSL certificate. This is not required for WebLogic users.
a. In the WebSphere Application Server console, navigate to SSL certificate

and key managemen > Key stores and certificate > NodeDefaultTrustStore
> Signer certificates > Retrieve from port.

b. Set the host and port.
c. Restart the WebSphere Application Server.

Chapter 19. Configure gateways for triggered messages 359

360 IBM Interact Administrator's Guide

Before you contact IBM technical support

If you encounter a problem that you cannot resolve by consulting the
documentation, your company's designated support contact can log a call with
IBM technical support. Use these guidelines to ensure that your problem is
resolved efficiently and successfully.

If you are not a designated support contact at your company, contact your IBM
administrator for information.

Note: Technical Support does not write or create API scripts. For assistance in
implementing our API offerings, contact IBM Professional Services.

Information to gather

Before you contact IBM technical support, gather the following information:
v A brief description of the nature of your issue.
v Detailed error messages that you see when the issue occurs.
v Detailed steps to reproduce the issue.
v Related log files, session files, configuration files, and data files.
v Information about your product and system environment, which you can obtain

as described in "System information."

System information

When you call IBM technical support, you might be asked to provide information
about your environment.

If your problem does not prevent you from logging in, much of this information is
available on the About page, which provides information about your installed IBM
applications.

You can access the About page by selecting Help > About. If the About page is not
accessible, check for a version.txt file that is located under the installation
directory for your application.

Contact information for IBM technical support

For ways to contact IBM technical support, see the IBM Product Technical Support
website: (http://www.ibm.com/support/entry/portal/open_service_request).

Note: To enter a support request, you must log in with an IBM account. This
account must be linked to your IBM customer number. To learn more about
associating your account with your IBM customer number, see Support Resources
> Entitled Software Support on the Support Portal.

© Copyright IBM Corp. 2001, 2018 361

http://www.ibm.com/support/entry/portal/open_service_request

362 IBM Interact Administrator's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2001, 2018 363

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
B1WA LKG1
550 King Street
Littleton, MA 01460-1250
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

364 IBM Interact Administrator's Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Privacy Policy and Terms of Use Considerations
IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. A cookie is a piece of data that a web site can
send to your browser, which may then be stored on your computer as a tag that
identifies your computer. In many cases, no personal information is collected by
these cookies. If a Software Offering you are using enables you to collect personal
information through cookies and similar technologies, we inform you about the
specifics below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user's user name, and other
personal information for purposes of session management, enhanced user usability,
or other usage tracking or functional purposes. These cookies can be disabled, but
disabling them will also eliminate the functionality they enable.

Various jurisdictions regulate the collection of personal information through
cookies and similar technologies. If the configurations deployed for this Software
Offering provide you as customer the ability to collect personal information from
end users via cookies and other technologies, you should seek your own legal
advice about any laws applicable to such data collection, including any
requirements for providing notice and consent where appropriate.

IBM requires that Clients (1) provide a clear and conspicuous link to Customer's
website terms of use (e.g. privacy policy) which includes a link to IBM's and
Client's data collection and use practices, (2) notify that cookies and clear gifs/web
beacons are being placed on the visitor's computer by IBM on the Client's behalf
along with an explanation of the purpose of such technology, and (3) to the extent
required by law, obtain consent from website visitors prior to the placement of
cookies and clear gifs/web beacons placed by Client or IBM on Client's behalf on
website visitor's devices

For more information about the use of various technologies, including cookies, for
these purposes, See IBM's Online Privacy Statement at: http://www.ibm.com/
privacy/details/us/en section entitled "Cookies, Web Beacons and Other
Technologies."

Notices 365

366 IBM Interact Administrator's Guide

IBM®

Printed in USA

	Contents
	Chapter 1. Administer IBM Interact
	Interact key concepts
	Audience levels
	Design environment
	Events
	Interactive channels
	Interactive flowcharts
	Interaction points
	Offers
	Profiles
	Runtime environment
	Runtime sessions
	Touchpoints
	Treatment rules

	Interact architecture
	Interact network considerations
	Interact server ports and network security
	Logging in to IBM Marketing Software

	Chapter 2. Configuring Users
	Configuring the runtime environment user
	Configuring design environment users
	Example design environment permissions

	Chapter 3. Managing Interact data sources
	Interact data sources
	Databases and the applications
	Campaign system tables
	Runtime tables
	Test run tables
	Overriding the default data types used for dynamically created tables
	Overriding the default data types
	Default data types for dynamically created tables

	Profile database
	Learning tables
	Contact history for cross-session response tracking
	Running database scripts to enable features
	About contact and response history tracking
	Contact and response types
	Additional Contact types
	Additional response types
	Runtime environment staging tables to Campaign history tables mapping
	Configuring JMX monitoring for the contact and response history module

	About cross-session response tracking
	Cross-session response tracking data source configuration
	Configuring contact and response history tables for cross-session response tracking
	UACI_TrackingType table
	UACI_XSessResponse

	Enabling cross-session response tracking
	Cross-session response offer matching

	Using a database load utility with the runtime environment
	Enabling a database load utility with runtime environment

	Event pattern ETL process
	Running the stand-alone ETL process
	Stopping the stand-alone ETL process

	Chapter 4. Offer serving
	Offer eligibility
	Generating a list of candidate offers
	Calculate the marketing score
	Influencing learning

	Suppress offers
	Enabling offer suppression
	Offer suppression table

	Global offers and individual assignments
	Defining the default cell codes
	Defining offers not used in a treatment rule
	About the global offers table
	Assigning global offers
	Global offer table
	About the score override table
	Configuring score overrides
	Score override table

	Interact built-in learning overview
	Interact learning module
	Enabling the learning module
	Learning attributes
	Defining a learning attribute
	Define dynamic learning attributes
	Interact AutoBinning
	Configuring the runtime environment to recognize external learning modules

	Chapter 5. Understanding the Interact API
	Interact API dataflow
	Simple interaction planning example
	Designing the Interact API integration
	Points to consider

	Chapter 6. Managing the IBM Interact API
	Locale and the Interact API
	About JMX monitoring
	Configuring Interact to use JMX monitoring with the RMI protocol
	Configuring Interact to use JMX monitoring with the JMXMP protocol
	Configuring Interact to use the jconsole scripts for JMX monitoring
	JMX attributes
	JMX operations

	Chapter 7. Classes and methods for the IBM Interact Java, SOAP, and REST API
	Interact API Classes
	Java serialization over HTTP prerequisites
	SOAP prerequisites
	REST prerequisites
	API JavaDoc
	API examples

	Working with session data
	About the InteractAPI class
	endSession
	executeBatch
	Writing executeBatch() XML requests for the Interact SOAP API

	getInstance
	getOffers
	getOffersForMultipleInteractionPoints
	getProfile
	getVersion
	postEvent
	setAudience
	setDebug
	startSession
	Offer deduplication across offer attributes

	Reserved parameters

	About the AdvisoryMessage class
	getDetailMessage
	getMessage
	getMessageCode
	getStatusLevel

	About the AdvisoryMessageCode class
	Advisory message codes

	About the BatchResponse class
	getBatchStatusCode
	getResponses

	About the Command interface
	setAudienceID
	setAudienceLevel
	setDebug
	setEvent
	setEventParameters
	setGetOfferRequests
	setInteractiveChannel
	setInteractionPoint
	setMethodIdentifier
	setNumberRequested
	setRelyOnExistingSession

	About the NameValuePair interface
	getName
	getValueAsDate
	getValueAsNumeric
	getValueAsString
	getValueDataType
	setName
	setValueAsDate
	setValueAsNumeric
	setValueAsString
	setValueDataType

	About the Offer class
	getAdditionalAttributes
	getDescription
	getOfferCode
	getOfferName
	getScore
	getTreatmentCode

	About the OfferList class
	getDefaultString
	getRecommendedOffers

	About the Response class
	getAdvisoryMessages
	getApiVersion
	getOfferList
	getAllOfferLists
	getProfileRecord
	getSessionID
	getStatusCode

	Chapter 8. Classes and methods for the IBM Interact JavaScript API
	JavaScript prerequisites
	Working with session data
	Working with the callback parameter
	About the InteractAPI class
	startSession
	Offer deduplication across offer attributes
	postEvent

	getOffers
	getOffersForMultipleInteractionPoints
	setAudience
	getProfile
	endSession
	setDebug
	getVersion
	executeBatch

	JavaScript API example
	Example response JavaScript object onSuccesss

	Chapter 9. About the ExternalCallout API
	IAffiniumExternalCallout interface
	Adding a web service for use with the EXTERNALCALLOUT macro
	getNumberOfArguments
	getValue
	initialize
	shutdown

	ExternalCallout API example
	IInteractProfileDataService interface
	Adding a data source for use with Profile Data Services

	IParameterizableCallout interface
	initialize
	shutdown

	ITriggeredMessageAction interface
	getName
	setName

	IChannelSelector interface
	selectChannels

	IDispatcher interface
	dispatch

	IGateway interface
	deliver
	validate

	Chapter 10. IBM Interact utilities
	Run Deployment Utility (runDeployment.sh/.bat)

	Chapter 11. About the Learning API
	Configuring the runtime environment to recognize external learning modules
	ILearning interface
	initialize
	logEvent
	optimizeRecommendList
	reinitialize
	shutdown

	IAudienceID interface
	getAudienceLevel
	getComponentNames
	getComponentValue

	IClientArgs
	getValue

	IInteractSession
	getAudienceId
	getSessionData

	IInteractSessionData interface
	getDataType
	getParameterNames
	getValue
	setValue

	ILearningAttribute
	getName

	ILearningConfig
	ILearningContext
	getLearningContext
	getResponseCode

	IOffer
	getCreateDate
	getEffectiveDateFlag
	getExpirationDateFlag
	getOfferAttributes
	getOfferCode
	getOfferDescription
	getOfferID
	getOfferName
	getUpdateDate

	IOfferAttributes
	getParameterNames
	getValue

	IOfferCode interface
	getPartCount
	getParts

	LearningException
	IScoreOverride
	getOfferCode
	getParameterNames
	getValue

	ISelectionMethod
	ITreatment interface
	getCellCode
	getCellId
	getCellName
	getLearningScore
	getMarketerScore
	getOffer
	getOverrideValues
	getPredicate
	getPredicateScore
	getScore
	getTreatmentCode
	setActualValueUsed

	Learning API example

	Chapter 12. IBM Interact WSDL
	Chapter 13. Interact runtime environment configuration properties
	Interact | general
	Interact | general | learningTablesDataSource
	Interact | general | prodUserDataSource
	Interact | general | systemTablesDataSource
	Interact | general | systemTablesDataSource | loaderProperties

	Interact | general | testRunDataSource
	Interact | general | contactAndResponseHistoryDataSource
	Interact | general | idsByType

	Interact | flowchart
	Interact | flowchart | ExternalCallouts | [ExternalCalloutName]
	Interact | flowchart | ExternalCallouts | [ExternalCalloutName] | Parameter Data | [parameterName]

	Interact | monitoring
	Interact | monitoring | activitySubscribers
	Interact | monitoring | activitySubscribers | (target)

	Interact | profile
	Interact | profile | Audience Levels | [AudienceLevelName]
	Interact | profile | Audience Levels | [AudienceLevelName] | Offers by Raw SQL
	Interact | profile | Audience Levels | [AudienceLevelName] | SQL Template

	Interact | profile | Audience Levels | [AudienceLevelName | Profile Data Services | [DataSource]

	Interact | offerserving
	Interact | offerserving | Built-in Learning Config
	Interact | offerserving | Built-in Learning Config | Parameter Data | [parameterName]
	Interact | offerserving | External Learning Config
	Interact | offerserving | External Learning Config | Parameter Data | [parameterName]
	Interact | offerserving | Constraints

	Interact | services
	Interact | services | contactHist
	Interact | services | contactHist | cache
	Interact | services | contactHist | contactStatusCodes
	Interact | services | contactHist | fileCache
	Interact | services | defaultedStats
	Interact | services | defaultedStats | cache
	Interact | services | eligOpsStats
	Interact | services | eligOpsStats | cache
	Interact | services | eventActivity
	Interact | services | eventActivity | cache
	Interact | services | eventPattern
	Interact | services | eventPattern | userEventCache
	Interact | services | eventPattern | advancedPatterns
	Interact | services | eventPattern | advancedPatterns | autoReconnect

	Interact | services | customLogger
	Interact | services | customLogger | cache
	Interact | services | responseHist
	Interact | services | responseHist | cache
	Interact | services | response Hist | responseTypeCodes
	Interact | services | responseHist | fileCache
	Interact | services | crossSessionResponse
	Interact | services | crossSessionResponse | cache
	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byTreatmentCode
	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byOfferCode
	Interact | services | crossSessionResponse | OverridePerAudience | [AudienceLevel] | TrackingCodes | byAlternateCode
	Interact | services | threadManagement | contactAndResponseHist
	Interact | services | threadManagement | allOtherServices
	Interact | services | threadManagement | flushCacheToDB
	Interact | services | threadManagement | eventHandling
	Interact | services | configurationMonitor

	Interact | cacheManagement
	Interact | cacheManagement | Cache Managers
	Interact | cacheManagement | Cache Managers | EHCache
	Interact | Cache Managers | EHCache | Parameter Data
	Interact | cacheManagement | Cache Managers | Extreme Scale
	Interact | Cache Managers | Extreme Scale | Parameter Data

	Interact | caches
	Interact | cacheManagement | caches | InteractCache
	Interact | Caches | Interact Cache | Parameter Data
	Interact | cacheManagement | caches | PatternStateCache

	Interact | triggeredMessage
	Interact | triggeredMessage | offerSelection
	Interact | triggeredMessage | dispatchers
	Interact | triggeredMessage | dispatchers | <dispatcherName>
	Interact | triggeredMessage | dispatchers | <dispatcherName> | Parameter Data

	Interact | triggeredMessage | gateways | <gatewayName>
	Interact | triggeredMessage | gateways | <gatewayName> | Parameter Data

	Interact | triggeredMessage | channels
	Interact | triggeredMessage | channels | Parameter Data
	Interact | triggeredMessage | channels | <channelName>
	Interact | triggeredMessage | channels | <channelName> | <handlerName>

	Interact | activityOrchestrator
	Interact | activityOrchestrator | receivers
	Interact | activityOrchestrator | gateways

	Interact | ETL | patternStateETL
	Interact | ETL | patternStateETL | <patternStateETLName> | RuntimeDS
	Interact | ETL | patternStateETL | <patternStateETLName> | TargetDS
	Interact | ETL | patternStateETL | <patternStateETLName> | Report

	Chapter 14. Interact Simulator
	Interact | simulator
	Interact | simulator|scenarioDataSource

	Chapter 15. Interact design environment configuration properties
	Campaign | partitions | partition[n] | reports
	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking
	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | runtimeDataSources | [runtimeDataSource]
	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | contactTypeMappings
	Campaign | partitions | partition[n] | Interact | contactAndResponseHistTracking | responseTypeMappings

	Campaign | partitions | partition[n] | Interact | report
	Campaign | partitions | partition[n] | Interact | learning
	Campaign | partitions | partition[n] | Interact | learning | learningAttributes | [learningAttribute]

	Campaign | partitions | partition[n] | Interact | deployment
	Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup]
	Campaign | partitions | partition[n] | Interact | serverGroups | [serverGroup] | instanceURLs | [instanceURL]

	Campaign | partitions | partition[n] | Interact | flowchart
	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | DefaultOffers
	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | offersBySQL
	Campaign | partitions | partition[n] | Interact | whiteList | [AudienceLevel] | ScoreOverride
	Campaign | partitions | partition[n] | server | internal
	Campaign | monitoring
	Campaign | partitions | partition[n] | Interact | outboundChannels
	Campaign | partitions | partition[n] | Interact | outboundChannels | Parameter Data

	Campaign | partitions | partition[n] | Interact | Simulator

	Chapter 16. Real-time offer personalization on the client side
	About the Interact Message Connector
	Installing the Message Connector
	Configuring the Message Connector
	Creating the Message Connector Tables
	Deploying and running the Message Connector

	Creating the Message Connector links
	"IMG" and "A" tag HTTP Request parameters

	About the Interact Web Connector
	Installing the Web Connector on the runtime server
	Installing the Web Connector as a separate web application
	Configuring the Web Connector
	WebConnector Configuration Basic Options
	WebConnector Configuration HTML Display Types
	WebConnector Configuration Enhanced Pages
	Web Connector Configuration Options

	Using the Web Connector Admin Page
	Sample Web Connector Page

	Chapter 17. Interact and Digital Recommendations integration
	Overview of Interact integration with Digital Recommendations
	Integration Prerequisites

	Configuring an offer for Digital Recommendations integration
	Using the Integration Sample Project

	Chapter 18. Interact and Digital Data Exchange integration
	Prerequisites
	Integrating IBM Interact with your website through IBM Digital Data Exchange
	Interact tags in Digital Data Exchange
	End Session
	Get Offers
	Load Library
	Post Event
	Set Audience
	Start Session
	Example tag settings

	Verify your integration configuration

	Chapter 19. Configure gateways for triggered messages
	Using the IBM Interact Inbound Gateway for IBM Universal Behavior Exchange
	Using the IBM Interact Outbound Gateway for IBM Universal Behavior Exchange
	Using IBM Interact Outbound Gateway for IBM Mobile Push Notification
	Using the IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Adding a dispatcher for the gateway integration
	Adding a gateway for the IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Configuring the OMO-conf_outbound_common_httpConnectionConfig parameter
	Configuring the OMO-conf_outbound_silverpop_silverpopConfig parameter
	Configuring the OMO-conf_outbound_silverpop_silverpop ContentMapping parameter
	Configuring the deliveryTimeoutMillis parameter

	Add a channel handler for the IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Adding an outbound channel for the IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud
	Configuring the transactional mailing with the IBM Interact Email (Transact) Outbound Gateway for IBM Marketing Cloud

	Before you contact IBM technical support
	Notices
	Trademarks
	Privacy Policy and Terms of Use Considerations

